1
|
Mansour KA, El-Mahis AA, Farag MA. Headspace aroma and secondary metabolites profiling in 3 Pelargonium taxa using a multiplex approach of SPME-GC/MS and high resolution-UPLC/MS/MS coupled to chemometrics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1012-1024. [PMID: 39297404 DOI: 10.1002/jsfa.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND The present study focuses on the aroma and secondary metabolites profiling of three Pelargonium graveolens cultivars, baladi (GRB), sondos (GRS) and shish (GRSH), grown in Egypt. Utilizing a multiplex approach combining high resolution-ultraperformance liquid chromatography (HR-UPLC)/tandem mass spectrometry (MS/MS) and gas chromatography (GC)-MS coupled with chemometrics, the study aims to identify and profile various secondary metabolites and aroma compounds in these cultivars. RESULTS HR-UPLC/MS/MS analysis led to the annotation of 111 secondary metabolites, including phenolics, flavonoids, terpenes and fatty acids, with several compounds being reported for the first time in geranium. Multivariate data analysis identified vinylanisole, dimethoxy-flavonol, and eicosadienoic acid as discriminatory metabolites among the cultivars, particularly distinguishing the GRS cultivar in its phenolics profile. In total, 34 aroma compounds were detected using headspace solid-phase microextraction coupled with GC-MS, including alcohols, esters, ketones, ethers and monoterpene hydrocarbons. The major metabolites contributing to aroma discrimination among the cultivars were β-citronellol in GRB, α-farnesene in GRS and isomenthone in GRSH. CONCLUSION The study provides a comprehensive profiling of the secondary metabolites and aroma compounds in the three Pelargonium graveolens cultivars. The GRS cultivar was identified as particularly distinct in both its phenolics and aroma profiles, suggesting its potential as a premium variety for cultivation and use. Future studies should focus on isolating and investigating the newly detected metabolites and exploring the biological effects of these compounds in food applications and other uses. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Khaled Ahmed Mansour
- Pharmacognosy Department, Faculty of Pharmacy, The university of Mashreq, Baghdad, Iraq
- Pharmacognosy Department, Faculty of Pharmacy, Horus University in Egypt, New Damietta, Egypt
| | - Amira Ali El-Mahis
- National Organization of Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Zhang G, Ma Y, Huang M, Jia K, Ma T, Dai Z, Wang Q. Reprograming the Carbon Metabolism of Yeast for Hyperproducing Mevalonate, a Building Precursor of the Terpenoid Backbone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39689241 DOI: 10.1021/acs.jafc.4c09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Utilization of microbial hosts to produce natural plant products is regarded as a promising and sustainable approach. However, achieving highly efficient production of terpenoids using microorganisms remains a significant challenge. Here, mevalonate, a building block of terpenoids, was used as a demo product to explore the potential metabolic constraints for terpenoid biosynthesis in Yarrowia lipolytica. First, by regulation of the expression of ERG12 and HMGR, the mevalonate titer was improved by 7660%. Subsequently, the native mevalonate pathway (MVA pathway) was enhanced, and the production of mevalonate increased to 4.16 g/L. To ensure a sufficient supply of acetyl-CoA, the citrate route and TCA cycle were simultaneously engineered, and the mevalonate titer was further improved to 5.25 g/L in shake flasks. Ultimately, the citrate overflow metabolism of Y. lipolytica was eliminated by deleting CEX1, resulting in the highest mevalonate titer of 101 g/L with a yield of 0.255 g/g of glucose in eukaryotes. These insights could be applied to the effective production of terpenoids and biochemicals derived from central carbon metabolic pathways.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yurui Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meina Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Kaizhi Jia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
3
|
Worland AM, Han Z, Maruwan J, Wang Y, Du ZY, Tang YJ, Su WW, Roell GW. Elucidation of triacylglycerol catabolism in Yarrowia lipolytica: How cells balance acetyl-CoA and excess reducing equivalents. Metab Eng 2024; 85:1-13. [PMID: 38942196 DOI: 10.1016/j.ymben.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Yarrowia lipolytica is an industrial yeast that can convert waste oil to value-added products. However, it is unclear how this yeast metabolizes lipid feedstocks, specifically triacylglycerol (TAG) substrates. This study used 13C-metabolic flux analysis (13C-MFA), genome-scale modeling, and transcriptomics analyses to investigate Y. lipolytica W29 growth with oleic acid, glycerol, and glucose. Transcriptomics data were used to guide 13C-MFA model construction and to validate the 13C-MFA results. The 13C-MFA data were then used to constrain a genome-scale model (GSM), which predicted Y. lipolytica fluxes, cofactor balance, and theoretical yields of terpene products. The three data sources provided new insights into cellular regulation during catabolism of glycerol and fatty acid components of TAG substrates, and how their consumption routes differ from glucose catabolism. We found that (1) over 80% of acetyl-CoA from oleic acid is processed through the glyoxylate shunt, a pathway that generates less CO2 compared to the TCA cycle, (2) the carnitine shuttle is a key regulator of the cytosolic acetyl-CoA pool in oleic acid and glycerol cultures, (3) the oxidative pentose phosphate pathway and mannitol cycle are key routes for NADPH generation, (4) the mannitol cycle and alternative oxidase activity help balance excess NADH generated from β-oxidation of oleic acid, and (5) asymmetrical gene expressions and GSM simulations of enzyme usage suggest an increased metabolic burden for oleic acid catabolism.
Collapse
Affiliation(s)
- Alyssa M Worland
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States
| | - Jessica Maruwan
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States
| | - Yu Wang
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States
| | - Zhi-Yan Du
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States.
| | - Garrett W Roell
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, United States.
| |
Collapse
|
4
|
Sun ML, Gao X, Lin L, Yang J, Ledesma-Amaro R, Ji XJ. Building Yarrowia lipolytica Cell Factories for Advanced Biomanufacturing: Challenges and Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:94-107. [PMID: 38126236 DOI: 10.1021/acs.jafc.3c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Microbial cell factories have shown great potential for industrial production with the benefit of being environmentally friendly and sustainable. Yarrowia lipolytica is a promising and superior non-model host for biomanufacturing due to its cumulated advantages compared to model microorganisms, such as high fluxes of metabolic precursors (acetyl-CoA and malonyl-CoA) and its naturally hydrophobic microenvironment. However, although diverse compounds have been synthesized in Y. lipolytica cell factories, most of the relevant studies have not reached the level of industrialization and commercialization due to a number of remaining challenges, including unbalanced metabolic flux, conflict between cell growth and product synthesis, and cytotoxic effects. Here, various metabolic engineering strategies for solving the challenges are summarized, which is developing fast and extremely conducive to rational design and reconstruction of robust Y. lipolytica cell factories for advanced biomanufacturing. Finally, future engineering efforts for enhancing the production efficiency of this platform strain are highlighted.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaoxia Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jing Yang
- 2011 College, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
5
|
Li W, Mai J, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Combination of microbial and chemical synthesis for the sustainable production of β-elemene, a promising plant-extracted anticancer compound. Biotechnol Bioeng 2023; 120:3612-3621. [PMID: 37661795 DOI: 10.1002/bit.28544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Beta-elemene, a class of sesquiterpene derived from the Chinese medicinal herb Curcuma wenyujin, is widely used in clinical medicine due to its broad-spectrum antitumor activity. However, the unsustainable plant extraction prompted the search for environmentally friendly strategies for β-elemene production. In this study, we designed a Yarrowia lipolytica cell factory that can continuously produce germacrene A, which is further converted into β-elemene with 100% yield through a Cope rearrangement reaction by shifting the temperature to 250°C. First, the productivity of four plant-derived germacrene A synthases was evaluated. After that, the metabolic flux of the precursor to germacrene A was maximized by optimizing the endogenous mevalonate pathway, inhibiting the competing squalene pathway, and expressing germacrene A synthase gene in multiple copies. Finally, the most promising strain achieved the highest β-elemene titer reported to date with 5.08 g/L. This sustainable and green method has the potential for industrial β-elemene production.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jie Mai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Zhi-Gang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 2023; 68:108214. [PMID: 37478981 DOI: 10.1016/j.biotechadv.2023.108214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.
Collapse
Affiliation(s)
- Sandeep Dinday
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Xiao Z, Li W, Moon H, Roell GW, Chen Y, Tang YJ. Generative Artificial Intelligence GPT-4 Accelerates Knowledge Mining and Machine Learning for Synthetic Biology. ACS Synth Biol 2023; 12:2973-2982. [PMID: 37682043 DOI: 10.1021/acssynbio.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Knowledge mining from synthetic biology journal articles for machine learning (ML) applications is a labor-intensive process. The development of natural language processing (NLP) tools, such as GPT-4, can accelerate the extraction of published information related to microbial performance under complex strain engineering and bioreactor conditions. As a proof of concept, we proposed prompt engineering for a GPT-4 workflow pipeline to extract knowledge from 176 publications on two oleaginous yeasts (Yarrowia lipolytica and Rhodosporidium toruloides). After human intervention, the pipeline obtained a total of 2037 data instances. The structured data sets and feature selections enabled ML approaches (e.g., a random forest model) to predict Yarrowia fermentation titers with decent accuracy (R2 of 0.86 for unseen test data). Via transfer learning, the trained model could assess the production potential of the engineered nonconventional yeast, R. toruloides, for which there are fewer published reports. This work demonstrated the potential of generative artificial intelligence to streamline information extraction from research articles, thereby facilitating fermentation predictions and biomanufacturing development.
Collapse
Affiliation(s)
- Zhengyang Xiao
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wenyu Li
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Hannah Moon
- ImpactDB LLC, St. Louis, Missouri 63105, United States
- Clayton High School, 1 Mark Twain Cir, Clayton, Missouri 63105, United States
| | - Garrett W Roell
- ImpactDB LLC, St. Louis, Missouri 63105, United States
- Department of Molecular Biosciences & Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yinjie J Tang
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
Zhang TL, Yu HW, Ye LD. Metabolic Engineering of Yarrowia lipolytica for Terpenoid Production: Tools and Strategies. ACS Synth Biol 2023; 12:639-656. [PMID: 36867718 DOI: 10.1021/acssynbio.2c00569] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Terpenoids are a diverse group of compounds with isoprene units as basic building blocks. They are widely used in the food, feed, pharmaceutical, and cosmetic industries due to their diverse biological functions such as antioxidant, anticancer, and immune enhancement. With an increase in understanding the biosynthetic pathways of terpenoids and advances in synthetic biology techniques, microbial cell factories have been built for the heterologous production of terpenoids, with the oleaginous yeast Yarrowia lipolytica emerging as an outstanding chassis. In this paper, recent progress in the development of Y. lipolytica cell factories for terpenoid production with a focus on the advances in novel synbio tools and metabolic engineering strategies toward enhanced terpenoid biosynthesis is reviewed.
Collapse
Affiliation(s)
- Tang-Lei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Hong-Wei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| | - Li-Dan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| |
Collapse
|
9
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
10
|
Liu F, Liu SC, Qi YK, Liu Z, Chen J, Wei LJ, Hua Q. Enhancing Trans-Nerolidol Productivity in Yarrowia lipolytica by Improving Precursor Supply and Optimizing Nerolidol Synthase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15157-15165. [PMID: 36444843 DOI: 10.1021/acs.jafc.2c05847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The low enzymatic capability of terpene synthases and the limited availability of precursors often hinder the productivity of terpenes in microbial hosts. Herein, a systematic approach combining protein engineering and pathway compartmentation was exploited in Yarrowia lipolytica for the high-efficient production of trans-nerolidol, a sesquiterpene with various commercial applications. Through the single-gene overexpression, the reaction catalyzed by nerolidol synthase (FaNES1) was identified as another rate-limiting step. An optimized FaNES1G498Q was then designed by rational protein engineering using homology modeling and docking studies. Additionally, further improvement of trans-nerolidol production was observed as enhancing the expression of an endogenous carnitine acetyltransferase (CAT2) putatively responsible for acetyl-CoA shuttling between peroxisome and cytosol. To harness the peroxisomal acetyl-CoA pool, a parallel peroxisomal pathway starting with acetyl-CoA to trans-nerolidol was engineered. Finally, the highest reported titer of 11.1 g/L trans-nerolidol in the Y. lipolytica platform was achieved in 5 L fed-batch fermentation with the carbon restriction approach.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shun-Cheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yi-Ke Qi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
11
|
Lupish B, Hall J, Schwartz C, Ramesh A, Morrison C, Wheeldon I. Genome-wide CRISPR-Cas9 screen reveals a persistent null-hyphal phenotype that maintains high carotenoid production in Yarrowia lipolytica. Biotechnol Bioeng 2022; 119:3623-3631. [PMID: 36042688 PMCID: PMC9825908 DOI: 10.1002/bit.28219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023]
Abstract
Yarrowia lipolytica is a metabolic engineering host of growing industrial interest due to its ability to metabolize hydrocarbons, fatty acids, glycerol, and other renewable carbon sources. This dimorphic yeast undergoes a stress-induced transition to a multicellular hyphal state, which can negatively impact biosynthetic activity, reduce oxygen and nutrient mass transfer in cell cultures, and increase culture viscosity. Identifying mutations that prevent the formation of hyphae would help alleviate the bioprocess challenges that they create. To this end, we conducted a genome-wide CRISPR screen to identify genetic knockouts that prevent the transition to hyphal morphology. The screen identified five mutants with a null-hyphal phenotype-ΔRAS2, ΔRHO5, ΔSFL1, ΔSNF2, and ΔPAXIP1. Of these hits, only ΔRAS2 suppressed hyphal formation in an engineered lycopene production strain over a multiday culture. The RAS2 knockout was also the only genetic disruption characterized that did not affect lycopene production, producing more than 5 mg L-1 OD-1 from a heterologous pathway with enhanced carbon flux through the mevalonate pathway. These data suggest that a ΔRAS2 mutant of Y. lipolytica could prove useful in engineering a metabolic engineering host of the production of carotenoids and other biochemicals.
Collapse
Affiliation(s)
- Brian Lupish
- Department of BioengineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Jordan Hall
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Cory Schwartz
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,Present address:
iBio Inc.San DiegoCaliforniaUSA
| | - Adithya Ramesh
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Clifford Morrison
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Ian Wheeldon
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,Center for Industrial BiotechnologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
12
|
Dantas Rocha KA, de Freitas Paulo T, Ayala AP, da Silva Sampaio V, Gomes Nunes PI, Santos FA, Canuto KM, Silveira ER, Loiola Pessoa OD. Anti-inflammatory withajardins from the leaves of Athenaea velutina. PHYTOCHEMISTRY 2022; 203:113338. [PMID: 35948140 DOI: 10.1016/j.phytochem.2022.113338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Withajardins, uncommon modified withanolide-type steroids, have been isolated exclusively from plants of the Solanaceae family so far. Two undescribed withajardins and the known tuboanosigenin were isolated from the hexane/EtOAc 1:1 extract from Athenaea velutina leaves. Their structures were established by an extensive analysis of 1D and 2D-NMR and HRMS data. The absolute configuration was determined by X-ray diffraction (withajardin L and tuboanosigenin) and circular dichroism (CD) analyses (withajardin M). The anti-inflammatory activity of compounds was evaluated through the inhibition of the lipopolysaccharide (LPS)-induced nitric oxide (NO), TNF-α, and IL-6 release in RAW264.7 cells. The cell viability effects to RAW 264.7 cells showed IC50 values of 74.4-354.4 μM. The compounds attenuated LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 in RAW264.7 cells.
Collapse
Affiliation(s)
- Késya Amanda Dantas Rocha
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Tércio de Freitas Paulo
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Alejandro Pedro Ayala
- Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, 60440-900, Fortaleza, CE, Brazil
| | | | - Paulo Iury Gomes Nunes
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | - Flávia Almeida Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | | | - Edilberto Rocha Silveira
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Otília Deusdenia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil.
| |
Collapse
|
13
|
Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Li W, Cui L, Mai J, Shi TQ, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9246-9261. [PMID: 35854404 DOI: 10.1021/acs.jafc.2c03917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Terpenes are a large class of secondary metabolites with diverse structures and functions that are commonly used as valuable raw materials in food, cosmetics, and medicine. With the development of metabolic engineering and emerging synthetic biology tools, these important terpene compounds can be sustainably produced using different microbial chassis. Currently, yeasts such as Saccharomyces cerevisiae and Yarrowia lipolytica have received extensive attention as potential hosts for the production of terpenes due to their clear genetic background and endogenous mevalonate pathway. In this review, we summarize the natural terpene biosynthesis pathways and various engineering strategies, including enzyme engineering, pathway engineering, and cellular engineering, to further improve the terpene productivity and strain stability in these two widely used yeasts. In addition, the future prospects of yeast-based terpene production are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future studies are also emphasized.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Liuwei Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jie Mai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhi-Gang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
15
|
Fungal biotransformation of limonene and pinene for aroma production. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Yi X, Alper HS. Considering Strain Variation and Non-Type Strains for Yeast Metabolic Engineering Applications. Life (Basel) 2022; 12:life12040510. [PMID: 35455001 PMCID: PMC9032683 DOI: 10.3390/life12040510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
A variety of yeast species have been considered ideal hosts for metabolic engineering to produce value-added chemicals, including the model organism Saccharomyces cerevisiae, as well as non-conventional yeasts including Yarrowia lipolytica, Kluyveromyces marxianus, and Pichia pastoris. However, the metabolic capacity of these microbes is not simply dictated or implied by genus or species alone. Within the same species, yeast strains can display distinct variations in their phenotypes and metabolism, which affect the performance of introduced pathways and the production of interesting compounds. Moreover, it is unclear how this metabolic potential corresponds to function upon rewiring these organisms. These reports thus point out a new consideration for successful metabolic engineering, specifically: what are the best strains to utilize and how does one achieve effective metabolic engineering? Understanding such questions will accelerate the host selection and optimization process for generating yeast cell factories. In this review, we survey recent advances in studying yeast strain variations and utilizing non-type strains in pathway production and metabolic engineering applications. Additionally, we highlight the importance of employing portable methods for metabolic rewiring to best access this metabolic diversity. Finally, we conclude by highlighting the importance of considering strain diversity in metabolic engineering applications.
Collapse
Affiliation(s)
- Xiunan Yi
- Interdisciplinary Life Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Hal S. Alper
- Interdisciplinary Life Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Correspondence:
| |
Collapse
|
17
|
Xie Y, Chen S, Xiong X. Metabolic Engineering of Non-carotenoid-Producing Yeast Yarrowia lipolytica for the Biosynthesis of Zeaxanthin. Front Microbiol 2021; 12:699235. [PMID: 34690947 PMCID: PMC8529107 DOI: 10.3389/fmicb.2021.699235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/30/2021] [Indexed: 01/29/2023] Open
Abstract
Zeaxanthin is vital to human health; thus, its production has received much attention, and it is also an essential precursor for the biosynthesis of other critical carotenoids such as astaxanthin and crocetin. Yarrowia lipolytica is one of the most intensively studied non-conventional yeasts and has been genetically engineered as a cell factory to produce carotenoids such as lycopene and β-carotene. However, zeaxanthin production by Y. lipolytica has not been well investigated. To fill this gap, β-carotene biosynthesis pathway has been first constructed in this study by the expression of genes, including crtE, crtB, crtI, and carRP. Three crtZ genes encoding β-carotene hydroxylase from different organisms were individually introduced into β-carotene-producing Y. lipolytica to evaluate their performance for producing zeaxanthin. The expression of crtZ from the bacterium Pantoea ananatis (formerly Erwinia uredovora, Eu-crtZ) resulted in the highest zeaxanthin titer and content on the basis of dry cell weight (DCW). After verifying the function of Eu-crtZ for producing zeaxanthin, the high-copy-number integration into the ribosomal DNA of Y. lipolytica led to a 4.02-fold increase in the titer of zeaxanthin and a 721% increase in the content of zeaxanthin. The highest zeaxanthin titer achieved 21.98 ± 1.80 mg/L by the strain grown on a yeast extract peptone dextrose (YPD)-rich medium. In contrast, the highest content of DCW reached 3.20 ± 0.11 mg/g using a synthetic yeast nitrogen base (YNB) medium to culture the cells. Over 18.0 g/L of citric acid was detected in the supernatant of the YPD medium at the end of cultivation. Furthermore, the zeaxanthin-producing strains still accumulated a large amount of lycopene and β-carotene. The results demonstrated the potential of a cell factory for zeaxanthin biosynthesis and opened up an avenue to engineer this host for the overproduction of carotenoids.
Collapse
Affiliation(s)
| | | | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
18
|
Zhang G, Wang H, Zhang Z, Verstrepen KJ, Wang Q, Dai Z. Metabolic engineering of Yarrowia lipolytica for terpenoids production: advances and perspectives. Crit Rev Biotechnol 2021; 42:618-633. [PMID: 34325575 DOI: 10.1080/07388551.2021.1947183] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Terpenoids are a large family of natural products with diversified structures and functions that are widely used in the food, pharmaceutical, cosmetic, and agricultural fields. However, the traditional methods of terpenoids production such as plant extraction and chemical synthesis are inefficient due to the complex processes, high energy consumption, and low yields. With progress in metabolic engineering and synthetic biology, microbial cell factories provide an interesting alternative for the sustainable production of terpenoids. The non-conventional yeast, Yarrowia lipolytica, is a promising host for terpenoid biosynthesis due to its inherent mevalonate pathway, high fluxes of acetyl-CoA and NADPH, and the naturally hydrophobic microenvironment. In this review, we highlight progress in the engineering of Y. lipolytica as terpenoid biomanufacturing factories, describing the different terpenoid biosynthetic pathways and summarizing various metabolic engineering strategies, including progress in genetic manipulation, dynamic regulation, organelle engineering, and terpene synthase variants.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Huan Wang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Kevin J Verstrepen
- TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China.,VIB-KU Leuven Center for Microbiology and KU Leuven Laboratory for Genetics and Genomics, Department M2S, Leuven, Belgium
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
19
|
Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J Fungi (Basel) 2021; 7:jof7070548. [PMID: 34356927 PMCID: PMC8307478 DOI: 10.3390/jof7070548] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Among non-conventional yeasts of industrial interest, the dimorphic oleaginous yeast Yarrowia lipolytica appears as one of the most attractive for a large range of white biotechnology applications, from heterologous proteins secretion to cell factories process development. The past, present and potential applications of wild-type, traditionally improved or genetically modified Yarrowia lipolytica strains will be resumed, together with the wide array of molecular tools now available to genetically engineer and metabolically remodel this yeast. The present review will also provide a detailed description of Yarrowia lipolytica strains and highlight the natural biodiversity of this yeast, a subject little touched upon in most previous reviews. This work intends to fill this gap by retracing the genealogy of the main Yarrowia lipolytica strains of industrial interest, by illustrating the search for new genetic backgrounds and by providing data about the main publicly available strains in yeast collections worldwide. At last, it will focus on exemplifying how advances in engineering tools can leverage a better biotechnological exploitation of the natural biodiversity of Yarrowia lipolytica and of other yeasts from the Yarrowia clade.
Collapse
|
20
|
Integrated knowledge mining, genome-scale modeling, and machine learning for predicting Yarrowia lipolytica bioproduction. Metab Eng 2021; 67:227-236. [PMID: 34242777 DOI: 10.1016/j.ymben.2021.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023]
Abstract
Predicting bioproduction titers from microbial hosts has been challenging due to complex interactions between microbial regulatory networks, stress responses, and suboptimal cultivation conditions. This study integrated knowledge mining, feature extraction, genome-scale modeling (GSM), and machine learning (ML) to develop a model for predicting Yarrowia lipolytica chemical titers (i.e., organic acids, terpenoids, etc.). First, Y. lipolytica production data, including cultivation conditions, genetic engineering strategies, and product information, was manually collected from literature (~100 papers) and stored as either numerical (e.g., substrate concentrations) or categorical (e.g., bioreactor modes) variables. For each case recorded, central pathway fluxes were estimated using GSMs and flux balance analysis (FBA) to provide metabolic features. Second, a ML ensemble learner was trained to predict strain production titers. Accurate predictions on the test data were obtained for instances with production titers >1 g/L (R2 = 0.87). However, the model had reduced predictability for low performance strains (0.01-1 g/L, R2 = 0.29) potentially due to biosynthesis bottlenecks not captured in the features. Feature ranking indicated that the FBA fluxes, the number of enzyme steps, the substrate inputs, and thermodynamic barriers (i.e., Gibbs free energy of reaction) were the most influential factors. Third, the model was evaluated on other oleaginous yeasts and indicated there were conserved features for some hosts that can be potentially exploited by transfer learning. The platform was also designed to assist computational strain design tools (such as OptKnock) to screen genetic targets for improved microbial production in light of experimental conditions.
Collapse
|
21
|
Cui Z, Zheng H, Jiang Z, Wang Z, Hou J, Wang Q, Liang Q, Qi Q. Identification and Characterization of the Mitochondrial Replication Origin for Stable and Episomal Expression in Yarrowia lipolytica. ACS Synth Biol 2021; 10:826-835. [PMID: 33739103 DOI: 10.1021/acssynbio.0c00619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Episomal plasmids are crucial expression tools for recombinant protein production and genome editing. In Saccharomyces cerevisiae, 2-μm artificial plasmids with a high copy number have been developed and used in metabolic engineering and synthetic biology. However, in unconventional yeasts such as Yarrowia lipolytica, episomal expression relies on a chromosome replication system; this system has the disadvantages of genetic instability and low copy numbers. In this study, we identified and characterized replication origins from the mitochondrial DNA (mtDNA) of Y. lipolytica. A 516-bp mtDNA sequence, mtORI, was confirmed to mediate the autonomous replication of circular plasmids with high protein expression levels and hereditary stability. However, the nonhomologous end-joining pathway could interfere with mtORI plasmid replication and engender genetic heterogeneity. In the Po 1f ΔKu70 strain, the homogeneity of the mtORI plasmid was significantly improved, and the highest copy number reached 5.0 per cell. Overall, mitochondrial-origin sequences can be used to establish highly stable and autonomously replicating plasmids, which can be a powerful supplement to the current synthetic biology tool library and promote the development of Y. lipolytica as a microbial cell factory.
Collapse
Affiliation(s)
- Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Huihui Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhennan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhaoxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, PR China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|
22
|
Li ZJ, Wang YZ, Wang LR, Shi TQ, Sun XM, Huang H. Advanced Strategies for the Synthesis of Terpenoids in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2367-2381. [PMID: 33595318 DOI: 10.1021/acs.jafc.1c00350] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Terpenoids are an important class of secondary metabolites that play an important role in food, agriculture, and other fields. Microorganisms are rapidly emerging as a promising source for the production of terpenoids. As an oleaginous yeast, Yarrowia lipolytica contains a high lipid content which indicates that it must produce high amounts of acetyl-CoA, a necessary precursor for the biosynthesis of terpenoids. Y. lipolytica has a complete eukaryotic mevalonic acid (MVA) pathway but it has not yet seen commercial use due to its low productivity. Several metabolic engineering strategies have been developed to improve the terpenoids production of Y. lipolytica, including developing the orthogonal pathway for terpenoid synthesis, increasing the catalytic efficiency of terpenoids synthases, enhancing the supply of acetyl-CoA and NADPH, expressing rate-limiting genes, and modifying the branched pathway. Moreover, most of the acetyl-CoA is used to produce lipid, so it is an effective strategy to strike a balance of precursor distribution by rewiring the lipid biosynthesis pathway. Lastly, the latest developed non-homologous end-joining strategy for improving terpenoid production is introduced. This review summarizes the status and metabolic engineering strategies of terpenoids biosynthesis in Y. lipolytica and proposes new insights to move the field forward.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
23
|
Kommoji S, Gopinath M, Satya Sagar P, Yuvaraj D, Iyyappan J, Jaya Varsha A, Sunil V. Lipid bioproduction from delignified native grass (Cyperus distans) hydrolysate by Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2021; 324:124659. [PMID: 33429256 DOI: 10.1016/j.biortech.2020.124659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
In the present study, native grass (Cyperus distans) was utilized for the production of lipid using Yarrowia lipolytica MTCC 9519. Initially, pretreatment methods using hydrothermal and alkaline delignification were performed to obtain cellulose rich liquid fractions. Delignified native grass biomass was enzymatically hydrolyzed to convert non fermentable sugars in to fermentable sugars. The growth of Y. lipolytica MTCC 9519 by utilizing pretreated native grass hydrolysate was evaluated. The yield and concentration of total reducing sugars after enzyme hydrolysis were found to be 378 ± 35 mg/g of pretreated biomass and 28.64 g/L ± 1.25 g/L, respectively. When pretreated, delignified native grass hydrolysate was used with (NH4)2SO4 (30C/N ratio) and sodium n-octanoate (0.4% w/w), the dry cell weight and lipid accumulation of Y. lipolytica MTCC 9519 reached about 19.88 ± 1.54 g/L and 53.62% (w/w) respectively after 96 h. Thus, native grass could become a promising substrate for biolipid production.
Collapse
Affiliation(s)
- Satish Kommoji
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - M Gopinath
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| | - Polinati Satya Sagar
- Department of Chemical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh 532127, India
| | - D Yuvaraj
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| | - J Iyyappan
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India.
| | - A Jaya Varsha
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| | - Varsha Sunil
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| |
Collapse
|
24
|
Mamaev D, Zvyagilskaya R. Yarrowia lipolytica: a multitalented yeast species of ecological significance. FEMS Yeast Res 2021; 21:6141120. [PMID: 33595651 DOI: 10.1093/femsyr/foab008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Yarrowia lipolytica is characterized by GRAS (Generally regarded as safe) status, the versatile substrate utilization profile, rapid utilization rates, metabolic diversity and flexibility, the unique abilities to tolerate to extreme environments (acidic, alkaline, hypersaline, heavy metal-pollutions and others) and elevated biosynthesis and secreting capacities. These advantages of Y. lipolytica allow us to consider it as having great ecological significance. Unfortunately, there is still a paucity of relevant review data. This mini-review highlights ecological ubiquity of Y. lipolytica species, their ability to diversify and colonize specialized niches. Different Y. lipolytica strains, native and engineered, are beneficial in degrading many environmental pollutants causing serious ecological problems worldwide. In agriculture has a potential to be a bio-control agent by stimulating plant defense response, and an eco-friendly bio-fertilizer. Engineered strains of Y. lipolytica have become a very promising platform for eco-friendly production of biofuel, commodities, chemicals and secondary metabolites of plant origin, obtaining which by other method were limited or economically infeasible, or were accompanied by stringent environmental problems. Perspectives to use potential of Y. lipolytica's capacities for industrial scale production of valuable compounds in an eco-friendly manner are proposed.
Collapse
Affiliation(s)
- Dmitry Mamaev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation
| | - Renata Zvyagilskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation
| |
Collapse
|
25
|
Tang YJ, Aristilde L. Editorial overview: Analytical biotechnology in the era of high-performance omics, synthetic biology, and machine learning. Curr Opin Biotechnol 2020; 64:iii-vi. [DOI: 10.1016/j.copbio.2020.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Yeast as a promising heterologous host for steroid bioproduction. J Ind Microbiol Biotechnol 2020; 47:829-843. [PMID: 32661815 PMCID: PMC7358296 DOI: 10.1007/s10295-020-02291-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
With the rapid development of synthetic biology and metabolic engineering technologies, yeast has been generally considered as promising hosts for the bioproduction of secondary metabolites. Sterols are essential components of cell membrane, and are the precursors for the biosynthesis of steroid hormones, signaling molecules, and defense molecules in the higher eukaryotes, which are of pharmaceutical and agricultural significance. In this mini-review, we summarize the recent engineering efforts of using yeast to synthesize various steroids, and discuss the structural diversity that the current steroid-producing yeast can achieve, the challenge and the potential of using yeast as the bioproduction platform of various steroids from higher eukaryotes.
Collapse
|
27
|
Worland AM, Czajka JJ, Xing Y, Harper WF, Moore A, Xiao Z, Han Z, Wang Y, Su WW, Tang YJ. Analysis of Yarrowia lipolytica growth, catabolism, and terpenoid biosynthesis during utilization of lipid-derived feedstock. Metab Eng Commun 2020; 11:e00130. [PMID: 32577396 PMCID: PMC7300164 DOI: 10.1016/j.mec.2020.e00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022] Open
Abstract
This study employs biomass growth analyses and 13C-isotope tracing to investigate lipid feedstock utilization by Yarrowia lipolytica. Compared to glucose, oil-feedstock in the minimal medium increases the yeast's biomass yields and cell sizes, but decreases its protein content (<20% of total biomass) and enzyme abundances for product synthesis. Labeling results indicate a segregated metabolic network (the glycolysis vs. the TCA cycle) during co-catabolism of sugars (glucose or glycerol) with fatty acid substrates, which facilitates resource allocations for biosynthesis without catabolite repressions. This study has also examined the performance of a β-carotene producing strain in different growth mediums. Canola oil-containing yeast-peptone (YP) has resulted in the best β-carotene titer (121 ± 13 mg/L), two-fold higher than the glucose based YP medium. These results highlight the potential of Y. lipolytica for the valorization of waste-derived lipid feedstock. 13C tracing was used to track Y. lipolytica metabolism of lipid-based feedstock. Y. lipolytica has a segregated flux network for lipid and sugar co-utilizations. Lipid feedstock and nitrogen sources affect cell morphology and optical density. Lipid feedstock benefits both Y. lipolytica growth and carotenoid biosynthesis.
Collapse
Affiliation(s)
- Alyssa M Worland
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Jeffrey J Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Yun Xing
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, 45433, USA
| | - Willie F Harper
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, 45433, USA
| | - Aryiana Moore
- Department of Environmental Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhengyang Xiao
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yechun Wang
- Arch Innotek, LLC, 400 Farmington Ave, Farmington, CT, 06032, USA
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| |
Collapse
|
28
|
Zhang JL, Bai QY, Peng YZ, Fan J, Jin CC, Cao YX, Yuan YJ. High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:133. [PMID: 32760447 PMCID: PMC7392732 DOI: 10.1186/s13068-020-01773-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lupeol exhibits novel physiological and pharmacological activities, such as anticancer and immunity-enhancing activities. However, cytotoxicity remains a challenge for triterpenoid overproduction in microbial cell factories. As lipophilic and relatively small molecular compounds, triterpenes are generally secreted into the extracellular space. The effect of increasing triterpene efflux on the synthesis capacity remains unknown. RESULTS In this study, we developed a strategy to enhance triterpene efflux through manipulation of lipid components in Y. lipolytica by overexpressing the enzyme Δ9-fatty acid desaturase (OLE1) and disturbing phosphatidic acid phosphatase (PAH1) and diacylglycerol kinase (DGK1). By this strategy combined with two-phase fermentation, the highest lupeol production reported to date was achieved, where the titer in the organic phase reached 381.67 mg/L and the total production was 411.72 mg/L in shake flasks, exhibiting a 33.20-fold improvement over the initial strain. Lipid manipulation led to a twofold increase in the unsaturated fatty acid (UFA) content, up to 61-73%, and an exceptionally elongated cell morphology, which might have been caused by enhanced membrane phospholipid biosynthesis flux. Both phenotypes accelerated the export of toxic products to the extracellular space and ultimately stimulated the capacity for triterpenoid synthesis, which was proven by the 5.11-fold higher ratio of extra/intracellular lupeol concentrations, 2.79-fold higher biomass accumulation and 2.56-fold higher lupeol productivity per unit OD in the modified strains. This strategy was also highly efficient for the biosynthesis of other triterpenes and sesquiterpenes, including α-amyrin, β-amyrin, longifolene, longipinene and longicyclene. CONCLUSIONS In conclusion, we successfully created a high-yield lupeol-producing strain via lipid manipulation. We demonstrated that the enhancement of lupeol efflux and synthesis capacity was induced by the increased UFA content and elongated cell morphology. Our study provides a novel strategy to promote the biosynthesis of valuable but toxic products in microbial cell factories.
Collapse
Affiliation(s)
- Jin-Lai Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Qiu-Yan Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Yang-Zi Peng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Jie Fan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Cong-Cong Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Ying-Xiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 China
| |
Collapse
|