1
|
Brar HK, Dey S, Singh P, Pande D, Ghosh-Roy A. Functional Recovery Associated with Dendrite Regeneration in PVD Neuron of Caenorhabditis elegans. eNeuro 2024; 11:ENEURO.0292-23.2024. [PMID: 38548333 PMCID: PMC7615967 DOI: 10.1523/eneuro.0292-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024] Open
Abstract
PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Pallavi Singh
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Devashish Pande
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| |
Collapse
|
2
|
Chen Y, Chen X, Baserdem B, Zhan H, Li Y, Davis MB, Kebschull JM, Zador AM, Koulakov AA, Albeanu DF. High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex. Cell 2022; 185:4117-4134.e28. [PMID: 36306734 PMCID: PMC9681627 DOI: 10.1016/j.cell.2022.09.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
In most sensory modalities, neuronal connectivity reflects behaviorally relevant stimulus features, such as spatial location, orientation, and sound frequency. By contrast, the prevailing view in the olfactory cortex, based on the reconstruction of dozens of neurons, is that connectivity is random. Here, we used high-throughput sequencing-based neuroanatomical techniques to analyze the projections of 5,309 mouse olfactory bulb and 30,433 piriform cortex output neurons at single-cell resolution. Surprisingly, statistical analysis of this much larger dataset revealed that the olfactory cortex connectivity is spatially structured. Single olfactory bulb neurons targeting a particular location along the anterior-posterior axis of piriform cortex also project to matched, functionally distinct, extra-piriform targets. Moreover, single neurons from the targeted piriform locus also project to the same matched extra-piriform targets, forming triadic circuit motifs. Thus, as in other sensory modalities, olfactory information is routed at early stages of processing to functionally diverse targets in a coordinated manner.
Collapse
Affiliation(s)
- Yushu Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaoyin Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Huiqing Zhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yan Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Martin B Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Anthony M Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
FASN-dependent de novo lipogenesis is required for brain development. Proc Natl Acad Sci U S A 2022; 119:2112040119. [PMID: 34996870 PMCID: PMC8764667 DOI: 10.1073/pnas.2112040119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 01/24/2023] Open
Abstract
Fate and behavior of neural progenitor cells are tightly regulated during mammalian brain development. Metabolic pathways, such as glycolysis and oxidative phosphorylation, that are required for supplying energy and providing molecular building blocks to generate cells govern progenitor function. However, the role of de novo lipogenesis, which is the conversion of glucose into fatty acids through the multienzyme protein fatty acid synthase (FASN), for brain development remains unknown. Using Emx1Cre-mediated, tissue-specific deletion of Fasn in the mouse embryonic telencephalon, we show that loss of FASN causes severe microcephaly, largely due to altered polarity of apical, radial glia progenitors and reduced progenitor proliferation. Furthermore, genetic deletion and pharmacological inhibition of FASN in human embryonic stem cell-derived forebrain organoids identifies a conserved role of FASN-dependent lipogenesis for radial glia cell polarity in human brain organoids. Thus, our data establish a role of de novo lipogenesis for mouse and human brain development and identify a link between progenitor-cell polarity and lipid metabolism.
Collapse
|
4
|
Blockus H, Rolotti SV, Szoboszlay M, Peze-Heidsieck E, Ming T, Schroeder A, Apostolo N, Vennekens KM, Katsamba PS, Bahna F, Mannepalli S, Ahlsen G, Honig B, Shapiro L, de Wit J, Losonczy A, Polleux F. Synaptogenic activity of the axon guidance molecule Robo2 underlies hippocampal circuit function. Cell Rep 2021; 37:109828. [PMID: 34686348 PMCID: PMC8605498 DOI: 10.1016/j.celrep.2021.109828] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 07/06/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023] Open
Abstract
Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.
Collapse
Affiliation(s)
- Heike Blockus
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Sebi V Rolotti
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Miklos Szoboszlay
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Eugénie Peze-Heidsieck
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Tiffany Ming
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Anna Schroeder
- VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Nuno Apostolo
- VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Kristel M Vennekens
- VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Fabiana Bahna
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Seetha Mannepalli
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Goran Ahlsen
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Barry Honig
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Joris de Wit
- VIB Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|