1
|
Huang G, Wang X, Li T, Xu Y, Sheng Y, Wang H, Bian L, Zheng K, Xu X, Zhang G, Su B, Ren C. Differential Effects of Continuous Theta Burst Stimulation over the Bilateral and Unilateral Cerebellum on Working Memory. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01738-2. [PMID: 39215909 DOI: 10.1007/s12311-024-01738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Recent functional MRI studies have implicated the cerebellum in working memory (WM) alongside the prefrontal cortex. Some findings indicate that the right cerebellum is activated during verbal tasks, while the left is engaged during visuospatial tasks, suggesting cerebellar lateralization in WM function. The cerebellum could be a potential target for non-invasive brain stimulation (NIBS) to enhance WM function in cognitive disorders. However, the comprehensive influence of cerebellar lateralization on different types of WM and the effect of stimulation over the unilateral or bilateral cerebellum remain uncertain. This study was to investigate the cerebellum's functional lateralization and its specific impact on various aspects of WM in a causal manner using unilateral or bilateral cerebellar continuous theta burst stimulation (cTBS), a form of inhibitroy NIBS. Twenty-four healthy participants underwent four sessions of cTBS targeting the left, right, or bilateral Crus I of the cerebellum, or a sham condition, in a controlled cross-over design. WM performance was assessed pre- and post-stimulation using neuropsychological tests, including the 3-back task, spatial WM task, and digit span task. Results indicated that cTBS over the bilateral and right cerebellum both led to a greater improvement in 3-back task performance compared to sham stimulation. Additionally, active cTBS over the bilateral cerebellum yielded better performance in the spatial WM task than sham stimulation. However, no significant differences were observed between stimulation conditions for the auditory digit span task. This study may provide novel causal evidence highlighting the specific involvement of the right and bilateral cerebellum in various types of WM. Specifically, the right cerebellum appears crucial for updating and tracking 3-back WM content, while spatial WM processes require the coordinated engagement of both cerebellar hemispheres.
Collapse
Affiliation(s)
- Guilan Huang
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Xin Wang
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Tingni Li
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong SAR, 999077, China
| | - Yi Xu
- Wuxi MaxRex Robotic Exoskeleton Limited, Wuxi, Jiangsu, 214151, China
| | - Yiyang Sheng
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hewei Wang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li Bian
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Kai Zheng
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Xinlei Xu
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Guofu Zhang
- Department of Geriatric Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214515, China.
| | - Bin Su
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Caili Ren
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
2
|
Mechtenberg H, Heffner CC, Myers EB, Guediche S. The Cerebellum Is Sensitive to the Lexical Properties of Words During Spoken Language Comprehension. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:757-773. [PMID: 39175786 PMCID: PMC11338305 DOI: 10.1162/nol_a_00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/30/2023] [Indexed: 08/24/2024]
Abstract
Over the past few decades, research into the function of the cerebellum has expanded far beyond the motor domain. A growing number of studies are probing the role of specific cerebellar subregions, such as Crus I and Crus II, in higher-order cognitive functions including receptive language processing. In the current fMRI study, we show evidence for the cerebellum's sensitivity to variation in two well-studied psycholinguistic properties of words-lexical frequency and phonological neighborhood density-during passive, continuous listening of a podcast. To determine whether, and how, activity in the cerebellum correlates with these lexical properties, we modeled each word separately using an amplitude-modulated regressor, time-locked to the onset of each word. At the group level, significant effects of both lexical properties landed in expected cerebellar subregions: Crus I and Crus II. The BOLD signal correlated with variation in each lexical property, consistent with both language-specific and domain-general mechanisms. Activation patterns at the individual level also showed that effects of phonological neighborhood and lexical frequency landed in Crus I and Crus II as the most probable sites, though there was activation seen in other lobules (especially for frequency). Although the exact cerebellar mechanisms used during speech and language processing are not yet evident, these findings highlight the cerebellum's role in word-level processing during continuous listening.
Collapse
Affiliation(s)
- Hannah Mechtenberg
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Christopher C. Heffner
- Department of Communicative Sciences and Disorders, University at Buffalo, Buffalo, NY, USA
| | - Emily B. Myers
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs, CT, USA
| | - Sara Guediche
- College of Science and Mathematics, Augusta University, Augusta, GA, USA
| |
Collapse
|
3
|
Tai Y, Shahsavarani S, Khan RA, Schmidt SA, Husain FT. An Inverse Relationship Between Gray Matter Volume and Speech-in-Noise Performance in Tinnitus Patients with Normal Hearing Sensitivity. J Assoc Res Otolaryngol 2023; 24:385-395. [PMID: 36869165 PMCID: PMC10335974 DOI: 10.1007/s10162-023-00895-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Speech-in-noise (SiN) recognition difficulties are often reported in patients with tinnitus. Although brain structural changes such as reduced gray matter (GM) volume in auditory and cognitive processing regions have been reported in the tinnitus population, it remains unclear how such changes influence speech understanding, such as SiN performance. In this study, pure-tone audiometry and Quick Speech-in-Noise test were conducted on individuals with tinnitus and normal hearing and hearing-matched controls. T1-weighted structural MRI images were obtained from all participants. After preprocessing, GM volumes were compared between tinnitus and control groups using whole-brain and region-of-interest analyses. Further, regression analyses were performed to examine the correlation between regional GM volume and SiN scores in each group. The results showed decreased GM volume in the right inferior frontal gyrus in the tinnitus group relative to the control group. In the tinnitus group, SiN performance showed a negative correlation with GM volume in the left cerebellum (Crus I/II) and the left superior temporal gyrus; no significant correlation between SiN performance and regional GM volume was found in the control group. Even with clinically defined normal hearing and comparable SiN performance relative to controls, tinnitus appears to change the association between SiN recognition and regional GM volume. This change may reflect compensatory mechanisms utilized by individuals with tinnitus who maintain behavioral performance.
Collapse
Affiliation(s)
- Yihsin Tai
- Department of Speech Pathology and Audiology, Ball State University, Muncie, IN, USA.
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Somayeh Shahsavarani
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Rafay A Khan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sara A Schmidt
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Fatima T Husain
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Liu D, Chen M, Lin Q, Li T, Chen X, Dai G, Wu X, Li J, Liu H, Liu P. Theta burst stimulation over left cerebellum does not modulate auditory feedback control of vocal production. Front Neurosci 2022; 16:1051629. [PMID: 36620446 PMCID: PMC9814006 DOI: 10.3389/fnins.2022.1051629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Accumulating evidence has shown significant contributions of the right cerebellum to auditory-motor integration for vocal production. Whether the left cerebellum is likewise involved in vocal motor control, however, remains unclear. Methods By applying neuronavigated continuous and intermittent theta burst stimulation (cTBS/iTBS) over the left cerebellar lobule VII (Crus I), the present event-related potential (ERP) study investigated whether the left cerebellum exerts causal effects in modulating auditory feedback control of vocal pitch production. After receiving cTBS, iTBS, or sham stimulation over the left cerebellum, a group of fifteen young adults produced sustained vowels while hearing their voice unexpectedly shifted in pitch upwards or downwards by 200 cents. The effects of cerebellar stimulation were assessed by measuring the vocal and ERP (N1/P2) responses to pitch perturbations across the conditions. Results When compared to sham stimulation, cTBS or iTBS over the left cerebellar lobule VII (Crus I) led to no systematic changes in vocal compensations for pitch perturbations in auditory feedback. Also, the cortical N1/P2 responses did not vary significantly across the three stimulation sessions. Conclusion These findings present the first neurobehavioral evidence suggesting that the left cerebellum is not causally associated with auditory feedback control of vocal production. Together with previously reported causal effects of the right cerebellum in modulating vocal pitch regulation, the present study lends support to the hypothesis that there is a functional lateralization of the cerebellum in vocal motor control though auditory feedback.
Collapse
Affiliation(s)
- Dongxu Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingyun Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Lin
- Department of Rehabilitation Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Tingni Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuqin Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,*Correspondence: Hanjun Liu,
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Peng Liu,
| |
Collapse
|
5
|
Yan H, Shan X, Li H, Liu F, Guo W. Abnormal spontaneous neural activity in hippocampal-cortical system of patients with obsessive-compulsive disorder and its potential for diagnosis and prediction of early treatment response. Front Cell Neurosci 2022; 16:906534. [PMID: 35910254 PMCID: PMC9334680 DOI: 10.3389/fncel.2022.906534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Early brain functional changes induced by pharmacotherapy in patients with obsessive-compulsive disorder (OCD) in relation to drugs per se or because of the impact of such drugs on the improvement of OCD remain unclear. Moreover, no neuroimaging biomarkers are available for diagnosis of OCD and prediction of early treatment response. We performed a longitudinal study involving 34 patients with OCD and 36 healthy controls (HCs). Patients with OCD received 5-week treatment with paroxetine (40 mg/d). Resting-state functional magnetic resonance imaging (fMRI), regional homogeneity (ReHo), support vector machine (SVM), and support vector regression (SVR) were applied to acquire and analyze the imaging data. Compared with HCs, patients with OCD had higher ReHo values in the right superior temporal gyrus and bilateral hippocampus/parahippocampus/fusiform gyrus/cerebellum at baseline. ReHo values in the left hippocampus and parahippocampus decreased significantly after treatment. The reduction rate (RR) of ReHo values was positively correlated with the RRs of the scores of Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and obsession. Abnormal ReHo values at baseline could serve as potential neuroimaging biomarkers for OCD diagnosis and prediction of early therapeutic response. This study highlighted the important role of the hippocampal-cortical system in the neuropsychological mechanism underlying OCD, pharmacological mechanism underlying OCD treatment, and the possibility of building models for diagnosis and prediction of early treatment response based on spontaneous activity in the hippocampal-cortical system.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
6
|
Noffs G, Boonstra FMC, Perera T, Kolbe SC, Stankovich J, Butzkueven H, Evans A, Vogel AP, van der Walt A. Acoustic Speech Analytics Are Predictive of Cerebellar Dysfunction in Multiple Sclerosis. THE CEREBELLUM 2021; 19:691-700. [PMID: 32556973 DOI: 10.1007/s12311-020-01151-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Speech production relies on motor control and cognitive processing and is linked to cerebellar function. In diseases where the cerebellum is impaired, such as multiple sclerosis (MS), speech abnormalities are common and can be detected by instrumental assessments. However, the potential of speech assessments to be used to monitor cerebellar impairment in MS remains unexplored. The aim of this study is to build an objectively measured speech score that reflects cerebellar function, pathology and quality of life in MS. Eighty-five people with MS and 21 controls participated in the study. Speech was independently assessed through objective acoustic analysis and blind expert listener ratings. Cerebellar function and overall disease disability were measured through validated clinical scores; cerebellar pathology was assessed via magnetic resonance imaging, and validated questionnaires informed quality of life. Selected speech variables were entered in a regression model to predict cerebellar function. The resulting model was condensed into one composite speech score and tested for prediction of abnormal 9-hole peg test (9HPT), and for correlations with the remaining cerebellar scores, imaging measurements and self-assessed quality of life. Slow rate of syllable repetition and increased free speech pause percentage were the strongest predictors of cerebellar impairment, complemented by phonatory instability. Those variables formed the acoustic composite score that accounted for 54% of variation in cerebellar function, correlated with cerebellar white matter volume (r = 0.3, p = 0.017), quality of life (r = 0.5, p < 0.001) and predicted an abnormal 9HPT with 85% accuracy. An objective multi-feature speech metric was highly representative of motor cerebellar impairment in MS.
Collapse
Affiliation(s)
- Gustavo Noffs
- Centre for Neuroscience of Speech, University of Melbourne, Melbourne, Australia. .,Department of Neurology, Royal Melbourne Hospital, Parkville, Australia.
| | - Frederique M C Boonstra
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Thushara Perera
- The Bionics Institute, East Melbourne, Australia.,Department of Medical Bionics, University of Melbourne, Melbourne, Australia
| | - Scott C Kolbe
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Jim Stankovich
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Andrew Evans
- Department of Neurology, Royal Melbourne Hospital, Parkville, Australia.,The Bionics Institute, East Melbourne, Australia
| | - Adam P Vogel
- Centre for Neuroscience of Speech, University of Melbourne, Melbourne, Australia.,The Bionics Institute, East Melbourne, Australia.,Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Redenlab Inc, Melbourne, Australia
| | - Anneke van der Walt
- Department of Neurology, Royal Melbourne Hospital, Parkville, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,The Bionics Institute, East Melbourne, Australia
| |
Collapse
|
7
|
Dellatolas G, Câmara-Costa H. The role of cerebellum in the child neuropsychological functioning. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:265-304. [PMID: 32958180 DOI: 10.1016/b978-0-444-64150-2.00023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter proposes a review of neuropsychologic and behavior findings in pediatric pathologies of the cerebellum, including cerebellar malformations, pediatric ataxias, cerebellar tumors, and other acquired cerebellar injuries during childhood. The chapter also contains reviews of the cerebellar mutism/posterior fossa syndrome, reported cognitive associations with the development of the cerebellum in typically developing children and subjects born preterm, and the role of the cerebellum in neurodevelopmental disorders such as autism spectrum disorders and developmental dyslexia. Cognitive findings in pediatric cerebellar disorders are considered in the context of known cerebellocerebral connections, internal cellular organization of the cerebellum, the idea of a universal cerebellar transform and computational internal models, and the role of the cerebellum in specific cognitive and motor functions, such as working memory, language, timing, or control of eye movements. The chapter closes with a discussion of the strengths and weaknesses of the cognitive affective syndrome as it has been described in children and some conclusions and perspectives.
Collapse
Affiliation(s)
- Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| |
Collapse
|
8
|
Rodríguez-Takeuchi S, Baena-Caldas G, Orejuela-Zapata J, Granados Sánchez A. Analysis of the pattern of functional activation of the cerebellum and its topographical correlation. RADIOLOGIA 2020. [DOI: 10.1016/j.rxeng.2020.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Rodríguez-Takeuchi S, Baena-Caldas G, Orejuela-Zapata J, Granados Sánchez A. Análisis del patrón de activación funcional del cerebelo y su correlación topográfica. RADIOLOGIA 2020; 62:298-305. [DOI: 10.1016/j.rx.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
|
10
|
Ciricugno A, Ferrari C, Rusconi ML, Cattaneo Z. The left posterior cerebellum is involved in orienting attention along the mental number line: An online-TMS study. Neuropsychologia 2020; 143:107497. [PMID: 32413432 DOI: 10.1016/j.neuropsychologia.2020.107497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Although converging evidence suggests that the posterior cerebellum is involved in visuospatial functions and in the orienting of attention, a clear topography of cerebellar regions causally involved in the control of spatial attention is still missing. In this study, we aimed to shed light on this issue by using online neuronavigated transcranial magnetic stimulation (TMS) to temporarily interfere with posterior medial (Vermis lobule VII) and left lateral (Crus I/II) cerebellar activity during a task measuring visuospatial (landmark task, Experiment 1 and 2) and representational (number bisection task, Experiment 2) asymmetries in the orienting of attention. At baseline, participants showed attentional biases consistent with the literature, that is a leftward and upward bias with horizontal and vertical lines, respectively, and a leftward bias in number bisection. Critically, TMS over the left cerebellar hemisphere significantly counteracted pseudoneglect in the number bisection task, whilst not affecting attentional biases in the landmark task. In turn, TMS over the posterior vermis did not affect performance in either task. Taken together, our findings suggest that the left posterior cerebellar hemisphere (but not the posterior vermis) is a critical node of an extended brain network subtending the control of spatial attention, at least when attention needs to be allocated to an internal representational space and a certain degree of mental manipulation is required (as in the number bisection task).
Collapse
Affiliation(s)
| | - Chiara Ferrari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Maria Luisa Rusconi
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, Pavia, Italy; Department of Psychology, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
11
|
van den Berg B, de Bruin ABH, Marsman JBC, Lorist MM, Schmidt HG, Aleman A, Snoek JW. Thinking fast or slow? Functional magnetic resonance imaging reveals stronger connectivity when experienced neurologists diagnose ambiguous cases. Brain Commun 2020; 2:fcaa023. [PMID: 32954284 PMCID: PMC7425520 DOI: 10.1093/braincomms/fcaa023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/24/2019] [Accepted: 01/24/2020] [Indexed: 11/22/2022] Open
Abstract
For ∼40 years, thinking about reasoning has been dominated by dual-process theories. This model, consisting of two distinct types of human reasoning, one fast and effortless and the other slow and deliberate, has also been applied to medical diagnosis. Medical experts are trained to diagnose patients based on their symptoms. When symptoms are prototypical for a certain diagnosis, practitioners may rely on fast, recognition-based reasoning. However, if they are confronted with ambiguous clinical information slower, analytical reasoning is required. To examine the neural underpinnings of these two hypothesized forms of reasoning, 16 highly experienced clinical neurologists were asked to diagnose two types of medical cases, straightforward and ambiguous cases, while functional magnetic resonance imaging was being recorded. Compared with reading control sentences, diagnosing cases resulted in increased activation in brain areas typically found to be active during reasoning such as the caudate nucleus and frontal and parietal cortical regions. In addition, we found vast increased activity in the cerebellum. Regarding the activation differences between the two types of reasoning, no pronounced differences were observed in terms of regional activation. Notable differences were observed, though, in functional connectivity: cases containing ambiguous information showed stronger connectivity between specific regions in the frontal, parietal and temporal cortex in addition to the cerebellum. Based on these results, we propose that the higher demands in terms of controlled cognitive processing during analytical medical reasoning may be subserved by stronger communication between key regions for detecting and resolving uncertainty.
Collapse
Affiliation(s)
- Berry van den Berg
- Department of Experimental Psychology, University of Groningen, 9712 TS Groningen, The Netherlands
| | - Anique B H de Bruin
- School of Health Professions Education, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jan-Bernard C Marsman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Cognitive Neuroscience Center, 9700 AD Groningen, The Netherlands
| | - Monicque M Lorist
- Department of Experimental Psychology, University of Groningen, 9712 TS Groningen, The Netherlands.,Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Cognitive Neuroscience Center, 9700 AD Groningen, The Netherlands
| | - Henk G Schmidt
- Department of Psychology, Faculty of Social Sciences, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Cognitive Neuroscience Center, 9700 AD Groningen, The Netherlands
| | - Jos W Snoek
- Center for Education Development and Research in Health Professions, University of Groningen and University Medical Center Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands.,Department of Neurology, Martini Hospital Groningen, 9700 RM Groningen, The Netherlands
| |
Collapse
|
12
|
Asaridou SS, Demir-Lira ÖE, Goldin-Meadow S, Levine SC, Small SL. Language development and brain reorganization in a child born without the left hemisphere. Cortex 2020; 127:290-312. [PMID: 32259667 DOI: 10.1016/j.cortex.2020.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/08/2019] [Accepted: 02/19/2020] [Indexed: 11/18/2022]
Abstract
We present a case of a 14-year-old girl born without the left hemisphere due to prenatal left internal carotid occlusion. We combined longitudinal language and cognitive assessments with functional and structural neuroimaging data to situate the case within age-matched, typically developing children. Despite having had a delay in getting language off the ground during the preschool years, our case performed within the normal range on a variety of standardized language tests, and exceptionally well on phonology and word reading, during the elementary and middle school years. Moreover, her spatial, number, and reasoning skills also fell in the average to above-average range based on assessments during these time periods. Functional MRI data revealed activation in right fronto-temporal areas when listening to short stories, resembling the bilateral activation patterns in age-matched typically developing children. Diffusion MRI data showed significantly larger dorsal white matter association tracts (the direct and anterior segments of the arcuate fasciculus) connecting areas active during language processing in her remaining right hemisphere, compared to either hemisphere in control children. We hypothesize that these changes in functional and structural brain organization are the result of compensatory brain plasticity, manifesting in unusually large right dorsal tracts, and exceptional performance in phonology, speech repetition, and decoding. More specifically, we posit that our case's large white matter connections might have played a compensatory role by providing fast and reliable transfer of information between cortical areas for language in the right hemisphere.
Collapse
Affiliation(s)
- Salomi S Asaridou
- University of California, Irvine, Department of Neurology, Biological Sciences III, Irvine, CA, USA.
| | - Ö Ece Demir-Lira
- The University of Iowa, Department of Psychological and Brain Sciences, DeLTA Center, Iowa Neuroscience Institute, Iowa City, IA, USA
| | - Susan Goldin-Meadow
- Department of Psychology, Center for Gesture, Sign and Language, University of Chicago, Chicago, IL, USA
| | - Susan C Levine
- University of Chicago, Department of Psychology, Chicago, IL, USA
| | - Steven L Small
- University of California, Irvine, Department of Neurology, Biological Sciences III, Irvine, CA, USA
| |
Collapse
|
13
|
Molinari M, Masciullo M. The Implementation of Predictions During Sequencing. Front Cell Neurosci 2019; 13:439. [PMID: 31649509 PMCID: PMC6794410 DOI: 10.3389/fncel.2019.00439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Optimal control mechanisms require prediction capabilities. If one cannot predict the consequences of a motor act or behavior, one will continually collide with walls or become a social pariah. "Looking into the future" is thus one of the most important prerequisites for smooth movements and social interactions. To achieve this goal, the brain must constantly predict future events. This principle applies to all domains of information processing, including motor and cognitive control, as well as the development of decision-making skills, theory of mind, and virtually all cognitive processes. Sequencing is suggested to support the predictive capacity of the brain. To recognize that events are related, the brain must discover links among them in the spatiotemporal domain. To achieve this, the brain must often hold one event in working memory and compare it to a second one, and the characteristics of the two must be compared and correctly placed in space and time. Among the different brain structures involved in sequencing, the cerebellum has been proposed to have a central function. We have suggested that the operational mode of the cerebellum is based on "sequence detection" and that this process is crucial for prediction. Patterns of temporally or spatially structured events are conveyed to the cerebellum via the pontine nuclei and compared with actual ones conveyed through the climbing fibers olivary inputs. Through this interaction, data on previously encountered sequences can be obtained and used to generate internal models from which predictions can be made. This mechanism would allow the cerebellum not only to recognize sequences but also to detect sequence violations. Cerebellar pattern detection and prediction would thus be a means to allow feedforward control based on anticipation. We will argue that cerebellar sequencing allows implementation of prediction by setting the correct excitatory levels in defined brain areas to implement the adaptive response for a given pattern of stimuli that embeds sufficient information to be recognized as a previously encountered template. Here, we will discuss results from human and animal studies and correlate them with the present understanding of cerebellar function in cognition and behavior.
Collapse
|
14
|
Marvel CL, Morgan OP, Kronemer SI. How the motor system integrates with working memory. Neurosci Biobehav Rev 2019; 102:184-194. [PMID: 31039359 PMCID: PMC6604620 DOI: 10.1016/j.neubiorev.2019.04.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Working memory is vital for basic functions in everyday life. During working memory, one holds a finite amount of information in mind until it is no longer required or when resources to maintain this information are depleted. Convergence of neuroimaging data indicates that working memory is supported by the motor system, and in particular, by regions that are involved in motor planning and preparation, in the absence of overt movement. These "secondary motor" regions are physically located between primary motor and non-motor regions, within the frontal lobe, cerebellum, and basal ganglia, creating a functionally organized gradient. The contribution of secondary motor regions to working memory may be to generate internal motor traces that reinforce the representation of information held in mind. The primary aim of this review is to elucidate motor-cognitive interactions through the lens of working memory using the Sternberg paradigm as a model and to suggest origins of the motor-cognitive interface. In addition, we discuss the implications of the motor-cognitive relationship for clinical groups with motor network deficits.
Collapse
Affiliation(s)
- Cherie L Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Owen P Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharif I Kronemer
- Department of Neurology, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Nissim M, Hutzler Y, Goldstein A. A walk on water: comparing the influence of Ai Chi and Tai Chi on fall risk and verbal working memory in ageing people with intellectual disabilities - a randomised controlled trial. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2019; 63:603-613. [PMID: 30775818 DOI: 10.1111/jir.12602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Aquatic motor intervention has been found to be effective in reducing falls and improving verbal working memory among the general population. However, effects among older adults with intellectual disabilities (ID) have never been explored. The aim of this study was to examine the effects of aquatic motor intervention on fall risk and verbal working memory among older adults with ID. METHODS Forty-one older adults with mild to moderate ID (age: 50-66 years) were randomly assigned to 14 weeks of aquatic motor intervention (Ai Chi: N = 19) or identical on-land motor intervention (Tai Chi: N = 22). Fall risk, measured with the Tinetti balance assessment tool (TBAT), and verbal working memory, measured with the digit span forward test, were assessed pre-intervention, after 7 weeks of intervention and post-intervention. RESULTS Study results indicate positive effects of both aquatic and on-land motor intervention on TBAT fall risk score, while the aquatic motor intervention group improved TBAT fall risk score quicker as compared with the on-land motor intervention group. Moreover, the lower the pre-intervention TBAT score was, the higher the improvement. In addition, study findings support the positive effects of aquatic motor intervention on verbal working memory ability as measured with the digit span forward test. CONCLUSIONS Motor intervention, and particularly in an aquatic environment, can potentially reduce fall risk. Aquatic motor intervention may help to improve verbal working memory among older adults with ID.
Collapse
Affiliation(s)
- M Nissim
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Y Hutzler
- The Academic College at Wingate, Netanya, Israel
| | - A Goldstein
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
16
|
Sheu YS, Liang Y, Desmond JE. Disruption of Cerebellar Prediction in Verbal Working Memory. Front Hum Neurosci 2019; 13:61. [PMID: 30846935 PMCID: PMC6393359 DOI: 10.3389/fnhum.2019.00061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence suggests that the right cerebellum contributes to verbal working memory, but the functional role of this contribution remains unclear. In an established theory of motor control, the cerebellum is thought to predict sensory consequences of movements through an internal "forward model." Here, we hypothesize a similar predictive process can generalize to cerebellar non-motor function, and that the right cerebellum plays a predictive role that is beneficial for rapidly engaging the phonological loop in verbal working memory. To test this hypothesis, double-pulse transcranial magnetic stimulation (TMS) was administered over either the right cerebellum or right occipital lobe (control site), on half the trials, to interrupt the rehearsal of a 6-letter sequence. We found that cerebellar stimulation resulted in greater errors in participants' report of the letter in the current position. Additional analyses revealed that immediately after cerebellar TMS, participants were more likely to use out of date information to predict the next letter in the sequence. This pattern of errors is consistent with TMS causing a temporary disruption of state estimation and cerebellar forward model function, leading to prediction errors in the phonological loop.
Collapse
Affiliation(s)
- Yi-Shin Sheu
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu Liang
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Peterburs J, Blevins LC, Sheu YS, Desmond JE. Cerebellar contributions to sequence prediction in verbal working memory. Brain Struct Funct 2019; 224:485-499. [PMID: 30390152 PMCID: PMC6373538 DOI: 10.1007/s00429-018-1784-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023]
Abstract
Verbal working memory is one of the most studied non-motor functions with robust cerebellar involvement. While the superior cerebellum (lobule VI) has been associated with articulatory control, the inferior cerebellum (lobule VIIIa) has been linked to phonological storage. The present study was aimed to elucidate the differential roles of these regions by investigating whether the cerebellum might contribute to verbal working memory via predictions based on sequence learning/detection. 19 healthy adult subjects completed an fMRI-based Sternberg task which included repeating and novel letter sequences that were phonologically similar or dissimilar. It was hypothesized that learning a repeating sequence of study letters would reduce phonological storage demand and associated right inferior cerebellar activations and that this effect would be modulated by phonological similarity of the study letters. Specifically, while increased phonological storage demand due to high phonological similarity was expected to be reflected in increased right inferior cerebellar activations for similar relative to dissimilar study letters, the reduction in activation for repeating relative to novel sequences was expected to be more profound for phonologically similar than for dissimilar study letters, especially at higher memory load. Results confirmed the typical effects of cognitive load (5 vs. 2 study letters) and phonological similarity in several cerebellar and neocortical brain regions as well as in behavioral data (accuracy and response time). Importantly, activations in superior and inferior cerebellar regions were differentially modulated as a function of similarity and sequence novelty, indicating that particularly lobule VIIIa may contribute to verbal working memory by generating predictions of letter sequences that reduce the likelihood of phonological loop failure before stored items need to be retrieved. The present study is consistent with other investigations that support prediction, which can be based on sequence learning or detection, as an overarching cerebellar function.
Collapse
Affiliation(s)
- Jutta Peterburs
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Psychology, Institute of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Laura C Blevins
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychology, American University, Washington, DC, USA
| | - Yi-Shin Sheu
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John E Desmond
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Varoquaux G, Schwartz Y, Poldrack RA, Gauthier B, Bzdok D, Poline JB, Thirion B. Atlases of cognition with large-scale human brain mapping. PLoS Comput Biol 2018; 14:e1006565. [PMID: 30496171 PMCID: PMC6289578 DOI: 10.1371/journal.pcbi.1006565] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 12/11/2018] [Accepted: 10/15/2018] [Indexed: 11/19/2022] Open
Abstract
To map the neural substrate of mental function, cognitive neuroimaging relies on controlled psychological manipulations that engage brain systems associated with specific cognitive processes. In order to build comprehensive atlases of cognitive function in the brain, it must assemble maps for many different cognitive processes, which often evoke overlapping patterns of activation. Such data aggregation faces contrasting goals: on the one hand finding correspondences across vastly different cognitive experiments, while on the other hand precisely describing the function of any given brain region. Here we introduce a new analysis framework that tackles these difficulties and thereby enables the generation of brain atlases for cognitive function. The approach leverages ontologies of cognitive concepts and multi-label brain decoding to map the neural substrate of these concepts. We demonstrate the approach by building an atlas of functional brain organization based on 30 diverse functional neuroimaging studies, totaling 196 different experimental conditions. Unlike conventional brain mapping, this functional atlas supports robust reverse inference: predicting the mental processes from brain activity in the regions delineated by the atlas. To establish that this reverse inference is indeed governed by the corresponding concepts, and not idiosyncrasies of experimental designs, we show that it can accurately decode the cognitive concepts recruited in new tasks. These results demonstrate that aggregating independent task-fMRI studies can provide a more precise global atlas of selective associations between brain and cognition. Cognitive neuroscience uses neuroimaging to identify brain systems engaged in specific cognitive tasks. However, linking unequivocally brain systems with cognitive functions is difficult: each task probes only a small number of facets of cognition, while brain systems are often engaged in many tasks. We develop a new approach to generate a functional atlas of cognition, demonstrating brain systems selectively associated with specific cognitive functions. This approach relies upon an ontology that defines specific cognitive functions and the relations between them, along with an analysis scheme tailored to this ontology. Using a database of thirty neuroimaging studies, we show that this approach provides a highly-specific atlas of mental functions, and that it can decode the mental processes engaged in new tasks.
Collapse
Affiliation(s)
- Gaël Varoquaux
- Parietal, Inria, Saclay, France
- Neurospin, CEA, Gif sur Yvette, France
- STIC department, Université Paris-Saclay, Saclay, France
| | - Yannick Schwartz
- Parietal, Inria, Saclay, France
- Neurospin, CEA, Gif sur Yvette, France
- STIC department, Université Paris-Saclay, Saclay, France
| | | | - Baptiste Gauthier
- Neurospin, CEA, Gif sur Yvette, France
- Cognitive Neuroimaging Unit, INSERM, Gif sur Yvette, France
| | - Danilo Bzdok
- Parietal, Inria, Saclay, France
- Neurospin, CEA, Gif sur Yvette, France
- JARA-BRAIN, Jülich-Aachen Research Alliance, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52072 Aachen, Germany
| | - Jean-Baptiste Poline
- Montreal neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Bertrand Thirion
- Parietal, Inria, Saclay, France
- Neurospin, CEA, Gif sur Yvette, France
- STIC department, Université Paris-Saclay, Saclay, France
- * E-mail:
| |
Collapse
|
19
|
Zheng Z, Li R, Xiao F, He R, Zhang S, Li J. Intrinsic spontaneous brain activity predicts individual variability in associative memory in older adults. Psych J 2018; 7:77-91. [DOI: 10.1002/pchj.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 03/08/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Zhiwei Zheng
- Center on Aging Psychology, CAS Key Laboratory of Mental Health; Institute of Psychology, Chinese Academy of Sciences; Beijing China
- Department of Psychology; University of Chinese Academy of Sciences; Beijing China
| | - Rui Li
- Center on Aging Psychology, CAS Key Laboratory of Mental Health; Institute of Psychology, Chinese Academy of Sciences; Beijing China
- Department of Psychology; University of Chinese Academy of Sciences; Beijing China
- Magnetic Resonance Imaging Research Center; Institute of Psychology, Chinese Academy of Sciences; Beijing China
| | | | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science; Institute of Biophysics, Chinese Academy of Sciences; Beijing China
| | | | - Juan Li
- Center on Aging Psychology, CAS Key Laboratory of Mental Health; Institute of Psychology, Chinese Academy of Sciences; Beijing China
- Department of Psychology; University of Chinese Academy of Sciences; Beijing China
- Magnetic Resonance Imaging Research Center; Institute of Psychology, Chinese Academy of Sciences; Beijing China
- State Key Laboratory of Brain and Cognitive Science; Institute of Biophysics, Chinese Academy of Sciences; Beijing China
| |
Collapse
|
20
|
Molinari M, Masciullo M, Bulgheroni S, D'Arrigo S, Riva D. Cognitive aspects: sequencing, behavior, and executive functions. HANDBOOK OF CLINICAL NEUROLOGY 2018; 154:167-180. [PMID: 29903438 DOI: 10.1016/b978-0-444-63956-1.00010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The question posed today is not whether the cerebellum plays a role in cognition, but instead, how the cerebellum contributes to cognitive processes, even in the developmental age. The central role of the cerebellum in many areas of human abilities, motor as well as cognitive, in childhood as well as in adulthood, is well established but cerebellar basic functioning is still not clear and is much debated. Of particular interest is the changing face of cerebellar influence on motor, higher cognitive, and behavioral functioning when adult and developmental lesions are compared. The idea that the cerebellum might play quite different roles during development and in adulthood has been proposed, and evidence from experimental and clinical literature has been provided, including for sequencing, behavioral aspects, and executive functions Still, more data are needed to fully understand the changes of cerebrocerebellar interactions within the segregated loops which connect cerebrum and cerebellum, not only between childhood and adulthood but also in health and disease.
Collapse
Affiliation(s)
- Marco Molinari
- Department of Neurorehabilitation, Fondazione Santa Lucia, Rome, Italy.
| | - Marcella Masciullo
- Translational Clinical Research Division, Fondazione Santa Lucia, Rome, Italy
| | - Sara Bulgheroni
- Translational Clinical Research Division, Fondazione Santa Lucia, Rome, Italy; Carlo Besta Neurological Institute, Milan, Italy
| | - Stefano D'Arrigo
- Translational Clinical Research Division, Fondazione Santa Lucia, Rome, Italy; Carlo Besta Neurological Institute, Milan, Italy
| | - Daria Riva
- Translational Clinical Research Division, Fondazione Santa Lucia, Rome, Italy; Carlo Besta Neurological Institute, Milan, Italy
| |
Collapse
|
21
|
The Role of the Pediatric Cerebellum in Motor Functions, Cognition, and Behavior: A Clinical Perspective. Neuroimaging Clin N Am 2017; 26:317-29. [PMID: 27423796 DOI: 10.1016/j.nic.2016.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article discusses the contribution of the pediatric cerebellum to locomotion, ocular motor control, speech articulation, cognitive function, and behavior modulation. Hypotheses on cerebellar function are discussed. Clinical features in patients with cerebellar disorders are outlined. Cerebellar abnormalities in cognitive and behavioral disorders are detailed.
Collapse
|
22
|
Abstract
Essential tremor (ET) might be a family of diseases unified by the presence of kinetic tremor, but also showing etiological, pathological, and clinical heterogeneity. In this review, we will describe the most significant clinical evidence, which suggests that ET is linked to the cerebellum. Data for this review were identified by searching PUBMED (January 1966 to May 2015) crossing the terms "essential tremor" (ET) and "cerebellum," which yielded 201 entries, 11 of which included the term "cerebellum" in the article title. This was supplemented by articles in the author's files that pertained to this topic. The wide spectrum of clinical features of ET that suggest that it originates as a cerebellar or cerebellar outflow problem include the presence of intentional tremor, gait and balance abnormalities, subtle features of dysarthria, and oculomotor abnormalities, as well as deficits in eye-hand coordination, motor learning deficits, incoordination during spiral drawing task, abnormalities in motor timing and visual reaction time, impairment of social abilities, improvement in tremor after cerebellar stroke, efficacy of deep brain stimulation (which blocks cerebellar outflow), and cognitive dysfunction. It is unlikely, however, that cerebellar dysfunction, per se, fully explains ET-associated dementia, because the cognitive deficits that have been described in patients with cerebellar lesions are generally mild. Overall, a variety of clinical findings suggest that in at least a sizable proportion of patients with ET, there is an underlying abnormality of the cerebellum and/or its pathways.
Collapse
|
23
|
McCarthy MM, Wright CL. Convergence of Sex Differences and the Neuroimmune System in Autism Spectrum Disorder. Biol Psychiatry 2017; 81:402-410. [PMID: 27871670 PMCID: PMC5285451 DOI: 10.1016/j.biopsych.2016.10.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023]
Abstract
The male bias in autism spectrum disorder incidence is among the most extreme of all neuropsychiatric disorders, yet the origins of the sex difference remain obscure. Developmentally, males are exposed to high levels of testosterone and its byproduct, estradiol. Together these steroids modify the course of brain development by altering neurogenesis, cell death, migration, differentiation, dendritic and axonal growth, synaptogenesis, and synaptic pruning, all of which can be deleteriously impacted during the course of developmental neuropsychiatric disorders. Elucidating the cellular mechanisms by which steroids modulate brain development provides valuable insights into how these processes may go awry. An emerging theme is the role of inflammatory signaling molecules and the innate immune system in directing brain masculinization, the evidence for which we review here. Evidence is also emerging that the neuroimmune system is overactivated in individuals with autism spectrum disorder. These combined observations lead us to propose that the natural process of brain masculinization puts males at risk by moving them closer to a vulnerability threshold that could more easily be breached by inflammation during critical periods of brain development. Two brain regions are highlighted: the preoptic area and the cerebellum. Both are developmentally regulated by the inflammatory prostaglandin E2, but in different ways. Microglia, innate immune cells of the brain, and astrocytes are also critical contributors to masculinization and illustrate the importance of nonneuronal cells to the health of the developing brain.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Christopher L Wright
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Lametti DR, Oostwoud Wijdenes L, Bonaiuto J, Bestmann S, Rothwell JC. Cerebellar tDCS dissociates the timing of perceptual decisions from perceptual change in speech. J Neurophysiol 2016; 116:2023-2032. [PMID: 27489368 PMCID: PMC5102311 DOI: 10.1152/jn.00433.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies suggest that the cerebellum might play a role in both speech perception and speech perceptual learning. However, it remains unclear what this role is: does the cerebellum help shape the perceptual decision, or does it contribute to the timing of perceptual decisions? To test this, we used transcranial direct current stimulation (tDCS) in combination with a speech perception task. Participants experienced a series of speech perceptual tests designed to measure and then manipulate (via training) their perception of a phonetic contrast. One group received cerebellar tDCS during speech perceptual learning, and a different group received sham tDCS during the same task. Both groups showed similar learning-related changes in speech perception that transferred to a different phonetic contrast. For both trained and untrained speech perceptual decisions, cerebellar tDCS significantly increased the time it took participants to indicate their decisions with a keyboard press. By analyzing perceptual responses made by both hands, we present evidence that cerebellar tDCS disrupted the timing of perceptual decisions, while leaving the eventual decision unaltered. In support of this conclusion, we use the drift diffusion model to decompose the data into processes that determine the outcome of perceptual decision-making and those that do not. The modeling suggests that cerebellar tDCS disrupted processes unrelated to decision-making. Taken together, the empirical data and modeling demonstrate that right cerebellar tDCS dissociates the timing of perceptual decisions from perceptual change. The results provide initial evidence in healthy humans that the cerebellum critically contributes to speech timing in the perceptual domain.
Collapse
Affiliation(s)
- Daniel R Lametti
- Department of Experimental Psychology, The University of Oxford, Oxford, United Kingdom;
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | | | - James Bonaiuto
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
25
|
St John T, Estes AM, Dager SR, Kostopoulos P, Wolff JJ, Pandey J, Elison JT, Paterson SJ, Schultz RT, Botteron K, Hazlett H, Piven J. Emerging Executive Functioning and Motor Development in Infants at High and Low Risk for Autism Spectrum Disorder. Front Psychol 2016; 7:1016. [PMID: 27458411 PMCID: PMC4932099 DOI: 10.3389/fpsyg.2016.01016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
Abstract
Existing evidence suggests executive functioning (EF) deficits may be present in children with autism spectrum disorder (ASD) by 3 years of age. It is less clear when, prior to 3 years, EF deficits may emerge and how EF unfold over time. The contribution of motor skill difficulties to poorer EF in children with ASD has not been systematically studied. We investigated the developmental trajectory of EF in infants at high and low familial risk for ASD (HR and LR) and the potential associations between motor skills, diagnostic group, and EF performance. Participants included 186 HR and 76 LR infants. EF (A-not-B), motor skills (Fine and Gross Motor), and cognitive ability were directly assessed at 12 months and 24 months of age. Participants were directly evaluated for ASD at 24 months using DSM-IV-TR criteria and categorized as HR-ASD, HR-Negative, and LR-Negative. HR-ASD and HR-Negative siblings demonstrated less improvement in EF over time compared to the LR-Negative group. Motor skills were associated with group and EF performance at 12 months. No group differences were found at 12 months, but at 24 months, the HR-ASD and HR-Negative groups performed worse than the LR-Negative group overall after controlling for visual reception and maternal education. On reversal trials, the HR-ASD group performed worse than the LR-Negative group. Motor skills were associated with group and EF performance on reversal trials at 24 months. Findings suggest that HR siblings demonstrate altered EF development and that motor skills may play an important role in this process.
Collapse
Affiliation(s)
- Tanya St John
- Speech and Hearing Sciences, University of WashingtonSeattle, WA, USA; UW Autism Center, Center on Human Development and Disability, University of WashingtonSeattle, WA, USA
| | - Annette M Estes
- Speech and Hearing Sciences, University of WashingtonSeattle, WA, USA; UW Autism Center, Center on Human Development and Disability, University of WashingtonSeattle, WA, USA
| | - Stephen R Dager
- UW Autism Center, Center on Human Development and Disability, University of WashingtonSeattle, WA, USA; Department of Radiology, University of WashingtonSeattle, WA, USA
| | - Penelope Kostopoulos
- McConnell Brain Imaging Centre, Montreal Neurological Institute Montreal, CA, USA
| | - Jason J Wolff
- Department of Educational Psychology, University of Minnesota Minneapolis, MN, USA
| | - Juhi Pandey
- Department of Pediatrics, The Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Philadelphia, PA, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota Minneapolis, MN, USA
| | - Sarah J Paterson
- Department of Pediatrics, The Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Philadelphia, PA, USA
| | - Robert T Schultz
- Department of Pediatrics, The Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Philadelphia, PA, USA
| | - Kelly Botteron
- Department of Psychiatry, Washington University School of Medicine Saint Louis, MO, USA
| | - Heather Hazlett
- Carolina Institute for Developmental DisabilitiesChapel Hill, NC, USA; Department of Psychiatry, University of North CarolinaChapel Hill, NC
| | - Joseph Piven
- Carolina Institute for Developmental DisabilitiesChapel Hill, NC, USA; Department of Psychiatry, University of North CarolinaChapel Hill, NC
| |
Collapse
|
26
|
Hill AT, Fitzgerald PB, Hoy KE. Effects of Anodal Transcranial Direct Current Stimulation on Working Memory: A Systematic Review and Meta-Analysis of Findings From Healthy and Neuropsychiatric Populations. Brain Stimul 2016; 9:197-208. [DOI: 10.1016/j.brs.2015.10.006] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/25/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
|
27
|
Duggirala SX, Saharan S, Raghunathan P, Mandal PK. Stimulus-dependent modulation of working memory for identity monitoring: A functional MRI study. Brain Cogn 2016; 102:55-64. [DOI: 10.1016/j.bandc.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 12/05/2015] [Accepted: 12/17/2015] [Indexed: 11/28/2022]
|
28
|
Dual task effect on postural control in patients with degenerative cerebellar disorders. CEREBELLUM & ATAXIAS 2015; 2:6. [PMID: 26331049 PMCID: PMC4552271 DOI: 10.1186/s40673-015-0025-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/13/2022]
Abstract
Background The cerebellum plays an important role for balance control and the coordination of voluntary movements. Beyond that there is growing evidence that the cerebellum is also involved in cognitive functions. How ataxic motor symptoms are influenced by simultaneous performance of a cognitive task, however, has rarely been assessed and some of the findings are contradictory. We assessed stance in 20 patients with adult onset degenerative almost purely cerebellar disorders and 20 healthy controls during single and dual task conditions (verbal working memory task). To objectively measure postural sway and the impact of somatosensory, visual and vestibular inputs we used static and dynamic posturography with the Sensory Organization Test (SOT). Results In both groups, cerebellar patients and controls, dual tasking reduced all sway parameters. Reduction of sway path was higher in cerebellar patients and increased with the difficulty of the postural task. The frequency of falls was higher in the patients group especially during the more challenging conditions and dual task performance in particular increased the risk of falls in cerebellar patients. Conclusion Dual task conditions had a larger impact on sway parameters in patients with chronic cerebellar disorders than in healthy controls and lead to an increased risk of falls. As performing two tasks simultaneously is common and therefore important in daily life dual task exercises should be part of physical therapy programs for cerebellar patients.
Collapse
|
29
|
Perez-Pouchoulen M, VanRyzin JW, McCarthy MM. Morphological and Phagocytic Profile of Microglia in the Developing Rat Cerebellum. eNeuro 2015; 2:ENEURO.0036-15.2015. [PMID: 26464992 PMCID: PMC4596010 DOI: 10.1523/eneuro.0036-15.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
Abstract
Microglia are being increasingly recognized as playing important roles in neurodevelopment. The cerebellum matures postnatally, undergoing major growth, but the role of microglia in the developing cerebellum is not well understood. Using the laboratory rat we quantified and morphologically categorized microglia throughout the vermis and across development using a design-based unbiased stereology method. We found that microglial morphology changed from amoeboid to ramified during the first 3 postnatal weeks in a region specific manner. These morphological changes were accompanied by the sudden appearance of phagocytic cups during the third postnatal week from P17 to P19, with an approximately fourfold increase compared with the first week, followed by a prompt decline at the end of the third week. The microglial phagocytic cups were significantly higher in the granular layer (∼69%) than in the molecular layer (ML; ∼31%) during a 3 d window, and present on ∼67% of microglia with thick processes and ∼33% of microglia with thin processes. Similar proportions of phagocytic cups associated to microglia with either thick or thin processes were found in the ML. We observed cell nuclei fragmentation and cleaved caspase-3 expression within some microglial phagocytic cups, presumably from dying granule neurons. At P17 males showed an approximately twofold increase in microglia with thin processes compared with females. Our findings indicate a continuous process of microglial maturation and a nonuniform distribution of microglia in the cerebellar cortex that implicates microglia as an important cellular component of the developing cerebellum.
Collapse
Affiliation(s)
- Miguel Perez-Pouchoulen
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Margaret M. McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
30
|
van Dam WO, Decker SL, Durbin JS, Vendemia JMC, Desai RH. Resting state signatures of domain and demand-specific working memory performance. Neuroimage 2015; 118:174-82. [PMID: 25980975 DOI: 10.1016/j.neuroimage.2015.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022] Open
Abstract
Working memory (WM) is one of the key constructs in understanding higher-level cognition. We examined whether patterns of activity in the resting state of individual subjects are correlated with their off-line working and short-term memory capabilities. Participants completed a resting-state fMRI scan and off-line working and short-term memory (STM) tests with both verbal and visual materials. We calculated fractional amplitude of low frequency fluctuations (fALFF) from the resting state data, and also computed connectivity between seeds placed in frontal and parietal lobes. Correlating fALFF values with behavioral measures showed that the fALFF values in a widespread fronto-parietal network during rest were positively correlated with a combined memory measure. In addition, STM showed a significant correlation with fALFF within the right angular gyrus and left middle occipital gyrus, whereas WM was correlated with fALFF values within the right IPS and left dorsomedial cerebellar cortex. Furthermore, verbal and visuospatial memory capacities were associated with dissociable patterns of low-frequency fluctuations. Seed-based connectivity showed correlations with the verbal WM measure in the left hemisphere, and with the visual WM measure in the right hemisphere. These findings contribute to our understanding of how differences in spontaneous low-frequency fluctuations at rest are correlated with differences in cognitive performance.
Collapse
Affiliation(s)
| | - Scott L Decker
- Department of Psychology, University of South Carolina, USA
| | | | | | - Rutvik H Desai
- Department of Psychology, University of South Carolina, USA.
| |
Collapse
|
31
|
Kearney-Ramos TE, Fausett JS, Gess JL, Reno A, Peraza J, Kilts CD, James GA. Merging clinical neuropsychology and functional neuroimaging to evaluate the construct validity and neural network engagement of the n-back task. J Int Neuropsychol Soc 2014; 20:736-50. [PMID: 24963641 PMCID: PMC4290162 DOI: 10.1017/s135561771400054x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The n-back task is a widely used neuroimaging paradigm for studying the neural basis of working memory (WM); however, its neuropsychometric properties have received little empirical investigation. The present study merged clinical neuropsychology and functional magnetic resonance imaging (fMRI) to explore the construct validity of the letter variant of the n-back task (LNB) and to further identify the task-evoked networks involved in WM. Construct validity of the LNB task was investigated using a bootstrapping approach to correlate LNB task performance across clinically validated neuropsychological measures of WM to establish convergent validity, as well as measures of related but distinct cognitive constructs (i.e., attention and short-term memory) to establish discriminant validity. Independent component analysis (ICA) identified brain networks active during the LNB task in 34 healthy control participants, and general linear modeling determined task-relatedness of these networks. Bootstrap correlation analyses revealed moderate to high correlations among measures expected to converge with LNB (|ρ|≥ 0.37) and weak correlations among measures expected to discriminate (|ρ|≤ 0.29), controlling for age and education. ICA identified 35 independent networks, 17 of which demonstrated engagement significantly related to task condition, controlling for reaction time variability. Of these, the bilateral frontoparietal networks, bilateral dorsolateral prefrontal cortices, bilateral superior parietal lobules including precuneus, and frontoinsular network were preferentially recruited by the 2-back condition compared to 0-back control condition, indicating WM involvement. These results support the use of the LNB as a measure of WM and confirm its use in probing the network-level neural correlates of WM processing.
Collapse
Affiliation(s)
- Tonisha E. Kearney-Ramos
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer S. Fausett
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer L. Gess
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ashley Reno
- University of Virginia School of Medicine, Charlottesville, Virginia
| | | | - Clint D. Kilts
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - G. Andrew James
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
32
|
Deluca C, Golzar A, Santandrea E, Lo Gerfo E, Eštočinová J, Moretto G, Fiaschi A, Panzeri M, Mariotti C, Tinazzi M, Chelazzi L. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task. Cortex 2014; 58:52-71. [PMID: 24959702 DOI: 10.1016/j.cortex.2014.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 04/09/2014] [Accepted: 04/26/2014] [Indexed: 01/14/2023]
Abstract
Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus non-motor functions, with only the posterior lobe being responsible for learning in the perceptual domain.
Collapse
Affiliation(s)
- Cristina Deluca
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Ashkan Golzar
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy; Department of Physiology, McGill University, Montreal, Canada
| | - Elisa Santandrea
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Emanuele Lo Gerfo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Jana Eštočinová
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Antonio Fiaschi
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Marta Panzeri
- Department of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Foundation Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- Department of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Foundation Carlo Besta, Milan, Italy
| | - Michele Tinazzi
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Leonardo Chelazzi
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy.
| |
Collapse
|
33
|
Mariën P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, Desmond J, De Witte E, Fawcett AJ, Hertrich I, Küper M, Leggio M, Marvel C, Molinari M, Murdoch BE, Nicolson RI, Schmahmann JD, Stoodley CJ, Thürling M, Timmann D, Wouters E, Ziegler W. Consensus paper: Language and the cerebellum: an ongoing enigma. CEREBELLUM (LONDON, ENGLAND) 2014; 13:386-410. [PMID: 24318484 PMCID: PMC4090012 DOI: 10.1007/s12311-013-0540-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In less than three decades, the concept "cerebellar neurocognition" has evolved from a mere afterthought to an entirely new and multifaceted area of neuroscientific research. A close interplay between three main strands of contemporary neuroscience induced a substantial modification of the traditional view of the cerebellum as a mere coordinator of autonomic and somatic motor functions. Indeed, the wealth of current evidence derived from detailed neuroanatomical investigations, functional neuroimaging studies with healthy subjects and patients and in-depth neuropsychological assessment of patients with cerebellar disorders shows that the cerebellum has a cardinal role to play in affective regulation, cognitive processing, and linguistic function. Although considerable progress has been made in models of cerebellar function, controversy remains regarding the exact role of the "linguistic cerebellum" in a broad variety of nonmotor language processes. This consensus paper brings together a range of different viewpoints and opinions regarding the contribution of the cerebellum to language function. Recent developments and insights in the nonmotor modulatory role of the cerebellum in language and some related disorders will be discussed. The role of the cerebellum in speech and language perception, in motor speech planning including apraxia of speech, in verbal working memory, in phonological and semantic verbal fluency, in syntax processing, in the dynamics of language production, in reading and in writing will be addressed. In addition, the functional topography of the linguistic cerebellum and the contribution of the deep nuclei to linguistic function will be briefly discussed. As such, a framework for debate and discussion will be offered in this consensus paper.
Collapse
Affiliation(s)
- Peter Mariën
- Department of Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussel, Brussels, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
E KH, Chen SHA, Ho MHR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp 2014; 35:593-615. [PMID: 23125108 PMCID: PMC3866223 DOI: 10.1002/hbm.22194] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 07/04/2012] [Accepted: 08/14/2012] [Indexed: 11/07/2022] Open
Abstract
A growing interest in cerebellar function and its involvement in higher cognition have prompted much research in recent years. Cerebellar presence in a wide range of cognitive functions examined within an increasing body of neuroimaging literature has been observed. We applied a meta-analytic approach, which employed the activation likelihood estimate method, to consolidate results of cerebellar involvement accumulated in different cognitive tasks of interest and systematically identified similarities among the studies. The current analysis included 88 neuroimaging studies demonstrating cerebellar activations in higher cognitive domains involving emotion, executive function, language, music, timing and working memory. While largely consistent with a prior meta-analysis by Stoodley and Schmahmann ([2009]: Neuroimage 44:489-501), our results extended their findings to include music and timing domains to provide further insights into cerebellar involvement and elucidate its role in higher cognition. In addition, we conducted inter- and intradomain comparisons for the cognitive domains of emotion, language, and working memory. We also considered task differences within the domain of verbal working memory by conducting a comparison of the Sternberg with the n-back task, as well as an analysis of the differential components within the Sternberg task. Results showed a consistent cerebellar presence in the timing domain, providing evidence for a role in time keeping. Unique clusters identified within the domain further refine the topographic organization of the cerebellum.
Collapse
Affiliation(s)
- Keren-Happuch E
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
35
|
Abstract
While the cerebellum's role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellum's status as a "supervised learning machine" can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellum's compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum.
Collapse
|
36
|
Berthier ML, Froudist Walsh S, Dávila G, Nabrozidis A, Juárez Y Ruiz de Mier R, Gutiérrez A, De-Torres I, Ruiz-Cruces R, Alfaro F, García-Casares N. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream. Front Hum Neurosci 2013; 7:873. [PMID: 24391569 PMCID: PMC3867969 DOI: 10.3389/fnhum.2013.00873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/29/2013] [Indexed: 01/01/2023] Open
Abstract
Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and18FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The CA patient showed a greater activation of these cortical areas than the TCMA patient, but these changes did not result in normal performance. Repetition of word triplet lists activated bilateral perisylvian cortices in both patients, but activation in the CA patient with very poor performance was restricted to small frontal and posterior temporal foci bilaterally. These findings suggest that dissociated repetition deficits in our cases are probably reliant on flexible interactions between left dorsal stream (spared segments, short tracts remains) and left ventral stream and on gender-dimorphic architecture of the right dorsal stream.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Unit of Cognitive Neurology an Aphasia, Department of Medicine, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain
| | - Seán Froudist Walsh
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London London, UK
| | - Guadalupe Dávila
- Unit of Cognitive Neurology an Aphasia, Department of Medicine, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain ; Department of Psychobiology and Methodology of Comportamental Sciences, Faculty of Psychology, University of Malaga Malaga, Spain
| | - Alejandro Nabrozidis
- Unit of Molecular Imaging, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of Malaga Malaga, Spain
| | - Rocío Juárez Y Ruiz de Mier
- Unit of Cognitive Neurology an Aphasia, Department of Medicine, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain
| | - Antonio Gutiérrez
- Department of Psychobiology and Methodology of Comportamental Sciences, Faculty of Psychology, University of Malaga Malaga, Spain
| | - Irene De-Torres
- Unit of Cognitive Neurology an Aphasia, Department of Medicine, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain
| | - Rafael Ruiz-Cruces
- Unit of Cognitive Neurology an Aphasia, Department of Medicine, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain
| | - Francisco Alfaro
- Unit of Molecular Imaging, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of Malaga Malaga, Spain
| | | |
Collapse
|
37
|
Hardiman MJ, Hsu HJ, Bishop DVM. Children with specific language impairment are not impaired in the acquisition and retention of Pavlovian delay and trace conditioning of the eyeblink response. BRAIN AND LANGUAGE 2013; 127:428-439. [PMID: 24139661 PMCID: PMC3847270 DOI: 10.1016/j.bandl.2013.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 05/30/2023]
Abstract
Three converging lines of evidence have suggested that cerebellar abnormality is implicated in developmental language and literacy problems. First, some brain imaging studies have linked abnormalities in cerebellar grey matter to dyslexia and specific language impairment (SLI). Second, theoretical accounts of both dyslexia and SLI have postulated impairments of procedural learning and automatisation of skills, functions that are known to be mediated by the cerebellum. Third, motor learning has been shown to be abnormal in some studies of both disorders. We assessed the integrity of face related regions of the cerebellum using Pavlovian eyeblink conditioning in 7-11year-old children with SLI. We found no relationship between oral language skills or literacy skills with either delay or trace conditioning in the children. We conclude that this elementary form of associative learning is intact in children with impaired language or literacy development.
Collapse
Affiliation(s)
- Mervyn J Hardiman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, United Kingdom.
| | | | | |
Collapse
|
38
|
Reilly KJ, Spencer KA. Speech serial control in healthy speakers and speakers with hypokinetic or ataxic dysarthria: effects of sequence length and practice. Front Hum Neurosci 2013; 7:665. [PMID: 24137121 PMCID: PMC3797393 DOI: 10.3389/fnhum.2013.00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/24/2013] [Indexed: 11/14/2022] Open
Abstract
The current study investigated the processes responsible for selection of sounds and syllables during production of speech sequences in 10 adults with hypokinetic dysarthria from Parkinson's disease, five adults with ataxic dysarthria, and 14 healthy control speakers. Speech production data from a choice reaction time task were analyzed to evaluate the effects of sequence length and practice on speech sound sequencing. Speakers produced sequences that were between one and five syllables in length over five experimental runs of 60 trials each. In contrast to the healthy speakers, speakers with hypokinetic dysarthria demonstrated exaggerated sequence length effects for both inter-syllable intervals (ISIs) and speech error rates. Conversely, speakers with ataxic dysarthria failed to demonstrate a sequence length effect on ISIs and were also the only group that did not exhibit practice-related changes in ISIs and speech error rates over the five experimental runs. The exaggerated sequence length effects in the hypokinetic speakers with Parkinson's disease are consistent with an impairment of action selection during speech sequence production. The absent length effects observed in the speakers with ataxic dysarthria is consistent with previous findings that indicate a limited capacity to buffer speech sequences in advance of their execution. In addition, the lack of practice effects in these speakers suggests that learning-related improvements in the production rate and accuracy of speech sequences involves processing by structures of the cerebellum. Together, the current findings inform models of serial control for speech in healthy speakers and support the notion that sequencing deficits contribute to speech symptoms in speakers with hypokinetic or ataxic dysarthria. In addition, these findings indicate that speech sequencing is differentially impaired in hypokinetic and ataxic dysarthria.
Collapse
Affiliation(s)
- Kevin J. Reilly
- Department of Speech-Language Pathology and Audiology, Northeastern UniversityBoston, MA, USA
| | - Kristie A. Spencer
- Department of Speech and Hearing Sciences, University of WashingtonSeattle, WA, USA
| |
Collapse
|
39
|
Resting state functional connectivity of five neural networks in bipolar disorder and schizophrenia. J Affect Disord 2013; 150:601-9. [PMID: 23489402 PMCID: PMC3749249 DOI: 10.1016/j.jad.2013.01.051] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/30/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bipolar disorder (BPD) and schizophrenia (SCZ) share clinical characteristics and genetic contributions. Functional dysconnectivity across various brain networks has been reported to contribute to the pathophysiology of both SCZ and BPD. However, research examining resting-state neural network dysfunction across multiple networks to understand the relationship between these two disorders is lacking. METHODS We conducted a resting-state functional connectivity fMRI study of 35 BPD and 25 SCZ patients, and 33 controls. Using previously defined regions-of-interest, we computed the mean connectivity within and between five neural networks: default mode (DM), fronto-parietal (FP), cingulo-opercular (CO), cerebellar (CER), and salience (SAL). Repeated measures ANOVAs were used to compare groups, adjusting false discovery rate to control for multiple comparisons. The relationship of connectivity with the SANS/SAPS, vocabulary and matrix reasoning was investigated using hierarchical linear regression analyses. RESULTS Decreased within-network connectivity was only found for the CO network in BPD. Across groups, connectivity was decreased between CO-CER (p<0.001), to a larger degree in SCZ than in BPD. In SCZ, there was also decreased connectivity in CO-SAL, FP-CO, and FP-CER, while BPD showed decreased CER-SAL connectivity. Disorganization symptoms were predicted by connectivity between CO-CER and CER-SAL. DISCUSSION Our findings indicate dysfunction in the connections between networks involved in cognitive and emotional processing in the pathophysiology of BPD and SCZ. Both similarities and differences in connectivity were observed across disorders. Further studies are required to investigate relationships of neural networks to more diverse clinical and cognitive domains underlying psychiatric disorders.
Collapse
|
40
|
Heath S, McMahon KL, Nickels L, Angwin A, MacDonald AD, van Hees S, McKinnon E, Johnson K, Copland DA. Facilitation of naming in aphasia with auditory repetition: an investigation of neurocognitive mechanisms. Neuropsychologia 2013; 51:1534-48. [PMID: 23684849 DOI: 10.1016/j.neuropsychologia.2013.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 01/19/2013] [Accepted: 05/07/2013] [Indexed: 11/13/2022]
Abstract
Prior phonological processing can enhance subsequent picture naming performance in individuals with aphasia, yet the neurocognitive mechanisms underlying this effect and its longevity are unknown. This study used functional magnetic resonance imaging to examine the short-term (within minutes) and long-term (within days) facilitation effects from a phonological task in both participants with aphasia and age-matched controls. Results for control participants suggested that long-term facilitation of subsequent picture naming may be driven by a strengthening of semantic-phonological connections, while semantic and object recognition mechanisms underlie more short-term effects. All participants with aphasia significantly improved in naming accuracy following both short- and long-term facilitation. A descriptive comparison of the neuroimaging results identified different patterns of activation for each individual with aphasia. The exclusive engagement of a left hemisphere phonological network underlying facilitation was not revealed. The findings suggest that improved naming in aphasia with phonological tasks may be supported by changes in right hemisphere activity in some individuals and reveal the potential contribution of the cerebellum to improved naming following phonological facilitation. Conclusions must be interpreted with caution, however, due to the comparison of corrected group control results to that of individual participants with aphasia, which were not corrected for multiple comparisons.
Collapse
Affiliation(s)
- Shiree Heath
- University of Queensland, Language Neuroscience Laboratory, Centre for Clinical Research, Royal Brisbane & Women's Hospital, Level 3, Building 71/918, Herston, Queensland 4029, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Graner J, Oakes TR, French LM, Riedy G. Functional MRI in the investigation of blast-related traumatic brain injury. Front Neurol 2013; 4:16. [PMID: 23460082 PMCID: PMC3586697 DOI: 10.3389/fneur.2013.00016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/09/2013] [Indexed: 01/12/2023] Open
Abstract
This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries.
Collapse
Affiliation(s)
- John Graner
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center Bethesda, MD, USA ; National Capital Neuroimaging Consortium, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | | | | | | |
Collapse
|
42
|
Chukoskie L, Townsend J, Westerfield M. Motor Skill in Autism Spectrum Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:207-49. [DOI: 10.1016/b978-0-12-418700-9.00007-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
43
|
Trait anxiety and the neural efficiency of manipulation in working memory. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2012; 12:571-88. [PMID: 22644759 PMCID: PMC3400031 DOI: 10.3758/s13415-012-0100-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study investigates the effects of trait anxiety on the neural
efficiency of working memory component functions (manipulation vs. maintenance) in
the absence of threat-related stimuli. For the manipulation of affectively neutral
verbal information held in working memory, high- and low-anxious individuals
(N = 46) did not differ in their behavioral
performance, yet trait anxiety was positively related to the neural effort expended
on task processing, as measured by BOLD signal changes in fMRI. Higher levels of
anxiety were associated with stronger activation in two regions implicated in the
goal-directed control of attention—that is, right dorsolateral prefrontal cortex
(DLPFC) and left inferior frontal sulcus—and with stronger deactivation in a region
assigned to the brain’s default-mode network—that is, rostral–ventral anterior
cingulate cortex. Furthermore, anxiety was associated with a stronger functional
coupling of right DLPFC with ventrolateral prefrontal cortex. We interpret our
findings as reflecting reduced processing efficiency in high-anxious individuals and
point out the need to consider measures of functional integration in addition to
measures of regional activation strength when investigating individual differences
in neural efficiency. With respect to the functions of working memory, we conclude
that anxiety specifically impairs the processing efficiency of (control-demanding)
manipulation processes (as opposed to mere maintenance). Notably, this study
contributes to an accumulating body of evidence showing that anxiety also affects
cognitive processing in the absence of threat-related stimuli.
Collapse
|
44
|
Konoike N, Kotozaki Y, Miyachi S, Miyauchi CM, Yomogida Y, Akimoto Y, Kuraoka K, Sugiura M, Kawashima R, Nakamura K. Rhythm information represented in the fronto-parieto-cerebellar motor system. Neuroimage 2012; 63:328-38. [DOI: 10.1016/j.neuroimage.2012.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/30/2012] [Accepted: 07/02/2012] [Indexed: 11/30/2022] Open
|
45
|
Santangelo G, Trojano L, Barone P, Errico D, Improta I, Agosti V, Grossi D, Sorrentino G, Vitale C. Cognitive and affective theory of mind in patients with essential tremor. J Neurol 2012; 260:513-20. [PMID: 23014693 DOI: 10.1007/s00415-012-6668-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/19/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
The theory of mind (ToM) is the ability to attribute mental states to oneself and others and to understand that others have beliefs, desires and intentions different from one's own. The aim of the present study was to explore the neuropsychological correlates of cognitive and affective ToM in patients affected by essential tremor (ET). Thirty consecutive ET outpatients and 30 healthy age-, sex- and education-matched control subjects underwent tasks assessing short-term memory, verbal learning and executive functions, as well as tasks assessing "cognitive" and "affective" ToM; questionnaires evaluating behavioral disorders and quality of life were also administered. Although the two groups did not differ on demographic variables, ET patients scored worse on memory tasks, and showed more apathy and worse quality of life than controls. After covarying for mnestic, behavioral and quality of life scores, ET patients achieved significantly lower scores than controls on task assessing cognitive ToM, whereas no difference was found between the two groups on task assessing affective ToM. In ET, "Cognitive" ToM was significantly associated with frontal tasks, whereas "Affective" ToM was not correlated with cognitive, behavioral or quality of life scales. Our results indicate that cognitive aspects of ToM may be selectively impaired in ET. Possible underlying neural mechanisms of the deficits are discussed.
Collapse
|
46
|
Passamonti L, Cerasa A, Quattrone A. Neuroimaging of Essential Tremor: What is the Evidence for Cerebellar Involvement? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2012; 2. [PMID: 23439960 PMCID: PMC3572634 DOI: 10.7916/d8f76b8g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/26/2012] [Indexed: 12/13/2022]
Abstract
Background Clinical observations and electrophysiological studies have provided initial evidence for the involvement of the cerebellum in essential tremor (ET), the most frequent hyperkinetic disorder. Recently, this hypothesis has been reinvigorated by post-mortem studies that demonstrated a number of pathological changes in the cerebellum of ET patients compared with age-matched healthy controls. Advanced neuroimaging techniques have also made it possible to detect in vivo which cerebellar abnormalities are present in ET patients and to reveal the core mechanisms implicated in the development of motor and cognitive symptoms in ET. Objective We discuss the neuroimaging research investigating the brain structure and function of ET patients relative to healthy controls. In particular, we review 1) structural neuroimaging experiments assessing the density/volume of cortical/subcortical regions and the integrity of the white-matter fibers connecting them; 2) functional studies exploring brain responses during motor/cognitive tasks and the function of specific neurotransmitters/metabolites within cortical–cerebellar circuits. Methods A search in PubMed was conducted to identify the relevant literature. Discussion Current neuroimaging research provides converging evidence for the role of the cerebellum in the pathophysiology of ET, although some inconsistencies exist, particularly in structural studies. These discrepancies may depend on the high clinical heterogeneity of ET and on differences among the experimental methods used across studies. Further investigations are needed to disentangle the relationships between specific ET phenotypes and the underlying patterns of neural abnormalities.
Collapse
Affiliation(s)
- Luca Passamonti
- Unità di Ricerca Neuroimmagini, Istituto di Scienze Neurologiche, Consiglio Nazionale delle Ricerche, Catanzaro, Italy
| | | | | |
Collapse
|
47
|
Repovš G, Barch DM. Working memory related brain network connectivity in individuals with schizophrenia and their siblings. Front Hum Neurosci 2012; 6:137. [PMID: 22654746 PMCID: PMC3358772 DOI: 10.3389/fnhum.2012.00137] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/29/2012] [Indexed: 01/16/2023] Open
Abstract
A growing number of studies have reported altered functional connectivity in schizophrenia during putatively “task-free” states and during the performance of cognitive tasks. However, there have been few systematic examinations of functional connectivity in schizophrenia across rest and different task states to assess the degree to which altered functional connectivity reflects a stable characteristic or whether connectivity changes vary as a function of task demands. We assessed functional connectivity during rest and during three working memory loads of an N-back task (0-back, 1-back, 2-back) among: (1) individuals with schizophrenia (N = 19); (2) the siblings of individuals with schizophrenia (N = 28); (3) healthy controls (N = 10); and (4) the siblings of healthy controls (N = 17). We examined connectivity within and between four brain networks: (1) frontal–parietal (FP); (2) cingulo-opercular (CO); (3) cerebellar (CER); and (4) default mode (DMN). In terms of within-network connectivity, we found that connectivity within the DMN and FP increased significantly between resting state and 0-back, while connectivity within the CO and CER decreased significantly between resting state and 0-back. Additionally, we found that connectivity within both the DMN and FP was further modulated by memory load. In terms of between network connectivity, we found that the DMN became significantly more “anti-correlated” with the FP, CO, and CER networks during 0-back as compared to rest, and that connectivity between the FP and both CO and CER networks increased with memory load. Individuals with schizophrenia and their siblings showed consistent reductions in connectivity between both the FP and CO networks with the CER network, a finding that was similar in magnitude across rest and all levels of working memory load. These findings are consistent with the hypothesis that altered functional connectivity in schizophrenia reflects a stable characteristic that is present across cognitive states.
Collapse
Affiliation(s)
- Grega Repovš
- Department of Psychology, University of Ljubljana Ljubljana, Slovenia
| | | |
Collapse
|
48
|
Price CJ. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 2012; 62:816-47. [PMID: 22584224 PMCID: PMC3398395 DOI: 10.1016/j.neuroimage.2012.04.062] [Citation(s) in RCA: 1298] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 01/17/2023] Open
Abstract
The anatomy of language has been investigated with PET or fMRI for more than 20 years. Here I attempt to provide an overview of the brain areas associated with heard speech, speech production and reading. The conclusions of many hundreds of studies were considered, grouped according to the type of processing, and reported in the order that they were published. Many findings have been replicated time and time again leading to some consistent and undisputable conclusions. These are summarised in an anatomical model that indicates the location of the language areas and the most consistent functions that have been assigned to them. The implications for cognitive models of language processing are also considered. In particular, a distinction can be made between processes that are localized to specific structures (e.g. sensory and motor processing) and processes where specialisation arises in the distributed pattern of activation over many different areas that each participate in multiple functions. For example, phonological processing of heard speech is supported by the functional integration of auditory processing and articulation; and orthographic processing is supported by the functional integration of visual processing, articulation and semantics. Future studies will undoubtedly be able to improve the spatial precision with which functional regions can be dissociated but the greatest challenge will be to understand how different brain regions interact with one another in their attempts to comprehend and produce language.
Collapse
Affiliation(s)
- Cathy J Price
- Wellcome Trust Centre for Neuroimaging, UCL, London WC1N 3BG, UK.
| |
Collapse
|
49
|
Diwadkar VA, Meintjes EM, Goradia D, Dodge NC, Warton C, Molteno CD, Jacobson SW, Jacobson JL. Differences in cortico-striatal-cerebellar activation during working memory in syndromal and nonsyndromal children with prenatal alcohol exposure. Hum Brain Mapp 2012; 34:1931-45. [PMID: 22451272 DOI: 10.1002/hbm.22042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 01/19/2023] Open
Abstract
Although children with heavy prenatal alcohol exposure may exhibit the distinctive facial dysmorphology seen in full or partial fetal alcohol syndrome (FAS/PFAS), many lack that dysmorphology. This study examined the functional organization of working memory in the brain in three groups of children-those meeting diagnostic criteria for FAS or PFAS, heavily exposed (HE) nonsyndromal children, and healthy controls. A verbal n-back task (1-back and 0-back) was administered to 47 children (17 with FAS/PFAS, 13 HE, and 17 controls) during fMRI. Intra-group one-sample t-tests were used to identify activity regions of interest central to verbal working memory including the dorsal prefrontal cortex (dPFC), inferior frontal gyrus, caudate/putamen, parietal cortex, and cerebellar Crus I/lobule VI and lobule VIIB-IX. Whereas groups did not differ in task sensitivity, fMRI analyses suggested different patterns of sub-network recruitment across groups. Controls primarily recruited left inferior frontal gyrus (Broca's area). By contrast, HE primarily recruited an extensive set of fronto-striatal regions, including left dPFC and left caudate, and the FAS/PFAS group relied primarily on two cerebellar subregions and parietal cortex. This study is, to our knowledge, the first to demonstrate differential recruitment of critical brain regions that subserve basic function in children with different fetal alcohol spectrum disorders compared to controls. The distinct activation patterns seen in the two exposed groups may be related to substantial differences in alcohol dose/occasion to which these groups were exposed in utero.
Collapse
Affiliation(s)
- Vaibhav A Diwadkar
- Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48207, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Eudo C, Beaufils E, Desmidt T, Cottier J, Constans T, Hommet C, Mondon K. First Manic Episode Revealing Cerebellar Stroke. J Am Geriatr Soc 2012; 60:588-9. [DOI: 10.1111/j.1532-5415.2011.03863.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Thomas Desmidt
- Department of Geriatrics and Internal Medicine
- INSERM U930 Tours France
| | | | | | - Caroline Hommet
- Department of Geriatrics and Internal Medicine
- University Memory Center University Hospital of Tours
- INSERM U930 Tours France
| | - Karl Mondon
- Department of Geriatrics and Internal Medicine
- University Memory Center University Hospital of Tours
- INSERM U930 Tours France
| |
Collapse
|