1
|
Abbate CC, Hu J, Albeck JG. Understanding metabolic plasticity at single cell resolution. Essays Biochem 2024:EBC20240002. [PMID: 39462995 DOI: 10.1042/ebc20240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
It is increasingly clear that cellular metabolic function varies not just between cells of different tissues, but also within tissues and cell types. In this essay, we envision how differences in central carbon metabolism arise from multiple sources, including the cell cycle, circadian rhythms, intrinsic metabolic cycles, and others. We also discuss and compare methods that enable such variation to be detected, including single-cell metabolomics and RNA-sequencing. We pay particular attention to biosensors for AMPK and central carbon metabolites, which when used in combination with metabolic perturbations, provide clear evidence of cellular variance in metabolic function.
Collapse
Affiliation(s)
- Christina C Abbate
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Jason Hu
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| |
Collapse
|
2
|
Petrova B, Guler AT. Recent Developments in Single-Cell Metabolomics by Mass Spectrometry─A Perspective. J Proteome Res 2024. [PMID: 39437423 DOI: 10.1021/acs.jproteome.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Recent advancements in single-cell (sc) resolution analyses, particularly in sc transcriptomics and sc proteomics, have revolutionized our ability to probe and understand cellular heterogeneity. The study of metabolism through small molecules, metabolomics, provides an additional level of information otherwise unattainable by transcriptomics or proteomics by shedding light on the metabolic pathways that translate gene expression into functional outcomes. Metabolic heterogeneity, critical in health and disease, impacts developmental outcomes, disease progression, and treatment responses. However, dedicated approaches probing the sc metabolome have not reached the maturity of other sc omics technologies. Over the past decade, innovations in sc metabolomics have addressed some of the practical limitations, including cell isolation, signal sensitivity, and throughput. To fully exploit their potential in biological research, however, remaining challenges must be thoroughly addressed. Additionally, integrating sc metabolomics with orthogonal sc techniques will be required to validate relevant results and gain systems-level understanding. This perspective offers a broad-stroke overview of recent mass spectrometry (MS)-based sc metabolomics advancements, focusing on ongoing challenges from a biologist's viewpoint, aimed at addressing pertinent and innovative biological questions. Additionally, we emphasize the use of orthogonal approaches and showcase biological systems that these sophisticated methodologies are apt to explore.
Collapse
Affiliation(s)
- Boryana Petrova
- Medical University of Vienna, Vienna 1090, Austria
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| | - Arzu Tugce Guler
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts 02115, United States
- Institute for Experiential AI, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Brennan PG, Mota L, Aridi T, Patel N, Liang P, Ferran C. Advancements in Omics and Breakthrough Gene Therapies: A Glimpse into the Future of Peripheral Artery Disease. Ann Vasc Surg 2024; 107:229-246. [PMID: 38582204 DOI: 10.1016/j.avsg.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 04/08/2024]
Abstract
Peripheral artery disease (PAD), a highly prevalent global disease, associates with significant morbidity and mortality in affected patients. Despite progress in endovascular and open revascularization techniques for advanced PAD, these interventions grapple with elevated rates of arterial restenosis and vein graft failure attributed to intimal hyperplasia (IH). Novel multiomics technologies, coupled with sophisticated analyses tools recently powered by advances in artificial intelligence, have enabled the study of atherosclerosis and IH with unprecedented single-cell and spatial precision. Numerous studies have pinpointed gene hubs regulating pivotal atherogenic and atheroprotective signaling pathways as potential therapeutic candidates. Leveraging advancements in viral and nonviral gene therapy (GT) platforms, gene editing technologies, and cutting-edge biomaterial reservoirs for delivery uniquely positions us to develop safe, efficient, and targeted GTs for PAD-related diseases. Gene therapies appear particularly fitting for ex vivo genetic engineering of IH-resistant vein grafts. This manuscript highlights currently available state-of-the-art multiomics approaches, explores promising GT-based candidates, and details GT delivery modalities employed by our laboratory and others to thwart mid-term vein graft failure caused by IH, as well as other PAD-related conditions. The potential clinical translation of these targeted GTs holds the promise to revolutionize PAD treatment, thereby enhancing patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Phillip G Brennan
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lucas Mota
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tarek Aridi
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nyah Patel
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, and Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Division of Nephrology and the Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
4
|
Haidar S, Hooker J, Lackey S, Elian M, Puchacz N, Szczyglowski K, Marsolais F, Golshani A, Cober ER, Samanfar B. Harnessing Multi-Omics Strategies and Bioinformatics Innovations for Advancing Soybean Improvement: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2714. [PMID: 39409584 PMCID: PMC11478702 DOI: 10.3390/plants13192714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Soybean improvement has entered a new era with the advent of multi-omics strategies and bioinformatics innovations, enabling more precise and efficient breeding practices. This comprehensive review examines the application of multi-omics approaches in soybean-encompassing genomics, transcriptomics, proteomics, metabolomics, epigenomics, and phenomics. We first explore pre-breeding and genomic selection as tools that have laid the groundwork for advanced trait improvement. Subsequently, we dig into the specific contributions of each -omics field, highlighting how bioinformatics tools and resources have facilitated the generation and integration of multifaceted data. The review emphasizes the power of integrating multi-omics datasets to elucidate complex traits and drive the development of superior soybean cultivars. Emerging trends, including novel computational techniques and high-throughput technologies, are discussed in the context of their potential to revolutionize soybean breeding. Finally, we address the challenges associated with multi-omics integration and propose future directions to overcome these hurdles, aiming to accelerate the pace of soybean improvement. This review serves as a crucial resource for researchers and breeders seeking to leverage multi-omics strategies for enhanced soybean productivity and resilience.
Collapse
Affiliation(s)
- Siwar Haidar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Julia Hooker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Simon Lackey
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mohamad Elian
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Nathalie Puchacz
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada
| | - Frédéric Marsolais
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
5
|
Hu X, Liu X, Feng D, Xu T, Li H, Hu C, Wang Z, Liu X, Yin P, Shi X, Shang D, Xu G. Polarization of Macrophages in Tumor Microenvironment Using High-Throughput Single-Cell Metabolomics. Anal Chem 2024; 96:14935-14943. [PMID: 39221578 DOI: 10.1021/acs.analchem.4c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Macrophages consist of a heterogeneous population of functionally distinct cells that participate in many physiological and pathological processes. They exhibit prominent plasticity by changing their different functional phenotypes represented by proinflammatory (M1) and anti-inflammatory (M2) in response to different environmental stimuli. Emerging evidence illustrates the importance of intracellular metabolic pathways in macrophage polarizations and functions. In the tumor microenvironment (TME), macrophages tend to M2 polarization, which promotes tumor growth and leads to adverse physiological effects. Due to the lack of highly specific antigens in M1 and M2 macrophages, significant challenges present in isolating these subtypes from clinical samples or in vitro coculture models of tumor-immune cells. In reverse, the single-cell technique provides the possibility to investigate the factors influencing macrophage polarization in the TME. In this research, we employed inertial microfluidic chip-mass spectrometry (IMC-MS) to conduct single-cell metabolomics analysis of macrophages polarized into the two major phenotypes, respectively, and 213 metabolites were identified in total. Subsequently, differential metabolites between macrophage phenotypes were analyzed using volcano plots and binary logistic regression models. Glutamine was pinpointed as a key metabolite for the M1 and M2 phenotypes. Experimental results from both monoculture and coculture cell models demonstrated that M1 polarization is more reliant on the presence of glutamine in the culture environment than M2 polarization. Glutamine deficiency resulted in failed M1 polarization, while its absence had a less pronounced effect on M2 polarization. Replenishing an appropriate amount of glutamine during the intermediate stages of coculture models significantly enhanced the proportion of M1 polarization and suppressed the growth of tumor cells. This research elucidated glutamine as a key factor influencing macrophage polarization in the TME via single-cell metabolomics based on IMC-MS, offering promising insights and targets for tumor therapies.
Collapse
Affiliation(s)
- Xuesen Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xinlin Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Disheng Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tianrun Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhizhou Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Peiyuan Yin
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dong Shang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
6
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
7
|
Wang Y, Wang Z, Zou Y, Lin L, Qiao L. Single-Cell Time-Resolved Metabolomics and Lipidomics Reveal Apoptotic and Ferroptotic Heterogeneity during Foam Cell Formation. Anal Chem 2024; 96:14621-14629. [PMID: 39189349 DOI: 10.1021/acs.analchem.4c03260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Macrophage-derived foam cells play a crucial role in plaque formation and rupture during the progression of atherosclerosis. Traditional studies have often overlooked the heterogeneity of foam cells, focusing instead on populations of cells. To address this, we have developed time-resolved, single-cell metabolomics and lipidomics approaches to explore the heterogeneity of macrophages during foam cell formation. Our dynamic metabolomic and lipidomic analyses revealed a dual regulatory axis involving inflammation and ferroptosis. Further, single-cell metabolomics and lipidomics have delineated a continuum of macrophage states, with varied susceptibilities to apoptosis and ferroptosis. Single-cell transcriptomic profiling confirmed these divergent fates, both in established cell lines and in macrophages derived from peripheral blood monocytes. This research has uncovered the complex molecular interactions that dictate these divergent cell fates, providing crucial insights into the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Zengyu Wang
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Yunzeng Zou
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
8
|
Liu F, Liu J, Luo Y, Wu S, Liu X, Chen H, Luo Z, Yuan H, Shen F, Zhu F, Ye J. A Single-Cell Metabolic Profiling Characterizes Human Aging via SlipChip-SERS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406668. [PMID: 39231358 DOI: 10.1002/advs.202406668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Metabolic dysregulation is a key driver of cellular senescence, contributing to the progression of systemic aging. The heterogeneity of senescent cells and their metabolic shifts are complex and unexplored. A microfluidic SlipChip integrated with surface-enhanced Raman spectroscopy (SERS), termed SlipChip-SERS, is developed for single-cell metabolism analysis. This SlipChip-SERS enables compartmentalization of single cells, parallel delivery of saponin and nanoparticles to release intracellular metabolites and to realize SERS detection with simple slipping operations. Analysis of different cancer cell lines using SlipChip-SERS demonstrated its capability for sensitive and multiplexed metabolic profiling of individual cells. When applied to human primary fibroblasts of different ages, it identified 12 differential metabolites, with spermine validated as a potent inducer of cellular senescence. Prolonged exposure to spermine can induce a classic senescence phenotype, such as increased senescence-associated β-glactosidase activity, elevated expression of senescence-related genes and reduced LMNB1 levels. Additionally, the senescence-inducing capacity of spermine in HUVECs and WRL-68 cells is confirmed, and exogenous spermine treatment increased the accumulation and release of H2O2. Overall, a novel SlipChip-SERS system is developed for single-cell metabolic analysis, revealing spermine as a potential inducer of senescence across multiple cell types, which may offer new strategies for addressing ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Fugang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Siyi Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haoran Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhewen Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haitao Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
9
|
Sánchez-Ramírez E, Ung TPL, Stringari C, Aguilar-Arnal L. Emerging Functional Connections Between Metabolism and Epigenetic Remodeling in Neural Differentiation. Mol Neurobiol 2024; 61:6688-6707. [PMID: 38340204 PMCID: PMC11339152 DOI: 10.1007/s12035-024-04006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Stem cells possess extraordinary capacities for self-renewal and differentiation, making them highly valuable in regenerative medicine. Among these, neural stem cells (NSCs) play a fundamental role in neural development and repair processes. NSC characteristics and fate are intricately regulated by the microenvironment and intracellular signaling. Interestingly, metabolism plays a pivotal role in orchestrating the epigenome dynamics during neural differentiation, facilitating the transition from undifferentiated NSC to specialized neuronal and glial cell types. This intricate interplay between metabolism and the epigenome is essential for precisely regulating gene expression patterns and ensuring proper neural development. This review highlights the mechanisms behind metabolic regulation of NSC fate and their connections with epigenetic regulation to shape transcriptional programs of stemness and neural differentiation. A comprehensive understanding of these molecular gears appears fundamental for translational applications in regenerative medicine and personalized therapies for neurological conditions.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
10
|
Priyadarshani P, Van Grouw A, Liversage AR, Rui K, Nikitina A, Tehrani KF, Aggarwal B, Stice SL, Sinha S, Kemp ML, Fernández FM, Mortensen LJ. Investigation of MSC potency metrics via integration of imaging modalities with lipidomic characterization. Cell Rep 2024; 43:114579. [PMID: 39153198 DOI: 10.1016/j.celrep.2024.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024] Open
Abstract
Mesenchymal stem/stromal cell (MSC) therapies have had limited success so far in clinical trials due in part to heterogeneity in immune-responsive phenotypes. Therefore, techniques to characterize these properties of MSCs are needed during biomanufacturing. Imaging cell shape, or morphology, has been found to be associated with MSC immune responsivity-but a direct relationship between single-cell morphology and function has not been established. We used label-free differential phase contrast imaging and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to evaluate single-cell morphology and explore relationships with lipid metabolic immune response. In interferon gamma (IFN-γ)-stimulated MSCs, we found higher lipid abundances from the ceramide-1-phosphate (C1P), phosphatidylcholine (PC), LysoPC, and triglyceride (TAG) families that are involved in cell immune function. Furthermore, we identified differences in lipid signatures in morphologically defined MSC subpopulations. The use of single-cell optical imaging coupled with single-cell spatial lipidomics could assist in optimizing the MSC production process and improve mechanistic understanding of manufacturing process effects on MSC immune activity and heterogeneity.
Collapse
Affiliation(s)
- Priyanka Priyadarshani
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Alexandria Van Grouw
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adrian Ross Liversage
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Kejie Rui
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Arina Nikitina
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kayvan Forouhesh Tehrani
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Bhavay Aggarwal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Steven L Stice
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Saurabh Sinha
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Luke J Mortensen
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Seeler S, Arnarsson K, Dreßen M, Krane M, Doppler SA. Beyond the Heartbeat: Single-Cell Omics Redefining Cardiovascular Research. Curr Cardiol Rep 2024:10.1007/s11886-024-02117-3. [PMID: 39158785 DOI: 10.1007/s11886-024-02117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore recent advances in single-cell omics techniques as applied to various regions of the human heart, illuminating cellular diversity, regulatory networks, and disease mechanisms. We examine the contributions of single-cell transcriptomics, genomics, proteomics, epigenomics, and spatial transcriptomics in unraveling the complexity of cardiac tissues. RECENT FINDINGS Recent strides in single-cell omics technologies have revolutionized our understanding of the heart's cellular composition, cell type heterogeneity, and molecular dynamics. These advancements have elucidated pathological conditions as well as the cellular landscape in heart development. We highlight emerging applications of integrated single-cell omics, particularly for cardiac regeneration, disease modeling, and precision medicine, and emphasize the transformative potential of these technologies to advance cardiovascular research and clinical practice.
Collapse
Affiliation(s)
- Sabine Seeler
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Kristjan Arnarsson
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Martina Dreßen
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Stefanie A Doppler
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany.
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany.
| |
Collapse
|
12
|
Meng X, Zheng Y, Zhang L, Liu P, Liu Z, He Y. Single-Cell Analyses Reveal the Metabolic Heterogeneity and Plasticity of the Tumor Microenvironment during Head and Neck Squamous Cell Carcinoma Progression. Cancer Res 2024; 84:2468-2483. [PMID: 38718319 DOI: 10.1158/0008-5472.can-23-1344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/31/2023] [Accepted: 04/29/2024] [Indexed: 08/02/2024]
Abstract
Metabolic reprogramming is a hallmark of cancer. In addition to metabolic alterations in the tumor cells, multiple other metabolically active cell types in the tumor microenvironment (TME) contribute to the emergence of a tumor-specific metabolic milieu. Here, we defined the metabolic landscape of the TME during the progression of head and neck squamous cell carcinoma (HNSCC) by performing single-cell RNA sequencing on 26 human patient specimens, including normal tissue, precancerous lesions, early stage cancer, advanced-stage cancer, lymph node metastases, and recurrent tumors. The analysis revealed substantial heterogeneity at the transcriptional, developmental, metabolic, and functional levels in different cell types. SPP1+ macrophages were identified as a protumor and prometastatic macrophage subtype with high fructose and mannose metabolism, which was further substantiated by integrative analysis and validation experiments. An inhibitor of fructose metabolism reduced the proportion of SPP1+ macrophages, reshaped the immunosuppressive TME, and suppressed tumor growth. In conclusion, this work delineated the metabolic landscape of HNSCC at a single-cell resolution and identified fructose metabolism as a key metabolic feature of a protumor macrophage subpopulation. Significance: Fructose and mannose metabolism is a metabolic feature of a protumor and prometastasis macrophage subtype and can be targeted to reprogram macrophages and the microenvironment of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, P.R. China
| | - Yang Zheng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, P.R. China
| | - Lingfang Zhang
- Suzhou Lingdian Biotechnology Co., Ltd., Suzhou, P.R. China
| | - Peipei Liu
- Suzhou Lingdian Biotechnology Co., Ltd., Suzhou, P.R. China
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, P.R. China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, P.R. China
| |
Collapse
|
13
|
Wang X, Peng R, Zhao L. Multiscale metabolomics techniques: Insights into neuroscience research. Neurobiol Dis 2024; 198:106541. [PMID: 38806132 DOI: 10.1016/j.nbd.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
The field of metabolomics examines the overall composition and dynamic patterns of metabolites in living organisms. The primary methods used in metabolomics include liquid chromatography (LC), nuclear magnetic resonance (NMR), and mass spectrometry (MS) analysis. These methods enable the identification and examination of metabolite types and contents within organisms, as well as modifications to metabolic pathways and their connection to the emergence of diseases. Research in metabolomics has extensive value in basic and applied sciences. The field of metabolomics is growing quickly, with the majority of studies concentrating on biomedicine, particularly early disease diagnosis, therapeutic management of human diseases, and mechanistic knowledge of biochemical processes. Multiscale metabolomics is an approach that integrates metabolomics techniques at various scales, including the holistic, tissue, cellular, and organelle scales, to enable more thorough and in-depth studies of metabolic processes in organisms. Multiscale metabolomics can be combined with methods from systems biology and bioinformatics. In recent years, multiscale metabolomics approaches have become increasingly important in neuroscience research due to the nervous system's high metabolic demands. Multiscale metabolomics can offer novel concepts and approaches for the diagnosis, treatment, and development of medication for neurological illnesses in addition to a more thorough understanding of brain metabolism and nervous system function. In this review, we summarize the use of multiscale metabolomics techniques in neuroscience, address the promise and constraints of these techniques, and provide an overview of the metabolome and its applications in neuroscience.
Collapse
Affiliation(s)
- Xiaoya Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
14
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
15
|
Ghafari N, Sleno L. Challenges and recent advances in quantitative mass spectrometry-based metabolomics. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400007. [PMID: 38948317 PMCID: PMC11210748 DOI: 10.1002/ansa.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
The field of metabolomics has gained tremendous interest in recent years. Whether the goal is to discover biomarkers related to certain pathologies or to better understand the impact of a drug or contaminant, numerous studies have demonstrated how crucial it is to understand variations in metabolism. Detailed knowledge of metabolic variabilities can lead to more effective treatments, as well as faster or less invasive diagnostics. Exploratory approaches are often employed in metabolomics, using relative quantitation to look at perturbations between groups of samples. Most metabolomics studies have been based on metabolite profiling using relative quantitation, with very few studies using an approach for absolute quantitation. Using accurate quantitation facilitates the comparison between different studies, as well as enabling longitudinal studies. In this review, we discuss the most widely used techniques for quantitative metabolomics using mass spectrometry (MS). Various aspects will be addressed, such as the use of external and/or internal standards, derivatization techniques, in vivo isotopic labelling, or quantitative MS imaging. The principles, as well as the associated limitations and challenges, will be described for each approach.
Collapse
Affiliation(s)
- Nathan Ghafari
- Chemistry Department/CERMO‐FCUniversity of Quebec in Montreal (UQAM)MontrealCanada
| | - Lekha Sleno
- Chemistry Department/CERMO‐FCUniversity of Quebec in Montreal (UQAM)MontrealCanada
| |
Collapse
|
16
|
Diamanti E, López-Gallego F. Single-Particle and Single-Molecule Characterization of Immobilized Enzymes: A Multiscale Path toward Optimizing Heterogeneous Biocatalysts. Angew Chem Int Ed Engl 2024; 63:e202319248. [PMID: 38476019 DOI: 10.1002/anie.202319248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Heterogeneous biocatalysis is highly relevant in biotechnology as it offers several benefits and practical uses. To leverage the full potential of heterogeneous biocatalysts, the establishment of well-crafted protocols, and a deeper comprehension of enzyme immobilization on solid substrates are essential. These endeavors seek to optimize immobilized biocatalysts, ensuring maximal enzyme performance within confined spaces. For this aim, multidimensional characterization of heterogeneous biocatalysts is required. In this context, spectroscopic and microscopic methodologies conducted at different space and temporal scales can inform about the intraparticle enzyme kinetics, the enzyme spatial distribution, and the mass transport issues. In this Minireview, we identify enzyme immobilization, enzyme catalysis, and enzyme inactivation as the three main processes for which advanced characterization tools unveil fundamental information. Recent advances in operando characterization of immobilized enzymes at the single-particle (SP) and single-molecule (SM) levels inform about their functional properties, unlocking the full potential of heterogeneous biocatalysis toward biotechnological applications.
Collapse
Affiliation(s)
- Eleftheria Diamanti
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, 20014, Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, 20014, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain
| |
Collapse
|
17
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
18
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Nadal-Ribelles M, Solé C, de Nadal E, Posas F. The rise of single-cell transcriptomics in yeast. Yeast 2024; 41:158-170. [PMID: 38403881 DOI: 10.1002/yea.3934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/24/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
The field of single-cell omics has transformed our understanding of biological processes and is constantly advancing both experimentally and computationally. One of the most significant developments is the ability to measure the transcriptome of individual cells by single-cell RNA-seq (scRNA-seq), which was pioneered in higher eukaryotes. While yeast has served as a powerful model organism in which to test and develop transcriptomic technologies, the implementation of scRNA-seq has been significantly delayed in this organism, mainly because of technical constraints associated with its intrinsic characteristics, namely the presence of a cell wall, a small cell size and little amounts of RNA. In this review, we examine the current technologies for scRNA-seq in yeast and highlight their strengths and weaknesses. Additionally, we explore opportunities for developing novel technologies and the potential outcomes of implementing single-cell transcriptomics and extension to other modalities. Undoubtedly, scRNA-seq will be invaluable for both basic and applied yeast research, providing unique insights into fundamental biological processes.
Collapse
Affiliation(s)
- Mariona Nadal-Ribelles
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carme Solé
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eulalia de Nadal
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francesc Posas
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
20
|
Sun X, Yu Y, Qian K, Wang J, Huang L. Recent Progress in Mass Spectrometry-Based Single-Cell Metabolic Analysis. SMALL METHODS 2024; 8:e2301317. [PMID: 38032130 DOI: 10.1002/smtd.202301317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Single-cell analysis enables the measurement of biomolecules at the level of individual cells, facilitating in-depth investigations into cellular heterogeneity and precise interpretation of the related biological mechanisms. Among these biomolecules, cellular metabolites exhibit remarkable sensitivity to environmental and biochemical changes, unveiling a hidden world underlying cellular heterogeneity and allowing for the determination of cell physiological states. However, the metabolic analysis of single cells is challenging due to the extremely low concentrations, substantial content variations, and rapid turnover rates of cellular metabolites. Mass spectrometry (MS), characterized by its high sensitivity, wide dynamic range, and excellent selectivity, is employed in single-cell metabolic analysis. This review focuses on recent advances and applications of MS-based single-cell metabolic analysis, encompassing three key steps of single-cell isolation, detection, and application. It is anticipated that MS will bring profound implications in biomedical practices, serving as advanced tools to depict the single-cell metabolic landscape.
Collapse
Affiliation(s)
- Xuming Sun
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang Medical University, Xinxiang, 453003, P. R. China
- Xinxiang Key Laboratory of Neurobiosensor, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| |
Collapse
|
21
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
22
|
Gong L, Qiu L, Hao M. Novel Insights into the Initiation, Evolution, and Progression of Multiple Myeloma by Multi-Omics Investigation. Cancers (Basel) 2024; 16:498. [PMID: 38339250 PMCID: PMC10854875 DOI: 10.3390/cancers16030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
The evolutionary history of multiple myeloma (MM) includes malignant transformation, followed by progression to pre-malignant stages and overt malignancy, ultimately leading to more aggressive and resistant forms. Over the past decade, large effort has been made to identify the potential therapeutic targets in MM. However, MM remains largely incurable. Most patients experience multiple relapses and inevitably become refractory to treatment. Tumor-initiating cell populations are the postulated population, leading to the recurrent relapses in many hematological malignancies. Clonal evolution of tumor cells in MM has been identified along with the disease progression. As a consequence of different responses to the treatment of heterogeneous MM cell clones, the more aggressive populations survive and evolve. In addition, the tumor microenvironment is a complex ecosystem which plays multifaceted roles in supporting tumor cell evolution. Emerging multi-omics research at single-cell resolution permits an integrative and comprehensive profiling of the tumor cells and microenvironment, deepening the understanding of biological features of MM. In this review, we intend to discuss the novel insights into tumor cell initiation, clonal evolution, drug resistance, and tumor microenvironment in MM, as revealed by emerging multi-omics investigations. These data suggest a promising strategy to unravel the pivotal mechanisms of MM progression and enable the improvement in treatment, both holistically and precisely.
Collapse
Affiliation(s)
- Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
- Gobroad Healthcare Group, Beijing 100072, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
| |
Collapse
|
23
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
24
|
Jiang Z, He J, Zhang B, Wang L, Long C, Zhao B, Yang Y, Du L, Luo W, Hu J, Hong X. A Potential "Anti-Warburg Effect" in Circulating Tumor Cell-mediated Metastatic Progression? Aging Dis 2024:AD.2023.1227. [PMID: 38300633 DOI: 10.14336/ad.2023.1227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Metabolic reprogramming is a defining hallmark of cancer metastasis, warranting thorough exploration. The tumor-promoting function of the "Warburg Effect", marked by escalated glycolysis and restrained mitochondrial activity, is widely acknowledged. Yet, the functional significance of mitochondria-mediated oxidative phosphorylation (OXPHOS) during metastasis remains controversial. Circulating tumor cells (CTCs) are considered metastatic precursors that detach from primary or secondary sites and harbor the potential to seed distant metastases through hematogenous dissemination. A comprehensive metabolic characterization of CTCs faces formidable obstacles, including the isolation of these rare cells from billions of blood cells, coupled with the complexities of ex vivo-culturing of CTC lines or the establishment of CTC-derived xenograft models (CDX). This review summarized the role of the "Warburg Effect" in both tumorigenesis and CTC-mediated metastasis. Intriguingly, bioinformatic analysis of single-CTC transcriptomic studies unveils a potential OXPHOS dominance over Glycolysis signature genes across several important cancer types. From these observations, we postulate a potential "Anti-Warburg Effect" (AWE) in CTCs-a metabolic shift bridging primary tumors and metastases. The observed AWE could be clinically important as they are significantly correlated with therapeutic response in melanoma and prostate patients. Thus, unraveling dynamic metabolic regulations within CTC populations might reveal an additional layer of regulatory complexities of cancer metastasis, providing an avenue for innovative anti-metastasis therapies.
Collapse
Affiliation(s)
- Zhuofeng Jiang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Jiapeng He
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Binyu Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Liping Wang
- Department of Oncology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Chunhao Long
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Boxi Zhao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yufan Yang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Longxiang Du
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weiren Luo
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Jianyang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
25
|
McAtamney A, Heaney C, Lizama-Chamu I, Sanchez LM. Reducing Mass Confusion over the Microbiome. Anal Chem 2023; 95:16775-16785. [PMID: 37934885 PMCID: PMC10841885 DOI: 10.1021/acs.analchem.3c02408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
As genetic tools continue to emerge and mature, more information is revealed about the identity and diversity of microbial community members. Genetic tools can also be used to make predictions about the chemistry that bacteria and fungi produce to function and communicate with one another and the host. Ongoing efforts to identify these products and link genetic information to microbiome chemistry rely on analytical tools. This tutorial highlights recent advancements in microbiome studies driven by techniques in mass spectrometry.
Collapse
Affiliation(s)
- Allyson McAtamney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Casey Heaney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Itzel Lizama-Chamu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
26
|
Shorer O, Yizhak K. Metabolic predictors of response to immune checkpoint blockade therapy. iScience 2023; 26:108188. [PMID: 37965137 PMCID: PMC10641254 DOI: 10.1016/j.isci.2023.108188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Metabolism of immune cells in the tumor microenvironment (TME) plays a critical role in cancer patient response to immune checkpoint inhibitors (ICI). Yet, a metabolic characterization of immune cells in the TME of patients treated with ICI is lacking. To bridge this gap we performed a semi-supervised analysis of ∼1700 metabolic genes using single-cell RNA-seq data of > 1 million immune cells from ∼230 samples of cancer patients treated with ICI. When clustering cells based on their metabolic gene expression, we found that similar immunological cellular states are found in different metabolic states. Most importantly, we found metabolic states that are significantly associated with patient response. We then built a metabolic predictor based on a dozen gene signature, which significantly differentiates between responding and non-responding patients across different cancer types (AUC = 0.8-0.92). Taken together, our results demonstrate the power of metabolism in predicting patient response to ICI.
Collapse
Affiliation(s)
- Ofir Shorer
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Keren Yizhak
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
- The Taub Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
27
|
Lu H, Zhang H, Li L. Chemical tagging mass spectrometry: an approach for single-cell omics. Anal Bioanal Chem 2023; 415:6901-6913. [PMID: 37466681 PMCID: PMC10729908 DOI: 10.1007/s00216-023-04850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Single-cell (SC) analysis offers new insights into the study of fundamental biological phenomena and cellular heterogeneity. The superior sensitivity, high throughput, and rich chemical information provided by mass spectrometry (MS) allow MS to emerge as a leading technology for molecular profiling of SC omics, including the SC metabolome, lipidome, and proteome. However, issues such as ionization suppression, low concentration, and huge span of dynamic concentrations of SC components lead to poor MS response for certain types of molecules. It is noted that chemical tagging/derivatization has been adopted in SCMS analysis, and this strategy has been proven an effective solution to circumvent these issues in SCMS analysis. Herein, we review the basic principle and general strategies of chemical tagging/derivatization in SCMS analysis, along with recent applications of chemical derivatization to single-cell metabolomics and multiplexed proteomics, as well as SCMS imaging. Furthermore, the challenges and opportunities for the improvement of chemical derivatization strategies in SCMS analysis are discussed.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
28
|
Marques C, Friedrich F, Liu L, Castoldi F, Pietrocola F, Lanekoff I. Global and Spatial Metabolomics of Individual Cells Using a Tapered Pneumatically Assisted nano-DESI Probe. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2518-2524. [PMID: 37830184 PMCID: PMC10623638 DOI: 10.1021/jasms.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
Single-cell metabolomics has the potential to reveal unique insights into intracellular mechanisms and biological processes. However, the detection of metabolites from individual cells is challenging due to their versatile chemical properties and concentrations. Here, we demonstrate a tapered probe for pneumatically assisted nanospray desorption electrospray ionization (PA nano-DESI) mass spectrometry that enables both chemical imaging of larger cells and global metabolomics of smaller 15 μm cells. Additionally, by depositing cells in predefined arrays, we show successful metabolomics from three individual INS-1 cells per minute, which enabled the acquisition of data from 479 individual cells. Several cells were used to optimize analytical conditions, and 93 or 97 cells were used to monitor metabolome alterations in INS-1 cells after exposure to a low or high glucose concentration, respectively. Our analytical approach offers insights into cellular heterogeneity and provides valuable information about cellular processes and responses in individual cells.
Collapse
Affiliation(s)
- Cátia Marques
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Felix Friedrich
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Liangwen Liu
- Department
of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Francesca Castoldi
- Department
of Biosciences and Nutrition, Karolinska
Institute, 14152 Huddinge, Sweden
| | - Federico Pietrocola
- Department
of Biosciences and Nutrition, Karolinska
Institute, 14152 Huddinge, Sweden
| | - Ingela Lanekoff
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
29
|
Cheng H, Tang Y, Li Z, Guo Z, Heath JR, Xue M, Wei W. Non-Mass Spectrometric Targeted Single-Cell Metabolomics. Trends Analyt Chem 2023; 168:117300. [PMID: 37840599 PMCID: PMC10569257 DOI: 10.1016/j.trac.2023.117300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metabolic assays serve as pivotal tools in biomedical research, offering keen insights into cellular physiological and pathological states. While mass spectrometry (MS)-based metabolomics remains the gold standard for comprehensive, multiplexed analyses of cellular metabolites, innovative technologies are now emerging for the targeted, quantitative scrutiny of metabolites and metabolic pathways at the single-cell level. In this review, we elucidate an array of these advanced methodologies, spanning synthetic and surface chemistry techniques, imaging-based methods, and electrochemical approaches. We summarize the rationale, design principles, and practical applications for each method, and underscore the synergistic benefits of integrating single-cell metabolomics (scMet) with other single-cell omics technologies. Concluding, we identify prevailing challenges in the targeted scMet arena and offer a forward-looking commentary on future avenues and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Hanjun Cheng
- Institute for Systems Biology, Seattle, WA, 98109, United States
| | - Yin Tang
- Institute for Systems Biology, Seattle, WA, 98109, United States
| | - Zhonghan Li
- Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - Zhili Guo
- Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA, 98109, United States
| | - Min Xue
- Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - Wei Wei
- Institute for Systems Biology, Seattle, WA, 98109, United States
| |
Collapse
|
30
|
Islam M, Behura SK. Role of caveolin-1 in metabolic programming of fetal brain. iScience 2023; 26:107710. [PMID: 37720105 PMCID: PMC10500482 DOI: 10.1016/j.isci.2023.107710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Mice lacking caveolin-1 (Cav1), a key protein of plasma membrane, exhibit brain aging at an early adult stage. Here, integrative analyses of metabolomics, transcriptomics, epigenetics, and single-cell data were performed to test the hypothesis that metabolic deregulation of fetal brain due to the ablation of Cav1 is linked to brain aging in these mice. The results of this study show that lack of Cav1 caused deregulation in the lipid and amino acid metabolism in the fetal brain, and genes associated with these deregulated metabolites were significantly altered in the brain upon aging. Moreover, ablation of Cav1 deregulated several metabolic genes in specific cell types of the fetal brain and impacted DNA methylation of those genes in coordination with mouse epigenetic clock. The findings of this study suggest that the aging program of brain is confounded by metabolic abnormalities in the fetal stage due to the absence of Cav1.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
| | - Susanta K. Behura
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
31
|
Schirmer M, Dusny C. Microbial single-cell mass spectrometry: status, challenges, and prospects. Curr Opin Biotechnol 2023; 83:102977. [PMID: 37515936 DOI: 10.1016/j.copbio.2023.102977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
Single-cell analysis uncovers phenotypic differences between cells in a population and dissects their individual physiological states and differences on all omics levels from genome to phenome. Spectrometric observation allows label-free analysis of the metabolome and proteome of individual cells, but is still mainly limited to the analysis of mammalian single cells. Recent progress in mass spectrometry approaches now enables the analysis of microbial single cells - mainly by miniaturizing cell handling, incubation, and improving chip-coupling concepts for analyte ionization by interfacing microfluidic chips and mass spectrometers. This review aims at distilling the enabling principles behind microbial single-cell mass spectrometry and puts them into perspective for the future of the field.
Collapse
Affiliation(s)
- Martin Schirmer
- Department of Solar Materials - Microscale Analysis and Engineering, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Leizpig, Germany
| | - Christian Dusny
- Department of Solar Materials - Microscale Analysis and Engineering, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Leizpig, Germany.
| |
Collapse
|
32
|
Bennett CL, Perona-Wright G. Metabolic adaption of mucosal macrophages: Is metabolism a driver of persistence across tissues? Mucosal Immunol 2023; 16:753-763. [PMID: 37385586 PMCID: PMC10564628 DOI: 10.1016/j.mucimm.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/27/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Macrophages play essential roles in tissue homeostasis, defense, and repair. Their functions are highly tissue-specific, and when damage and inflammation stimulate repopulation by circulating monocytes, the incoming monocytes rapidly acquire the same, tissue-specific functions as the previous, resident macrophages. Several environmental factors are thought to guide the functional differentiation of recruited monocytes, including metabolic pressures imposed by the fuel sources available in each tissue. Here we discuss whether such a model of metabolic determinism can be applied to macrophage differentiation across barrier sites, from the lung to the skin. We suggest an alternative model, in which metabolic phenotype is a consequence of macrophage longevity rather than an early driver of tissue-specific adaption.
Collapse
Affiliation(s)
- Clare L Bennett
- Department of Haematology, UCL Cancer Institute, University College London, London, UK.
| | | |
Collapse
|
33
|
Pandian K, Matsui M, Hankemeier T, Ali A, Okubo-Kurihara E. Advances in single-cell metabolomics to unravel cellular heterogeneity in plant biology. PLANT PHYSIOLOGY 2023; 193:949-965. [PMID: 37338502 PMCID: PMC10517197 DOI: 10.1093/plphys/kiad357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/21/2023]
Abstract
Single-cell metabolomics is a powerful tool that can reveal cellular heterogeneity and can elucidate the mechanisms of biological phenomena in detail. It is a promising approach in studying plants, especially when cellular heterogeneity has an impact on different biological processes. In addition, metabolomics, which can be regarded as a detailed phenotypic analysis, is expected to answer previously unrequited questions which will lead to expansion of crop production, increased understanding of resistance to diseases, and in other applications as well. In this review, we will introduce the flow of sample acquisition and single-cell techniques to facilitate the adoption of single-cell metabolomics. Furthermore, the applications of single-cell metabolomics will be summarized and reviewed.
Collapse
Affiliation(s)
- Kanchana Pandian
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einstein Road 55, 2333 CC Leiden, The Netherlands
| | - Minami Matsui
- RIKEN, Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einstein Road 55, 2333 CC Leiden, The Netherlands
| | - Ahmed Ali
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einstein Road 55, 2333 CC Leiden, The Netherlands
| | - Emiko Okubo-Kurihara
- RIKEN, Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
- College of Science, Rikkyo University, Tokyo 171-8501, Japan
| |
Collapse
|
34
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
35
|
Manfreda L, Rampazzo E, Persano L, Viola G, Bortolozzi R. Surviving the hunger games: Metabolic reprogramming in medulloblastoma. Biochem Pharmacol 2023; 215:115697. [PMID: 37481140 DOI: 10.1016/j.bcp.2023.115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Medulloblastoma is a highly malignant pediatric brain tumor characterized by its aggressive nature and limited treatment options. Metabolic changes have recently emerged as key factors in the development, progression, and response to therapy in various types of cancer. Cancer cells exhibit remarkable adaptability by modulating glucose, lipids, amino acids, and nucleotide metabolism to survive in nutrient- and oxygen-deprived environments. Although medulloblastoma has been extensively studied from a genomic perspective, leading to the identification of four subgroups and their respective subcategories, the investigation of its metabolic phenotype has remained relatively understudied. This review focus on the available literature, aiming to summarize the current knowledge about the main metabolic pathways that are deregulated in medulloblastoma tumors, while emphasizing the controversial aspects and the progress that is yet to be made. Furthermore, we underscored the insights gained so far regarding the impact of metabolism on the development of drug resistance in medulloblastoma and the therapeutic strategies employed to target specific metabolic pathways.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Elena Rampazzo
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Luca Persano
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Giampietro Viola
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Roberta Bortolozzi
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
36
|
Abdelkader Y, Perez-Davalos L, LeDuc R, Zahedi RP, Labouta HI. Omics approaches for the assessment of biological responses to nanoparticles. Adv Drug Deliv Rev 2023; 200:114992. [PMID: 37414362 DOI: 10.1016/j.addr.2023.114992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Nanotechnology has enabled the development of innovative therapeutics, diagnostics, and drug delivery systems. Nanoparticles (NPs) can influence gene expression, protein synthesis, cell cycle, metabolism, and other subcellular processes. While conventional methods have limitations in characterizing responses to NPs, omics approaches can analyze complete sets of molecular entities that change upon exposure to NPs. This review discusses key omics approaches, namely transcriptomics, proteomics, metabolomics, lipidomics and multi-omics, applied to the assessment of biological responses to NPs. Fundamental concepts and analytical methods used for each approach are presented, as well as good practices for omics experiments. Bioinformatics tools are essential to analyze, interpret and visualize large omics data, and to correlate observations in different molecular layers. The authors envision that conducting interdisciplinary multi-omics analyses in future nanomedicine studies will reveal integrated cell responses to NPs at different omics levels, and the incorporation of omics into the evaluation of targeted delivery, efficacy, and safety will improve the development of nanomedicine therapies.
Collapse
Affiliation(s)
- Yasmin Abdelkader
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada; Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St., Cairo 12622, Egypt
| | - Luis Perez-Davalos
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada
| | - Richard LeDuc
- Children's Hospital Research Institute of Manitoba, 513 - 715 McDermot Av. W, Winnipeg, Manitoba R3E 3P4, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Av., Winnipeg, Manitoba R3E 0J9, Canada
| | - Rene P Zahedi
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Av., Winnipeg, Manitoba R3E 0J9, Canada; Department of Internal Medicine, 715 McDermot Av., Winnipeg, Manitoba R3E 3P4, Canada; Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Av., Winnipeg, Manitoba R3E 3P4, Canada; CancerCare Manitoba Research Institute, 675 McDermot Av., Manitoba R3E 0V9, Canada
| | - Hagar I Labouta
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada; Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt, 21521.
| |
Collapse
|
37
|
Joshi AD, Rahnavard A, Kachroo P, Mendez KM, Lawrence W, Julián-Serrano S, Hua X, Fuller H, Sinnott-Armstrong N, Tabung FK, Shutta KH, Raffield LM, Darst BF. An epidemiological introduction to human metabolomic investigations. Trends Endocrinol Metab 2023; 34:505-525. [PMID: 37468430 PMCID: PMC10527234 DOI: 10.1016/j.tem.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
Metabolomics holds great promise for uncovering insights around biological processes impacting disease in human epidemiological studies. Metabolites can be measured across biological samples, including plasma, serum, saliva, urine, stool, and whole organs and tissues, offering a means to characterize metabolic processes relevant to disease etiology and traits of interest. Metabolomic epidemiology studies face unique challenges, such as identifying metabolites from targeted and untargeted assays, defining standards for quality control, harmonizing results across platforms that often capture different metabolites, and developing statistical methods for high-dimensional and correlated metabolomic data. In this review, we introduce metabolomic epidemiology to the broader scientific community, discuss opportunities and challenges presented by these studies, and highlight emerging innovations that hold promise to uncover new biological insights.
Collapse
Affiliation(s)
- Amit D Joshi
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin M Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wayne Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sachelly Julián-Serrano
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Public Health, University of Massachusetts Lowell, Lowell, MA, USA
| | - Xinwei Hua
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA; Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Harriett Fuller
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nasa Sinnott-Armstrong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Fred K Tabung
- The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH, USA
| | - Katherine H Shutta
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Burcu F Darst
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
38
|
Li W, Shao C, Li C, Zhou H, Yu L, Yang J, Wan H, He Y. Metabolomics: A useful tool for ischemic stroke research. J Pharm Anal 2023; 13:968-983. [PMID: 37842657 PMCID: PMC10568109 DOI: 10.1016/j.jpha.2023.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 10/17/2023] Open
Abstract
Ischemic stroke (IS) is a multifactorial and heterogeneous disease. Despite years of studies, effective strategies for the diagnosis, management and treatment of stroke are still lacking in clinical practice. Metabolomics is a growing field in systems biology. It is starting to show promise in the identification of biomarkers and in the use of pharmacometabolomics to help patients with certain disorders choose their course of treatment. The development of metabolomics has enabled further and more biological applications. Particularly, metabolomics is increasingly being used to diagnose diseases, discover new drug targets, elucidate mechanisms, and monitor therapeutic outcomes and its potential effect on precision medicine. In this review, we reviewed some recent advances in the study of metabolomics as well as how metabolomics might be used to identify novel biomarkers and understand the mechanisms of IS. Then, the use of metabolomics approaches to investigate the molecular processes and active ingredients of Chinese herbal formulations with anti-IS capabilities is summarized. We finally summarized recent developments in single cell metabolomics for exploring the metabolic profiles of single cells. Although the field is relatively young, the development of single cell metabolomics promises to provide a powerful tool for unraveling the pathogenesis of IS.
Collapse
Affiliation(s)
- Wentao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chongyu Shao
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chang Li
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huifen Zhou
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li Yu
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
39
|
Li J, Zhao M, Luo W, Huang J, Zhao B, Zhou Z. B cell metabolism in autoimmune diseases: signaling pathways and interventions. Front Immunol 2023; 14:1232820. [PMID: 37680644 PMCID: PMC10481957 DOI: 10.3389/fimmu.2023.1232820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Autoimmune diseases are heterogeneous disorders believed to stem from the immune system's inability to distinguish between auto- and foreign- antigens. B lymphocytes serve a crucial role in humoral immunity as they generate antibodies and present antigens. Dysregulation of B cell function induce the onset of autoimmune disorders by generating autoantibodies and pro-inflammatory cytokines, resulting in an imbalance in immune regulation. New research in immunometabolism shows that cellular metabolism plays an essential role in controlling B lymphocytes immune reactions by providing the energy and substrates for B lymphocytes activation, differentiation, and function. However, dysregulated immunometabolism lead to autoimmune diseases by disrupting self-tolerance mechanisms. This review summarizes the latest research on metabolic reprogramming of B lymphocytes in autoimmune diseases, identifying crucial pathways and regulatory factors. Moreover, we consider the potential of metabolic interventions as a promising therapeutic strategy. Understanding the metabolic mechanisms of B cells brings us closer to developing novel therapies for autoimmune disorders.
Collapse
Affiliation(s)
- Jingyue Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenjun Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Xiao Y, Yu TJ, Xu Y, Ding R, Wang YP, Jiang YZ, Shao ZM. Emerging therapies in cancer metabolism. Cell Metab 2023; 35:1283-1303. [PMID: 37557070 DOI: 10.1016/j.cmet.2023.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Metabolic reprogramming in cancer is not only a biological hallmark but also reveals treatment vulnerabilities. Numerous metabolic molecules have shown promise as treatment targets to impede tumor progression in preclinical studies, with some advancing to clinical trials. However, the intricacy and adaptability of metabolic networks hinder the effectiveness of metabolic therapies. This review summarizes the metabolic targets for cancer treatment and provides an overview of the current status of clinical trials targeting cancer metabolism. Additionally, we decipher crucial factors that limit the efficacy of metabolism-based therapies and propose future directions. With advances in integrating multi-omics, single-cell, and spatial technologies, as well as the ability to track metabolic adaptation more precisely and dynamically, clinicians can personalize metabolic therapies for improved cancer treatment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tian-Jian Yu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rui Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
41
|
Hegarty C, Neto N, Cahill P, Floudas A. Computational approaches in rheumatic diseases - Deciphering complex spatio-temporal cell interactions. Comput Struct Biotechnol J 2023; 21:4009-4020. [PMID: 37649712 PMCID: PMC10462794 DOI: 10.1016/j.csbj.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Inflammatory arthritis, including rheumatoid (RA), and psoriatic (PsA) arthritis, are clinically and immunologically heterogeneous diseases with no identified cure. Chronic inflammation of the synovial tissue ushers loss of function of the joint that severely impacts the patient's quality of life, eventually leading to disability and life-threatening comorbidities. The pathogenesis of synovial inflammation is the consequence of compounded immune and stromal cell interactions influenced by genetic and environmental factors. Deciphering the complexity of the synovial cellular landscape has accelerated primarily due to the utilisation of bulk and single cell RNA sequencing. Particularly the capacity to generate cell-cell interaction networks could reveal evidence of previously unappreciated processes leading to disease. However, there is currently a lack of universal nomenclature as a result of varied experimental and technological approaches that discombobulates the study of synovial inflammation. While spatial transcriptomic analysis that combines anatomical information with transcriptomic data of synovial tissue biopsies promises to provide more insights into disease pathogenesis, in vitro functional assays with single-cell resolution will be required to validate current bioinformatic applications. In order to provide a comprehensive approach and translate experimental data to clinical practice, a combination of clinical and molecular data with machine learning has the potential to enhance patient stratification and identify individuals at risk of arthritis that would benefit from early therapeutic intervention. This review aims to provide a comprehensive understanding of the effect of computational approaches in deciphering synovial inflammation pathogenesis and discuss the impact that further experimental and novel computational tools may have on therapeutic target identification and drug development.
Collapse
Affiliation(s)
- Ciara Hegarty
- Translational Immunology lab, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Nuno Neto
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
| | - Paul Cahill
- Vascular Biology lab, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Achilleas Floudas
- Translational Immunology lab, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
42
|
Pang H, Hu Z. Metabolomics in drug research and development: The recent advances in technologies and applications. Acta Pharm Sin B 2023; 13:3238-3251. [PMID: 37655318 PMCID: PMC10465962 DOI: 10.1016/j.apsb.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 09/02/2023] Open
Abstract
Emerging evidence has demonstrated the vital role of metabolism in various diseases or disorders. Metabolomics provides a comprehensive understanding of metabolism in biological systems. With advanced analytical techniques, metabolomics exhibits unprecedented significant value in basic drug research, including understanding disease mechanisms, identifying drug targets, and elucidating the mode of action of drugs. More importantly, metabolomics greatly accelerates the drug development process by predicting pharmacokinetics, pharmacodynamics, and drug response. In addition, metabolomics facilitates the exploration of drug repurposing and drug-drug interactions, as well as the development of personalized treatment strategies. Here, we briefly review the recent advances in technologies in metabolomics and update our knowledge of the applications of metabolomics in drug research and development.
Collapse
Affiliation(s)
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Zhang C, Le Dévédec SE, Ali A, Hankemeier T. Single-cell metabolomics by mass spectrometry: ready for primetime? Curr Opin Biotechnol 2023; 82:102963. [PMID: 37356380 DOI: 10.1016/j.copbio.2023.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 06/27/2023]
Abstract
Single-cell metabolomics (SCMs) is a powerful tool for studying cellular heterogeneity by providing insight into the differences between individual cells. With the development of a set of promising SCMs pipelines, this maturing technology is expected to be widely used in biomedical research. However, before SCMs is ready for primetime, there are some challenges to overcome. In this review, we summarize the trends and challenges in the development of SCMs. We also highlight the latest methodologies, applications, and sketch the perspective for integration with other omics and imaging approaches.
Collapse
Affiliation(s)
- Congrou Zhang
- Metabolomics and Analytics Center, Leiden Academic Centre of Drug Research, Leiden University, Leiden, the Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, Leiden, the Netherlands
| | - Ahmed Ali
- Metabolomics and Analytics Center, Leiden Academic Centre of Drug Research, Leiden University, Leiden, the Netherlands.
| | - Thomas Hankemeier
- Metabolomics and Analytics Center, Leiden Academic Centre of Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
44
|
Cutshaw G, Uthaman S, Hassan N, Kothadiya S, Wen X, Bardhan R. The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine. Chem Rev 2023; 123:8297-8346. [PMID: 37318957 PMCID: PMC10626597 DOI: 10.1021/acs.chemrev.2c00897] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Omics technologies have rapidly evolved with the unprecedented potential to shape precision medicine. Novel omics approaches are imperative toallow rapid and accurate data collection and integration with clinical information and enable a new era of healthcare. In this comprehensive review, we highlight the utility of Raman spectroscopy (RS) as an emerging omics technology for clinically relevant applications using clinically significant samples and models. We discuss the use of RS both as a label-free approach for probing the intrinsic metabolites of biological materials, and as a labeled approach where signal from Raman reporters conjugated to nanoparticles (NPs) serve as an indirect measure for tracking protein biomarkers in vivo and for high throughout proteomics. We summarize the use of machine learning algorithms for processing RS data to allow accurate detection and evaluation of treatment response specifically focusing on cancer, cardiac, gastrointestinal, and neurodegenerative diseases. We also highlight the integration of RS with established omics approaches for holistic diagnostic information. Further, we elaborate on metal-free NPs that leverage the biological Raman-silent region overcoming the challenges of traditional metal NPs. We conclude the review with an outlook on future directions that will ultimately allow the adaptation of RS as a clinical approach and revolutionize precision medicine.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
45
|
Chetta P, Sriram R, Zadra G. Lactate as Key Metabolite in Prostate Cancer Progression: What Are the Clinical Implications? Cancers (Basel) 2023; 15:3473. [PMID: 37444583 PMCID: PMC10340474 DOI: 10.3390/cancers15133473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Advanced prostate cancer represents the fifth leading cause of cancer death in men worldwide. Although androgen-receptor signaling is the major driver of the disease, evidence is accumulating that disease progression is supported by substantial metabolic changes. Alterations in de novo lipogenesis and fatty acid catabolism are consistently reported during prostate cancer development and progression in association with androgen-receptor signaling. Therefore, the term "lipogenic phenotype" is frequently used to describe the complex metabolic rewiring that occurs in prostate cancer. However, a new scenario has emerged in which lactate may play a major role. Alterations in oncogenes/tumor suppressors, androgen signaling, hypoxic conditions, and cells in the tumor microenvironment can promote aerobic glycolysis in prostate cancer cells and the release of lactate in the tumor microenvironment, favoring immune evasion and metastasis. As prostate cancer is composed of metabolically heterogenous cells, glycolytic prostate cancer cells or cancer-associated fibroblasts can also secrete lactate and create "symbiotic" interactions with oxidative prostate cancer cells via lactate shuttling to sustain disease progression. Here, we discuss the multifaceted role of lactate in prostate cancer progression, taking into account the influence of the systemic metabolic and gut microbiota. We call special attention to the clinical opportunities of imaging lactate accumulation for patient stratification and targeting lactate metabolism.
Collapse
Affiliation(s)
- Paolo Chetta
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Giorgia Zadra
- Institute of Molecular Genetics, National Research Council (IGM-CNR), 27100 Pavia, Italy
| |
Collapse
|
46
|
Kuil T, Nurminen CMK, van Maris AJA. Pyrophosphate as allosteric regulator of ATP-phosphofructokinase in Clostridium thermocellum and other bacteria with ATP- and PP i-phosphofructokinases. Arch Biochem Biophys 2023; 743:109676. [PMID: 37380119 DOI: 10.1016/j.abb.2023.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
The phosphofructokinase (Pfk) reaction represents one of the key regulatory points in glycolysis. While most organisms encode for Pfks that use ATP as phosphoryl donor, some organisms also encode for PPi-dependent Pfks. Despite this central role, the biochemical characteristics as well as the physiological role of both Pfks is often not known. Clostridium thermocellum is an example of a microorganism that encodes for both Pfks, however, only PPi-Pfk activity has been detected in cell-free extracts and little is known about the regulation and function of both enzymes. In this study, the ATP- and PPi-Pfk of C. thermocellum were purified and biochemically characterized. No allosteric regulators were found for PPi-Pfk amongst common effectors. With fructose-6-P, PPi, fructose-1,6-bisP, and Pi PPi-Pfk showed high specificity (KM < 0.62 mM) and maximum activity (Vmax > 156 U mg-1). In contrast, ATP-Pfk showed much lower affinity (K0.5 of 9.26 mM) and maximum activity (14.5 U mg-1) with fructose-6-P. In addition to ATP, also GTP, UTP and ITP could be used as phosphoryl donors. The catalytic efficiency with GTP was 7-fold higher than with ATP, suggesting that GTP is the preferred substrate. The enzyme was activated by NH4+, and pronounced inhibition was observed with GDP, FBP, PEP, and especially with PPi (Ki of 0.007 mM). Characterization of purified ATP-Pfks originating from eleven different bacteria, encoding for only ATP-Pfk or for both ATP- and PPi-Pfk, identified that PPi inhibition of ATP-Pfks could be a common phenomenon for organisms with a PPi-dependent glycolysis.
Collapse
Affiliation(s)
- Teun Kuil
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Carolus M K Nurminen
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
47
|
Saunders KDG, Lewis HM, Beste DJ, Cexus O, Bailey MJ. Spatial single cell metabolomics: Current challenges and future developments. Curr Opin Chem Biol 2023; 75:102327. [PMID: 37224735 DOI: 10.1016/j.cbpa.2023.102327] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
Single cell metabolomics is a rapidly advancing field of bio-analytical chemistry which aims to observe cellular biology with the greatest detail possible. Mass spectrometry imaging and selective cell sampling (e.g. using nanocapillaries) are two common approaches within the field. Recent achievements such as observation of cell-cell interactions, lipids determining cell states and rapid phenotypic identification demonstrate the efficacy of these approaches and the momentum of the field. However, single cell metabolomics can only continue with the same impetus if the universal challenges to the field are met, such as the lack of strategies for standardisation and quantification, and lack of specificity/sensitivity. Mass spectrometry imaging and selective cell sampling come with unique advantages and challenges which, in many cases are complementary to each other. We propose here that the challenges specific to each approach could be ameliorated with collaboration between the two communities driving these approaches.
Collapse
Affiliation(s)
| | - Holly-May Lewis
- Department of Chemistry, University of Surrey, Guildford, UK
| | - Dany Jv Beste
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Olivier Cexus
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
48
|
Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. NANOSCALE ADVANCES 2023; 5:2674-2723. [PMID: 37205285 PMCID: PMC10186990 DOI: 10.1039/d2na00534d] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/27/2023] [Indexed: 05/21/2023]
Abstract
Nowadays, nanomaterials (NMs) are widely present in daily life due to their significant benefits, as demonstrated by their application in many fields such as biomedicine, engineering, food, cosmetics, sensing, and energy. However, the increasing production of NMs multiplies the chances of their release into the surrounding environment, making human exposure to NMs inevitable. Currently, nanotoxicology is a crucial field, which focuses on studying the toxicity of NMs. The toxicity or effects of nanoparticles (NPs) on the environment and humans can be preliminary assessed in vitro using cell models. However, the conventional cytotoxicity assays, such as the MTT assay, have some drawbacks including the possibility of interference with the studied NPs. Therefore, it is necessary to employ more advanced techniques that provide high throughput analysis and avoid interferences. In this case, metabolomics is one of the most powerful bioanalytical strategies to assess the toxicity of different materials. By measuring the metabolic change upon the introduction of a stimulus, this technique can reveal the molecular information of the toxicity induced by NPs. This provides the opportunity to design novel and efficient nanodrugs and minimizes the risks of NPs used in industry and other fields. Initially, this review summarizes the ways that NPs and cells interact and the NP parameters that play a role in this interaction, and then the assessment of these interactions using conventional assays and the challenges encountered are discussed. Subsequently, in the main part, we introduce the recent studies employing metabolomics for the assessment of these interactions in vitro.
Collapse
Affiliation(s)
- Mohammad Awashra
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| |
Collapse
|
49
|
Lee G, Lee SM, Kim HU. A contribution of metabolic engineering to addressing medical problems: Metabolic flux analysis. Metab Eng 2023; 77:283-293. [PMID: 37075858 DOI: 10.1016/j.ymben.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Metabolic engineering has served as a systematic discipline for industrial biotechnology as it has offered systematic tools and methods for strain development and bioprocess optimization. Because these metabolic engineering tools and methods are concerned with the biological network of a cell with emphasis on metabolic network, they have also been applied to a range of medical problems where better understanding of metabolism has also been perceived to be important. Metabolic flux analysis (MFA) is a unique systematic approach initially developed in the metabolic engineering community, and has proved its usefulness and potential when addressing a range of medical problems. In this regard, this review discusses the contribution of MFA to addressing medical problems. For this, we i) provide overview of the milestones of MFA, ii) define two main branches of MFA, namely constraint-based reconstruction and analysis (COBRA) and isotope-based MFA (iMFA), and iii) present successful examples of their medical applications, including characterizing the metabolism of diseased cells and pathogens, and identifying effective drug targets. Finally, synergistic interactions between metabolic engineering and biomedical sciences are discussed with respect to MFA.
Collapse
Affiliation(s)
- GaRyoung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Mi Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
50
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|