1
|
Srinak N, Chiewchankaset P, Kalapanulak S, Panichnumsin P, Saithong T. Metabolic cross-feeding interactions modulate the dynamic community structure in microbial fuel cell under variable organic loading wastewaters. PLoS Comput Biol 2024; 20:e1012533. [PMID: 39418284 PMCID: PMC11521316 DOI: 10.1371/journal.pcbi.1012533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
The efficiency of microbial fuel cells (MFCs) in industrial wastewater treatment is profoundly influenced by the microbial community, which can be disrupted by variable industrial operations. Although microbial guilds linked to MFC performance under specific conditions have been identified, comprehensive knowledge of the convergent community structure and pathways of adaptation is lacking. Here, we developed a microbe-microbe interaction genome-scale metabolic model (mmGEM) based on metabolic cross-feeding to study the adaptation of microbial communities in MFCs treating sulfide-containing wastewater from a canned-pineapple factory. The metabolic model encompassed three major microbial guilds: sulfate-reducing bacteria (SRB), methanogens (MET), and sulfide-oxidizing bacteria (SOB). Our findings revealed a shift from an SOB-dominant to MET-dominant community as organic loading rates (OLRs) increased, along with a decline in MFC performance. The mmGEM accurately predicted microbial relative abundance at low OLRs (L-OLRs) and adaptation to high OLRs (H-OLRs). The simulations revealed constraints on SOB growth under H-OLRs due to reduced sulfate-sulfide (S) cycling and acetate cross-feeding with SRB. More cross-fed metabolites from SRB were diverted to MET, facilitating their competitive dominance. Assessing cross-feeding dynamics under varying OLRs enabled the execution of practical scenario-based simulations to explore the potential impact of elevated acidity levels on SOB growth and MFC performance. This work highlights the role of metabolic cross-feeding in shaping microbial community structure in response to high OLRs. The insights gained will inform the development of effective strategies for implementing MFC technology in real-world industrial environments.
Collapse
Affiliation(s)
- Natchapon Srinak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Porntip Chiewchankaset
- Center for Agricultural Systems Biology (CASB), Systems Biology and Bioinformatics research laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Center for Agricultural Systems Biology (CASB), Systems Biology and Bioinformatics research laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Pornpan Panichnumsin
- Excellent Center of Waste Utilization and Management, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Center for Agricultural Systems Biology (CASB), Systems Biology and Bioinformatics research laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| |
Collapse
|
2
|
Partipilo G, Bowman EK, Palmer EJ, Gao Y, Ridley RS, Alper HS, Keitz BK. Single-Cell Phenotyping of Extracellular Electron Transfer via Microdroplet Encapsulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598847. [PMID: 38915652 PMCID: PMC11195189 DOI: 10.1101/2024.06.13.598847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes. Studying this phenomenon in high-throughput is challenging since extracellular reduction cannot easily be traced back to its cell of origin within a mixed population. Here, we describe the development of a microdroplet emulsion system to enrich EET-capable organisms. We validated our system using the model electroactive organism S. oneidensis and describe the tooling of a benchtop microfluidic system for oxygen-limited processes. We demonstrated enrichment of EET-capable phenotypes from a mixed wild-type and EET-knockout population. As a proof-of-concept application, bacteria were collected from iron sedimentation from Town Lake (Austin, TX) and subjected to microdroplet enrichment. We observed an increase in EET-capable organisms in the sorted population that was distinct when compared to a population enriched in a bulk culture more closely akin to traditional techniques for discovering EET-capable bacteria. Finally, two bacterial species, C. sakazakii and V. fessus not previously shown to be electroactive, were further cultured and characterized for their ability to reduce channel conductance in an organic electrochemical transistor (OECT) and to reduce soluble Fe(III). We characterized two bacterial species not previously shown to exhibit electrogenic behavior. Our results demonstrate the utility of a microdroplet emulsions for identifying putative EET-capable bacteria and how this technology can be leveraged in tandem with existing methods.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Emily K. Bowman
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, 78712
| | - Emma J. Palmer
- Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Yang Gao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Rodney S. Ridley
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Benjamin K. Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| |
Collapse
|
3
|
Zhou L, Tang T, Deng D, Wang Y, Pei D. Isolation and Electrochemical Analysis of a Facultative Anaerobic Electrogenic Strain Klebsiella sp. SQ-1. Pol J Microbiol 2024; 73:143-153. [PMID: 38676960 PMCID: PMC11192523 DOI: 10.33073/pjm-2024-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 04/29/2024] Open
Abstract
Electricigens decompose organic matter and convert stored chemical energy into electrical energy through extracellular electron transfer. They are significant biocatalysts for microbial fuel cells with practical applications in green energy generation, effluent treatment, and bioremediation. A facultative anaerobic electrogenic strain SQ-1 is isolated from sludge in a biotechnology factory. The strain SQ-1 is a close relative of Klebsiella variicola. Multilayered biofilms form on the surface of a carbon electrode after the isolated bacteria are inoculated into a microbial fuel cell device. This strain produces high current densities of 625 μA cm-2 by using acetate as the carbon source in a three-electrode configuration. The electricity generation performance is also analyzed in a dual-chamber microbial fuel cell. It reaches a maximum power density of 560 mW m-2 when the corresponding output voltage is 0.59 V. The facultative strain SQ-1 utilizes hydrous ferric oxide as an electron acceptor to perform extracellular electricigenic respiration in anaerobic conditions. Since facultative strains possess better properties than anaerobic strains, Klebsiella sp. SQ-1 may be a promising exoelectrogenic strain for applications in microbial electrochemistry.
Collapse
Affiliation(s)
- Lei Zhou
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Tuoxian Tang
- Department of Biological Sciences, Virginia Tech, Blacksburg, USA
| | - Dandan Deng
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Yayue Wang
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Dongli Pei
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| |
Collapse
|
4
|
Nguyen HTT, Le GTH, Park SG, Jadhav DA, Le TTQ, Kim H, Vinayak V, Lee G, Yoo K, Song YC, Chae KJ. Optimizing electrochemically active microorganisms as a key player in the bioelectrochemical system: Identification methods and pathways to large-scale implementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169766. [PMID: 38181955 DOI: 10.1016/j.scitotenv.2023.169766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The rapid global economic growth driven by industrialization and population expansion has resulted in significant issues, including reliance on fossil fuels, energy scarcity, water crises, and environmental emissions. To address these issues, bioelectrochemical systems (BES) have emerged as a dual-purpose solution, harnessing electrochemical processes and the capabilities of electrochemically active microorganisms (EAM) to simultaneously recover energy and treat wastewater. This review examines critical performance factors in BES, including inoculum selection, pretreatment methods, electrodes, and operational conditions. Further, authors explore innovative approaches to suppress methanogens and simultaneously enhance the EAM in mixed cultures. Additionally, advanced techniques for detecting EAM are discussed. The rapid detection of EAM facilitates the selection of suitable inoculum sources and optimization of enrichment strategies in BESs. This optimization is essential for facilitating the successful scaling up of BES applications, contributing substantially to the realization of clean energy and sustainable wastewater treatment. This analysis introduces a novel viewpoint by amalgamating contemporary research on the selective enrichment of EAM in mixed cultures. It encompasses identification and detection techniques, along with methodologies tailored for the selective enrichment of EAM, geared explicitly toward upscaling applications in BES.
Collapse
Affiliation(s)
- Ha T T Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School (OST), Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Giang T H Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Sung-Gwan Park
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Trang T Q Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Hyunsu Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Gihan Lee
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Keunje Yoo
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
5
|
Wang N, Gao M, Liu S, Zhu W, Zhang Y, Wang X, Sun H, Guo Y, Wang Q. Electrochemical promotion of organic waste fermentation: Research advances and prospects. ENVIRONMENTAL RESEARCH 2024; 244:117422. [PMID: 37866529 DOI: 10.1016/j.envres.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.
Collapse
Affiliation(s)
- Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin, 301811, China.
| |
Collapse
|
6
|
Jalili P, Ala A, Nazari P, Jalili B, Ganji DD. A comprehensive review of microbial fuel cells considering materials, methods, structures, and microorganisms. Heliyon 2024; 10:e25439. [PMID: 38371992 PMCID: PMC10873675 DOI: 10.1016/j.heliyon.2024.e25439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Microbial fuel cells (MFCs) are promising for generating renewable energy from organic matter and efficient wastewater treatment. Ensuring their practical viability requires meticulous optimization and precise design. Among the critical components of MFCs, the membrane separator plays a pivotal role in segregating the anode and cathode chambers. Recent investigations have shed light on the potential benefits of membrane-less MFCs in enhancing power generation. However, it is crucial to recognize that such configurations can adversely impact the electrocatalytic activity of anode microorganisms due to increased substrate and oxygen penetration, leading to decreased coulombic efficiency. Therefore, when selecting a membrane for MFCs, it is essential to consider key factors such as internal resistance, substrate loss, biofouling, and oxygen diffusion. Addressing these considerations carefully allows researchers to advance the performance and efficiency of MFCs, facilitating their practical application in sustainable energy production and wastewater treatment. Accelerated substrate penetration could also lead to cathode clogging and bacterial inactivation, reducing the MFC's efficiency. Overall, the design and optimization of MFCs, including the selection and use of membranes, are vital for their practical application in renewable energy generation and wastewater treatment. Further research is necessary to overcome the challenges of MFCs without a membrane and to develop improved membrane materials for MFCs. This review article aims to compile comprehensive information about all constituents of the microbial fuel cell, providing practical insights for researchers examining various variables in microbial fuel cell research.
Collapse
Affiliation(s)
- Payam Jalili
- Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amirhosein Ala
- Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parham Nazari
- Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bahram Jalili
- Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Davood Domiri Ganji
- Department of Mechanical Engineering, Babol Noshirvani University of Technology, P.O. Box 484, Babol, Iran
| |
Collapse
|
7
|
Sonawane AV, Rikame S, Sonawane SH, Gaikwad M, Bhanvase B, Sonawane SS, Mungray AK, Gaikwad R. A review of microbial fuel cell and its diversification in the development of green energy technology. CHEMOSPHERE 2024; 350:141127. [PMID: 38184082 DOI: 10.1016/j.chemosphere.2024.141127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The advancement of microbial fuel cell technology is rapidly growing, with extensive research and well-established methodologies for enhancing structural performance. This terminology attracts researchers to compare the MFC devices on a technological basis. The architectural and scientific successes of MFCs are only possible with the knowledge of engineering and technical fields. This involves the structure of MFCs, using substrates and architectural backbones regarding electrode advancement, separators and system parameter measures. Knowing about the MFCs facilitates the systematic knowledge of engineering and scientific principles. The current situation of rapid urbanization and industrial growth is demanding the augmented engineering goods and production which results in unsolicited burden on traditional wastewater treatment plants. Consequently, posing health hazards and disturbing aquatic veracity due to partial and untreated wastewater. Therefore, it's sensible to evaluate the performance of MFCs as an unconventional treatment method over conventional one to treat the wastewater. However, MFCs some benefits like power generation, stumpy carbon emission and wastewater treatment are the main reasons behind the implementation. Nonetheless, few challenges like low power generation, scaling up are still the major areas needs to be focused so as to make MFCs sustainable one. We have focused on few archetypes which majorities have been laboratory scale in operations. To ensure the efficiency MFCs are needed to integrate and compatible with conventional wastewater treatment schemes. This review intended to explore the diversification in architecture of MFCs, exploration of MFCs ingredients and to provide the foreseen platform for the researchers in one source, so as to establish the channel for scaling up the technology. Further, the present review show that the MFC with different polymer membranes and cathode and anode modification presents significant role for potential commercial applications after change the system form prototype to pilot scale.
Collapse
Affiliation(s)
- Amol V Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Satish Rikame
- Department of Chemical Engineering, K.K.Wagh Polytechnic Nashik, Maharashtra, India.
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, 506004, Telangana, India.
| | - Mahendra Gaikwad
- Department of Chemical Engineering, National Institute of Technology, Raipur, 492010, Chhattisgarh, India.
| | - Bharat Bhanvase
- Department of Chemical Engineering, Laxminarayan Innovation Technological University, Nagpur, 440033, Maharashtra, India.
| | - Shriram S Sonawane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, Maharashtra, India.
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| | - Ravindra Gaikwad
- Department of Chemical Engineering, Ravindra W. Gaikwad, Jawaharlal Nehru Engineering College, Chatrapati Sambhaji Nagar, 431003, Maharashtra, India.
| |
Collapse
|
8
|
Verma P, Ray S. Critical evaluation of electroactive wetlands: traditional and modern advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14349-14366. [PMID: 38289554 DOI: 10.1007/s11356-024-32115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
In the field of sustainable wastewater management, electroactive wetlands (EW), or constructed wetland-microbial fuel cells (CW-MFC), are an emerging technology. With the growing problem of untreated wastewater, the emphasis must shift to decentralisation of wastewater treatment infrastructure, and CW-MFC can be an excellent choice. This review provides a chronologically organized account of the design and configuration of CW-MFCs developed between 2010 and 2023. The research on CW-MFC has mainly focused on material, positioning and number of electrodes; use of electroconductive media and filler materials; flow regime; algal-based CW-MFC and multistage setups. Compared to traditional constructed wetlands (CW) and microbial fuel cells (MFC), CW-MFCs have a number of advantages, including better treatment efficiency, faster organic matter utilisation, lower capital and land requirements and a smaller carbon footprint. However, there are some limitations as well, such as upscaling and viable electricity generation, which are covered in more detail in the article. Moreover, the economics of this technology is also evaluated. The microbiology of a CW-MFC and its influence on its performance are also elaborated. Recent advancements in this field in terms of design, configuration and performance are discussed. Finally, the knowledge gaps that must be addressed before this technique can be successfully implemented on a large scale are highlighted, along with specific recommendations. This article aims to advocate for EWs as an ideal decentralised wastewater treatment technique, while also shedding light on the areas that still need to be worked on.
Collapse
Affiliation(s)
- Palindhi Verma
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanak Ray
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Liu X, Ye Y, Yang N, Cheng C, Rensing C, Jin C, Nealson KH, Zhou S. Nonelectroactive clostridium obtains extracellular electron transfer-capability after forming chimera with Geobacter. ISME COMMUNICATIONS 2024; 4:ycae058. [PMID: 38770058 PMCID: PMC11104457 DOI: 10.1093/ismeco/ycae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Extracellular electron transfer (EET) of microorganisms is a major driver of the microbial growth and metabolism, including reactions involved in the cycling of C, N, and Fe in anaerobic environments such as soils and sediments. Understanding the mechanisms of EET, as well as knowing which organisms are EET-capable (or can become so) is fundamental to electromicrobiology and geomicrobiology. In general, Gram-positive bacteria very seldomly perform EET due to their thick non-conductive cell wall. Here, we report that a Gram-positive Clostridium intestinale (C.i) attained EET-capability for ethanol metabolism only after forming chimera with electroactive Geobacter sulfurreducens (G.s). Mechanism analyses demonstrated that the EET was possible after the cell fusion of the two species was achieved. Under these conditions, the ethanol metabolism pathway of C.i was integrated by the EET pathway of G.s, by which achieved the oxidation of ethanol for the subsequent reduction of extracellular electron acceptors in the coculture. Our study displays a new approach to perform EET for Gram-positive bacteria via recruiting the EET pathway of an electroactive bacterium, which suggests a previously unanticipated prevalence of EET in the microbial world. These findings also provide new perspectives to understand the energetic coupling between bacterial species and the ecology of interspecies mutualisms.
Collapse
Affiliation(s)
- Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yin Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Naiming Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chen Cheng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Kenneth H Nealson
- Department of Earth Science & Biological Sciences, University of Southern California, Los Angeles, CA 91030, United States
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
10
|
Kumari S, Rajput VD, Sushkova S, Minkina T. Microbial electrochemical system: an emerging technology for remediation of polycyclic aromatic hydrocarbons from soil and sediments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9451-9467. [PMID: 35962926 DOI: 10.1007/s10653-022-01356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Worldwide industrialization and other human activities have led to a frightening stage of release of hazardous, highly persistent, toxic, insoluble, strongly adsorbed to the soil and high molecular weight ubiquitous polycyclic aromatic hydrocarbons (PAHs) in soils and sediments. The various conventional remediation methods are being used to remediate PAHs with certain drawbacks. Time taking process, high expenditure, excessive quantities of sludge generation, and various chemical requirements do not only make these methods outdated but produce yet much resistant and toxic intermediate metabolites. These disadvantages may be overcome by using a microbial electrochemical system (MES), a booming technology in the field of bioremediation. MES is a green remediation approach that is regulated by electrochemically active microorganisms at the electrode in the system. The key advantage of the system over the conventional methods is it does not involve any additional chemicals, takes less time, and generates minimal sludge or waste during the remediation of PAHs in soils. However, a comprehensive review of the MES towards bioremediation of PAHs adsorbed in soil and sediment is still lacking. Therefore, the present review intended to summarize the recent information on PAHs bioremediation, application, risks, benefits, and challenges based on sediment microbial fuel cell and microbial fuel cell to remediate mount-up industrial sludge, soil, and sediment rich in PAHs. Additionally, bio-electrochemically active microbes, mechanisms, and future perspectives of MES have been discussed.
Collapse
Affiliation(s)
- Smita Kumari
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
| | | | | | | |
Collapse
|
11
|
Cheng Y, Shi Z, Shi Y, Zhang Y, Zhang S, Luo G. Biochar promoted microbial iron reduction in competition with methanogenesis in anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 387:129561. [PMID: 37506931 DOI: 10.1016/j.biortech.2023.129561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Microbial Fe (III) reduction generally could outcompete methanogenesis due to its thermodynamic advantage, while the low bioavailability of Fe (III) compounds limits this process in the anaerobic digestion system, which could result in the low recovery of vivianite. Therefore, this study investigated the competition between Fe (III) reduction and methanogenesis in the presence of different biochar (pyrochar and hydrochar). The results showed that pyrochar obtained at 500 °C (P5) resulted in the highest Fe (III) reduction (80.3%) compared to the control experiment (29.1%). P5 also decreased methane production by 9.4%. Both conductivity and surface oxygen-containing functional groups contributed to the promotion of direct electron transfer for Fe (III) reduction. Genomic-centric metatranscriptomics analysis showed that P5 led to the highest enrichment of Geobacter soli A19 and induced the significant expression of out membrane cytochrome c and pilA in Geobacter soli A19, which was related to higher Fe (III) reduction.
Collapse
Affiliation(s)
- Yafei Cheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yalei Zhang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
12
|
Chakraborty S, Bashir Y, Sirotiya V, Ahirwar A, Das S, Vinayak V. Role of bacterial quorum sensing and quenching mechanism in the efficient operation of microbial electrochemical technologies: A state-of-the-art review. Heliyon 2023; 9:e16205. [PMID: 37215776 PMCID: PMC10199210 DOI: 10.1016/j.heliyon.2023.e16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Microbial electrochemical technologies (METs) are a group of innovative technologies that produce valuables like bioelectricity and biofuels with the simultaneous treatment of wastewater from microorganisms known as electroactive microorganisms. The electroactive microorganisms are capable of transferring electrons to the anode of a MET through various metabolic pathways such as direct (via cytochrome or pili) or indirect (through transporters) transfer. Though this technology is promising, the inferior yield of valuables and the high cost of reactor fabrication are presently impeding the large-scale application of this technology. Therefore, to overcome these major bottlenecks, a lot of research has been dedicated to the application of bacterial signalling, for instance, quorum sensing (QS) and quorum quenching (QQ) mechanisms in METs to improve its efficacy in order to achieve a higher power density and to make it more cost-effective. The QS circuit in bacteria produces auto-inducer signal molecules, which enhances the biofilm-forming ability and regulates the bacterial attachment on the electrode of METs. On the other hand, the QQ circuit can effectively function as an antifouling agent for the membranes used in METs and microbial membrane bioreactors, which is imperative for their stable long-term operation. This state-of-the-art review thus distinctly describes in detail the interaction between the QQ and QS systems in bacteria employed in METs to generate value-added by-products, antifouling strategies, and the recent applications of the signalling mechanisms in METs to improve their yield. Further, the article also throws some light on the recent advancements and the challenges faced while incorporating QS and QQ mechanisms in various types of METs. Thus, this review article will help budding researchers in upscaling METs with the integration of the QS signalling mechanism in METs.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Yasser Bashir
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| |
Collapse
|
13
|
Liu X, Ye Y, Zhang Z, Rensing C, Zhou S, Nealson KH. Prophage Induction Causes Geobacter Electroactive Biofilm Decay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6196-6204. [PMID: 36997849 DOI: 10.1021/acs.est.2c08443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sustaining a metabolically active electroactive biofilm (EAB) is essential for the high efficiency and durable operation of microbial fuel cells (MFCs). However, EABs usually decay during long-term operation, and, until now, the causes remain unknown. Here, we report that lysogenic phages can cause EAB decay in Geobacter sulfurreducens fuel cells. A cross-streak agar assay and bioinformatic analysis revealed the presence of prophages on the G. sulfurreducens genome, and a mitomycin C induction assay revealed the lysogenic to lytic transition of those prophages, resulting in a progressive decay in both current generation and the EAB. Furthermore, the addition of phages purified from decayed EAB resulted in accelerated decay of the EAB, thereafter contributing to a faster decline in current generation; otherwise, deleting prophage-related genes rescued the decay process. Our study provides the first evidence of an interaction between phages and electroactive bacteria and suggests that attack by phages is a primary cause of EAB decay, having significant implications in bioelectrochemical systems.
Collapse
Affiliation(s)
- Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yin Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhishuai Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kenneth H Nealson
- Department of Earth Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
14
|
Naderi A, Kakavandi B, Giannakis S, Angelidaki I, Rezaei Kalantary R. Putting the electro-bugs to work: A systematic review of 22 years of advances in bio-electrochemical systems and the parameters governing their performance. ENVIRONMENTAL RESEARCH 2023; 229:115843. [PMID: 37068722 DOI: 10.1016/j.envres.2023.115843] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Wastewater treatment using bioelectrochemical systems (BESs) can be considered as a technology finding application in versatile areas such as for renewable energy production and simultaneous reducing environmental problems, biosensors, and bioelectrosynthesis. This review paper reports and critically discusses the challenges, and advances in bio-electrochemical studies in the 21st century. To sum and critically analyze the strides of the last 20+ years on the topic, this study first provides a comprehensive analysis on the structure, performance, and application of BESs, which include Microbial Fuel Cells (MFCs), Microbial Electrolysis Cells (MECs) and Microbial Desalination Cells (MDCs). We focus on the effect of various parameters, such as electroactive microbial community structure, electrode material, configuration of bioreactors, anode unit volume, membrane type, initial COD, co-substrates and the nature of the input wastewater in treatment process and the amount of energy and fuel production, with the purpose of showcasing the modes of operation as a guide for future studies. The results of this review show that the BES have great potential in reducing environmental pollution, purifying saltwater, and producing energy and fuel. At a larger scale, it aspires to facilitate the path of achieving sustainable development and practical application of BES in real-world scenarios.
Collapse
Affiliation(s)
- Azra Naderi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Environment, Coast and Ocean Research Laboratory (ECOREL-UPM), C/Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Roshanak Rezaei Kalantary
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Fessler M, Madsen JS, Zhang Y. Conjugative plasmids inhibit extracellular electron transfer in Geobacter sulfurreducens. Front Microbiol 2023; 14:1150091. [PMID: 37007462 PMCID: PMC10063792 DOI: 10.3389/fmicb.2023.1150091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Geobacter sulfurreducens is part of a specialized group of microbes with the unique ability to exchange electrons with insoluble materials, such as iron oxides and electrodes. Therefore, G. sulfurreducens plays an essential role in the biogeochemical iron cycle and microbial electrochemical systems. In G. sulfurreducens this ability is primarily dependent on electrically conductive nanowires that link internal electron flow from metabolism to solid electron acceptors in the extracellular environment. Here we show that when carrying conjugative plasmids, which are self-transmissible plasmids that are ubiquitous in environmental bacteria, G. sulfurreducens reduces insoluble iron oxides at much slower rates. This was the case for all three conjugative plasmids tested (pKJK5, RP4 and pB10). Growth with electron acceptors that do not require expression of nanowires was, on the other hand, unaffected. Furthermore, iron oxide reduction was also inhibited in Geobacter chapellei, but not in Shewanella oneidensis where electron export is nanowire-independent. As determined by transcriptomics, presence of pKJK5 reduces transcription of several genes that have been shown to be implicated in extracellular electron transfer in G. sulfurreducens, including pilA and omcE. These results suggest that conjugative plasmids can in fact be very disadvantageous for the bacterial host by imposing specific phenotypic changes, and that these plasmids may contribute to shaping the microbial composition in electrode-respiring biofilms in microbial electrochemical reactors.
Collapse
Affiliation(s)
- Mathias Fessler
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Yifeng Zhang,
| |
Collapse
|
16
|
Wang T, Kuang B, Ni Z, Guo B, Li Y, Zhu G. Stimulating Anaerobic Degradation of Butyrate via Syntrophomonas wolfei and Geobacter sulfurreducens: Characteristics and Mechanism. MICROBIAL ECOLOGY 2023; 85:535-543. [PMID: 35254501 DOI: 10.1007/s00248-022-01981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) has been widely applied for the degradation of organic wastewater due to its advantages of high-load operation and energy recovery. However, some challenges, such as low treatment capacity and instability caused by the accumulation of volatile fatty acids, limit its further application. Here, S. wolfei and G. sulfurreducens were initially co-cultured in the anaerobic anode of bio-electrochemical system for degrading butyric acid. Butyrate degradation characteristics in different conditions were quantitatively described. Moreover, G. sulfurreducens simultaneously strengthened the consumption of H2 and acetic acid via direct interspecies electron transfer, thereby strengthening the degradation of butyric acid via a co-metabolic process. During butyrate degradation, the co-culture of S. wolfei and G. sulfurreducens showed more advantages than that of S. wolfei and methanogens. This present study provides a new perspective of butyrate metabolism, which was independent of methanogens in an AD process.
Collapse
Affiliation(s)
- Tao Wang
- School of Environment and Nature Resources, Renmin University of China, Beijing, 100872, People's Republic of China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Bin Kuang
- School of Economics and Management, Jiangmen Polytechnic, Jiangmen, 529020, People's Republic of China
| | - Zhili Ni
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Surrey, Surrey, GU2 7XH, UK
| | - Yuying Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing, 100872, People's Republic of China.
| |
Collapse
|
17
|
Fessler M, Madsen JS, Zhang Y. Microbial Interactions in Electroactive Biofilms for Environmental Engineering Applications: A Role for Nonexoelectrogens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15273-15279. [PMID: 36223388 DOI: 10.1021/acs.est.2c04368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbial electrochemical systems have gained much attention over the past decade due to their potential for various environmental engineering applications ranging from energy production to wastewater treatment to bioproduction. At the heart of these systems lie exoelectrogens-microorganisms capable of exporting electrons generated during metabolism to external electron acceptors such as electrodes. The bacterial biofilm communities on these electrodes are dominated by exoelectrogens but are nonetheless extremely diverse. So far, within the field, the main focus has been on the electroactive bacteria. However, to broaden our understanding of these communities, it is crucial to clarify how the remaining inhabitants of electrode-respiring biofilms contribute to the overall function of the biofilm. Ultimately, such insights may enable improvement of microbial electrochemical systems by reshaping the community structure with naturally occurring beneficial strains.
Collapse
Affiliation(s)
- Mathias Fessler
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
Kalathil S, Miller M, Reisner E. Microbial Fermentation of Polyethylene Terephthalate (PET) Plastic Waste for the Production of Chemicals or Electricity. Angew Chem Int Ed Engl 2022; 61:e202211057. [PMID: 36103351 PMCID: PMC9828132 DOI: 10.1002/anie.202211057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 01/12/2023]
Abstract
Ideonella sakaiensis (I. sakaiensis) can grow on polyethylene terephthalate (PET) as the major carbon and energy source. Previous work has shown that PET conversion in the presence of oxygen released carbon dioxide and water while yielding adenosine triphosphate (ATP) through oxidative phosphorylation. This study demonstrates that I. sakaiensis is a facultative anaerobe that ferments PET to the feedstock chemicals acetate and ethanol in the absence of oxygen. In addition to PET, the pure monomer ethylene glycol (EG), the intermediate product ethanol, and the carbohydrate fermentation test substance maltose can also serve as fermenting substrates. Co-culturing of I. sakaiensis with the electrogenic and acetate-consuming Geobacter sulfurreducens produced electricity from PET or EG. This newly identified plastic fermentation process by I. sakaiensis provides thus a novel biosynthetic route to produce high-value chemicals or electricity from plastic waste streams.
Collapse
Affiliation(s)
- Shafeer Kalathil
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Melanie Miller
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| |
Collapse
|
19
|
Ambaye TG, Formicola F, Sbaffoni S, Franzetti A, Vaccari M. Insights into rhamnolipid amendment towards enhancing microbial electrochemical treatment of petroleum hydrocarbon contaminated soil. CHEMOSPHERE 2022; 307:136126. [PMID: 36028128 DOI: 10.1016/j.chemosphere.2022.136126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution by hydrophobic hydrocarbons is increasing, notably nowadays due to a large amount of industrial activity. Microbial electrochemical technologies (MET) are promising bio-based systems which can oxidize hydrophobic hydrocarbon pollutants and produce bioelectricity simultaneously. However, MET faces some issues in terms of soil remediation, including low mass transfer, limited electro-activity of anodes as electron acceptors, low bioavailability of hydrocarbons, and the limited activity of beneficial bacteria and inefficient electron transport. This study aims to investigate the role of the addition of rhamnolipid as an analyte solution to the MET to enhance the efficacy and concurrently solve the abovementioned issues. In this regard, a novel long chain of RL was produced by using low-cost carbon winery waste through non-pathogenic Burkholderia thailandensis E264 strains. Different doses of RL were tested, including 10, 50, and 100 mg/L. A maximum enhancement in the oxidation of hydrophobic hydrocarbons was found to be up to 72.5%, while the current density reached 9.5 Am-2 for the MET reactor having a dose of 100 mg/L. The biosurfactants induced a unique microbial enrichment associated with Geobacter, Desulfovibrio, Klebsiella, and Comamona on the anode surface, as well as Pseudomonas, Acinetobacter, and Franconibacter in soil MET, indicating the occurrence of a metabolic pathway in microbes working with the anode and soil bioelectrochemical remediation system. According to cyclic voltammetry analysis, redox peaks appeared, showing a minor shift in redox MET-biosurfactant compared to the bare MET system. Furthermore, the phytotoxicity of polluted soil to L. sativum seeds after and before MET remediation shows a decrease in phytotoxicity of 77.5% and 5% for MET-biosurfactant system and MET only, respectively. With MET as a tool, this study confirmed for the first time that novel long-chain RL produced from non-Pseudomonas bacteria could remarkably facilitate the degradation of petroleum hydrocarbon via extracellular electron transfer, which provides novel insights to understand the mechanisms of RL regulating petroleum hydrocarbon degradation.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- University of Brescia, Dep. of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy.
| | - Francesca Formicola
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Silvia Sbaffoni
- ENEA, Sustainability Department, Resource Valorisation Lab, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Andrea Franzetti
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Mentore Vaccari
- University of Brescia, Dep. of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy
| |
Collapse
|
20
|
Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review. ENERGIES 2022. [DOI: 10.3390/en15155616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
High-energy consumption globally has raised questions about the low environmentally friendly and high-cost processes used until now for energy production. Microbial fuel cells (MFCs) may support alternative more economically and environmentally favorable ways of bioenergy production based on their advantage of using waste. MFCs work as bio-electrochemical devices that consume organic substrates in order for the electrogenic bacteria and/or enzyme cultures to produce electricity and simultaneously lower the environmental hazardous value of waste such as COD. The utilization of organic waste as fuels in MFCs has opened a new research path for testing a variety of by-products from several industry sectors. This review presents several organic waste substrates that can be employed as fuels in MFCs for bioenergy generation and the effect of their usage on power density, COD (chemical oxygen demand) removal, and Coulombic efficiency enhancement. Moreover, a demonstration and comparison of the different types of mixed waste regarding their efficiency for energy generation via MFCs are presented. Future perspectives for manufacturing and cost analysis plans can support scale-up processes fulfilling waste-treatment efficiency and energy-output densities.
Collapse
|
21
|
Roy AS, Sharma A, Thapa BS, Pandit S, Lahiri D, Nag M, Sarkar T, Pati S, Ray RR, Shariati MA, Wilairatana P, Mubarak MS. Microbiomics for enhancing electron transfer in an electrochemical system. Front Microbiol 2022; 13:868220. [PMID: 35966693 PMCID: PMC9372394 DOI: 10.3389/fmicb.2022.868220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
In microbial electrochemical systems, microorganisms catalyze chemical reactions converting chemical energy present in organic and inorganic molecules into electrical energy. The concept of microbial electrochemistry has been gaining tremendous attention for the past two decades, mainly due to its numerous applications. This technology offers a wide range of applications in areas such as the environment, industries, and sensors. The biocatalysts governing the reactions could be cell secretion, cell component, or a whole cell. The electroactive bacteria can interact with insoluble materials such as electrodes for exchanging electrons through colonization and biofilm formation. Though biofilm formation is one of the major modes for extracellular electron transfer with the electrode, there are other few mechanisms through which the process can occur. Apart from biofilm formation electron exchange can take place through flavins, cytochromes, cell surface appendages, and other metabolites. The present article targets the various mechanisms of electron exchange for microbiome-induced electron transfer activity, proteins, and secretory molecules involved in the electron transfer. This review also focuses on various proteomics and genetics strategies implemented and developed to enhance the exo-electron transfer process in electroactive bacteria. Recent progress and reports on synthetic biology and genetic engineering in exploring the direct and indirect electron transfer phenomenon have also been emphasized.
Collapse
Affiliation(s)
- Ayush Singha Roy
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - Aparna Sharma
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Bhim Sen Thapa
- Department of Biological Sciences, WEHR Life Sciences, Marquette University, Milwaukee, WI, United States
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- *Correspondence: Soumya Pandit,
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, WB, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, WB, India
| | - Tanmay Sarkar
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, WB, India
| | - Siddhartha Pati
- NatNov Bioscience Private Ltd., Balasore, India
- Association for Biodiversity Conservation and Research Balasore (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, WB, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Polrat Wilairatana,
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman, Jordan
- Mohammad S. Mubarak,
| |
Collapse
|
22
|
Wang H, Chen P, Zhang S, Jiang J, Hua T, Li F. Degradation of pyrene using single-chamber air-cathode microbial fuel cells: Electrochemical parameters and bacterial community changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150153. [PMID: 34509835 DOI: 10.1016/j.scitotenv.2021.150153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Pyrene, a typical four-ring polycyclic aromatic hydrocarbon, is abundantly present in the environment and is potentially harmful to the human body. In this study, single-chamber air-cathode microbial fuel cells (MFCs) were used to treat pyrene, and the ensuing degradation, electrical parameters, and microbial changes were analyzed. The results showed that MFCs could degrade pyrene, and the maximum degradation rate for 30 mg/L reached 88.1 ± 5.4%. The addition of pyrene reduced the electrical performance of the MFCs and suppressed the power output. Analysis of the anodic microbial community showed that the proportion of Alcaligenes and Stenotrophomonas increased with an increase in pyrene concentration, which may explain the high degradation rate of pyrene.
Collapse
Affiliation(s)
- Haonan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Peng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Shixuan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiwei Jiang
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Tao Hua
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
23
|
Huang Q, Liu Y, Dhar BR. Pushing the organic loading rate in electrochemically assisted anaerobic digestion of blackwater at ambient temperature: Insights into microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146694. [PMID: 33812109 DOI: 10.1016/j.scitotenv.2021.146694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Decentralized blackwater treatment by anaerobic digestion is being considered as a sustainable sanitation concept. However, the low biodegradability and complex composition restrictedly limited the treatability of blackwater, resulting in requirements of low operational organic loading rates (OLRs). In this study, a microbial electrolysis cell assisted anaerobic digester (MEC-AD) treating vacuum toilet blackwater was successfully operated for 420 days at OLRs ranging from 0.77 to 3.03 g COD/L-d in 6 stages (including an open-circuit Stage 5) at ambient temperature. Based on the steady-state results from different stages, the highest methane yield (42.4% out of 45% biochemical methane potential value) was achieved in Stage 1 with an OLR of 0.77 g COD/L-d. At the same OLR of ~3.0 g COD/L-d, Stage 4 (32.4%) and Stage 6 (35.2%) showed significantly higher methane yield (p < 0.01) than open-circuit Stage 5 (24.1%). The lowest COD removal efficiency of 31.8% was observed in Stage 5 with short-chain volatile fatty acids (SCVFAs) accumulated to ~1000 mg/L, which was more than double the values of Stage 4 and 6. The microbial community analysis revealed that the applied potential did not significantly affect archaeal diversity but largely increased the archaeal abundance on the cathode, and led the bacterial community shift with the enrichment of specific electroactive bacteria. Microbial co-occurrence network analysis further confirmed the positive correlations between known electroactive bacteria and electrotrophic methanogens. Moreover, electric energy consumed by the MEC-AD system was fully recovered as biomethane.
Collapse
Affiliation(s)
- Qi Huang
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
24
|
Mukherjee P, Pichiah S, Packirisamy G, Jang M. Biocatalyst physiology and interplay: a protagonist of MFC operation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43217-43233. [PMID: 34165738 DOI: 10.1007/s11356-021-15015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFC) have been foreseen as a sustainable renewable energy resource to meet future energy demand. In the past, several studies have been executed in both benchtop and pilot scale to produce electrical energy from wastewater. The key role players in this technology that leads to the operation are microbes, mainly bacteria. The dominant among them is termed as "exoelectrogens" that have the capability to produce and transport electron by utilizing waste source. The current review focuses on such electrogenic bacteria's involvement for enhanced power generation of MFC. The pathway of electron transfer in their cell along and its conduction to the extracellular environment of the MFC system are critically discussed. The interaction of the microbes in various MFC operational conditions, including the role of substrate and solid electron acceptors, i.e., anode, external resistance, temperature, and pH, was also discussed in depth along with biotechnological advancement and future research perspective.
Collapse
Affiliation(s)
- Priya Mukherjee
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India
| | - Saravanan Pichiah
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1, Wolgye-dong Nowon-Gu, Seoul, South Korea
| |
Collapse
|
25
|
Gao X, Qiu S, Lin Z, Xie X, Yin W, Lu X. Carbon-Based Composites as Anodes for Microbial Fuel Cells: Recent Advances and Challenges. Chempluschem 2021; 86:1322-1341. [PMID: 34363342 DOI: 10.1002/cplu.202100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Owing to the low price, chemical stability and good conductivity, carbon-based materials have been extensively applied as the anode in microbial fuel cells (MFCs). In this review, apart from the charge storage mechanism and anode requirements, the major work focuses on five categories of carbon-based anode materials (traditional carbon, porous carbon, nano-carbon, metal/carbon composite and polymer/carbon composite). The relationship is demonstrated in depth between the physicochemical properties of the anode surface/interface/bulk (porosity, surface area, hydrophilicity, partical size, charge, roughness, etc.) and the bioelectrochemical performances (electron transfer, electrolyte diffusion, capacitance, toxicity, start-up time, current, power density, voltage, etc.). An outlook for future work is also proposed.
Collapse
Affiliation(s)
- Xingyuan Gao
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China.,MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Shuxian Qiu
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Ziting Lin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xiangjuan Xie
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Wei Yin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
26
|
Wang T, Zhu G, Kuang B, Jia J, Liu C, Cai G, Li C. Novel insights into the anaerobic digestion of propionate via Syntrophobacter fumaroxidans and Geobacter sulfurreducens: Process and mechanism. WATER RESEARCH 2021; 200:117270. [PMID: 34077836 DOI: 10.1016/j.watres.2021.117270] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/21/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The accumulation of volatile fatty acids, particularly propionic acid, significantly inhibits the efficiency of the anaerobic digestion system. In propionate degradation metabolism, the unfavorable thermodynamics of syntrophic reactions, strict ecological niche of syntrophic priopionate oxidizing bacteria, and slow metabolic rate of methanogens are regarded as major limitations. In this study, Geobacter sulfurreducens was co-cultured with Syntrophobacter fumaroxidans in bioelelectrochemical cells to analyze the propionate degradation process, impact factor, mechanism metabolic pathways, and electron transfer comprehensively. The results revealed that the syntroph S. fumaroxidans and syntrophic partner G. sulfurreducens achieved more efficient propionate degradation than the control group, comprising S. fumaroxidans and methanogens. Moreover, the carbon resource concentration and pH were both significantly correlated with propionate degradation (P < 0.01). The results further confirmed that G. sulfurreducen strengthened the consumption of H2 and acetate via direct interspecific electron transfer in propionate degradation. These findings indicate that G. sulfurreducens plays an unidentified functional role in propionate degradation.
Collapse
Affiliation(s)
- Tao Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Bin Kuang
- School of Economics and Management, Jiangmen Polytechnic, Jiangmen 529020, PR China
| | - Jianbo Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Changyu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Chunxing Li
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
27
|
Huang S, Shen M, Ren ZJ, Wu H, Yang H, Si B, Lin J, Liu Z. Long-term in situ bioelectrochemical monitoring of biohythane process: Metabolic interactions and microbial evolution. BIORESOURCE TECHNOLOGY 2021; 332:125119. [PMID: 33848821 DOI: 10.1016/j.biortech.2021.125119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Microbial stability and evolution are a critical aspect for biosensors, especially in detecting dynamic and emerging anaerobic biohythane production. In this study, two upflow air-cathode chamber microbial fuel cells (UMFCs) were developed for in situ monitoring of the biohydrogen and biomethane reactors under a COD range of 1000-6000 mg/L and 150-1000 mg/L, respectively. Illumina MiSeq sequencing evidenced the dramatic shift of dominant microbial communities in UMFCs from hydrolytic and acidification bacteria (Clostridiaceae_1, Ruminococcaceae, Peptostreptococcaceae) to acetate-oxidizing bacteria (Synergistaceae, Dysgonomonadaceae, Spirochaetaceae). In addition, exoelectroactive bacteria evaluated from Enterobacteriaceae and Burkholderiaceae to Desulfovibrionaceae and Propionibacteriaceae. Especially, Hydrogenotrophic methanogens (Methanobacteriaceae) were abundant at 93.41% in UMFC (for monitoring hydrogen reactor), which was speculated to be a major metabolic pathway for methane production. Principal component analysis revealed a similarity in microbial structure between UMFCs and methane bioreactors. Microbial network analysis suggested a more stable community structure of UMFCs with 205 days' operation.
Collapse
Affiliation(s)
- Sijie Huang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Mengmeng Shen
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, United States
| | - Houkai Wu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Hao Yang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Buchun Si
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
28
|
Santoro C, Babanova S, Cristiani P, Artyushkova K, Atanassov P, Bergel A, Bretschger O, Brown RK, Carpenter K, Colombo A, Cortese R, Erable B, Harnisch F, Kodali M, Phadke S, Riedl S, Rosa LFM, Schröder U. How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross-Laboratory Study. CHEMSUSCHEM 2021; 14:2313-2330. [PMID: 33755321 PMCID: PMC8252665 DOI: 10.1002/cssc.202100294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Indexed: 05/05/2023]
Abstract
A cross-laboratory study on microbial fuel cells (MFC) which involved different institutions around the world is presented. The study aims to assess the development of autochthone microbial pools enriched from domestic wastewater, cultivated in identical single-chamber MFCs, operated in the same way, thereby approaching the idea of developing common standards for MFCs. The MFCs are inoculated with domestic wastewater in different geographic locations. The acclimation stage and, consequently, the startup time are longer or shorter depending on the inoculum, but all MFCs reach similar maximum power outputs (55±22 μW cm-2 ) and COD removal efficiencies (87±9 %), despite the diversity of the bacterial communities. It is inferred that the MFC performance starts when the syntrophic interaction of fermentative and electrogenic bacteria stabilizes under anaerobic conditions at the anode. The generated power is mostly limited by electrolytic conductivity, electrode overpotentials, and an unbalanced external resistance. The enriched microbial consortia, although composed of different bacterial groups, share similar functions both on the anode and the cathode of the different MFCs, resulting in similar electrochemical output.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Material ScienceUniversity of Milan BicoccaU5 Via Cozzi 55Milan20125Italy
| | - Sofia Babanova
- Aquacycl LLC2180 Chablis Court, Suite 102EscondidoCA 92029USA
| | - Pierangela Cristiani
- Department of Sustainable Development and Energy ResourcesRicerca sul Sistema Energetico S.p.A.Via Rubattino 54Milan20134Italy
| | | | - Plamen Atanassov
- Department of Chemical & Biomolecular Engineering National Fuel Cell Research Center (NFCRC)University of CaliforniaIrvineCA 92697USA
| | - Alain Bergel
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS-INPT-UPS4 allée Emile Monso31432ToulouseFrance
| | | | - Robert K. Brown
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Kayla Carpenter
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Alessandra Colombo
- Department of ChemistryUniversità degli Studi di MilanoVia Golgi 19Milan20133Italy
| | - Rachel Cortese
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Benjamin Erable
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS-INPT-UPS4 allée Emile Monso31432ToulouseFrance
| | - Falk Harnisch
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZPermoserstr. 1504318LeipzigGermany
| | - Mounika Kodali
- Department of Chemical & Biomolecular Engineering National Fuel Cell Research Center (NFCRC)University of CaliforniaIrvineCA 92697USA
| | - Sujal Phadke
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Sebastian Riedl
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Luis F. M. Rosa
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZPermoserstr. 1504318LeipzigGermany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
29
|
Zhang Y, Xu Y, Chen X, Chen C, Sun J, Bai X, Yuan Y. Effect of copper ions on glucose fermentation pathways in bioelectrochemical system. CHEMOSPHERE 2021; 272:129627. [PMID: 33486454 DOI: 10.1016/j.chemosphere.2021.129627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/05/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Toxic metal ions were previously found to be effective removed by anodic biofilms under the coexistence of organics in bioelectrochemical system (BES). However, the effect of toxic metal ions on the organics fermentation pathways remains unclear. To investigate the pathway systematically, the glucose fermentation pathways were discussed under different Cu2+ concentrations. After introducing Cu2+, more acetate and less propionate were observed, implying that the metabolic reaction of glucose fermentation altered from mixed acid type to acetogenesis type. This pattern produced more "food" (acetate or hydrogen) for methanogens, thus, the methane content increased by 19.67%, 39.51%, and 27.71% in the presence of 0.1, 1, and 7 mg L-1 Cu2+ compared to the blank, respectively. Increased Cu2+ concentrations resulted in the decrease of current production, which was associated with the decrease of electricigen (Geobacter). Consistent with the change of fermentation type, the fermenters (Klebsiella and norank_f__norank_o__Bacteroidales) that related to the production of acetate increased, while the dominant methanogens (Methaospirillum) didn't decrease until the Cu2+ concentration reached 7 mg L-1.
Collapse
Affiliation(s)
- Yaping Zhang
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yangao Xu
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xi Chen
- South China Institute of Environmental Science, Ministry of ecology and Environment of PR China, Guangzhou, 510655, China
| | - Caiyun Chen
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jian Sun
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiaoyan Bai
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yong Yuan
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
30
|
Cai Y, Wu Y, Yang YL, Lu YX, Song HL. Minimizing salinity accumulation via regulating draw solute concentration in a bioelectrochemically assisted osmotic membrane bioreactor. CHEMOSPHERE 2021; 272:129613. [PMID: 33465614 DOI: 10.1016/j.chemosphere.2021.129613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
A suitable draw solute (DS) concentration in bioelectrochemically assisted osmotic membrane bioreactor (BEA-OMBR) can convert the "negative effect" of salinity accumulation into a "beneficial effect" by using the reverse-fluxed DS as a buffer agent or a carbon source supplement. Herein, the effect of DS concentration from acid buffer solution (i.e., ammonium chloride, NH4Cl), alkaline buffer solution (i.e., sodium bicarbonate, NaHCO3), and organic solution (i.e., sodium acetate, NaOAc) on salinity accumulation was systematically investigated. Salinity accumulation with NaHCO3 DS mainly derived from reversal fluxed sodium ion (Na+, major contributor with DS concentration ≤0.25 M) and bicarbonate ion (main contributor with DS concentration ≥0.50 M): Na+ accumulation could be mitigated by Na+ transport dominant by electrically driven migration (i.e., 21.3-62.1% of reverse-fluxed Na+), and bicarbonate accumulation could be reduced by buffer system. A medium-low concentration of 0.25 M NH4Cl DS had a better performance on current density of 165.0 ± 23.0 A m-3 and COD removal efficiency of 91.5 ± 3.4% by taking advantage that 77.7 ± 1.3% of reverse-fluxed ammonium could be removed by biological treatment and ammonium transport. A high NaOAc DS concentration (i.e., ≥0.05 M) exhibited a higher current density of 145.3-146.0 A m-3 but a lower COD removal efficiency due to the limited carbon source utilization capacity of anaerobic bacteria. Both concentration diffusion (20.9-28.3%) and electrically driven migration (29.5-39.4%) promoted reverse-fluxed Na+ transport to catholyte and thus mitigated Na+ accumulation in the feed/anolyte. These findings have provided an optimal DS concentration for BEA-OMBR operation and thus encourage its further development.
Collapse
Affiliation(s)
- Yun Cai
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - You Wu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| |
Collapse
|
31
|
Cheng Q, Call DF. Developing microbial communities containing a high abundance of exoelectrogenic microorganisms using activated carbon granules. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144361. [PMID: 33736328 DOI: 10.1016/j.scitotenv.2020.144361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Microorganisms that can transfer electrons outside their cells are useful in a range of wastewater treatment and remediation technologies. Conventional methods of enriching exoelectrogens are cost-prohibitive (e.g., controlled-potential electrodes) or lack specificity (e.g., soluble electron acceptors). In this study a low-cost and simple approach to enrich exoelectrogens from a mixed microbial inoculum was investigated. After the method was validated using the exoelectrogen Geobacter sulfurreducens, microorganisms from a pilot-scale biological activated carbon (BAC) filter were subjected to incubations in which acetate was provided as the electron donor and granular activated carbon (GAC) as the electron acceptor. The BAC-derived community oxidized acetate and reduced GAC at a capacity of 1.0 mmol e- (g GAC)-1. After three transfers to new bottles, acetate oxidation rates increased 4.3-fold, and microbial morphologies and GAC surface coverage became homogenous. Although present at <0.01% in the inoculum, Geobacter species were significantly enriched in the incubations (up to 96% abundance), suggesting they were responsible for reducing the GAC. The ability to quickly and effectively develop an exoelectrogenic microbial community using GAC may help initiate and/or maintain environmental systems that benefit from the unique metabolic capabilities of these microorganisms.
Collapse
Affiliation(s)
- Qiwen Cheng
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 2501 Stinson Drive, Raleigh, NC 27695-7908, United States
| | - Douglas F Call
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 2501 Stinson Drive, Raleigh, NC 27695-7908, United States.
| |
Collapse
|
32
|
Vishwanathan AS. Microbial fuel cells: a comprehensive review for beginners. 3 Biotech 2021; 11:248. [PMID: 33968591 PMCID: PMC8088421 DOI: 10.1007/s13205-021-02802-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Microbial fuel cells (MFCs) have shown immense potential as a one-stop solution for three major sustainability issues confronting the world today-energy security, global warming and wastewater management. MFCs represent a cross-disciplinary platform for research at the confluence of the natural and engineering sciences. The diversity of variables influencing performance of MFCs has garnered research interest across varied scientific disciplines since the beginning of this century. The increasing number of research publications has made it necessary to keep track of work being carried out by research groups across the globe and consolidate significant findings on a regular basis. Review articles are often the nodal points for beginners who are required to undertake an exploratory survey of literature to identify a suitable research problem. This 'review of reviews' is a ready-reckoner that directs readers to relevant reviews and research articles reporting significant developments in MFC research in the last two decades. The article also highlights the areas needing research attention which when addressed could take this technology a few more steps closer to practical implementation.
Collapse
Affiliation(s)
- A. S. Vishwanathan
- WATER Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, 515134 Andhra Pradesh India
| |
Collapse
|
33
|
Hou R, Gan L, Guan F, Wang Y, Li J, Zhou S, Yuan Y. Bioelectrochemically enhanced degradation of bisphenol S: mechanistic insights from stable isotope-assisted investigations. iScience 2021; 24:102014. [PMID: 33490921 PMCID: PMC7809511 DOI: 10.1016/j.isci.2020.102014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 12/04/2022] Open
Abstract
Electroactive microbes is the driving force for the bioelectrochemical degradation of organic pollutants, but the underlying microbial interactions between electrogenesis and pollutant degradation have not been clearly identified. Here, we combined stable isotope-assisted metabolomics (SIAM) and 13C-DNA stable isotope probing (DNA-SIP) to investigate bisphenol S (BPS) enhanced degradation by electroactive mixed-culture biofilms (EABs). Using SIAM, six 13C fully labeled transformation products were detected originating via hydrolysis, oxidation, alkylation, or aromatic ring-cleavage reactions from 13C-BPS, suggesting hydrolysis and oxidation as the initial and key degradation pathways for the electrochemical degradation process. The DNA-SIP results further displayed high 13C-DNA accumulation in the genera Bacteroides and Cetobacterium from the EABs and indicated their ability in the assimilation of BPS or its metabolites. Collectively, network analysis showed that the collaboration between electroactive microbes and BPS assimilators played pivotal roles the improvement in bioelectrochemically enhanced BPS degradation.
Collapse
Affiliation(s)
- Rui Hou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lin Gan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fengyi Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Wang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, School of Resources and Environment, Fujian Agriculture and Forestry, Fuzhou 350000, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
34
|
Yang Y, Zhuang H, Cui H, Liu B, Xie G, Xing D. Effect of waterproof breathable membrane based cathodes on performance and biofilm microbiomes in bioelectrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142281. [PMID: 33207445 DOI: 10.1016/j.scitotenv.2020.142281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
A novel method for fabricating air-cathodes was developed by assembling an activated carbon (AC) catalyst together with a waterproof breathable membrane (WBM) and stainless steel mesh (SSM) to reduce manufacturing costs of bioelectrochemical systems (BESs). WBMs made of different materials were tested in the assembly, including a hybrid of polypropylene and polyolefin (PPPO), polyethylene (PE), and polyurethane (PU), and compared against poly tetrafluoroethylene (PTFE)-based cathodes. Results showed that the maximum power density of the activated carbon-stainless steel mesh-polyurethane (AC@SSM/PU) assembly was 2.03 W/m2 while that of conventional carbon cloth cathode assembly (Pt@CC/PTFE) was 1.51 W/m2. Compared to conventional cathode fabrication, AC@SSM/PU had a much lower cost and simpler manufacturing process. Illumina Miseq sequencing of 16S rRNA gene amplicons indicated that microbiomes were substantially different between anode and cathode biofilms. There was also a difference in the community composition between different cathode biofilms. The predominant population in the anode biofilms was Geobacter (38-75% relative abundance), while Thauera and Pseudomonas dominated the cathode biofilms. The results demonstrated that different types of air-cathodes influenced the microbial community assembly on the electrodes.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huichuan Zhuang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China..
| |
Collapse
|
35
|
Gupta S, Srivastava P, Patil SA, Yadav AK. A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: Potential applications and challenges. BIORESOURCE TECHNOLOGY 2021; 320:124376. [PMID: 33242686 DOI: 10.1016/j.biortech.2020.124376] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
Constructed wetlands (CWs) integrated with bioelectrochemical systems (BESs) are being intensively researched with the names like constructed wetland-microbial fuel cell (CW-MFC), electro-wetlands, electroactive wetlands, and microbial electrochemical technologies-based constructed wetland since the last decade. The implantation of BES in CW facilitates the tuning of redox activities and electron flow balance in aerobic and anaerobic zones in the CW bed matrix, thereby alleviating the limitation associated with electron acceptor availability and increasing its operational controllability. The benefits of CW-MFC include high treatment efficiency, electricity generation, and recalcitrant pollutant abatement. This article presents CW-MFC technology's journey since its emergence to date, encompassing the research done so far, including the basic principle and functioning, bio-electrocatalysts as its machinery, influential factors for microbial interactions, and operational parameters controlling different processes. A few key challenges and potential applications are also discussed for the CW-MFC systems.
Collapse
Affiliation(s)
- Supriya Gupta
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, India
| | - Pratiksha Srivastava
- Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston 7248, Australia
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India.
| |
Collapse
|
36
|
Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. ENERGIES 2020. [DOI: 10.3390/en13246596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sustainable production of electricity from renewable sources by microorganisms is considered an attractive alternative to energy production from fossil fuels. In recent years, research on microbial fuel cells (MFCs) technology for electricity production has increased. However, there are problems with up-scaling MFCs due to the fairly low power output and high operational costs. One of the approaches to improving energy generation in MFCs is by modifying the existing anode materials to provide more electrochemically active sites and improve the adhesion of microorganisms. The aim of this review is to present the effect of anode modification with carbon compounds, metallic nanomaterials, and polymers and the effect that these modifications have on the structure of the microbiological community inhabiting the anode surface. This review summarizes the advantages and disadvantages of individual materials as well as possibilities for using them for environmentally friendly production of electricity in MFCs.
Collapse
|
37
|
Dubrawski KL, Woo SG, Chen W, Xie X, Cui Y, Criddle CS. In Vivo Polymerization ("Hard-Wiring") of Bioanodes Enables Rapid Start-Up and Order-of-Magnitude Higher Power Density in a Microbial Battery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14732-14739. [PMID: 33119289 DOI: 10.1021/acs.est.0c05000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For microbial electrochemical technologies to be successful in the decentralized treatment of wastewater, steady-state power density must be improved and cost must be decreased. Here, we demonstrate in vivo polymerization ("hard-wiring") of a microbial community to a growing layer of conductive polypyrrole on a sponge bioanode of a microbial battery, showing rapid biocatalytic current development (∼10 times higher than a sponge control after 4 h). Moreover, bioanodes with the polymerized inoculant maintain higher steady-state power density (∼2 times greater than the control after 28 days). We then evaluate the same hard-wired bioanodes in both a two-chamber microbial fuel cell and microbial battery with a solid-state NaFeIIFeIII(CN)6 (Prussian Blue) cathode, showing approximately an order-of-magnitude greater volumetric power density with the microbial battery. The result is a rapid start-up, low-cost (no membrane or platinum catalyst), and high volumetric power density system (independent of atmospheric oxygen) for harvesting energy and carbon from dilute organics in wastewater.
Collapse
Affiliation(s)
- Kristian L Dubrawski
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Sung-Geun Woo
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Wei Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
- Woods Institute for the Environment, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
38
|
Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol 2020; 11:562813. [PMID: 33224110 PMCID: PMC7674206 DOI: 10.3389/fmicb.2020.562813] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread across the globe mainly due to long-term anthropogenic sources of pollution. The inherent properties of PAHs such as heterocyclic aromatic ring structures, hydrophobicity, and thermostability have made them recalcitrant and highly persistent in the environment. PAH pollutants have been determined to be highly toxic, mutagenic, carcinogenic, teratogenic, and immunotoxicogenic to various life forms. Therefore, this review discusses the primary sources of PAH emissions, exposure routes, and toxic effects on humans, in particular. This review briefly summarizes the physical and chemical PAH remediation approaches such as membrane filtration, soil washing, adsorption, electrokinetic, thermal, oxidation, and photocatalytic treatments. This review provides a detailed systematic compilation of the eco-friendly biological treatment solutions for remediation of PAHs such as microbial remediation approaches using bacteria, archaea, fungi, algae, and co-cultures. In situ and ex situ biological treatments such as land farming, biostimulation, bioaugmentation, phytoremediation, bioreactor, and vermiremediation approaches are discussed in detail, and a summary of the factors affecting and limiting PAH bioremediation is also discussed. An overview of emerging technologies employing multi-process combinatorial treatment approaches is given, and newer concepts on generation of value-added by-products during PAH remediation are highlighted in this review.
Collapse
Affiliation(s)
- Avani Bharatkumar Patel
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
| | - Shabnam Shaikh
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Kunal R. Jain
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
| | - Chirayu Desai
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Datta Madamwar
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| |
Collapse
|
39
|
Zhang L, Fu G, Zhang Z. Long-term stable and energy-neutral mixed biofilm electrode for complete nitrogen removal from high-salinity wastewater: Mechanism and microbial community. BIORESOURCE TECHNOLOGY 2020; 313:123660. [PMID: 32562967 DOI: 10.1016/j.biortech.2020.123660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The steady mixed biofilm electrode (MBE) was investigated for the removal of nitrogen from mustard tuber wastewater. Results showed that complete nitrogen removal occurred over a wide initial chemical oxygen demand (COD)/total nitrogen (TN) ratio ranging from 2.8 to 9.8 using MBE. MBE revealed broad-spectrum applicability for the treatment of high-salinity wastewater containing different forms of nitrogen. Bio-electrochemical process, in-situ heterotrophic nitrogen reduction, ammonia stripping, nitrogen assimilation, and endogenous denitrification coexisted for the removal of nitrogen. Batch activity tests and functional microorganism analysis confirmed that autotrophic/heterotrophic nitrification, anoxic/aerobic denitrification, and nitrogen bio-electrochemical reduction cooperated to achieve efficient nitrogen conversion. More importantly, the analysis of the preliminary energy balance demonstrated that MBE was self-sustaining. The long-term operation stability of MBE was of great importance for its practical application. The results provided herein offer new insights into bioelectrochemical nitrogen removal and resource treatment of high-salinity wastewater.
Collapse
Affiliation(s)
- Linfang Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Guokai Fu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
40
|
Xu L, Graham NJD, Wei C, Zhang L, Yu W. Abatement of the membrane biofouling: Performance of an in-situ integrated bioelectrochemical-ultrafiltration system. WATER RESEARCH 2020; 179:115892. [PMID: 32388047 DOI: 10.1016/j.watres.2020.115892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
The practical applications of membrane-based water treatment techniques are constrained by the problem of membrane fouling. Various studies have revealed that interactions between extracellular polymeric substances (EPS) and the membrane surface determine the extent of irreversible fouling. Herein, we describe a novel bioelectrochemical system (BES) integrated with an ultrafiltration (UF) membrane in order to provide an enhanced antifouling property. It was found that the integrated BES membrane system had a superior performance compared to a conventional (control) UF system, as manifested by a much lower development of transmembrane pressure. The BES significantly reduced microbial viability in the membrane tank and the imposed electrode potential contributed to the degradation of biopolymers, which favored the alleviation of membrane fouling. Notably, the electron transfer between the acclimated microorganisms and the conductive membrane in the BES integrated system exhibited an increasing trend with the operation time, indicating a gradual increase in microbial electrical activity. Correspondingly, the accumulation of extracellular polymeric substances (EPS) on the membrane surface of the BES integrated system showed a substantial decrease compared to the control system, which could be attributed to a series of synergistic effects induced by the BES integration. The differences in the microbial diversity between the control and the BES integrated system revealed the microbial selectivity of the poised potential. Specifically, microbial strains with relatively high EPS production, like the genus of Zoogloea and Methyloversatilis, were reduced significantly in the BES integrated system, while the expression of the electroactive bacteria was promoted, which facilitated extracellular electron transfer (EET) and therefore the bioelectrochemical reactions. Overall, this study has presented a feasible and promising new approach for membrane fouling mitigation during the process of water treatment.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Chaocheng Wei
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
41
|
Gao N, Fan Y, Long F, Qiu Y, Geier W, Liu H. Novel trickling microbial fuel cells for electricity generation from wastewater. CHEMOSPHERE 2020; 248:126058. [PMID: 32045974 DOI: 10.1016/j.chemosphere.2020.126058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/17/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
There are two main challenges associated with the scale-up of air-cathode microbial fuel cells (MFCs): performance reduction and cathode leakage/flooding. In this study, a novel 13.4 L reactor that contains 4 tubular MFCs was designed and operated in a trickling mode for 65 days under different conditions. The trickling water flow through the horizontally aligned MFCs alleviated the hydraulic pressure applied to the air-cathodes. With a total cathode working area of over 1700 cm2, this reactor generated power densities up to 1 W/m2 with coulombic efficiencies over 50% using acetate. Using a brewery waste stream as carbon source, an average power density of 0.27 W/m2 was generated with ∼60% COD removal at hydraulic retention time of 1.6 h. The decent performance of this reactor compared with other air-cathode MFCs at the similar scale and the alleviated hydraulic pressure on air-cathodes demonstrate the great potential of this design and operation for future MFC optimization and scaling up.
Collapse
Affiliation(s)
- Ningshengjie Gao
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, 97331, United States
| | - Yanzhen Fan
- Waste2Watergy LLC, 3830 NW Boxwood Dr., Corvallis, OR, 97330, United States
| | - Fei Long
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, 97331, United States
| | - Yu Qiu
- Department of Mechanical Engineering, Oregon State University, Corvallis, OR, 97331, United States
| | - Wil Geier
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, 97331, United States
| | - Hong Liu
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, 97331, United States.
| |
Collapse
|
42
|
Effective Treatment of Acid Mine Drainage with Microbial Fuel Cells: An Emphasis on Typical Energy Substrates. MINERALS 2020. [DOI: 10.3390/min10050443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acid mine drainage (AMD), characterized by a high concentration of heavy metals, poses a threat to the ecosystem and human health. Bioelectrochemical system (BES) is a promising technology for the simultaneous treatment of organic wastewater and recovery of metal ions from AMD. Different kinds of organic wastewater usually contain different predominant organic chemicals. However, the effect of different energy substrates on AMD treatment and microbial communities of BES remains largely unknown. Here, results showed that different energy substrates (such as glucose, acetate, ethanol, or lactate) affected the startup, maximum voltage output, power density, coulombic efficiency, and microbial communities of the microbial fuel cell (MFC). Compared with the maximum voltage output (55 mV) obtained by glucose-fed-MFC, much higher maximum voltage output (187 to 212 mV) was achieved by MFCs fed individually with other energy substrates. Acetate-fed-MFC showed the highest power density (195.07 mW/m2), followed by lactate (98.63 mW/m2), ethanol (52.02 mW/m2), and glucose (3.23 mW/m2). Microbial community analysis indicated that the microbial communities of anodic electroactive biofilms changed with different energy substrates. The unclassified_f_Enterobacteriaceae (87.48%) was predominant in glucose-fed-MFC, while Geobacter species only accounted for 0.63%. The genera of Methanobrevibacter (23.70%), Burkholderia-Paraburkholderia (23.47%), and Geobacter (11.90%) were the major genera enriched in the ethanol-fed-MFC. Geobacter was most predominant in MFC enriched by lactate (45.28%) or acetate (49.72%). Results showed that the abundance of exoelectrogens Geobacter species correlated to electricity-generation capacities of electroactive biofilms. Electroactive biofilms enriched with acetate, lactate, or ethanol effectively recovered all Cu2+ ion (349 mg/L) of simulated AMD in a cathodic chamber within 53 h by reduction as Cu0 on the cathode. However, only 34.65% of the total Cu2+ ion was removed in glucose-fed-MFC by precipitation with anions and cations rather than Cu0 on the cathode.
Collapse
|
43
|
Ullah Z, Zeshan S. Effect of substrate type and concentration on the performance of a double chamber microbial fuel cell. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1336-1344. [PMID: 32616686 DOI: 10.2166/wst.2019.387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The microbial fuel cell (MFC) provides new opportunities for energy generation and wastewater treatment through conversion of organic matter into electricity by electrogenic bacteria. This study investigates the effect of different types and concentrations of substrates on the performance of a double chamber microbial fuel cell (DCMFC). Three mediator-less laboratory-scale DCMFCs were used in this study, which were equipped with graphite electrode and cation exchange membrane. The MFCs were fed with three different types of substrates (glucose, acetate and sucrose) at a chemical oxygen demand (COD) concentration of 1,000 mg/L. The selected substrate (acetate) was studied for three different concentrations of 500, 2,000 and 3,000 mg/L of COD. Results demonstrated that acetate was the best substrate among the three different substrates with maximum power density and COD removal of 91 mW/m2 and 77%, respectively. Concentration of 2,000 mg/L was the best concentration in terms of performance with maximum power density and COD removal of 114 mW/m2 and 79%, respectively. The polarization curve shows that ohmic losses were dominant in DCMFCs established for all three substrates and concentrations.
Collapse
Affiliation(s)
- Zia Ullah
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan E-mail:
| | - Sheikh Zeshan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan E-mail:
| |
Collapse
|
44
|
Wang T, Zhu G, Li C, Zhou M, Wang R, Li J. Anaerobic digestion of sludge filtrate using anaerobic baffled reactor assisted by symbionts of short chain fatty acid-oxidation syntrophs and exoelectrogens: Pilot-scale verification. WATER RESEARCH 2020; 170:115329. [PMID: 31785560 DOI: 10.1016/j.watres.2019.115329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/06/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The growing amount of sewage sludge from wastewater treatment plant is an emerging challenge in China. The efficient anaerobic digestion of sludge filtrate generated from hydrothermally pretreated sewage sludge can promote the disposal of sewage sludge. Herein, a pilot-scale anaerobic baffled reactor (ABR) assisted by symbionts of short chain fatty acid-oxidation syntrophs (SFAS) and exoelectrogens was developed to improve its stability and efficiency for filtrate treatment. The results demonstrated that the symbionts of exoelectrogens and SFAS, which were enriched by introduction of electrodes in the ABR system, promoted the degradation of butyric, propionic and acetic acids. Therefore, the COD removal efficiency increased from 74.1% to 86.6% and the methane content increased from 81.5% to 92.2% with methane production rising from 241 to 282 mL/g CODremoved. Furthermore, the economic evaluation indicated that the energy consumption of electrodes was 0.600 kWh/m3 of sludge filtrate, the net energy profited from increased methane was 2.344 kWh/m3 of sludge filtrate. These results confirmed that the ABR system assisted by symbionts of SFAS and exoelectrogens was feasible for treatment of sludge filtrate in terms of both technical and economic level through pilot-scale verification.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruming Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Zhang J, Zhang R, Wang H, Yang K. Direct interspecies electron transfer stimulated by granular activated carbon enhances anaerobic methanation efficiency from typical kitchen waste lipid-rapeseed oil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135282. [PMID: 31787308 DOI: 10.1016/j.scitotenv.2019.135282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Due to long-chain fatty acids (LCFAs) and acidification, rapeseed oil as a typical lipid in kitchen waste is difficult to be biodegraded by anaerobic digestion. It has been reported that incorporation of some conductive materials into reactors treating complex organic matter could enhance reactor performance. In this study, the aim was to study this possibility of application of granular activated carbon (GAC) in anaerobic digestion of rapeseed oil. As expected, the GAC-amended reactor could significantly improve methane yield and reduce acidification. Besides, the GAC-amended broth could efficiently degrade palmitate into methane. Microbial community analysis showed that bacteria (Syntrophomonas) and methanogens (Methanosarcina) were greatly enriched on the GAC surface in GAC-amended system. These results, and the kwon of easy enrichment of Syntrophomonas on conductive materials or current-harvesting electrodes in methanogenic and/or electrogenic systems, suggest that Syntrophomonas could participate in direct interspecies electron transfer with Methanosarcina species, when GAC is available as an electron transfer mediator. Hence, the addition of GAC could efficiently, stably and environmentally enhance the methanogenic metabolism of rapeseed oil.
Collapse
Affiliation(s)
- Jing Zhang
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430072, China.
| | - Rongtang Zhang
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
46
|
Esquivel DYA, Guo Y, Brown RK, Müller S, Schröder U, Harnisch F. Investigating Community Dynamics and Performance During Microbial Electrochemical Degradation of Whey. ChemElectroChem 2020. [DOI: 10.1002/celc.201902109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diana Y. Alvarez Esquivel
- Institute of Environmental and Sustainable ChemistryTechnische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Yuting Guo
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Robert K. Brown
- Institute of Environmental and Sustainable ChemistryTechnische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Susann Müller
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Falk Harnisch
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZ Permoserstrasse 15 04318 Leipzig Germany
| |
Collapse
|
47
|
Joicy A, Song YC, Yu H, Chae KJ. Nitrite and nitrate as electron acceptors for bioelectrochemical ammonium oxidation under electrostatic field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109517. [PMID: 31545180 DOI: 10.1016/j.jenvman.2019.109517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/14/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Bioelectrochemical ammonium oxidation with nitrite and nitrate as electron acceptors was investigated in bulk solution exposed to electrostatic field. In a bioelectrochemical reactor, electroactive nitrogen removal bacteria including ammonium oxidizing exoelectrogens (AOE) and denitrifying electrotrophs (DNE) were enriched by electrostatic field of 0.2 V/cm in a bulk solution containing nitrite, nitrate, and ammonium. Ammonium was oxidized simultaneously with decreases in nitrite and nitrate as electron acceptors due to direct interspecies electron transfer between AOE and DNE. The specific ammonium oxidation rate was 48 mg NH4-N/g VSS.d when nitrate fraction was 1/3 in the electron acceptor composed of nitrite and nitrate. The specific ammonium oxidation rate gradually decreased with increasing nitrate fraction. However, it was still 24 mg NH4-N/g VSS.d when nitrate was the only electron acceptor. This indicates that nitrate can be used as an electron acceptor for bioelectrochemical ammonium oxidation, although it is a less effective than nitrite. This finding provides an advantage that strict nitritation which selectively produces nitrite from ammonium can be avoided when treating ammonia-rich wastewater in a bioelectrochemical reactor.
Collapse
Affiliation(s)
- Anna Joicy
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| | - Hanchao Yu
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| |
Collapse
|
48
|
Li B, Liu XN, Tang C, Zhou J, Wu XY, Xie XX, Wei P, Jia HH, Yong XY. Degradation of phenolic compounds with simultaneous bioelectricity generation in microbial fuel cells: Influence of the dynamic shift in anode microbial community. BIORESOURCE TECHNOLOGY 2019; 291:121862. [PMID: 31357047 DOI: 10.1016/j.biortech.2019.121862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
This study evaluated the feasibility of microbial fuel cells (MFCs) for simultaneous electricity generation and degradation of phenolic compounds. The voltage generation was inhibited by 36.18-63.90%, but the degradation rate increased by 146.15-392.31% when the initial concentration of syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) increased from 0.3 to 3.0 g/L. The collaboration among the functional microbes significantly enhanced the degradation rate of parent compounds and their intermediates in MFCs systems, while the accumulated intermediates severely inhibited their complete mineralization in fermentative systems. High-throughput sequencing showed that the growth of fermentative bacteria prevailed, but electrogenic bacteria were inhibited in the anode microbial community (AMC) under high concentrations of phenolic compounds (3.0 g/L). These findings provide a better understanding of the dynamic shift and synergy effects of the AMC to evaluate its potential for the treatment of phenolic-containing wastewater.
Collapse
Affiliation(s)
- Biao Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Xiao-Na Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Chen Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Xia-Yuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Xin-Xin Xie
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Hong-Hua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China.
| |
Collapse
|
49
|
Wang H, Lu L, Mao D, Huang Z, Cui Y, Jin S, Zuo Y, Ren ZJ. Dominance of electroactive microbiomes in bioelectrochemical remediation of hydrocarbon-contaminated soils with different textures. CHEMOSPHERE 2019; 235:776-784. [PMID: 31280046 DOI: 10.1016/j.chemosphere.2019.06.229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Bioelectrochemical systems (BESs) are known to enhance the remediation of hydrocarbon-contaminated soil and sediments compared with natural attenuation, and the primary mechanism has been assumed as anaerobic degradation facilitated by electroactive bacteria (EAB) using the electrode as electron acceptor. However, known EAB were rarely found on the anodes of reported BESs, which challenged the fundamental mechanism of BESs although significant current generation was always observed during degradation of these recalcitrant substrates. This study however found the abundant EAB Geobacter (∼27.3%) in the anodic biofilms, which confirmed the role of electroactive bio-anode on the conversion of hydrocarbons into the current for the enhancement of remediation. Widespread occurrence of aerobic hydrocarbon-degrading bacteria (HDB) (e.g. ∼24.0% Parvibaculum and ∼30.6% Pseudomonas) was observed in soils with limited dissolved oxygen (∼0.4 mg/L). The higher abundance of dehydrogenase genes was found in the anode biofilms than that in soils, indicating anodic microorganisms may be mainly responsible for the removal of intermediates of aerobic hydrocarbons degradation in soils. High water saturation level and sandy soil texture showed positive impacts on bioelectrochemical remediation, while clay soil and unsaturation condition pose challenges in mass transfers in the matrix. The reactor performance was consistent with the phylogenetic molecular ecological network (pMENs) analysis, which showed that sandy soil BESs had tighter microbial network interactions than clay soil reactors.
Collapse
Affiliation(s)
- Huan Wang
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States; Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States.
| | - Lu Lu
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States; Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States.
| | - Deqiang Mao
- Department of Earth & Environmental Science, New Mexico Tech, Socorro, NM, 87801, United States.
| | - Zhe Huang
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States.
| | - Yixiao Cui
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States.
| | - Song Jin
- Advanced Environmental Technologies, LLC, Fort Collins, CO, 80525, United States.
| | - Yi Zuo
- Chevron Energy Technology Company, San Ramon, CA, 94583, United States.
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States; Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, United States.
| |
Collapse
|
50
|
Zhao N, Treu L, Angelidaki I, Zhang Y. Exoelectrogenic Anaerobic Granular Sludge for Simultaneous Electricity Generation and Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12130-12140. [PMID: 31507167 DOI: 10.1021/acs.est.9b03395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A thick and electroactive biofilm is the key to the successful development of microbial electrochemical systems and technologies (METs). In this study, intact anaerobic granular sludge (AGS), which is a spherical and dense microbial association, was successfully demonstrated as a novel and efficient biocatalyst in METs such as microbial fuel cells. Three different strategies were explored to shift the microbial composition of AGS from methanogenic to exoelectrogenic microbes, including varying the external resistance and organic loading and manipulating the anode potential. Among all the strategies, only with positive anode potential, AGS was successfully shifted from methanogenic to exoelectrogenic conditions, as indicated by the significantly high current response (10.32 A/m2) and 100% removal of organic carbon from wastewater. Moreover, the AGS bioanode showed no significant decrease in current generation and organic removal at pH 5, indicating good tolerance of AGS to acidic conditions. Finally, 16S rRNA sequencing revealed the enrichment of exoelectrogens and inhibition of methanogens in the microbial community of AGS after anode potential control. This study provides a proof of concept for extracting electrical energy from organic wastes by exoelectrogenic AGS along with simultaneous wastewater treatment and meanwhile opens up a new paradigm to create an efficient and cost-effective exoelectrogenic biocatalyst for boosting the industrial application of METs.
Collapse
Affiliation(s)
- Nannan Zhao
- Department of Environmental Engineering , Technical University of Denmark , DK-2800 Lyngby , Denmark
| | - Laura Treu
- Department of Environmental Engineering , Technical University of Denmark , DK-2800 Lyngby , Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering , Technical University of Denmark , DK-2800 Lyngby , Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering , Technical University of Denmark , DK-2800 Lyngby , Denmark
| |
Collapse
|