1
|
Drozdov D, Luo X, Marsh RA, Abraham RS, Ebens CL. Relevance of Recent Thymic Emigrants Following Allogeneic Hematopoietic Cell Transplantation for Pediatric Patients with Inborn Errors of Immunity. Transplant Cell Ther 2025:S2666-6367(25)01012-7. [PMID: 39923938 DOI: 10.1016/j.jtct.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Allogeneic hematopoietic cell transplantation (HCT) can be curative for many inborn errors of immunity (IEI). Timely neothymopoiesis is paramount to favorable clinical outcomes after HCT. Neothymopoiesis can be quantified by flow cytometric measurement of circulating recent thymic emigrants (RTE; CD31+CD4+CD45RA+ T cells). OBJECTIVES We hypothesized that decreased RTE would be associated with baseline HCT characteristics of older age at time of HCT and exposure to greater HCT conditioning intensity, as well as with HCT outcomes including mixed (<95%) lymphoid donor chimerism and presence of acute graft-versus-host disease (GvHD). STUDY DESIGN In this retrospective analysis two cohorts of pediatric IEI HCT recipients were identified at two centers that collected RTE data following allogeneic HCT. For both cohorts, patient and HCT information was recorded including but not limited to patient age, lymphoid donor chimerism, and occurrence of acute GvHD. Mixed effects models were fitted for the repeated measures of RTE with these covariates and time. RESULTS Between 2012 and 2021, a total of 162 pediatric IEI HCT recipients transplanted across both cohorts were eligible for inclusion. Cohort A (n=34) included 23 males (68%). Median age at HCT was 2.2 years (interquartile range (IQR) 0.8 to 10.8). Eight (23.5%) underwent reduced intensity (RIC), 23 (67.7%) reduced toxicity myeloablative (RTC), and 3 (8.8%) myeloablative (MAC) conditioning. All received alemtuzumab serotherapy. Cohort B (n=128) included 87 males (68%). Median age at HCT was 1.4 years (IQR 0.7 to 5.3). Seventy-six (59.4%) underwent RIC, 38 (29.7%) RTC, and 14 (10.9%) MAC. RIC and RTC patients received alemtuzumab serotherapy, MAC antithymocyte globulin. In the linear mixed effect model for RTE at 1 year after HCT for Cohort A, significant negative associations included increasing age (p<0.0001) and RTC compared to RIC (p<0.01). In the linear mixed effects model for RTE at 1 year after HCT for Cohort B, significant negative associations included increasing age (p<0.0001), grade 2-4 acute GvHD (compared to grade 0-1; p<0.01), MAC compared to RIC (p<0.0001), MAC compared to RTC (p<0.01), and RTC compared to RIC (p=0.03). CONCLUSIONS Serial measurement of RTE is a useful assessment of thymic function after HCT. In pediatric patients with IEI, older age at transplantation, greater intensity of conditioning, and occurrence of grade 2-4 acute GvHD were strongly associated with slower thymic-derived immune reconstitution. Mixed lymphoid donor chimerism was not associated with RTE in the linear mixed effects model. In addition to augmenting current anticipatory guidance on HCT outcomes, these findings may guide personalization of regimens to optimize clinical outcomes in IEI HCT.
Collapse
Affiliation(s)
- Daniel Drozdov
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Hematology/Oncology, Children's Hospital, Kantonsspital Aarau, Aarau, Switzerland; Division of Stem Cell Transplantation, University Children's Hospital Zurich, Zurich, Switzerland
| | - Xianghua Luo
- Biostatistics Core at Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA; Pharming Healthcare, Warren, NJ
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christen L Ebens
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Ribeiro C, Ferreirinha P, Landry JJM, Macedo F, Sousa LG, Pinto R, Benes V, Alves NL. Foxo3 regulates cortical and medullary thymic epithelial cell homeostasis with implications in T cell development. Cell Death Dis 2024; 15:352. [PMID: 38773063 PMCID: PMC11109193 DOI: 10.1038/s41419-024-06728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Within the thymus, thymic epithelial cells (TECs) create dedicated microenvironments for T cell development and selection. Considering that TECs are sensitive to distinct pathophysiological conditions, uncovering the molecular elements that coordinate their thymopoietic role has important fundamental and clinical implications. Particularly, medullary thymic epithelial cells (mTECs) play a crucial role in central tolerance. Our previous studies, along with others, suggest that mTECs depend on molecular factors linked to genome-protecting pathways, but the precise mechanisms underlying their function remain unknown. These observations led us to examine the role of Foxo3, as it is expressed in TECs and involved in DNA damage response. Our findings show that mice with TEC-specific deletion of Foxo3 (Foxo3cKO) displayed a disrupted mTEC compartment, with a more profound impact on the numbers of CCL21+ and thymic tuft mTEClo subsets. At the molecular level, Foxo3 controls distinct functional modules in the transcriptome of cTECs and mTECs under normal conditions, which includes the regulation of ribosomal biogenesis and DNA damage response, respectively. These changes in the TEC compartment resulted in a reduced total thymocyte cellularity and specific changes in regulatory T cell and iNKT cell development in the Foxo3cKO thymus. Lastly, the thymic defects observed in adulthood correlated with mild signs of altered peripheral immunotolerance in aged Foxo3cKO mice. Moreover, the deficiency in Foxo3 moderately aggravated the autoimmune predisposition observed in Aire-deficient mice. Our findings highlight the importance of Foxo3 in preserving the homeostasis of TECs and in supporting their role in T cell development and tolerance.
Collapse
Affiliation(s)
- Camila Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro Ferreirinha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fátima Macedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Laura G Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rute Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nuno L Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Corral-Ruiz GM, Pérez-Vega MJ, Galán-Salinas A, Mancilla-Herrera I, Barrios-Payán J, Fabila-Castillo L, Hernández-Pando R, Sánchez-Torres LE. Thymic atrophy induced by Plasmodium berghei ANKA and Plasmodium yoelii 17XL infection. Immunol Lett 2023; 264:4-16. [PMID: 37875239 DOI: 10.1016/j.imlet.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
The thymus is the anatomical site where T cells undergo a complex process of differentiation, proliferation, selection, and elimination of autorreactive cells which involves molecular signals in different intrathymic environment. However, the immunological functions of the thymus can be compromised upon exposure to different infections, affecting thymocyte populations. In this work, we investigated the impact of malaria parasites on the thymus by using C57BL/6 mice infected with Plasmodium berghei ANKA and Plasmodium yoelii 17XL; these lethal infection models represent the most severe complications, cerebral malaria, and anemia respectively. Data showed a reduction in the thymic weight and cellularity involving different T cell maturation stages, mainly CD4-CD8- and CD4+CD8+ thymocytes, as well as an increased presence of apoptotic cells, leading to significant thymic cortex reduction. Thymus atrophy showed no association with elevated serum cytokines levels, although increased glucocorticoid levels did. The severity of thymic damage in both models reached the same extend although it occurs at different stages of infection, showing that thymic atrophy does not depend on parasitemia level but on the specific host-parasite interaction.
Collapse
Affiliation(s)
- G M Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M J Pérez-Vega
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - A Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - I Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - J Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L Fabila-Castillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - R Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L E Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
4
|
Yang J, Liu J, Liang J, Li F, Wang W, Chen H, Xie X. Epithelial-mesenchymal transition in age-associated thymic involution: Mechanisms and therapeutic implications. Ageing Res Rev 2023; 92:102115. [PMID: 37922996 DOI: 10.1016/j.arr.2023.102115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The thymus is a critical immune organ with endocrine and immune functions that plays important roles in the physiological and pathological processes of the body. However, with aging, the thymus undergoes degenerative changes leading to decreased production and output of naive T cells and the secretion of thymic hormones and related cytokines, thereby promoting the occurrence and development of various age-associated diseases. Therefore, identifying essential processes that regulate age-associated thymic involution is crucial for long-term control of thymic involution and age-associated disease progression. Epithelial-mesenchymal transition (EMT) is a well-established process involved in organ aging and functional impairment through tissue fibrosis in several organs, such as the heart and kidney. In the thymus, EMT promotes fibrosis and potentially adipogenesis, leading to thymic involution. This review focuses on the factors involved in thymic involution, including oxidative stress, inflammation, and hormones, from the perspective of EMT. Furthermore, current interventions for reversing age-associated thymic involution by targeting EMT-associated processes are summarized. Understanding the key mechanisms of thymic involution through EMT as an entry point may promote the development of new therapies and clinical agents to reverse thymic involution and age-associated disease.
Collapse
Affiliation(s)
- Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Fan Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wenwen Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Rodriguez Martin RR, Gonzalez Gonzalez O, Rodriguez Gonzalez C, Rodriguez Gonzalez RR. History of the discovery and development of Biomodulina T (InmunyVital®), a useful immunomodulator with a broad range of clinical applications. Int Immunopharmacol 2023; 119:110167. [PMID: 37086680 DOI: 10.1016/j.intimp.2023.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/24/2023]
Abstract
Biomodulina T (InmunyVital®) is a thymic factor that modulates immune response and inflammation. Biomodulina T stimulates the differentiation, maturation and proliferation of T cells. Additionally, Biomodulina T improves the ability of T cells to produce cytokines, therefore enhancing T lymphocyte function. Biomodulina T stimulates the thymus gland and, thus, promotes the recovery of normal thymus size in children with thymic hypoplasia and restores the functions of immunosenescent T cells in aging people. In 1984 Rodriguez Martin RR established the laboratory of Biomodulators, where he created and developed an immunomodulatory thymic factor that he named "Biomodulina T." The biological activity of Biomodulina T was demonstrated in several studies. An extensive series of preclinical toxicological studies were conducted and these studies demonstrated that Biomodulina T is an active and safe thymic factor. Clinical trials were conducted with Biomodulina T in patients with immunodeficiency and infections, autoimmune diseases, older adults with recurrent respiratory infections, and cancer. In 1994, we obtained the approval of Biomodulina T as an immunomodulatory drug. This article identifies the milestones involved in the development of Biomodulina T. Since its discovery more than 35 years ago, reports show that Biomodulina T is a modulator of immune response and inflammation that is very useful for restoring the immune system in young and elderly people with immunodeficiencies, autoimmune diseases, and infections. Biomodulina T is also useful as an immunotherapeutic agent for improving immune responses in cancer and vaccines, for reversing immunosenescence and for improving healthspan in aging.
Collapse
|
6
|
Pan F, Du H, Tian W, Xie H, Zhang B, Fu W, Li Y, Ling Y, Zhang Y, Fang F, Liu Y. Effect of GnRH immunocastration on immune function in male rats. Front Immunol 2023; 13:1023104. [PMID: 36713429 PMCID: PMC9880316 DOI: 10.3389/fimmu.2022.1023104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
The present study aimed to reveal the effects of immunocastration on the development of the immune system in rats. Seventy rats were randomly assigned into two groups: Control (n = 35) and immunized (n = 35). Twenty-day-old rats were immunized with gonadotropin-releasing hormone (GnRH) and booster immunization was administered every two weeks (three immunizations in total). From 20-day-old rats, we collected samples every two weeks, including five immunized rats and five control rats (seven collections in total). We collected blood samples, testicles, thymuses, and spleens. The results showed that GnRH immunization increased the GnRH antibody titers and reduced the testosterone concentration (both P < 0.05). Compared with the control group, the number of CD4+CD8- cells, CD4-CD8+ cells, and CD4+CD8+ cells increased (P < 0.05) whereas the number of CD4-CD8- cells and CD4+CD25+ cells reduced in the immunized group (P < 0.05) over time. GnRH immunization also increased the relative weights of thymus and spleen (P < 0.05), serum concentrations of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17 and Interferon-γ (IFN-γ) over time (P < 0.05), and changed the mRNA levels of IL-2, IL-4, IL-6. IL-10, IL-17, IFN-γ, CD4, D8, CD19 GnRH, and GnRH receptor (GnRH-R) in thymus and spleen. Thus, GnRH immunization enhanced the immune markers in thymus, spleen, and blood immune cytokines in rats.
Collapse
Affiliation(s)
- Fuqiang Pan
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Huiting Du
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Weiguo Tian
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Huihui Xie
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Bochao Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Wanzhen Fu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Yunsheng Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Fuyang, Anhui, China
| | - Yinghui Ling
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Fuyang, Anhui, China
| | - Yunhai Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Fuyang, Anhui, China
| | - Fugui Fang
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Fuyang, Anhui, China,*Correspondence: Ya Liu, ; Fugui Fang,
| | - Ya Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China,Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Fuyang, Anhui, China,*Correspondence: Ya Liu, ; Fugui Fang,
| |
Collapse
|
7
|
Gonçalves R, Couto J, Ferreirinha P, Costa JM, Silvério D, Silva ML, Fernandes AI, Madureira P, Alves NL, Lamas S, Saraiva M. SARS-CoV-2 variants induce distinct disease and impact in the bone marrow and thymus of mice. iScience 2023; 26:105972. [PMID: 36687317 PMCID: PMC9838028 DOI: 10.1016/j.isci.2023.105972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved to variants associated with milder disease. We employed the k18-hACE2 mouse model to study how differences in the course of infection by SARS-CoV-2 variants alpha, delta, and omicron relate to tissue pathology and the immune response triggered. We documented a variant-specific pattern of infection severity, inducing discrete lung and blood immune responses and differentially impacting primary lymphoid organs. Infections with variants alpha and delta promoted bone marrow (BM) emergency myelopoiesis, with blood and lung neutrophilia. The defects in the BM hematopoietic compartment extended to the thymus, with the infection by the alpha variant provoking a marked thymic atrophy. Importantly, the changes in the immune responses correlated with the severity of infection. Our study provides a comprehensive platform to investigate the modulation of disease by SARS-CoV-2 variants and underscores the impact of this infection on the function of primary lymphoid organs.
Collapse
Affiliation(s)
- Rute Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Couto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Pedro Ferreirinha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - José Maria Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Diogo Silvério
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta L. Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Isabel Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Pedro Madureira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,Immunethep, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Nuno L. Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Lamas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal,Corresponding author
| |
Collapse
|
8
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Pinheiro RGR, Alves NL. The Early Postnatal Life: A Dynamic Period in Thymic Epithelial Cell Differentiation. Front Immunol 2021; 12:668528. [PMID: 34220815 PMCID: PMC8250140 DOI: 10.3389/fimmu.2021.668528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
The microenvironments formed by cortical (c) and medullary (m) thymic epithelial cells (TECs) play a non-redundant role in the generation of functionally diverse and self-tolerant T cells. The role of TECs during the first weeks of the murine postnatal life is particularly challenging due to the significant augment in T cell production. Here, we critically review recent studies centered on the timely coordination between the expansion and maturation of TECs during this period and their specialized role in T cell development and selection. We further discuss how aging impacts on the pool of TEC progenitors and maintenance of functionally thymic epithelial microenvironments, and the implications of these chances in the capacity of the thymus to sustain regular thymopoiesis throughout life.
Collapse
Affiliation(s)
- Ruben G R Pinheiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Doctoral Program in Cell and Molecular Biology, Instituto de Ciências Biomédicas, Universidade do Porto, Porto, Portugal
| | - Nuno L Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Irla M. RANK Signaling in the Differentiation and Regeneration of Thymic Epithelial Cells. Front Immunol 2021; 11:623265. [PMID: 33552088 PMCID: PMC7862717 DOI: 10.3389/fimmu.2020.623265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022] Open
Abstract
Thymic epithelial cells (TECs) provide essential clues for the proliferation, survival, migration, and differentiation of thymocytes. Recent advances in mouse and human have revealed that TECs constitute a highly heterogeneous cell population with distinct functional properties. Importantly, TECs are sensitive to thymic damages engendered by myeloablative conditioning regimen used for bone marrow transplantation. These detrimental effects on TECs delay de novo T-cell production, which can increase the risk of morbidity and mortality in many patients. Alike that TECs guide the development of thymocytes, reciprocally thymocytes control the differentiation and organization of TECs. These bidirectional interactions are referred to as thymic crosstalk. The tumor necrosis factor receptor superfamily (TNFRSF) member, receptor activator of nuclear factor kappa-B (RANK) and its cognate ligand RANKL have emerged as key players of the crosstalk between TECs and thymocytes. RANKL, mainly provided by positively selected CD4+ thymocytes and a subset of group 3 innate lymphoid cells, controls mTEC proliferation/differentiation and TEC regeneration. In this review, I discuss recent advances that have unraveled the high heterogeneity of TECs and the implication of the RANK-RANKL signaling axis in TEC differentiation and regeneration. Targeting this cell-signaling pathway opens novel therapeutic perspectives to recover TEC function and T-cell production.
Collapse
Affiliation(s)
- Magali Irla
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
11
|
Karaulov AV, Renieri EA, Smolyagin AI, Mikhaylova IV, Stadnikov AA, Begun DN, Tsarouhas K, Buha Djordjevic A, Hartung T, Tsatsakis A. Long-term effects of chromium on morphological and immunological parameters of Wistar rats. Food Chem Toxicol 2019; 133:110748. [PMID: 31377140 DOI: 10.1016/j.fct.2019.110748] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
Hexavalent chromium raises high concern because of its wide industrial applications and reported toxicity. Long-term (135 days) oral exposure of Wistar rats to chromium in the form of K2Cr2O7 (exposed group~20 mg/kg/day) led to a decrease in thymus mass and thymocytes' number and caused structural and functional changes in the lymph nodes and spleen, namely lymphoreticular hyperplasia and plasmocytic macrophage transformation. Programmed cell death was increased in both thymocytes and splenocytes and decreased in lymphocytes in the T-zones of spleen and lymph nodes. Moreover, Cr (VI) administration decreased myeloid cells' and neutrophils' number, while it increased lymphoid and erythroid cells' number in bone marrow. Cr (VI) immune system effects seem to be related to oxidative stress induction, as depicted by the increased levels of diene conjugates and malondialdehyde in the spleen and liver and by the decreased activity of catalase and superoxide dismutase in rats' erythrocytes. In addition, exposure to Cr (VI) decreased copper, nickel and iron concentrations in blood and liver, while Cr levels in blood, spleen and liver were increased, as expected. The observed changes in the series of immunological parameters studied contribute to the development of new approaches for the prevention of low level Cr exposure toxicity.
Collapse
Affiliation(s)
- A V Karaulov
- Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 8 Trubetskaya street, 119991, Moscow, Russia
| | - E A Renieri
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, Crete, Greece.
| | - A I Smolyagin
- Fundamental Research Laboratory, Orenburg State Medical University, 6 Sovetskaya Street, 460000, Orenburg, Russia
| | - I V Mikhaylova
- Department of Chemistry and Pharmaceutical Chemistry, Orenburg State Medical University, 6 Sovetskaya Street, 460000, Orenburg, Russia
| | - A A Stadnikov
- Department of Histology, Cytology and Embryology, Orenburg State Medical University, 6 Sovetskaya Street, 460000, Orenburg, Russia
| | - D N Begun
- Fundamental Research Laboratory, Orenburg State Medical University, 6 Sovetskaya Street, 460000, Orenburg, Russia
| | - K Tsarouhas
- Department of Cardiology, University Hospital of Larissa, Larissa, Greece
| | - A Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - T Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Doerenkamp-Zbinden Chair for Evidence-based Toxicology, Baltimore, MD, USA; University of Konstanz, Pharmacology and Toxicology, Germany
| | - A Tsatsakis
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, Crete, Greece; Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991, Moscow, Russia
| |
Collapse
|
12
|
Levy A, Rangel-Santos A, Torres LC, Silveira-Abreu G, Agena F, Carneiro-Sampaio M. T cell receptor excision circles as a tool for evaluating thymic function in young children. ACTA ACUST UNITED AC 2019; 52:e8292. [PMID: 31241713 PMCID: PMC6596370 DOI: 10.1590/1414-431x20198292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/18/2019] [Indexed: 11/21/2022]
Abstract
The thymus is a primary lymphoid organ responsible for the maturation of T cells as well as the immunological central tolerance. It is in the antenatal period and infancy that it plays its major role. In clinical practice, T cell receptor excision circles (TRECs) are considered a direct and reliable measure of the thymic function. TRECs are a by-product of DNA formation in gene rearrangement of T cell receptors. They are stable and they do not duplicate during mitosis, representing the recent emigrant T cells from the thymus. Despite their importance, TRECs have been neglected by physicians and there is a lack of data regarding thymic function during infancy of healthy children. In order to evaluate thymic function in the first years of life, we propose measuring TRECs as a valuable tool. One hundred and three blood samples from children and adolescents between 3 months and 20 years of age were analyzed. The mean TRECs count was 136.77±96.7 copies of TRECs/μL of DNA. The individuals between 0 and 5 years of age had significantly higher TRECs values than those between 10 and 20 years of age. No significant difference was observed in TRECs values among age groups below 5 years of age. An inverse correlation between TRECs and age was found (r=0.3 P=0.003). These data highlight and validate the evidence of decreased thymus function with age, even during infancy. Awareness should be raised with this important albeit ignored organ.
Collapse
Affiliation(s)
- A Levy
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A Rangel-Santos
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L C Torres
- Laboratório de Pesquisa Translacional, Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, PE, Brasil
| | - G Silveira-Abreu
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F Agena
- Instituto Central, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M Carneiro-Sampaio
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
13
|
Nacka-Aleksić M, Pilipović I, Kotur-Stevuljević J, Petrović R, Sopta J, Leposavić G. Sexual dimorphism in rat thymic involution: a correlation with thymic oxidative status and inflammation. Biogerontology 2019; 20:545-569. [DOI: 10.1007/s10522-019-09816-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/12/2019] [Indexed: 01/05/2023]
|
14
|
Abstract
This review briefly describes the last decades of experimental work on the thymus. Given the histological complexity of this organ, the multiple embryological origins of its cellular components and its role in carefully regulating T lymphocyte maturation and function, methods to dissect and understand this complexity have been developed through the years. The possibility to study ex vivo the thymus organ function has been achieved by developing Fetal Thymus Organ Cultures (FTOC). Subsequently, the combination of organ disaggregation and reaggregation in vitro represented by Reaggregate Thymus Organ cultures (RTOC) allowed mixing cellular components from different genetic backgrounds. Moreover, RTOC allowed dissecting the different stromal and hematological components to study the interactions between Major Histocompatibility Complex (MHC) molecules and the T-cell receptors during thymocytes selection. In more recent years, prospective isolation of stromal cells and thymocytes at different stages of development made it possible to explore and elucidate the molecular and cellular players in both the developing and adult thymus. Finally, the appearance of novel cell sources such as embryonic stem (ES) cells and more recently induced pluripotent stem (iPS) cells has opened new scenarios in modelling thymus development and regeneration strategies. Most of the work described was carried out in rodents and the current challenge is to develop equivalent or even more informative assays and tools in entirely human model systems.
Collapse
|
15
|
George JT, Levine H. Stochastic modeling of tumor progression and immune evasion. J Theor Biol 2018; 458:148-155. [PMID: 30218648 DOI: 10.1016/j.jtbi.2018.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/16/2018] [Accepted: 09/11/2018] [Indexed: 12/23/2022]
Abstract
It is now well-established that the host's adaptive immune system plays an important role in identifying and eliminating cancer cells in much the same way that intracellular pathogens are cleared during an adaptive immune response to infection. From a therapeutic standpoint, the adaptive immune system is unique in that it can co-evolve alongside a developing tumor. Tumor acquisition of immune evasive phenotypes, such as class-I MHC down-regulation, remains a major limitation of successful T-cell immunotherapy. Here, we consider a population dynamical model coupling tumor and adaptive immune compartments in order to study the dynamics and survival of an evolving threat when faced with adaptive immune pressure. We demonstrate that predicted optimal growth strategies depend on whether or not the threat may acquire an immune-evasive phenotype as well as the mode of immune detection. We parameterize adaptive immune functioning by T-cell turnover and repertoire diversity and predict that decreases in the latter quantity which occur in advanced age may substantially affect the ability to recognize, and therefore control, an immune evasive threat like cancer. This framework recapitulates general features of age-dependent AML incidence, thereby providing a probable association between cancer frequency and adaptive immune functioning. Lastly, we quantify therapeutic efficacy of adjuvant immunotherapeutic strategies, and predict their benefits and limitations with regard to handling immune evasion. Our model generates survival behavior consistent with known growth-dependent characteristics, and serves as a first attempt at modeling stochastic cancer evolution alongside an adaptive immune compartment.
Collapse
Affiliation(s)
- Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Department of Physics and Astronomy, Rice University, Houston, TX, USA.
| |
Collapse
|
16
|
Stefanski HE, Jonart L, Goren E, Mulé JJ, Blazar BR. A novel approach to improve immune effector responses post transplant by restoration of CCL21 expression. PLoS One 2018; 13:e0193461. [PMID: 29617362 PMCID: PMC5884478 DOI: 10.1371/journal.pone.0193461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/12/2018] [Indexed: 01/13/2023] Open
Abstract
Chemotherapy or chemoradiotherapy conditioning regimens required for bone marrow transplantation (BMT) cause significant morbidity and mortality as a result of insufficient immune surveillance mechanisms leading to increased risks of infection and tumor recurrence. Such conditioning causes host stromal cell injury, impairing restoration of the central (thymus) and peripheral (spleen and lymph node) T cell compartments and slow immune reconstitution. The chemokine, CCL21, produced by host stromal cells, recruits T- and B-cells that provide lymphotoxin mediated instructive signals to stromal cells for lymphoid organogenesis. Moreover, T- and B-cell recruitment into these sites is required for optimal adaptive immune responses to pathogens and tumor antigens. Previously, we reported that CCL21 was markedly reduced in secondary lymphoid organs of transplanted animals. Here, we utilized adenoviral CCL21 gene transduced dendritic cells (DC/CCL21) given by footpad injections as a novel approach to restore CCL21 expression in secondary lymphoid organs post-transplant. CCL21 expression in secondary lymphoid organs reached levels of naïve controls and resulted in increased T cell trafficking to draining lymph nodes (LNs). An increase in both lymphoid tissue inducer cells and the B cell chemokine CXCL13 known to be important in LN formation was observed. Strikingly, only mice vaccinated with DC/CCL21 loaded with bacterial, viral or tumor antigens and not recipients of DC/control adenovirus loaded cells or no DCs had a marked increase in the systemic clearance of pathogens (bacteria; virus) and leukemia cells. Because DC/CCL21 vaccines have been tested in clinical trials for patients with lung cancer and melanoma, our studies provide the foundation for future trials of DC/CCL21 vaccination in patients receiving pre-transplant conditioning regimens.
Collapse
Affiliation(s)
- Heather E Stefanski
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Leslie Jonart
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Emily Goren
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - James J Mulé
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
17
|
Lopes N, Vachon H, Marie J, Irla M. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation. EMBO Mol Med 2018; 9:835-851. [PMID: 28455312 PMCID: PMC5452038 DOI: 10.15252/emmm.201607176] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cytoablative treatments lead to severe damages on thymic epithelial cells (TECs), which result in delayed de novo thymopoiesis and a prolonged period of T‐cell immunodeficiency. Understanding the mechanisms that govern thymic regeneration is of paramount interest for the recovery of a functional immune system notably after bone marrow transplantation (BMT). Here, we show that RANK ligand (RANKL) is upregulated in CD4+ thymocytes and lymphoid tissue inducer (LTi) cells during the early phase of thymic regeneration. Importantly, whereas RANKL neutralization alters TEC recovery after irradiation, ex vivo RANKL administration during BMT boosts the regeneration of TEC subsets including thymic epithelial progenitor‐enriched cells, thymus homing of lymphoid progenitors, and de novo thymopoiesis. RANKL increases specifically in LTi cells, lymphotoxin α, which is critical for thymic regeneration. RANKL treatment, dependent on lymphotoxin α, is beneficial upon BMT in young and aged individuals. This study thus indicates that RANKL may be clinically useful to improve T‐cell function recovery after BMT by controlling multiple facets of thymic regeneration.
Collapse
Affiliation(s)
- Noella Lopes
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille Cedex 09, France
| | - Hortense Vachon
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille Cedex 09, France
| | - Julien Marie
- Department of Immunology Virology and Inflammation, Cancer Research Center of Lyon (CRCL) UMR INSERM1052, CNRS 5286, Lyon, France.,TGF-b and Immune Evasion, Tumor Immunology Program, DKFZ, Heidelberg, Germany
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille Cedex 09, France
| |
Collapse
|
18
|
Rodrigues PM, Ribeiro AR, Serafini N, Meireles C, Di Santo JP, Alves NL. Intrathymic Deletion of IL-7 Reveals a Contribution of the Bone Marrow to Thymic Rebound Induced by Androgen Blockade. THE JOURNAL OF IMMUNOLOGY 2018; 200:1389-1398. [DOI: 10.4049/jimmunol.1701112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Despite the well-documented effect of castration in thymic regeneration, the singular contribution of the bone marrow (BM) versus the thymus to this process remains unclear. The chief role of IL-7 in pre- and intrathymic stages of T lymphopoiesis led us to investigate the impact of disrupting this cytokine during thymic rebound induced by androgen blockade. We found that castration promoted thymopoiesis in young and aged wild-type mice. In contrast, only young germline IL-7–deficient (Il7−/−) mice consistently augmented thymopoiesis after castration. The increase in T cell production was accompanied by the expansion of the sparse medullary thymic epithelial cell and the peripheral T cell compartment in young Il7−/− mice. In contrast to young Il7−/− and wild-type mice, the poor thymic response of aged Il7−/− mice after castration was associated with a defect in the expansion of BM hematopoietic progenitors. These findings suggest that BM-derived T cell precursors contribute to thymic rebound driven by androgen blockade. To assess the role of IL-7 within the thymus, we generated mice with conditional deletion of IL-7 (Il7 conditional knockout [cKO]) in thymic epithelial cells. As expected, Il7cKO mice presented a profound defect in T cell development while maintaining an intact BM hematopoietic compartment across life. Unlike Il7−/− mice, castration promoted the expansion of BM precursors and enhanced thymic activity in Il7cKO mice independently of age. Our findings suggest that the mobilization of BM precursors acts as a prime catalyst of castration-driven thymopoiesis.
Collapse
Affiliation(s)
- Pedro M. Rodrigues
- *Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- †Thymus Development and Function Laboratory, Institute for Molecular and Cellular Biology, 4200-135 Porto, Portugal
- ‡Doctoral Program in Biomedical Sciences, Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Ana R. Ribeiro
- *Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- †Thymus Development and Function Laboratory, Institute for Molecular and Cellular Biology, 4200-135 Porto, Portugal
| | - Nicolas Serafini
- §Innate Immunity Unit, Pasteur Institute, 75724 Paris, France; and
- ¶INSERM U1223, 75015 Paris, France
| | - Catarina Meireles
- *Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- †Thymus Development and Function Laboratory, Institute for Molecular and Cellular Biology, 4200-135 Porto, Portugal
| | - James P. Di Santo
- §Innate Immunity Unit, Pasteur Institute, 75724 Paris, France; and
- ¶INSERM U1223, 75015 Paris, France
| | - Nuno L. Alves
- *Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- †Thymus Development and Function Laboratory, Institute for Molecular and Cellular Biology, 4200-135 Porto, Portugal
| |
Collapse
|
19
|
Thymic and Postthymic Regulation of Naïve CD4(+) T-Cell Lineage Fates in Humans and Mice Models. Mediators Inflamm 2016; 2016:9523628. [PMID: 27313405 PMCID: PMC4904118 DOI: 10.1155/2016/9523628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4+ and CD8+ T effectors and CD4+CD25+ T-regulatory cells (Tregs). At postthymic compartments, the CD4+ T-cells acquire distinct phenotypes which include the classical T-helper 1 (Th1), T-helper 2 (Th2), T-helper 9 (Th9), T-helper 17 (Th17), follicular helper T-cell (Tfh), and induced T-regulatory cells (iTregs), such as the regulatory type 1 cells (Tr1) and transforming growth factor-β- (TGF-β-) producing CD4+ T-cells (Th3). Tregs represent only a small fraction, 5–10% in mice and 1-2% in humans, of the overall CD4+ T-cells in lymphoid tissues but are essential for immunoregulatory circuits mediating the inhibition and expansion of all lineages of T-cells. In this paper, we first provide an overview of the major cell-intrinsic developmental programs that regulate T-cell lineage fates in thymus and periphery. Next, we introduce the SV40 immortomouse as a relevant mice model for implementation of new approaches to investigate thymus organogenesis, CD4 and CD8 development, and thymus cells tumorogenesis.
Collapse
|
20
|
Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proc Natl Acad Sci U S A 2016; 113:1026-31. [PMID: 26755598 DOI: 10.1073/pnas.1514511113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Age-related thymic degeneration is associated with loss of naïve T cells, restriction of peripheral T-cell diversity, and reduced healthspan due to lower immune competence. The mechanistic basis of age-related thymic demise is unclear, but prior evidence suggests that caloric restriction (CR) can slow thymic aging by maintaining thymic epithelial cell integrity and reducing the generation of intrathymic lipid. Here we show that the prolongevity ketogenic hormone fibroblast growth factor 21 (FGF21), a member of the endocrine FGF subfamily, is expressed in thymic stromal cells along with FGF receptors and its obligate coreceptor, βKlotho. We found that FGF21 expression in thymus declines with age and is induced by CR. Genetic gain of FGF21 function in mice protects against age-related thymic involution with an increase in earliest thymocyte progenitors and cortical thymic epithelial cells. Importantly, FGF21 overexpression reduced intrathymic lipid, increased perithymic brown adipose tissue, and elevated thymic T-cell export and naïve T-cell frequencies in old mice. Conversely, loss of FGF21 function in middle-aged mice accelerated thymic aging, increased lethality, and delayed T-cell reconstitution postirradiation and hematopoietic stem cell transplantation (HSCT). Collectively, FGF21 integrates metabolic and immune systems to prevent thymic injury and may aid in the reestablishment of a diverse T-cell repertoire in cancer patients following HSCT.
Collapse
|
21
|
Wiekmeijer AS, Pike-Overzet K, IJspeert H, Brugman MH, Wolvers-Tettero ILM, Lankester AC, Bredius RGM, van Dongen JJM, Fibbe WE, Langerak AW, van der Burg M, Staal FJT. Identification of checkpoints in human T-cell development using severe combined immunodeficiency stem cells. J Allergy Clin Immunol 2015; 137:517-526.e3. [PMID: 26441229 DOI: 10.1016/j.jaci.2015.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) represents congenital disorders characterized by a deficiency of T cells caused by arrested development in the thymus. Yet the nature of these developmental blocks has remained elusive because of the difficulty of taking thymic biopsy specimens from affected children. OBJECTIVE We sought to identify the stages of arrest in human T-cell development caused by various major types of SCID. METHODS We performed transplantation of SCID CD34(+) bone marrow stem/progenitor cells into an optimized NSG xenograft mouse model, followed by detailed phenotypic and molecular characterization using flow cytometry, immunoglobulin and T-cell receptor spectratyping, and deep sequencing of immunoglobulin heavy chain (IGH) and T-cell receptor δ (TRD) loci. RESULTS Arrests in T-cell development caused by mutations in IL-7 receptor α (IL7RA) and IL-2 receptor γ (IL2RG) were observed at the most immature thymocytes much earlier than expected based on gene expression profiling of human thymocyte subsets and studies with corresponding mouse mutants. T-cell receptor rearrangements were functionally required at the CD4(-)CD8(-)CD7(+)CD5(+) stage given the developmental block and extent of rearrangements in mice transplanted with Artemis-SCID cells. The xenograft model used is not informative for adenosine deaminase-SCID, whereas hypomorphic mutations lead to less severe arrests in development. CONCLUSION Transplanting CD34(+) stem cells from patients with SCID into a xenograft mouse model provides previously unattainable insight into human T-cell development and functionally identifies the arrest in thymic development caused by several SCID mutations.
Collapse
Affiliation(s)
- Anna-Sophia Wiekmeijer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robbert G M Bredius
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem E Fibbe
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
22
|
Okoye AA, Rohankhedkar M, Konfe AL, Abana CO, Reyes MD, Clock JA, Duell DM, Sylwester AW, Sammader P, Legasse AW, Park BS, Axthelm MK, Nikolich-Žugich J, Picker LJ. Effect of IL-7 Therapy on Naive and Memory T Cell Homeostasis in Aged Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2015; 195:4292-305. [PMID: 26416281 DOI: 10.4049/jimmunol.1500609] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/28/2015] [Indexed: 12/16/2022]
Abstract
Aging is associated with gradual deterioration of adaptive immune function, a hallmark of which is the profound loss of naive T cells (TN) associated with decline in thymic output and export of new cells into the peripheral T cell pool. Because the lymphotropic cytokine IL-7 plays crucial roles in both development of TN in the thymus and TN homeostasis in the periphery, we sought to determine the extent to which therapeutic administration of IL-7 could reverse TN deficiency in aging rhesus macaques (RM), either by enhancement of the demonstrably reduced thymopoiesis or by peripheral TN expansion. Our results indicate that treatment of both adult (8-15 y) and old (>20 y) RM with recombinant simian IL-7 (rsIL-7) results in only transient increases in peripheral CD4(+) and CD8(+) TN numbers with no long-term benefit, even with repeated therapy. This transient effect was due to peripheral TN expansion and not enhanced thymic function, and appeared to be limited by induction of IL-7 nonresponsiveness. However, rsIL-7 therapy had a more promising effect on the central memory T cell (TCM) population (both CD4(+) and CD8(+)) in adult and old RM, doubling the numbers of these cells in circulation and maintaining this larger population long term. IL-7 therapy did not reduce TCR diversity of the memory T cell compartment, suggesting that rsIL-7-induced expansion was symmetrical. Thus, although rsIL-7 failed to counter age-associated TN loss, the ability of this therapy to expand clonotypically diverse CD4(+) and CD8(+) TCM populations might potentially improve adaptive immune responsiveness in the elderly.
Collapse
Affiliation(s)
- Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Mukta Rohankhedkar
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Audrie L Konfe
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Chike O Abana
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Matthew D Reyes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Joseph A Clock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Derick M Duell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Andrew W Sylwester
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | | | - Alfred W Legasse
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Byung S Park
- Division of Biostatistics, Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR 97239
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724; and The Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724.
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006; Oregon National Primate Research Center, Beaverton, OR 97006;
| |
Collapse
|
23
|
Abstract
Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T helper (Th) 17 cells, γδ T cells, NKT cells, and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has evolved rapidly since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues, including the intestines, lung, liver, kidney, thymus, pancreas, and skin. IL-22 primarily targets nonhematopoietic epithelial and stromal cells, where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function.
Collapse
|
24
|
Khoo MLM, Carlin SM, Lutherborrow MA, Jayaswal V, Ma DDF, Moore JJ. Gene profiling reveals association between altered Wnt signaling and loss of T-cell potential with age in human hematopoietic stem cells. Aging Cell 2014; 13:744-54. [PMID: 24889652 PMCID: PMC4326953 DOI: 10.1111/acel.12229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 12/13/2022] Open
Abstract
Functional decline of the hematopoietic system occurs during aging and contributes to clinical consequences, including reduced competence of adaptive immunity and increased incidence of myeloid diseases. This has been linked to aging of the hematopoietic stem cell (HSC) compartment and has implications for clinical hematopoietic cell transplantation as prolonged periods of T-cell deficiency follow transplantation of adult mobilized peripheral blood (PB), the primary transplant source. Here, we examined the gene expression profiles of young and aged HSCs from human cord blood and adult mobilized PB, respectively, and found that Wnt signaling genes are differentially expressed between young and aged human HSCs, with less activation of Wnt signaling in aged HSCs. Utilizing the OP9-DL1 in vitro co-culture system to promote T-cell development under stable Notch signaling conditions, we found that Wnt signaling activity is important for T-lineage differentiation. Examination of Wnt signaling components and target gene activation in young and aged human HSCs during T-lineage differentiation revealed an association between reduced Wnt signal transduction, increasing age, and impaired or delayed T-cell differentiation. This defect in Wnt signal activation of aged HSCs appeared to occur in the early T-progenitor cell subset derived during in vitro T-lineage differentiation. Our results reveal that reduced Wnt signaling activity may play a role in the age-related intrinsic defects of aged HSCs and early hematopoietic progenitors and suggest that manipulation of this pathway could contribute to the end goal of improving T-cell generation and immune reconstitution following clinical transplantation.
Collapse
Affiliation(s)
- Melissa L. M. Khoo
- Blood Stem Cells and Cancer Research; St Vincent's Centre for Applied Medical Research, and The University of New South Wales; Sydney NSW 2010 Australia
| | - Stephen M. Carlin
- Blood Stem Cells and Cancer Research; St Vincent's Centre for Applied Medical Research, and The University of New South Wales; Sydney NSW 2010 Australia
| | - Mark A. Lutherborrow
- Blood Stem Cells and Cancer Research; St Vincent's Centre for Applied Medical Research, and The University of New South Wales; Sydney NSW 2010 Australia
| | - Vivek Jayaswal
- Centre for Mathematical Biology; School of Mathematics and Statistics; University of Sydney; Sydney NSW 2006 Australia
| | - David D. F. Ma
- Blood Stem Cells and Cancer Research; St Vincent's Centre for Applied Medical Research, and The University of New South Wales; Sydney NSW 2010 Australia
| | - John J. Moore
- Blood Stem Cells and Cancer Research; St Vincent's Centre for Applied Medical Research, and The University of New South Wales; Sydney NSW 2010 Australia
| |
Collapse
|
25
|
van den Brule S, Huaux F, Uwambayinema F, Ibouraadaten S, Yakoub Y, Palmai-Pallag M, Trottein F, Renauld JC, Lison D. Lung inflammation and thymic atrophy after bleomycin are controlled by the prostaglandin D2 receptor DP1. Am J Respir Cell Mol Biol 2014; 50:212-22. [PMID: 24003988 DOI: 10.1165/rcmb.2012-0520oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Acute lung injury (ALI) can be accompanied by secondary systemic manifestations. In a model of ALI induced by bleomycin (bleo), we examined the response of D prostanoid receptor 1 (DP1)-deficient mice (DP1(-/-)) to better understand these processes. DP1 deficiency aggravated the toxicity of bleo as indicated by enhanced body weight loss, mortality, and lung inflammation including bronchoalveolar permeability and neutrophilia. Thymic atrophy was also observed after bleo and was strongly exacerbated in DP1(-/-) mice. This resulted from the enhanced depletion of immature T lymphocytes in the thymus of DP1(-/-) mice, a phenomenon usually related to increased glucocorticoid release in blood. Serum corticosterone was more elevated in DP1(-/-) mice after bleo than in wild-type (wt) mice. Thymocytes of DP1(-/-) mice were not more sensitive to dexamethasone in vitro, and systemic delivery of dexamethasone or peritoneal inflammation after LPS induced a similar thymic atrophy in wt and DP1(-/-) mice, indicating that pulmonary DP1 was critical to the control of thymic atrophy after bleo. DP1(-/-) mice showed increased lung and/or blood mediators involved in neutrophil recruitment and/or glucocorticoid production/thymic atrophy (osteopontin, leukemia inhibitory factor, and keratinocyte-derived chemokine) after bleo. Finally, local pulmonary DP1 activation or inhibition in wt mice abrogated or amplified thymic atrophy after bleo, respectively. Altogether, our data reveal that ALI can perturb the systemic T-cell pool by inducing thymic atrophy and that both pathological processes are controlled by the pulmonary DP1 receptor. This new pathway represents a potential therapeutic target in ALI.
Collapse
|
26
|
Image-guided intrathymic injection of multipotent stem cells supports lifelong T-cell immunity and facilitates targeted immunotherapy. Blood 2014; 123:2797-805. [PMID: 24652996 DOI: 10.1182/blood-2013-10-535401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell deficiency related to disease, medical treatment, or aging represents a major clinical challenge and is associated with significant morbidity and mortality in cancer and bone marrow transplantation recipients. This study describes several innovative and clinically relevant strategies to manipulate thymic function based on an interventional radiology technique for intrathymic injection of cells or drugs. We show that intrathymic injection of multipotent hematopoietic stem/progenitor cells into irradiated syngeneic or allogeneic young or aged recipients resulted in efficient and long-lasting generation of functional donor T cells. Persistence of intrathymic donor cells was associated with intrathymic presence of cells resembling long-term hematopoietic stem cells, suggesting a self-renewal capacity of the intrathymically injected cells. Furthermore, our approach enabled the induction of long-term antigen-specific T-cell-mediated antitumor immunity following intrathymic injection of progenitor cells harboring a transgenic T-cell receptor gene. The intrathymic injection of interleukin-7 prior to irradiation conferred radioprotection. In addition, thymopoiesis of aged mice improved with a single intrathymic administration of low-dose keratinocyte growth factor, an effect that was sustained even in the setting of radiation-induced injury. Taken together, we established a preclinical framework for the development of novel clinical protocols to establish lifelong antigen-specific T-cell immunity.
Collapse
|
27
|
Danby R, Rocha V. Improving engraftment and immune reconstitution in umbilical cord blood transplantation. Front Immunol 2014; 5:68. [PMID: 24605111 PMCID: PMC3932655 DOI: 10.3389/fimmu.2014.00068] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/07/2014] [Indexed: 12/31/2022] Open
Abstract
Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSC) for allogeneic transplantation when HLA-matched sibling and unrelated donors (MUD) are unavailable. Although the overall survival results for UCB transplantation are comparable to the results with MUD, UCB transplants are associated with slow engraftment, delayed immune reconstitution, and increased opportunistic infections. While this may be a consequence of the lower cell dose in UCB grafts, it also reflects the relative immaturity of cord blood. Furthermore, limited cell numbers and the non-availability of donor lymphocyte infusions currently prevent the use of post-transplant cellular immunotherapy to boost donor-derived immunity to treat infections, mixed chimerism, and disease relapse. To further develop UCB transplantation, many strategies to enhance engraftment and immune reconstitution are currently under investigation. This review summarizes our current understanding of engraftment and immune recovery following UCB transplantation and why this differs from allogeneic transplants using other sources of HSC. It also provides a comprehensive overview of promising techniques being used to improve myeloid and lymphoid recovery, including expansion, homing, and delivery of UCB HSC; combined use of UCB with third-party donors; isolation and expansion of natural killer cells, pathogen-specific T cells, and regulatory T cells; methods to protect and/or improve thymopoiesis. As many of these strategies are now in clinical trials, it is anticipated that UCB transplantation will continue to advance, further expanding our understanding of UCB biology and HSC transplantation.
Collapse
Affiliation(s)
- Robert Danby
- Department of Haematology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK ; NHS Blood and Transplant, John Radcliffe Hospital , Oxford , UK ; Eurocord, Hôpital Saint Louis APHP, University Paris VII IUH , Paris , France
| | - Vanderson Rocha
- Department of Haematology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK ; NHS Blood and Transplant, John Radcliffe Hospital , Oxford , UK ; Eurocord, Hôpital Saint Louis APHP, University Paris VII IUH , Paris , France
| |
Collapse
|
28
|
Rezzani R, Nardo L, Favero G, Peroni M, Rodella LF. Thymus and aging: morphological, radiological, and functional overview. AGE (DORDRECHT, NETHERLANDS) 2014; 36:313-51. [PMID: 23877171 PMCID: PMC3889907 DOI: 10.1007/s11357-013-9564-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Aging is a continuous process that induces many alterations in the cytoarchitecture of different organs and systems both in humans and animals. Moreover, it is associated with increased susceptibility to infectious, autoimmune, and neoplastic processes. The thymus is a primary lymphoid organ responsible for the production of immunocompetent T cells and, with aging, it atrophies and declines in functions. Universality of thymic involution in all species possessing thymus, including human, indicates it as a long-standing evolutionary event. Although it is accepted that many factors contribute to age-associated thymic involution, little is known about the mechanisms involved in the process. The exact time point of the initiation is not well defined. To address the issue, we report the exact age of thymus throughout the review so that readers can have a nicely pictured synoptic view of the process. Focusing our attention on the different stages of the development of the thymus gland (natal, postnatal, adult, and old), we describe chronologically the morphological changes of the gland. We report that the thymic morphology and cell types are evolutionarily preserved in several vertebrate species. This finding is important in understanding the similar problems caused by senescence and other diseases. Another point that we considered very important is to indicate the assessment of the thymus through radiological images to highlight its variability in shape, size, and anatomical conformation.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, Viale Europa 11, 25123, Brescia, Italy,
| | | | | | | | | |
Collapse
|
29
|
Arsenović-Ranin N, Kosec D, Pilipović I, Bufan B, Stojić-Vukanić Z, Radojević K, Nacka-Aleksić M, Leposavić G. Androgens contribute to age-associated changes in peripheral T-cell homeostasis acting in a thymus-independent way. Neuroimmunomodulation 2014; 21:161-82. [PMID: 24504059 DOI: 10.1159/000355349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Considering a causal role of androgens in thymic involution, age-related remodeling of peripheral T-cell compartments in the absence of testicular hormones was evaluated. METHODS Rats were orchidectomized (ORX) at the age of 1 month, and T-peripheral blood lymphocytes (PBLs) and splenocytes from young (75-day-old) and aged (24-month-old) rats were examined for differentiation/activation and immunoregulatory marker expression. RESULTS In ORX rats, following the initial rise, the counts of CD4+ and CD8+ PBLs diminished with aging. This reflected the decline in thymic export as shown by recent thymic emigrant (RTE) enumeration. Orchidectomy increased the count of both of the major T-splenocyte subsets in young rats, and they (differently from controls) remained stable with aging. The CD4+:CD8+ T-splenocyte ratio in ORX rats shifted towards CD4+ cells compared to age-matched controls. Although in the major T-cell subsets in the blood and spleen from aged ORX rats the numbers of RTEs were comparable to the corresponding values in age-matched controls, the numbers of mature naïve and memory/activated cells substantially differed. Compared with age-matched controls, in aged ORX rats the numbers of CD4+ mature naïve PBLs and splenocytes were reduced, whereas those of CD4+ memory/activated cells (predictive of early mortality) were increased. Additionally, in spleens from aged ORX rats, despite unaltered thymic export, CD4+CD25+FoxP3+ and natural killer T cell counts were greater than in age-matched controls. CONCLUSION (i) Age-related decline in thymopoietic efficacy is not dependent on androgen presence, and (ii) androgens are involved in the maintenance of peripheral T-cell (particularly CD4+ cell) homeostasis during aging.
Collapse
Affiliation(s)
- Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Thymic epithelial cell expansion through matricellular protein CYR61 boosts progenitor homing and T-cell output. Nat Commun 2013; 4:2842. [DOI: 10.1038/ncomms3842] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/29/2013] [Indexed: 12/30/2022] Open
|
31
|
Geenen V, Bodart G, Henry S, Michaux H, Dardenne O, Charlet-Renard C, Martens H, Hober D. Programming of neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity. Front Neurosci 2013; 7:187. [PMID: 24137108 PMCID: PMC3797387 DOI: 10.3389/fnins.2013.00187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/27/2013] [Indexed: 12/20/2022] Open
Abstract
For centuries after its first description by Galen, the thymus was considered as only a vestigial endocrine organ until the discovery in 1961 by Jacques FAP Miller of its essential role in the development of T (thymo-dependent) lymphocytes. A unique thymus first appeared in cartilaginous fishes some 500 million years ago, at the same time or shortly after the emergence of the adaptive (acquired) immune system. The thymus may be compared to a small brain or a computer highly specialized in the orchestration of central immunological self-tolerance. This was a necessity for the survival of species, given the potent evolutionary pressure imposed by the high risk of autotoxicity inherent in the stochastic generation of the diversity of immune cell receptors that characterize the adaptive immune response. A new paradigm of “neuroendocrine self-peptides” has been proposed, together with the definition of “neuroendocrine self.” Neuroendocrine self-peptides are secreted by thymic epithelial cells (TECs) not according to the classic model of neuroendocrine signaling, but are processed for presentation by, or in association with, the thymic major histocompatibility complex (MHC) proteins. The autoimmune regulator (AIRE) gene/protein controls the transcription of neuroendocrine genes in TECs. The presentation of self-peptides in the thymus is responsible for the clonal deletion of self-reactive T cells, which emerge during the random recombination of gene segments that encode variable parts of the T cell receptor for the antigen (TCR). At the same time, self-antigen presentation in the thymus generates regulatory T (Treg) cells that can inhibit, in the periphery, those self-reactive T cells that escaped negative selection in the thymus. Several arguments indicate that the origin of autoimmunity directed against neuroendocrine glands results primarily from a defect in the intrathymic programming of self-tolerance to neuroendocrine functions. This defect may be genetic or acquired, for example during an enteroviral infection. This novel knowledge of normal and pathologic functions of the thymus constitutes a solid basis for the development of a novel type of tolerogenic/negative self-vaccination against type 1 diabetes (T1D).
Collapse
Affiliation(s)
- Vincent Geenen
- Department of Biomedical and Preclinical Sciences, Center of Immunoendocrinology, GIGA Research Institute, Fund of Scientific Research, University of Liege Liege-Sart Tilman, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Maintenance of T-cell function and modulation of tolerance are critical issues in organ transplantation. The thymus is the primary organ for T-cell generation, and a preserved thymic function is essential for a self-tolerant diverse T-cell repertoire. Transplant procedures and related immunosuppressive drugs may hinder thymic integrity and function. We review here the recent advances in understanding the regulation of the unique thymic microenvironment with relevance for the field of transplantation. RECENT FINDINGS Recent studies have assigned a role for IL-22 in the regeneration of thymic epithelium, and for microRNAs in the modulation of its survival and function. The interplay of key molecules in the cross-talk between thymic epithelial cells and thymocytes was depicted, opening new perspectives for the in-vitro recapitulation of T-cell development and for thymic transplantation. Additionally, the thymus was shown to be able to sustain thymocyte progenitor renewal. SUMMARY These findings open new venues of research toward therapeutic interventions in the endogenous thymus to modulate or reconstitute the immune system; thymic transplantation; and the future development of artificial thymus, which would represent an important tool to achieve tolerance across the histocompatibility barriers.
Collapse
|
33
|
Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest 2013; 123:958-65. [PMID: 23454758 DOI: 10.1172/jci64096] [Citation(s) in RCA: 520] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The effects of aging on the immune system are manifest at multiple levels that include reduced production of B and T cells in bone marrow and thymus and diminished function of mature lymphocytes in secondary lymphoid tissues. As a result, elderly individuals do not respond to immune challenge as robustly as the young. An important goal of aging research is to define the cellular changes that occur in the immune system and the molecular events that underlie them. Considerable progress has been made in this regard, and this information has provided the rationale for clinical trials to rejuvenate the aging immune system.
Collapse
Affiliation(s)
- Encarnacion Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
34
|
Peterson P, Laan M. Bipotency of thymic epithelial progenitors comes in sequence. Eur J Immunol 2013; 43:580-3. [PMID: 23404610 DOI: 10.1002/eji.201343323] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/11/2013] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
Abstract
In the thymus, in order to become MHC-restricted self-tolerant T cells, developing thymocytes need to interact with cortical and medullary thymic epithelial cells (TECs). Although the presence of a common bipotent progenitor for these functionally and structurally distinct epithelial subsets has been clearly established, the initial developmental stages of these bipotent cells have not been well characterized. In this issue of the European Journal of Immunology, Baik et al. [Eur. J. Immunol. 2013.43: 589-594] focus on the phenotypical changes of the early bipotent populations and show how the cortical and medullary markers are sequentially acquired during TEC development. These findings argue against a binary model in which both cortical and medullary lineages diverge simultaneously from lineage-negative TEC progenitors and highlight an unexpected overlap in the phenotypic properties of these bipotent TECs with their lineage-restricted counterparts.
Collapse
Affiliation(s)
- Pärt Peterson
- Molecular Pathology, Institute of Biomedicine, University of Tartu, Tartu, Estonia.
| | | |
Collapse
|
35
|
Nobrega C, Nunes-Alves C, Cerqueira-Rodrigues B, Roque S, Barreira-Silva P, Behar SM, Correia-Neves M. T cells home to the thymus and control infection. THE JOURNAL OF IMMUNOLOGY 2013; 190:1646-58. [PMID: 23315077 DOI: 10.4049/jimmunol.1202412] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The thymus is a target of multiple pathogens. How the immune system responds to thymic infection is largely unknown. Despite being considered an immune-privileged organ, we detect a mycobacteria-specific T cell response in the thymus following dissemination of Mycobacterium avium or Mycobacterium tuberculosis. This response includes proinflammatory cytokine production by mycobacteria-specific CD4(+) and CD8(+) T cells, which stimulates infected cells and controls bacterial growth in the thymus. Importantly, the responding T cells are mature peripheral T cells that recirculate back to the thymus. The recruitment of these cells is associated with an increased expression of Th1 chemokines and an enrichment of CXCR3(+) mycobacteria-specific T cells in the thymus. Finally, we demonstrate it is the mature T cells that home to the thymus that most efficiently control mycobacterial infection. Although the presence of mature T cells in the thymus has been recognized for some time, to our knowledge, these data are the first to show that T cell recirculation from the periphery to the thymus is a mechanism that allows the immune system to respond to thymic infection. Maintaining a functional thymic environment is essential to maintain T cell differentiation and prevent the emergence of central tolerance to the invading pathogens.
Collapse
Affiliation(s)
- Claudia Nobrega
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
36
|
Williams L, Bosselut R. [Interleukin 22 may represent a new therapeutic tool towards thymic regeneration in vivo]. Med Sci (Paris) 2013; 29:11-4. [PMID: 23351684 DOI: 10.1051/medsci/2013291003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
37
|
Carneiro-Sampaio M, Coutinho A. Interface of autoimmunity and immunodeficiency. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
McIver Z, Melenhorst JJ, Wu C, Grim A, Ito S, Cho I, Hensel N, Battiwalla M, Barrett AJ. Donor lymphocyte count and thymic activity predict lymphocyte recovery and outcomes after matched-sibling hematopoietic stem cell transplant. Haematologica 2012; 98:346-52. [PMID: 23065508 DOI: 10.3324/haematol.2012.072991] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Delayed immune recovery is a characteristic feature of allogeneic hematopoietic stem cell transplantation in adult recipients. Although recipient thymic T-cell neogenesis contributes to T-cell regeneration after transplantation, thymic recovery in the transplant recipient decreases with increasing age, and is diminished by intensive preconditioning regimens and graft-versus-host disease. In adult recipients, most events that determine transplant success or failure occur during the period when the majority of circulating T cells is derived from the donor's post thymic T-cell repertoire. As a result, the make-up of the donor lymphocyte compartment may strongly influence immune recovery and transplant outcomes. The aim of this study was to examine donor lymphocyte counts in a series of patients undergoing an allogeneic hematopoietic stem cell transplant to identify the potential contribution of donor regulatory and conventional T lymphocyte populations to immune recovery and transplant outcomes. We examined donor lymphocyte subset counts in relation to post-transplant lymphocyte recovery and transplant events in 220 consecutive myeloablative, T-cell-depleted, HLA-identical sibling hematopoietic stem cell transplant recipients with hematologic malignancies. In a multivariate analysis, absolute numbers of donor CD4(+) recent thymic emigrants were associated with overall survival (P=0.032). The donors' absolute lymphocyte count and thymic production of regulatory T cells were both associated with extensive chronic graft-versus-host disease (P=0.002 and P=0.022, respectively). In conclusion, these results identify donor immune characteristics that are associated with lymphocyte recovery, extensive chronic graft-versus-host disease, and survival in the recipient following allogeneic hematopoietic stem cell transplantation. The study reported here was performed using peripheral blood samples drawn from donors and patients enrolled in the ClinicalTrials.gov-registered trials NCT00001623, NCT00001873, NCT00353860, NCT00066300, NCT00079391, and NCT00398346.
Collapse
Affiliation(s)
- Zachariah McIver
- Allogeneic Stem Cell Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Toubert A, Glauzy S, Douay C, Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. ACTA ACUST UNITED AC 2012; 79:83-9. [PMID: 22220718 DOI: 10.1111/j.1399-0039.2011.01820.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Assessment of the host immune status is becoming a key issue in allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the long-term follow-up of these patients, severe post-transplant infections, relapse or secondary malignancies may be directly related to persistent immune defects. In allo-HSCT, T-cell differentiation of donor progenitors within the recipient thymus is required to generate naive recent T-cell emigrants (RTE). These cells account for a durable T-cell reconstitution, generating a diverse T-cell receptor (TCR) repertoire and robust response to infections. It is now possible to quantify the production of RTE by measuring thymic T-cell receptor excision circles or 'TREC' which are small circular DNA produced during the recombination of the genomic segments encoding the TCR alpha chain. Here we discuss the role of thymic function in allo-HSCT. The pre-transplant recipient thymic function correlates with clinical outcome in terms of survival and occurrence of severe infections. Post-transplant, TREC analysis showed that the thymus is a sensitive target to the allogeneic acute graft-versus-host disease (GvHD) reaction but is also prone to recovery in young adult patients. In all, thymus is a key player for the quality of immune reconstitution and clinical outcome after allo-HSCT. Thymic tissue is plastic and it is a future challenge to halt or reverse thymic GVHD therapeutically by acting at the level of T-cell progenitors generation, thymic homing and/or epithelial thymic tissue preservation.
Collapse
Affiliation(s)
- A Toubert
- Sorbonne Paris Cité, INSERM UMR940, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.
| | | | | | | |
Collapse
|
40
|
Wong IOL, Cowling BJ, Leung GM, Schooling CM. Trends in mortality from septicaemia and pneumonia with economic development: an age-period-cohort analysis. PLoS One 2012; 7:e38988. [PMID: 22720008 PMCID: PMC3375224 DOI: 10.1371/journal.pone.0038988] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/17/2012] [Indexed: 11/24/2022] Open
Abstract
Background Hong Kong population has experienced drastic changes in its economic development in the 1940s. Taking advantage of Hong Kong’s unique demographic and socioeconomic history, characterized by massive, punctuated migration waves from Southern China, and recent, rapid transition from a pre-industrialized society to the first ethnic Chinese community reaching “first world” status over the last 60 years (i.e., in two or three generations), we examined the longitudinal trends in infection related mortality including septicemia compared to trends in non-bacterial pneumonia to generate hypotheses for further testing in other recently transitioned economies and to provide generalized aetiological insights on how economic transition affects infection-related mortality. Methods We used deaths from septicemia and pneumonia not specified as bacterial, and population figures in Hong Kong from 1976–2005. We fitted age-period-cohort models to decompose septicemia and non-bacterial pneumonia mortality rates into age, period and cohort effects. Results Septicaemia-related deaths increased exponentially with age, with a downturn by period. The birth cohort curves had downward inflections in both sexes in the 1940s, with a steeper deceleration for women. Non-bacterial pneumonia-related deaths also increased exponentially with age, but the birth cohort patterns showed no downturns for those born in the 1940s. Conclusion The observed changes appeared to suggest that better early life conditions may enable better development of adaptive immunity, thus enhancing immunity against bacterial infections, with greater benefits for women than men. Given the interaction between the immune system and the gonadotropic axis, these observations are compatible with the hypothesis that upregulation of the gonadotropic axis underlies some of the changes in disease patterns with economic development.
Collapse
Affiliation(s)
- Irene O. L. Wong
- Lifestyle and Life Course Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Benjamin J. Cowling
- Lifestyle and Life Course Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Gabriel M. Leung
- Lifestyle and Life Course Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - C. Mary Schooling
- Lifestyle and Life Course Epidemiology Group, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- CUNY School of Public Health at Hunter College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
Haematopoietic cell transplantation (HCT) is the most widely used form of cellular therapy. It is the only known cure for some haematological malignancies and has recently been used in additional clinical settings, such as allograft tolerance induction and treatment of autoimmune diseases. Recent advances have enabled HCT in a wider range of patients with improved outcomes. This Review summarizes the latest developments in this therapy, focusing on issues that will affect future advancement.
Collapse
Affiliation(s)
- Hao Wei Li
- Columbia Center for Translational Immunology, Columbia University Medical Center, 650 West 168th Street, BB 15-02, New York, New York 10032, USA
| | | |
Collapse
|
42
|
Fibroblast growth factor-7 partially reverses murine thymocyte progenitor aging by repression of Ink4a. Blood 2012; 119:5715-21. [PMID: 22555975 DOI: 10.1182/blood-2011-12-400002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Involution of the thymus results in reduced production of naive T cells, and this in turn is thought to contribute to impaired immunity in the elderly. Early T-cell progenitors (ETPs), the most immature intrathymic T-cell precursors, harvested from the involuted thymus exhibit a diminished proliferative potential and increased rate of apoptosis and as a result their number is significantly reduced. In the present study, we show that these age-induced alterations result in part from increased expression of the Ink4a tumor-suppressor gene in ETPs. We also show that repression of Ink4a in aged ETPs results in their partial rejuvenation and that this can be accomplished by in vivo fibroblast growth factor 7 administration. These results define a genetic basis for thymocyte progenitor aging and demonstrate that the senescence-associated gene Ink4a can be pharmacologically repressed in ETPs to partially reverse the effects of aging.
Collapse
|
43
|
Berent-Maoz B, Montecino-Rodriguez E, Dorshkind K. Genetic regulation of thymocyte progenitor aging. Semin Immunol 2012; 24:303-8. [PMID: 22559986 DOI: 10.1016/j.smim.2012.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023]
Abstract
The number of T cell progenitors is significantly reduced in the involuted thymus, and the growth and developmental potential of the few cells that are present is severely attenuated. This review provides an overview of how aging affects T cell precursors before and following entry into the thymus and discusses the age-related genetic changes that may occur in them. Finally, interventions that rejuvenate thymopoiesis in the elderly by targeting T cell progenitors are discussed.
Collapse
Affiliation(s)
- Beata Berent-Maoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | | | | |
Collapse
|
44
|
West DA, Leung GM, Jiang CQ, Elwell-Sutton TM, Zhang WS, Lam TH, Cheng KK, Schooling CM. Life-course origins of social inequalities in adult immune cell markers of inflammation in a developing southern Chinese population: the Guangzhou Biobank Cohort Study. BMC Public Health 2012; 12:269. [PMID: 22472036 PMCID: PMC3373375 DOI: 10.1186/1471-2458-12-269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/03/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Socioeconomic position (SEP) throughout life is associated with cardiovascular disease, though the mechanisms linking these two are unclear. It is also unclear whether there are critical periods in the life course when exposure to better socioeconomic conditions confers advantages or whether SEP exposures accumulate across the whole life course. Inflammation may be a mechanism linking socioeconomic position (SEP) with cardiovascular disease. In a large sample of older residents of Guangzhou, in southern China, we examined the association of life course SEP with inflammation. METHODS In baseline data on 9,981 adults (≥ 50 years old) from the Guangzhou Biobank Cohort Study (2006-08), we used multivariable linear regression and model fit to assess the associations of life course SEP at four stages (childhood, early adult, late adult and current) with white blood, granulocyte and lymphocyte cell counts. RESULTS A model including SEP at all four life stages best explained the association of life course SEP with white blood and granulocyte cell count for men and women, with early adult SEP (education) making the largest contribution. A critical period model best explained the association of life course SEP with lymphocyte count, with sex-specific associations. Early adult SEP was negatively associated with lymphocytes for women. CONCLUSIONS Low SEP throughout life may negatively impact late adult immune-inflammatory status. However, some aspects of immune-inflammatory status may be sensitive to earlier exposures, with sex-specific associations. The findings were compatible with the hypothesis that in a developing population, upregulation of the gonadotropic axis with economic development may obscure the normally protective effects of social advantage for men.
Collapse
Affiliation(s)
- Douglas A West
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | - Gabriel M Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | - Chao Q Jiang
- Guangzhou Occupational Diseases Prevention and Treatment Centre, Guangzhou Number 12 Hospital, Guangzhou, China
| | - Timothy M Elwell-Sutton
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | - Wei S Zhang
- Guangzhou Occupational Diseases Prevention and Treatment Centre, Guangzhou Number 12 Hospital, Guangzhou, China
| | - Tai H Lam
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | - Kar K Cheng
- Department of Public Health and Epidemiology, University of Birmingham, Birmingham, UK
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| |
Collapse
|
45
|
McClory S, Hughes T, Freud AG, Briercheck EL, Martin C, Trimboli AJ, Yu J, Zhang X, Leone G, Nuovo G, Caligiuri MA. Evidence for a stepwise program of extrathymic T cell development within the human tonsil. J Clin Invest 2012; 122:1403-15. [PMID: 22378041 DOI: 10.1172/jci46125] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/11/2012] [Indexed: 02/02/2023] Open
Abstract
The development of a broad repertoire of T cells, which is essential for effective immune function, occurs in the thymus. Although some data suggest that T cell development can occur extrathymically, many researchers remain skeptical that extrathymic T cell development has an important role in generating the T cell repertoire in healthy individuals. However, it may be important in the setting of poor thymic function or congenital deficit and in the context of autoimmunity, cancer, or regenerative medicine. Here, we report evidence that a stepwise program of T cell development occurs within the human tonsil. We identified 5 tonsillar T cell developmental intermediates: (a) CD34⁺CD38dimLin⁻ cells, which resemble multipotent progenitors in the bone marrow and thymus; (b) more mature CD34⁺CD38brightLin⁻ cells; (c) CD34⁺CD1a⁺CD11c⁻ cells, which resemble committed T cell lineage precursors in the thymus; (d) CD34⁻CD1a⁺CD3⁻CD11c⁻ cells, which resemble CD4⁺CD8⁺ double-positive T cells in the thymus; and (e) CD34⁻CD1a⁺CD3⁺CD11c⁻ cells. The phenotype of each subset closely resembled that of its thymic counterpart. The last 4 populations expressed RAG1 and PTCRA, genes required for TCR rearrangement, and all 5 subsets were capable of ex vivo T cell differentiation. TdT⁺ cells found within the tonsillar fibrous scaffold expressed CD34 and/or CD1a, indicating that this distinct anatomic region contributes to pre-T cell development, as does the subcapsular region of the thymus. Thus, we provide evidence of a role for the human tonsil in a comprehensive program of extrathymic T cell development.
Collapse
Affiliation(s)
- Susan McClory
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Regenerative capacity of adult cortical thymic epithelial cells. Proc Natl Acad Sci U S A 2012; 109:3463-8. [PMID: 22331880 DOI: 10.1073/pnas.1118823109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Involution of the thymus is accompanied by a decline in the number of thymic epithelial cells (TECs) and a severely restricted peripheral repertoire of T-cell specificities. TECs are essential for T-cell differentiation; they originate from a bipotent progenitor that gives rise to cells of cortical (cTEC) and medullary (mTEC) phenotypes, via compartment-specific progenitors. Upon acute selective near-total ablation during embryogenesis, regeneration of TECs fails, suggesting that losses from the pool of TEC progenitors are not compensated. However, it is unclear whether this is also true for the compartment-specific progenitors. The decline of cTECs is a prominent feature of thymic involution. Because cTECs support early stages of T-cell development and hence determine the overall lymphopoietic capacity of the thymus, it is possible that the lack of sustained regenerative capacity of cTEC progenitor cells underlies the process of thymic involution. Here, we examine this hypothesis by cell-type-specific conditional ablation of cTECs. Expression of the human diphtheria toxin receptor (hDTR) gene under the regulatory influence of the chemokine receptor Ccx-ckr1 gene renders cTECs sensitive to the cytotoxic effects of diphtheria toxin (DT). As expected, DT treatment of preadolescent and adult mice led to a dramatic loss of cTECs, accompanied by a rapid demise of immature thymocytes. Unexpectedly, however, the cTEC compartment regenerated after cessation of treatment, accompanied by the restoration of T-cell development. These findings provide the basis for the development of targeted interventions unlocking the latent regenerative potential of cTECs to counter thymic involution.
Collapse
|
47
|
Griffith AV, Fallahi M, Venables T, Petrie HT. Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 2012; 11:169-77. [PMID: 22103718 DOI: 10.1111/j.1474-9726.2011.00773.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The thymus is the most rapidly aging tissue in the body, with progressive atrophy beginning as early as birth and not later than adolescence. Latent regenerative potential exists in the atrophic thymus, because certain stimuli can induce quantitative regrowth, but qualitative function of T lymphocytes produced by the regenerated organ has not been fully assessed. Using a genome-wide computational approach, we show that accelerated thymic aging is primarily a function of stromal cells, and that while overall cellularity of the thymus can be restored, many other aspects of thymic function cannot. Medullary islet complexity and tissue-restricted antigen expression decrease with age, representing potential mechanisms for age-related increases in autoimmune disease, but neither of these is restored by induced regrowth, suggesting that new T cells produced by the regrown thymus will probably include more autoreactive cells. Global analysis of stromal gene expression profiles implicates widespread changes in Wnt signaling as the most significant hallmark of degeneration, changes that once again persist even at peak regrowth. Consistent with the permanent nature of age-related molecular changes in stromal cells, induced thymic regrowth is not durable, with the regrown organ returning to an atrophic state within 2 weeks of reaching peak size. Our findings indicate that while quantitative regrowth of the thymus is achievable, the changes associated with aging persist, including potential negative implications for autoimmunity.
Collapse
Affiliation(s)
- Ann V Griffith
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
48
|
Youm YH, Kanneganti TD, Vandanmagsar B, Zhu X, Ravussin A, Adijiang A, Owen JS, Thomas MJ, Francis J, Parks JS, Dixit VD. The Nlrp3 inflammasome promotes age-related thymic demise and immunosenescence. Cell Rep 2012; 1:56-68. [PMID: 22832107 DOI: 10.1016/j.celrep.2011.11.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/07/2011] [Accepted: 11/22/2011] [Indexed: 11/30/2022] Open
Abstract
The collapse of thymic stromal cell microenvironment with age and resultant inability of the thymus to produce naive T cells contributes to lower immune-surveillance in the elderly. Here we show that age-related increase in 'lipotoxic danger signals' such as free cholesterol (FC) and ceramides, leads to thymic caspase-1 activation via the Nlrp3 inflammasome. Elimination of Nlrp3 and Asc, a critical adaptor required for inflammasome assembly, reduces age-related thymic atrophy and results in an increase in cortical thymic epithelial cells, T cell progenitors and maintenance of T cell repertoire diversity. Using a mouse model of irradiation and hematopoietic stem cell transplantation (HSCT), we show that deletion of the Nlrp3 inflammasome accelerates T cell reconstitution and immune recovery in middle-aged animals. Collectively, these data demonstrate that lowering inflammasome-dependent caspase-1 activation increases thymic lymphopoiesis and suggest that Nlrp3 inflammasome inhibitors may aid the re-establishment of a diverse T cell repertoire in middle-aged or elderly patients undergoing HSCT.
Collapse
Affiliation(s)
- Yun-Hee Youm
- Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Le Saux S, Weyand CM, Goronzy JJ. Mechanisms of immunosenescence: lessons from models of accelerated immune aging. Ann N Y Acad Sci 2012; 1247:69-82. [PMID: 22224726 DOI: 10.1111/j.1749-6632.2011.06297.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With increasing age, the ability of the adaptive immune system to respond to vaccines and to protect from infection declines. In parallel, the production of inflammatory mediators increases. While cross-sectional studies have been successful in defining age-dependent immunological phenotypes, studies of accelerated immune aging in human subpopulations have been instrumental in obtaining mechanistic insights. The immune system depends on its regenerative capacity; however, the T cell repertoire, once established, is relatively robust to aging and only decompensates when additionally stressed. Such stressors include chronic infections such as CMV and HIV, even when viral replication is controlled, and autoimmune diseases. Reduced regenerative capacity, chronic immune activation in the absence of cell exhaustion, T cell memory inflation, and accumulation of highly potent effector T cells in these patients synergize to develop an immune phenotype that is characteristic of the elderly. Studies of accelerated immune aging in autoimmune diseases have identified an unexpected link to chronic DNA damage responses that are known to be important in aging, but so far had not been implicated in immune aging.
Collapse
Affiliation(s)
- Sabine Le Saux
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
50
|
Gui J, Morales AJ, Maxey SE, Bessette KA, Ratcliffe NR, Kelly JA, Craig RW. MCL1 increases primitive thymocyte viability in female mice and promotes thymic expansion into adulthood. Int Immunol 2011; 23:647-59. [PMID: 21937457 DOI: 10.1093/intimm/dxr073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing the pool of cells at early T-cell developmental stages enhances thymopoiesis and is especially beneficial when T-cell production is compromised by radiation or aging. Within the immature double-negative (DN; CD4(-)CD8(-)) thymocyte subpopulation, the DN1 subset contains the most primitive cells including the rare early T-cell progenitors (ETPs). In the present study, a human MCL1 transgene, under the control of its endogenous promoter, resulted in enlargement of an undistorted thymus in C57/BL6 mice. Enlargement occurred in females but not males, being seen at 1 month of age and maintained during progression into adulthood as the thymus underwent involution. The small DN1 subset was expanded disproportionally (ETPs increasing from ∼0.016 to 0.03% of thymocytes), while more mature thymocytes were increased proportionally (1.5-fold) along with the stroma. DN1 cells from transgenic females exhibited increased viability with maintained proliferation, and their survival in primary culture was extended. Exposure of transgenic females to γ-irradiation also revealed an expanded pool of radioresistant DN1 cells exhibiting increased viability. While the viability of DN1 cells from transgenic males was equivalent to that of their non-transgenic counterparts directly after harvest, it was enhanced in culture-suggesting that the effect of the transgene was suppressed in the in vivo environment of the male. Viability was increased in ETPs from transgenic females, but unchanged in more mature thymocytes, indicating that primitive cells were affected selectively. The MCL1 transgene thus increases the viability and pool size of primitive ETP/DN1 cells, promoting thymopoiesis and radioresistance in peripubescent females and into adulthood.
Collapse
Affiliation(s)
- Jingang Gui
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|