1
|
Ishida K, Nittono H. Different plasticity patterns of schematic and dynamic expectations in musical pitch prediction. Neuropsychologia 2024; 204:109012. [PMID: 39389293 DOI: 10.1016/j.neuropsychologia.2024.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Kai Ishida
- Graduate School of Human Sciences, Osaka University, Osaka, Japan; Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Hiroshi Nittono
- Graduate School of Human Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Reybrouck M, Podlipniak P, Welch D. Music Listening as Exploratory Behavior: From Dispositional Reactions to Epistemic Interactions with the Sonic World. Behav Sci (Basel) 2024; 14:825. [PMID: 39336040 PMCID: PMC11429034 DOI: 10.3390/bs14090825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Listening to music can span a continuum from passive consumption to active exploration, relying on processes of coping with the sounds as well as higher-level processes of sense-making. Revolving around the major questions of "what" and "how" to explore, this paper takes a naturalistic stance toward music listening, providing tools to objectively describe the underlying mechanisms of musical sense-making by weakening the distinction between music and non-music. Starting from a non-exclusionary conception of "coping" with the sounds, it stresses the exploratory approach of treating music as a sound environment to be discovered by an attentive listener. Exploratory listening, in this view, is an open-minded and active process, not dependent on simply recalling pre-existing knowledge or information that reduces cognitive processing efforts but having a high cognitive load due to the need for highly focused attention and perceptual readiness. Music, explored in this way, is valued for its complexity, surprisingness, novelty, incongruity, puzzlingness, and patterns, relying on processes of selection, differentiation, discrimination, and identification.
Collapse
Affiliation(s)
- Mark Reybrouck
- Musicology Research Group, Faculty of Arts, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Institute for Psychoacoustics and Electronic Music (IPEM), Department of Art History, Musicology and Theatre Studies, 9000 Ghent, Belgium
| | - Piotr Podlipniak
- Institute of Musicology, Adam Mickiewicz University in Poznań, 61-712 Poznań, Poland
| | - David Welch
- Institute Audiology Section, School of Population Health, University of Auckland, Auckland 2011, New Zealand
| |
Collapse
|
3
|
Xue C, Chen Y, Thompson WF, Liu F, Jiang C. Time-varying similarity of neural responses to musical tension is shaped by physical features and musical themes. Int J Psychophysiol 2024; 202:112387. [PMID: 38909958 DOI: 10.1016/j.ijpsycho.2024.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The similarity of understanding is important for music experience and communication, but little is understood about the sources of this common knowledge. Although neural responses to the same piece of music are known to be similar across listeners, it remains unclear whether this neural response similarity is linked to musical understanding and the role of dynamic musical attributes in shaping it. Our study addresses this gap by investigating the relationship between neural response similarity, musical tension, and dynamic musical attributes. Using electroencephalography-based inter-subject correlation (EEG-ISC), we examined how the neural response similarity among listeners varies throughout the evaluation of musical tension in the first movement of Beethoven's Piano Sonata No. 8. Participants continuously rated the degree of alignment between musical events and their expectations, while neural activity was recorded using electroencephalography (EEG). The results showed that neural response similarity fluctuated in tandem with musical tension, with increased similarity observed during moments of heightened tension. This time-varying neural response similarity was influenced by two dynamic attributes contributing to musical tension: physical features and musical themes. Specifically, its fluctuation was driven by physical features, and the patterns of its variation were modulated by musical themes, with similar time-varying patterns observed across similar thematic materials. These findings offer valuable insight into the role of dynamic musical attributes in shaping neural response similarity, and reveal an important source and mechanism of shared musical understandings.
Collapse
Affiliation(s)
- Chao Xue
- Department of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Yiran Chen
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Fang Liu
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK
| | - Cunmei Jiang
- Music College, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
4
|
Heng JG, Zhang J, Bonetti L, Lim WPH, Vuust P, Agres K, Chen SHA. Understanding music and aging through the lens of Bayesian inference. Neurosci Biobehav Rev 2024; 163:105768. [PMID: 38908730 DOI: 10.1016/j.neubiorev.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Bayesian inference has recently gained momentum in explaining music perception and aging. A fundamental mechanism underlying Bayesian inference is the notion of prediction. This framework could explain how predictions pertaining to musical (melodic, rhythmic, harmonic) structures engender action, emotion, and learning, expanding related concepts of music research, such as musical expectancies, groove, pleasure, and tension. Moreover, a Bayesian perspective of music perception may shed new insights on the beneficial effects of music in aging. Aging could be framed as an optimization process of Bayesian inference. As predictive inferences refine over time, the reliance on consolidated priors increases, while the updating of prior models through Bayesian inference attenuates. This may affect the ability of older adults to estimate uncertainties in their environment, limiting their cognitive and behavioral repertoire. With Bayesian inference as an overarching framework, this review synthesizes the literature on predictive inferences in music and aging, and details how music could be a promising tool in preventive and rehabilitative interventions for older adults through the lens of Bayesian inference.
Collapse
Affiliation(s)
- Jiamin Gladys Heng
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Jiayi Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark
| | - Kat Agres
- Centre for Music and Health, National University of Singapore, Singapore; Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore
| | - Shen-Hsing Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; National Institute of Education, Nanyang Technological University, Singapore.
| |
Collapse
|
5
|
Omigie D, Mencke I. A model of time-varying music engagement. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220421. [PMID: 38104598 PMCID: PMC10725767 DOI: 10.1098/rstb.2022.0421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
The current paper offers a model of time-varying music engagement, defined as changes in curiosity, attention and positive valence, as music unfolds over time. First, we present research (including new data) showing that listeners tend to allocate attention to music in a manner that is guided by both features of the music and listeners' individual differences. Next, we review relevant predictive processing literature before using this body of work to inform our model. In brief, we propose that music engagement, over the course of an extended listening episode, may constitute several cycles of curiosity, attention and positive valence that are interspersed with moments of mind-wandering. Further, we suggest that refocusing on music after an episode of mind-wandering can be due to triggers in the music or, conversely, mental action that occurs when the listener realizes they are mind-wandering. Finally, we argue that factors that modulate both overall levels of music engagement and how it changes over time include music complexity, listener background and the listening context. Our paper highlights how music can be used to provide insights into the temporal dynamics of attention and into how curiosity might emerge in everyday contexts. This article is part of the theme issue 'Art, aesthetics and predictive processing: theoretical and empirical perspectives'.
Collapse
Affiliation(s)
- Diana Omigie
- Department of Psychology, Goldsmiths University of London, London, SE14 6NW, UK
| | - Iris Mencke
- Music Perception and Processing Lab, Department of Medical Physics and Acoustics, University of Oldenburg, 26129 Oldenberg, Germany
- Hanse-Wissenschaftskolleg—Institute for Advanced Studies, 27753 Delmenhorst, Germany
- Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt/Main 60322, Germany
| |
Collapse
|
6
|
Brattico E, Delussi M. Making sense of music: Insights from neurophysiology and connectivity analyses in naturalistic listening conditions. Hear Res 2024; 441:108923. [PMID: 38091866 DOI: 10.1016/j.heares.2023.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
According to the latest frameworks, auditory perception and memory involve the constant prediction of future sound events by the brain, based on the continuous extraction of feature regularities from the environment. The neural hierarchical mechanisms for predictive processes in perception and memory for sounds are typically studied in relation to simple acoustic features in isolated sounds or sound patterns inserted in highly certain contexts. Such studies have identified reliable prediction formation and error signals, e.g., the N100 or the mismatch negativity (MMN) evoked responses. In real life, though, individuals often face situations in which uncertainty prevails and where making sense of sounds becomes a hard challenge. In music, not only deviations from predictions are masterly set up by composers to induce emotions but sometimes the sheer uncertainty of sound scenes is exploited for aesthetic purposes, especially in compositional styles such as Western atonal classical music. In very recent magnetoencephalography (MEG) and electroencephalography (EEG) studies, experimental and technical advances in stimulation paradigms and analysis approaches have permitted the identification of prediction-error responses from highly uncertain, atonal contexts and the extraction of prediction-related responses from real, continuous music. Moreover, functional connectivity analyses revealed the emergence of cortico-hippocampal interactions during the formation of auditory memories for more predictable vs. less predictable patterns. These findings contribute to understanding the general brain mechanisms that enable us to predict even highly uncertain sound environments and to possibly make sense of and appreciate even atonal music.
Collapse
Affiliation(s)
- Elvira Brattico
- Centre for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark; Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy.
| | - Marianna Delussi
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Italy
| |
Collapse
|
7
|
Albury AW, Bianco R, Gold BP, Penhune VB. Context changes judgments of liking and predictability for melodies. Front Psychol 2023; 14:1175682. [PMID: 38034280 PMCID: PMC10684779 DOI: 10.3389/fpsyg.2023.1175682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Predictability plays an important role in the experience of musical pleasure. By leveraging expectations, music induces pleasure through tension and surprise. However, musical predictions draw on both prior knowledge and immediate context. Similarly, musical pleasure, which has been shown to depend on predictability, may also vary relative to the individual and context. Although research has demonstrated the influence of both long-term knowledge and stimulus features in influencing expectations, it is unclear how perceptions of a melody are influenced by comparisons to other music pieces heard in the same context. To examine the effects of context we compared how listeners' judgments of two distinct sets of stimuli differed when they were presented alone or in combination. Stimuli were excerpts from a repertoire of Western music and a set of experimenter created melodies. Separate groups of participants rated liking and predictability for each set of stimuli alone and in combination. We found that when heard together, the Repertoire stimuli were more liked and rated as less predictable than if they were heard alone, with the opposite pattern being observed for the Experimental stimuli. This effect was driven by a change in ratings between the Alone and Combined conditions for each stimulus set. These findings demonstrate a context-based shift of predictability ratings and derived pleasure, suggesting that judgments stem not only from the physical properties of the stimulus, but also vary relative to other options available in the immediate context.
Collapse
Affiliation(s)
- Alexander W. Albury
- Department of Psychology, Concordia University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) and Center for Research in Brain, Language and Music (CRBLM), Montreal, QC, Canada
| | - Roberta Bianco
- Neuroscience of Perception and Action Laboratory, Italian Institute of Technology, Rome, Italy
| | - Benjamin P. Gold
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
| | - Virginia B. Penhune
- Department of Psychology, Concordia University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) and Center for Research in Brain, Language and Music (CRBLM), Montreal, QC, Canada
| |
Collapse
|
8
|
You S, Sun L, Yang Y. The effects of contextual certainty on tension induction and resolution. Cogn Neurodyn 2023; 17:191-201. [PMID: 36704622 PMCID: PMC9871111 DOI: 10.1007/s11571-022-09810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/21/2022] [Accepted: 04/02/2022] [Indexed: 01/29/2023] Open
Abstract
It is known that tension is a core principle of the generation of music emotion and meaning, and supposed to be induced by prediction in process of music listening. Using EEG and behavioral rating, the current research investigated how contextual certainty affects musical tension induction and resolution. The major results were that in the tension induction process, incongruent conditions elicited larger EN and P600 in ERP responses compared with congruent conditions, and the amplitude of P600, tension ratings were mediated by contextual certainty. In the tension resolution process, contextual certainty further affected the duration of P600 and tension ratings. For the certain conditions, tension ratings were higher, tension curves fluctuated faster, and a larger P600 was evoked in the incongruent condition compared with the congruent condition. For the uncertain conditions, there was no congruency effect on behavioral ratings and tension curves, but a larger P600 was elicited in the congruent condition. These results show that contextual certainty affects tension induction and resolution. Our findings provide a more comprehensive view on how musical prediction affects musical tension.
Collapse
Affiliation(s)
- Siqi You
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing, 100101 China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Sun
- College of Art, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yufang Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing, 100101 China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Basiński K, Quiroga-Martinez DR, Vuust P. Temporal hierarchies in the predictive processing of melody - From pure tones to songs. Neurosci Biobehav Rev 2023; 145:105007. [PMID: 36535375 DOI: 10.1016/j.neubiorev.2022.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Listening to musical melodies is a complex task that engages perceptual and memoryrelated processes. The processes underlying melody cognition happen simultaneously on different timescales, ranging from milliseconds to minutes. Although attempts have been made, research on melody perception is yet to produce a unified framework of how melody processing is achieved in the brain. This may in part be due to the difficulty of integrating concepts such as perception, attention and memory, which pertain to different temporal scales. Recent theories on brain processing, which hold prediction as a fundamental principle, offer potential solutions to this problem and may provide a unifying framework for explaining the neural processes that enable melody perception on multiple temporal levels. In this article, we review empirical evidence for predictive coding on the levels of pitch formation, basic pitch-related auditory patterns,more complex regularity processing extracted from basic patterns and long-term expectations related to musical syntax. We also identify areas that would benefit from further inquiry and suggest future directions in research on musical melody perception.
Collapse
Affiliation(s)
- Krzysztof Basiński
- Division of Quality of Life Research, Medical University of Gdańsk, Poland
| | - David Ricardo Quiroga-Martinez
- Helen Wills Neuroscience Institute & Department of Psychology, University of California Berkeley, USA; Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Denmark
| |
Collapse
|
10
|
Seeberg AB, Haumann NT, Højlund A, Andersen ASF, Faulkner KF, Brattico E, Vuust P, Petersen B. Adapting to the Sound of Music - Development of Music Discrimination Skills in Recently Implanted CI Users. Trends Hear 2023; 27:23312165221148035. [PMID: 36597692 PMCID: PMC9830578 DOI: 10.1177/23312165221148035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cochlear implants (CIs) are optimized for speech perception but poor in conveying musical sound features such as pitch, melody, and timbre. Here, we investigated the early development of discrimination of musical sound features after cochlear implantation. Nine recently implanted CI users (CIre) were tested shortly after switch-on (T1) and approximately 3 months later (T2), using a musical multifeature mismatch negativity (MMN) paradigm, presenting four deviant features (intensity, pitch, timbre, and rhythm), and a three-alternative forced-choice behavioral test. For reference, groups of experienced CI users (CIex; n = 13) and normally hearing (NH) controls (n = 14) underwent the same tests once. We found significant improvement in CIre's neural discrimination of pitch and timbre as marked by increased MMN amplitudes. This was not reflected in the behavioral results. Behaviorally, CIre scored well above chance level at both time points for all features except intensity, but significantly below NH controls for all features except rhythm. Both CI groups scored significantly below NH in behavioral pitch discrimination. No significant difference was found in MMN amplitude between CIex and NH. The results indicate that development of musical discrimination can be detected neurophysiologically early after switch-on. However, to fully take advantage of the sparse information from the implant, a prolonged adaptation period may be required. Behavioral discrimination accuracy was notably high already shortly after implant switch-on, although well below that of NH listeners. This study provides new insight into the early development of music-discrimination abilities in CI users and may have clinical and therapeutic relevance.
Collapse
Affiliation(s)
- Alberte B. Seeberg
- Center for Music in the Brain, Department of Clinical Medicine, Center for Music in the Brain, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark,Alberte B. Seeberg, Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| | - Niels T. Haumann
- Center for Music in the Brain, Department of Clinical Medicine, Center for Music in the Brain, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Andreas Højlund
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark,Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Denmark
| | - Anne S. F. Andersen
- Center for Music in the Brain, Department of Clinical Medicine, Center for Music in the Brain, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | | | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Center for Music in the Brain, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Center for Music in the Brain, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Bjørn Petersen
- Center for Music in the Brain, Department of Clinical Medicine, Center for Music in the Brain, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
11
|
Fernández-Rubio G, Brattico E, Kotz SA, Kringelbach ML, Vuust P, Bonetti L. Magnetoencephalography recordings reveal the spatiotemporal dynamics of recognition memory for complex versus simple auditory sequences. Commun Biol 2022; 5:1272. [PMID: 36402843 PMCID: PMC9675809 DOI: 10.1038/s42003-022-04217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Auditory recognition is a crucial cognitive process that relies on the organization of single elements over time. However, little is known about the spatiotemporal dynamics underlying the conscious recognition of auditory sequences varying in complexity. To study this, we asked 71 participants to learn and recognize simple tonal musical sequences and matched complex atonal sequences while their brain activity was recorded using magnetoencephalography (MEG). Results reveal qualitative changes in neural activity dependent on stimulus complexity: recognition of tonal sequences engages hippocampal and cingulate areas, whereas recognition of atonal sequences mainly activates the auditory processing network. Our findings reveal the involvement of a cortico-subcortical brain network for auditory recognition and support the idea that stimulus complexity qualitatively alters the neural pathways of recognition memory.
Collapse
Affiliation(s)
- Gemma Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark.
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Taddeo S, Schulz M, Andermann M, Rupp A. Neuromagnetic representation of melodic contour processing in human auditory cortex. Front Hum Neurosci 2022; 16:909159. [PMID: 36393993 PMCID: PMC9644163 DOI: 10.3389/fnhum.2022.909159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
The pattern of ups and downs in a sequence with varying pitch can be heard as a melodic contour. Contrary to single pitch, the neural representation of melodic contour information in the auditory cortex is rarely investigated, and it is not clear whether the processing entails a hemispheric asymmetry. The present magnetoencephalography study assessed the neuromagnetic responses of N = 18 normal-hearing adults to four-note sequences with fixed vs. varying pitch that were presented either monaurally or diotically; data were analyzed using minimum-norm reconstructions. The first note of the sequences elicited prominent transient activity in posterior auditory regions (Planum temporale), especially contralateral to the ear of entry. In contrast, the response to the subsequent notes originated from more anterior areas (Planum polare) and was larger for melodic contours than for fixed pitch sequences, independent from the ear of entry and without hemispheric asymmetry. Together, the results point to a gradient in the early cortical processing of melodic contours, both in spatial and functional terms, where posterior auditory activity reflects the onset of a pitch sequence and anterior activity reflects its subsequent notes, including the difference between sequences with fixed pitch and melodic contours.
Collapse
Affiliation(s)
- Sabrina Taddeo
- Department of Otolaryngology, Head and Neck Surgery, University Medical Center of Tübingen, Tübingen, Germany
| | - Martin Schulz
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Andermann
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - André Rupp
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
13
|
Quiroga‐Martinez DR, Basiński K, Nasielski J, Tillmann B, Brattico E, Cholvy F, Fornoni L, Vuust P, Caclin A. Enhanced mismatch negativity in harmonic compared with inharmonic sounds. Eur J Neurosci 2022; 56:4583-4599. [PMID: 35833941 PMCID: PMC9543822 DOI: 10.1111/ejn.15769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Many natural sounds have frequency spectra composed of integer multiples of a fundamental frequency. This property, known as harmonicity, plays an important role in auditory information processing. However, the extent to which harmonicity influences the processing of sound features beyond pitch is still unclear. This is interesting because harmonic sounds have lower information entropy than inharmonic sounds. According to predictive processing accounts of perception, this property could produce more salient neural responses due to the brain's weighting of sensory signals according to their uncertainty. In the present study, we used electroencephalography to investigate brain responses to harmonic and inharmonic sounds commonly occurring in music: Piano tones and hi-hat cymbal sounds. In a multifeature oddball paradigm, we measured mismatch negativity (MMN) and P3a responses to timbre, intensity, and location deviants in listeners with and without congenital amusia-an impairment of pitch processing. As hypothesized, we observed larger amplitudes and earlier latencies (for both MMN and P3a) in harmonic compared with inharmonic sounds. These harmonicity effects were modulated by sound feature. Moreover, the difference in P3a latency between harmonic and inharmonic sounds was larger for controls than amusics. We propose an explanation of these results based on predictive coding and discuss the relationship between harmonicity, information entropy, and precision weighting of prediction errors.
Collapse
Affiliation(s)
- David Ricardo Quiroga‐Martinez
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCAUSA
- Center for Music in the BrainAarhus University & The Royal Academy of MusicAarhusDenmark
| | - Krzysztof Basiński
- Division of Quality of Life Research, Faculty of Health SciencesMedical University of GdańskGdańskPoland
| | | | - Barbara Tillmann
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| | - Elvira Brattico
- Center for Music in the BrainAarhus University & The Royal Academy of MusicAarhusDenmark
- Department of Educational Sciences, Psychology and CommunicationUniversity of Bari Aldo MoroBariItaly
| | - Fanny Cholvy
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| | - Lesly Fornoni
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| | - Peter Vuust
- Center for Music in the BrainAarhus University & The Royal Academy of MusicAarhusDenmark
| | - Anne Caclin
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| |
Collapse
|
14
|
Mencke I, Omigie D, Quiroga-Martinez DR, Brattico E. Atonal Music as a Model for Investigating Exploratory Behavior. Front Neurosci 2022; 16:793163. [PMID: 35812236 PMCID: PMC9256982 DOI: 10.3389/fnins.2022.793163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Atonal music is often characterized by low predictability stemming from the absence of tonal or metrical hierarchies. In contrast, Western tonal music exhibits intrinsic predictability due to its hierarchical structure and therefore, offers a directly accessible predictive model to the listener. In consequence, a specific challenge of atonal music is that listeners must generate a variety of new predictive models. Listeners must not only refrain from applying available tonal models to the heard music, but they must also search for statistical regularities and build new rules that may be related to musical properties other than pitch, such as timbre or dynamics. In this article, we propose that the generation of such new predictive models and the aesthetic experience of atonal music are characterized by internal states related to exploration. This is a behavior well characterized in behavioral neuroscience as fulfilling an innate drive to reduce uncertainty but which has received little attention in empirical music research. We support our proposal with emerging evidence that the hedonic value is associated with the recognition of patterns in low-predictability sound sequences and that atonal music elicits distinct behavioral responses in listeners. We end by outlining new research avenues that might both deepen our understanding of the aesthetic experience of atonal music in particular, and reveal core qualities of the aesthetic experience in general.
Collapse
Affiliation(s)
- Iris Mencke
- Department of Music, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
- *Correspondence: Iris Mencke,
| | - Diana Omigie
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - David Ricardo Quiroga-Martinez
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University and Royal Academy of Music, Aarhus, Denmark
| | - Elvira Brattico
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University and Royal Academy of Music, Aarhus, Denmark
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
15
|
Tsogli V, Jentschke S, Koelsch S. Unpredictability of the “when” influences prediction error processing of the “what” and “where”. PLoS One 2022; 17:e0263373. [PMID: 35113946 PMCID: PMC8812910 DOI: 10.1371/journal.pone.0263373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
The capability to establish accurate predictions is an integral part of learning. Whether predictions about different dimensions of a stimulus interact with each other, and whether such an interaction affects learning, has remained elusive. We conducted a statistical learning study with EEG (electroencephalography), where a stream of consecutive sound triplets was presented with deviants that were either: (a) statistical, depending on the triplet ending probability, (b) physical, due to a change in sound location or (c) double deviants, i.e. a combination of the two. We manipulated the predictability of stimulus-onset by using random stimulus-onset asynchronies. Temporal unpredictability due to random onsets reduced the neurophysiological responses to statistical and location deviants, as indexed by the statistical mismatch negativity (sMMN) and the location MMN. Our results demonstrate that the predictability of one stimulus attribute influences the processing of prediction error signals of other stimulus attributes, and thus also learning of those attributes.
Collapse
Affiliation(s)
- Vera Tsogli
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | | | - Stefan Koelsch
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- * E-mail:
| |
Collapse
|
16
|
Mencke I, Quiroga-Martinez DR, Omigie D, Michalareas G, Schwarzacher F, Haumann NT, Vuust P, Brattico E. Prediction under uncertainty: Dissociating sensory from cognitive expectations in highly uncertain musical contexts. Brain Res 2021; 1773:147664. [PMID: 34560052 DOI: 10.1016/j.brainres.2021.147664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Predictive models in the brain rely on the continuous extraction of regularities from the environment. These models are thought to be updated by novel information, as reflected in prediction error responses such as the mismatch negativity (MMN). However, although in real life individuals often face situations in which uncertainty prevails, it remains unclear whether and how predictive models emerge in high-uncertainty contexts. Recent research suggests that uncertainty affects the magnitude of MMN responses in the context of music listening. However, musical predictions are typically studied with MMN stimulation paradigms based on Western tonal music, which are characterized by relatively high predictability. Hence, we developed an MMN paradigm to investigate how the high uncertainty of atonal music modulates predictive processes as indexed by the MMN and behavior. Using MEG in a group of 20 subjects without musical training, we demonstrate that the magnetic MMN in response to pitch, intensity, timbre, and location deviants is evoked in both tonal and atonal melodies, with no significant differences between conditions. In contrast, in a separate behavioral experiment involving 39 non-musicians, participants detected pitch deviants more accurately and rated confidence higher in the tonal than in the atonal musical context. These results indicate that contextual tonal uncertainty modulates processing stages in which conscious awareness is involved, although deviants robustly elicit low-level pre-attentive responses such as the MMN. The achievement of robust MMN responses, despite high tonal uncertainty, is relevant for future studies comparing groups of listeners' MMN responses to increasingly ecological music stimuli.
Collapse
Affiliation(s)
- Iris Mencke
- Department of Music, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt/Main, Germany; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark.
| | - David Ricardo Quiroga-Martinez
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Diana Omigie
- Department of Psychology, University of London, Goldsmiths, SE14 6NW London, United Kingdom
| | - Georgios Michalareas
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt/Main, Germany
| | - Franz Schwarzacher
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Niels Trusbak Haumann
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Nørrebrogade 44, 8000 Aarhus C, Denmark; Department of Education, Psychology and Communication, University of Bari Aldo Moro, Piazza Umberto I, 70121 Bari, Italy
| |
Collapse
|
17
|
Neural correlates of acoustic dissonance in music: The role of musicianship, schematic and veridical expectations. PLoS One 2021; 16:e0260728. [PMID: 34852008 PMCID: PMC8635369 DOI: 10.1371/journal.pone.0260728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
In western music, harmonic expectations can be fulfilled or broken by unexpected chords. Musical irregularities in the absence of auditory deviance elicit well-studied neural responses (e.g. ERAN, P3, N5). These responses are sensitive to schematic expectations (induced by syntactic rules of chord succession) and veridical expectations about predictability (induced by experimental regularities). However, the cognitive and sensory contributions to these responses and their plasticity as a result of musical training remains under debate. In the present study, we explored whether the neural processing of pure acoustic violations is affected by schematic and veridical expectations. Moreover, we investigated whether these two factors interact with long-term musical training. In Experiment 1, we registered the ERPs elicited by dissonant clusters placed either at the middle or the ending position of chord cadences. In Experiment 2, we presented to the listeners with a high proportion of cadences ending in a dissonant chord. In both experiments, we compared the ERPs of musicians and non-musicians. Dissonant clusters elicited distinctive neural responses (an early negativity, the P3 and the N5). While the EN was not affected by syntactic rules, the P3a and P3b were larger for dissonant closures than for middle dissonant chords. Interestingly, these components were larger in musicians than in non-musicians, while the N5 was the opposite. Finally, the predictability of dissonant closures in our experiment did not modulate any of the ERPs. Our study suggests that, at early time windows, dissonance is processed based on acoustic deviance independently of syntactic rules. However, at longer latencies, listeners may be able to engage integration mechanisms and further processes of attentional and structural analysis dependent on musical hierarchies, which are enhanced in musicians.
Collapse
|
18
|
Quiroga-Martinez DR, Hansen NC, Højlund A, Pearce M, Brattico E, Holmes E, Friston K, Vuust P. Musicianship and melodic predictability enhance neural gain in auditory cortex during pitch deviance detection. Hum Brain Mapp 2021; 42:5595-5608. [PMID: 34459062 PMCID: PMC8559476 DOI: 10.1002/hbm.25638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 11/10/2022] Open
Abstract
When listening to music, pitch deviations are more salient and elicit stronger prediction error responses when the melodic context is predictable and when the listener is a musician. Yet, the neuronal dynamics and changes in connectivity underlying such effects remain unclear. Here, we employed dynamic causal modeling (DCM) to investigate whether the magnetic mismatch negativity response (MMNm)-and its modulation by context predictability and musical expertise-are associated with enhanced neural gain of auditory areas, as a plausible mechanism for encoding precision-weighted prediction errors. Using Bayesian model comparison, we asked whether models with intrinsic connections within primary auditory cortex (A1) and superior temporal gyrus (STG)-typically related to gain control-or extrinsic connections between A1 and STG-typically related to propagation of prediction and error signals-better explained magnetoencephalography responses. We found that, compared to regular sounds, out-of-tune pitch deviations were associated with lower intrinsic (inhibitory) connectivity in A1 and STG, and lower backward (inhibitory) connectivity from STG to A1, consistent with disinhibition and enhanced neural gain in these auditory areas. More predictable melodies were associated with disinhibition in right A1, while musicianship was associated with disinhibition in left A1 and reduced connectivity from STG to left A1. These results indicate that musicianship and melodic predictability, as well as pitch deviations themselves, enhance neural gain in auditory cortex during deviance detection. Our findings are consistent with predictive processing theories suggesting that precise and informative error signals are selected by the brain for subsequent hierarchical processing.
Collapse
Affiliation(s)
- David R Quiroga-Martinez
- Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Niels Christian Hansen
- Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Andreas Højlund
- Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Marcus Pearce
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
| | - Elvira Brattico
- Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.,Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Emma Holmes
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Peter Vuust
- Center for Music in the Brain, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
19
|
SanMiguel I, Costa-Faidella J, Lugo ZR, Vilella E, Escera C. Standard Tone Stability as a Manipulation of Precision in the Oddball Paradigm: Modulation of Prediction Error Responses to Fixed-Probability Deviants. Front Hum Neurosci 2021; 15:734200. [PMID: 34650417 PMCID: PMC8505747 DOI: 10.3389/fnhum.2021.734200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Electrophysiological sensory deviance detection signals, such as the mismatch negativity (MMN), have been interpreted from the predictive coding framework as manifestations of prediction error (PE). From a frequentist perspective of the classic oddball paradigm, deviant stimuli are unexpected because of their low probability. However, the amount of PE elicited by a stimulus can be dissociated from its probability of occurrence: when the observer cannot make confident predictions, any event holds little surprise value, no matter how improbable. Here we tested the hypothesis that the magnitude of the neural response elicited to an improbable sound (D) would scale with the precision of the prediction derived from the repetition of another sound (S), by manipulating repetition stability. We recorded the Electroencephalogram (EEG) from 20 participants while passively listening to 4 types of isochronous pure tone sequences differing in the probability of the S tone (880 Hz) while holding constant the probability of the D tone [1,046 Hz; p(D) = 1/11]: Oddball [p(S) = 10/11]; High confidence (7/11); Low confidence (4/11); and Random (1/11). Tones of 9 different frequencies were equiprobably presented as fillers [p(S) + p(D) + p(F) = 1]. Using a mass-univariate non-parametric, cluster-based correlation analysis controlling for multiple comparisons, we found that the amplitude of the deviant-elicited ERP became more negative with increasing S probability, in a time-electrode window consistent with the MMN (ca. 120–200 ms; frontal), suggesting that the strength of a PE elicited to an improbable event indeed increases with the precision of the predictive model.
Collapse
Affiliation(s)
- Iria SanMiguel
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Jordi Costa-Faidella
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Zulay R Lugo
- Hospital Universitari Institut Pere Mata, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Madrid, Spain
| | - Carles Escera
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
20
|
Benhamou E, Zhao S, Sivasathiaseelan H, Johnson JCS, Requena-Komuro MC, Bond RL, van Leeuwen JEP, Russell LL, Greaves CV, Nelson A, Nicholas JM, Hardy CJD, Rohrer JD, Warren JD. Decoding expectation and surprise in dementia: the paradigm of music. Brain Commun 2021; 3:fcab173. [PMID: 34423301 PMCID: PMC8376684 DOI: 10.1093/braincomms/fcab173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
Making predictions about the world and responding appropriately to unexpected events are essential functions of the healthy brain. In neurodegenerative disorders, such as frontotemporal dementia and Alzheimer's disease, impaired processing of 'surprise' may underpin a diverse array of symptoms, particularly abnormalities of social and emotional behaviour, but is challenging to characterize. Here, we addressed this issue using a novel paradigm: music. We studied 62 patients (24 female; aged 53-88) representing major syndromes of frontotemporal dementia (behavioural variant, semantic variant primary progressive aphasia, non-fluent-agrammatic variant primary progressive aphasia) and typical amnestic Alzheimer's disease, in relation to 33 healthy controls (18 female; aged 54-78). Participants heard famous melodies containing no deviants or one of three types of deviant note-acoustic (white-noise burst), syntactic (key-violating pitch change) or semantic (key-preserving pitch change). Using a regression model that took elementary perceptual, executive and musical competence into account, we assessed accuracy detecting melodic deviants and simultaneously recorded pupillary responses and related these to deviant surprise value (information-content) and carrier melody predictability (entropy), calculated using an unsupervised machine learning model of music. Neuroanatomical associations of deviant detection accuracy and coupling of detection to deviant surprise value were assessed using voxel-based morphometry of patients' brain MRI. Whereas Alzheimer's disease was associated with normal deviant detection accuracy, behavioural and semantic variant frontotemporal dementia syndromes were associated with strikingly similar profiles of impaired syntactic and semantic deviant detection accuracy and impaired behavioural and autonomic sensitivity to deviant information-content (all P < 0.05). On the other hand, non-fluent-agrammatic primary progressive aphasia was associated with generalized impairment of deviant discriminability (P < 0.05) due to excessive false-alarms, despite retained behavioural and autonomic sensitivity to deviant information-content and melody predictability. Across the patient cohort, grey matter correlates of acoustic deviant detection accuracy were identified in precuneus, mid and mesial temporal regions; correlates of syntactic deviant detection accuracy and information-content processing, in inferior frontal and anterior temporal cortices, putamen and nucleus accumbens; and a common correlate of musical salience coding in supplementary motor area (all P < 0.05, corrected for multiple comparisons in pre-specified regions of interest). Our findings suggest that major dementias have distinct profiles of sensory 'surprise' processing, as instantiated in music. Music may be a useful and informative paradigm for probing the predictive decoding of complex sensory environments in neurodegenerative proteinopathies, with implications for understanding and measuring the core pathophysiology of these diseases.
Collapse
Affiliation(s)
- Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jeremy C S Johnson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Maï-Carmen Requena-Komuro
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Janneke E P van Leeuwen
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Caroline V Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Annabel Nelson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| |
Collapse
|
21
|
The Music of Silence: Part II: Music Listening Induces Imagery Responses. J Neurosci 2021; 41:7449-7460. [PMID: 34341154 DOI: 10.1523/jneurosci.0184-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
During music listening, humans routinely acquire the regularities of the acoustic sequences and use them to anticipate and interpret the ongoing melody. Specifically, in line with this predictive framework, it is thought that brain responses during such listening reflect a comparison between the bottom-up sensory responses and top-down prediction signals generated by an internal model that embodies the music exposure and expectations of the listener. To attain a clear view of these predictive responses, previous work has eliminated the sensory inputs by inserting artificial silences (or sound omissions) that leave behind only the corresponding predictions of the thwarted expectations. Here, we demonstrate a new alternate approach in which we decode the predictive electroencephalography (EEG) responses to the silent intervals that are naturally interspersed within the music. We did this as participants (experiment 1, 20 participants, 10 female; experiment 2, 21 participants, 6 female) listened or imagined Bach piano melodies. Prediction signals were quantified and assessed via a computational model of the melodic structure of the music and were shown to exhibit the same response characteristics when measured during listening or imagining. These include an inverted polarity for both silence and imagined responses relative to listening, as well as response magnitude modulations that precisely reflect the expectations of notes and silences in both listening and imagery conditions. These findings therefore provide a unifying view that links results from many previous paradigms, including omission reactions and the expectation modulation of sensory responses, all in the context of naturalistic music listening.SIGNIFICANCE STATEMENT Music perception depends on our ability to learn and detect melodic structures. It has been suggested that our brain does so by actively predicting upcoming music notes, a process inducing instantaneous neural responses as the music confronts these expectations. Here, we studied this prediction process using EEGs recorded while participants listen to and imagine Bach melodies. Specifically, we examined neural signals during the ubiquitous musical pauses (or silent intervals) in a music stream and analyzed them in contrast to the imagery responses. We find that imagined predictive responses are routinely co-opted during ongoing music listening. These conclusions are revealed by a new paradigm using listening and imagery of naturalistic melodies.
Collapse
|
22
|
Listeners with congenital amusia are sensitive to context uncertainty in melodic sequences. Neuropsychologia 2021; 158:107911. [PMID: 34102187 DOI: 10.1016/j.neuropsychologia.2021.107911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022]
Abstract
In typical listeners, the perceptual salience of a surprising auditory event depends on the uncertainty of its context. For example, in melodies, pitch deviants are more easily detected and generate larger neural responses when the context is highly predictable than when it is less so. However, it is not known whether amusic listeners with abnormal pitch processing are sensitive to the degree of uncertainty of pitch sequences and, if so, whether they are to a different extent than typical non-musician listeners. To answer this question, we manipulated the uncertainty of short melodies while participants with and without congenital amusia underwent EEG recordings in a passive listening task. Uncertainty was manipulated by presenting melodies with different levels of complexity and familiarity, under the assumption that simpler and more familiar patterns would enhance pitch predictability. We recorded mismatch negativity (MMN) responses to pitch, intensity, timbre, location, and rhythm deviants as a measure of auditory surprise. In both participant groups, we observed reduced MMN amplitudes and longer peak latencies for all sound features with increasing levels of complexity, and putative familiarity effects only for intensity deviants. No significant group-by-complexity or group-by-familiarity interactions were detected. However, in contrast to previous studies, pitch MMN responses in amusics were disrupted in high complexity and unfamiliar melodies. The present results thus indicate that amusics are sensitive to the uncertainty of melodic sequences and that preattentive auditory change detection is greatly spared in this population across sound features and levels of predictability. However, our findings also hint at pitch-specific impairments in this population when uncertainty is high, thus suggesting that pitch processing under high uncertainty conditions requires an intact frontotemporal loop.
Collapse
|
23
|
Sarasso P, Ronga I, Neppi-Modona M, Sacco K. The Role of Musical Aesthetic Emotions in Social Adaptation to the Covid-19 Pandemic. Front Psychol 2021; 12:611639. [PMID: 33776839 PMCID: PMC7994588 DOI: 10.3389/fpsyg.2021.611639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Pietro Sarasso
- BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Irene Ronga
- BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Marco Neppi-Modona
- BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Katiuscia Sacco
- BIP (BraIn Plasticity and Behaviour Changes) Research Group, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
24
|
Friston KJ, Sajid N, Quiroga-Martinez DR, Parr T, Price CJ, Holmes E. Active listening. Hear Res 2021; 399:107998. [PMID: 32732017 PMCID: PMC7812378 DOI: 10.1016/j.heares.2020.107998] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/27/2022]
Abstract
This paper introduces active listening, as a unified framework for synthesising and recognising speech. The notion of active listening inherits from active inference, which considers perception and action under one universal imperative: to maximise the evidence for our (generative) models of the world. First, we describe a generative model of spoken words that simulates (i) how discrete lexical, prosodic, and speaker attributes give rise to continuous acoustic signals; and conversely (ii) how continuous acoustic signals are recognised as words. The 'active' aspect involves (covertly) segmenting spoken sentences and borrows ideas from active vision. It casts speech segmentation as the selection of internal actions, corresponding to the placement of word boundaries. Practically, word boundaries are selected that maximise the evidence for an internal model of how individual words are generated. We establish face validity by simulating speech recognition and showing how the inferred content of a sentence depends on prior beliefs and background noise. Finally, we consider predictive validity by associating neuronal or physiological responses, such as the mismatch negativity and P300, with belief updating under active listening, which is greatest in the absence of accurate prior beliefs about what will be heard next.
Collapse
Affiliation(s)
- Karl J Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3AR, UK.
| | - Noor Sajid
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3AR, UK.
| | | | - Thomas Parr
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3AR, UK.
| | - Cathy J Price
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3AR, UK.
| | - Emma Holmes
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3AR, UK.
| |
Collapse
|
25
|
Hsu YF, Hämäläinen JA. Both contextual regularity and selective attention affect the reduction of precision-weighted prediction errors but in distinct manners. Psychophysiology 2020; 58:e13753. [PMID: 33340115 DOI: 10.1111/psyp.13753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Predictive coding model of perception postulates that the primary objective of the brain is to infer the causes of sensory inputs by reducing prediction errors (i.e., the discrepancy between expected and actual information). Moreover, prediction errors are weighted by their precision (i.e., inverse variance), which quantifies the degree of certainty about the variables. There is accumulating evidence that the reduction of precision-weighted prediction errors can be affected by contextual regularity (as an external factor) and selective attention (as an internal factor). However, it is unclear whether the two factors function together or separately. Here we used electroencephalography (EEG) to examine the putative interaction of contextual regularity and selective attention on this reduction process. Participants were presented with pairs of regular and irregular quartets in attended and unattended conditions. We found that contextual regularity and selective attention independently modulated the N1/MMN where the repetition effect was absent. On the P2, the two factors respectively interacted with the repetition effect without interacting with each other. The results showed that contextual regularity and selective attention likely affect the reduction of precision-weighted prediction errors in distinct manners. While contextual regularity finetunes our efficiency at reducing precision-weighted prediction errors, selective attention seems to modulate the reduction process following the Matthew effect of accumulated advantage.
Collapse
Affiliation(s)
- Yi-Fang Hsu
- Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei, Taiwan.,Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Jarmo A Hämäläinen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
26
|
Knight EJ, Oakes L, Hyman SL, Freedman EG, Foxe JJ. Individuals With Autism Have No Detectable Deficit in Neural Markers of Prediction Error When Presented With Auditory Rhythms of Varied Temporal Complexity. Autism Res 2020; 13:2058-2072. [PMID: 32881408 PMCID: PMC9073708 DOI: 10.1002/aur.2362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/07/2020] [Accepted: 06/29/2020] [Indexed: 01/31/2023]
Abstract
The brain's ability to encode temporal patterns and predict upcoming events is critical for speech perception and other aspects of social communication. Deficits in predictive coding may contribute to difficulties with social communication and overreliance on repetitive predictable environments in individuals with autism spectrum disorder (ASD). Using a mismatch negativity (MMN) task involving rhythmic tone sequences of varying complexity, we tested the hypotheses that (1) individuals with ASD have reduced MMN response to auditory stimuli that deviate in presentation timing from expected patterns, particularly as pattern complexity increases and (2) amplitude of MMN signal is inversely correlated with level of impairment in social communication and repetitive behaviors. Electroencephalography was acquired as individuals (age 6-21 years) listened to repeated five-rhythm tones that varied in the Shannon entropy of the rhythm across three conditions (zero, medium-1 bit, and high-2 bit entropy). The majority of the tones conformed to the established rhythm (standard tones); occasionally the fourth tone was temporally shifted relative to its expected time of occurrence (deviant tones). Social communication and repetitive behaviors were measured using the Social Responsiveness Scale and Repetitive Behavior Scale-Revised. Both neurotypical controls (n = 19) and individuals with ASD (n = 21) show stepwise decreases in MMN as a function of increasing entropy. Contrary to the result forecasted by a predictive coding hypothesis, individuals with ASD do not differ from controls in these neural mechanisms of prediction error to auditory rhythms of varied temporal complexity, and there is no relationship between these signals and social communication or repetitive behavior measures. LAY SUMMARY: We tested the idea that the brain's ability to use previous experience to influence processing of sounds is weaker in individuals with autism spectrum disorder (ASD) than in neurotypical individuals. We found no difference between individuals with ASD and neurotypical controls in brain wave responses to sounds that occurred earlier than expected in either simple or complex rhythms. There was also no relationship between these brain waves and social communication or repetitive behavior scores.
Collapse
Affiliation(s)
- Emily J. Knight
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Leona Oakes
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Susan L. Hyman
- Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward G. Freedman
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - John J. Foxe
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
27
|
Andermann M, Günther M, Patterson RD, Rupp A. Early cortical processing of pitch height and the role of adaptation and musicality. Neuroimage 2020; 225:117501. [PMID: 33169697 DOI: 10.1016/j.neuroimage.2020.117501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pitch is an important perceptual feature; however, it is poorly understood how its cortical correlates are shaped by absolute vs relative fundamental frequency (f0), and by neural adaptation. In this study, we assessed transient and sustained auditory evoked fields (AEFs) at the onset, progression, and offset of short pitch height sequences, taking into account the listener's musicality. We show that neuromagnetic activity reflects absolute f0 at pitch onset and offset, and relative f0 at transitions within pitch sequences; further, sequences with fixed f0 lead to larger response suppression than sequences with variable f0 contour, and to enhanced offset activity. Musical listeners exhibit stronger f0-related AEFs and larger differences between their responses to fixed vs variable sequences, both within sequences and at pitch offset. The results resemble prominent psychoacoustic phenomena in the perception of pitch contours; moreover, they suggest a strong influence of adaptive mechanisms on cortical pitch processing which, in turn, might be modulated by a listener's musical expertise.
Collapse
Affiliation(s)
- Martin Andermann
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Melanie Günther
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Roy D Patterson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - André Rupp
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Jalewa J, Todd J, Michie PT, Hodgson DM, Harms L. Do rat auditory event related potentials exhibit human mismatch negativity attributes related to predictive coding? Hear Res 2020; 399:107992. [PMID: 32571607 DOI: 10.1016/j.heares.2020.107992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023]
Abstract
Rodent models play a significant role in understanding disease mechanisms and the screening of new treatments. With regard to psychiatric disorders such as schizophrenia, however, it is difficult to replicate the human symptoms in rodents because these symptoms are often either 'uniquely human' or are only conveyed via self-report. There is a growing interest in rodent mismatch responses (MMRs) as a translatable 'biomarker' for disorders such as schizophrenia. In this review, we will summarize the attributes of human MMN, and discuss the scope of exploring the attributes of human MMN in rodents. Here, we examine how reliably MMRs that are measured in rats mimic human attributes, and present original data examining whether manipulations of stimulus conditions known to modulate human MMN, do the same for rat MMRs. Using surgically-implanted epidural electroencephalographic electrodes and wireless telemetry in freely-moving rats, we observed human-like modulations of MMRs, namely that larger MMRs were elicited to unexpected (deviant) stimuli that a) had a larger change in pitch compared to the expected (standard) stimulus, b) were less frequently presented (lower probability), and c) had no jitter (stable stimulus onset asynchrony) compared to high jitter. Overall, these findings contribute to the mounting evidence for rat MMRs as a good analogue of human MMN, bolstering the development of a novel approach in future to validate the preclinical models based on a translatable biomarker, MMN.
Collapse
Affiliation(s)
- Jaishree Jalewa
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Patricia T Michie
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Deborah M Hodgson
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lauren Harms
- Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
29
|
Quiroga-Martinez DR, Hansen NC, Højlund A, Pearce M, Brattico E, Vuust P. Decomposing neural responses to melodic surprise in musicians and non-musicians: Evidence for a hierarchy of predictions in the auditory system. Neuroimage 2020; 215:116816. [PMID: 32276064 DOI: 10.1016/j.neuroimage.2020.116816] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/18/2020] [Accepted: 03/24/2020] [Indexed: 01/20/2023] Open
Abstract
Neural responses to auditory surprise are typically studied with highly unexpected, disruptive sounds. Consequently, little is known about auditory prediction in everyday contexts that are characterized by fine-grained, non-disruptive fluctuations of auditory surprise. To address this issue, we used IDyOM, a computational model of auditory expectation, to obtain continuous surprise estimates for a set of newly composed melodies. Our main goal was to assess whether the neural correlates of non-disruptive surprising sounds in a musical context are affected by musical expertise. Using magnetoencephalography (MEG), auditory responses were recorded from musicians and non-musicians while they listened to the melodies. Consistent with a previous study, the amplitude of the N1m component increased with higher levels of computationally estimated surprise. This effect, however, was not different between the two groups. Further analyses offered an explanation for this finding: Pitch interval size itself, rather than probabilistic prediction, was responsible for the modulation of the N1m, thus pointing to low-level sensory adaptation as the underlying mechanism. In turn, the formation of auditory regularities and proper probabilistic prediction were reflected in later components: The mismatch negativity (MMNm) and the P3am, respectively. Overall, our findings reveal a hierarchy of expectations in the auditory system and highlight the need to properly account for sensory adaptation in research addressing statistical learning.
Collapse
Affiliation(s)
- D R Quiroga-Martinez
- Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Denmark.
| | - N C Hansen
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - A Højlund
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - M Pearce
- Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Denmark; School of Electronic Engineering and Computer Science, Queen Mary University of London, UK
| | - E Brattico
- Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Denmark; Department of Educational Sciences, Psychology and Communication, University of Bari Aldo Moro, Italy
| | - P Vuust
- Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Denmark
| |
Collapse
|
30
|
Di Liberto GM, Pelofi C, Bianco R, Patel P, Mehta AD, Herrero JL, de Cheveigné A, Shamma S, Mesgarani N. Cortical encoding of melodic expectations in human temporal cortex. eLife 2020; 9:e51784. [PMID: 32122465 PMCID: PMC7053998 DOI: 10.7554/elife.51784] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/20/2020] [Indexed: 01/14/2023] Open
Abstract
Humans engagement in music rests on underlying elements such as the listeners' cultural background and interest in music. These factors modulate how listeners anticipate musical events, a process inducing instantaneous neural responses as the music confronts these expectations. Measuring such neural correlates would represent a direct window into high-level brain processing. Here we recorded cortical signals as participants listened to Bach melodies. We assessed the relative contributions of acoustic versus melodic components of the music to the neural signal. Melodic features included information on pitch progressions and their tempo, which were extracted from a predictive model of musical structure based on Markov chains. We related the music to brain activity with temporal response functions demonstrating, for the first time, distinct cortical encoding of pitch and note-onset expectations during naturalistic music listening. This encoding was most pronounced at response latencies up to 350 ms, and in both planum temporale and Heschl's gyrus.
Collapse
Affiliation(s)
- Giovanni M Di Liberto
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, PSL University, CNRS75005 ParisFrance
| | - Claire Pelofi
- Department of Psychology, New York UniversityNew YorkUnited States
- Institut de Neurosciences des Système, UMR S 1106, INSERM, Aix Marseille UniversitéMarseilleFrance
| | | | - Prachi Patel
- Department of Electrical Engineering, Columbia UniversityNew YorkUnited States
- Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Ashesh D Mehta
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/NorthwellManhassetUnited States
- Feinstein Institute of Medical Research, Northwell HealthManhassetUnited States
| | - Jose L Herrero
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/NorthwellManhassetUnited States
- Feinstein Institute of Medical Research, Northwell HealthManhassetUnited States
| | - Alain de Cheveigné
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, PSL University, CNRS75005 ParisFrance
- UCL Ear InstituteLondonUnited Kingdom
| | - Shihab Shamma
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, PSL University, CNRS75005 ParisFrance
- Institute for Systems Research, Electrical and Computer Engineering, University of MarylandCollege ParkUnited States
| | - Nima Mesgarani
- Department of Electrical Engineering, Columbia UniversityNew YorkUnited States
- Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| |
Collapse
|
31
|
Bianco R, Ptasczynski LE, Omigie D. Pupil responses to pitch deviants reflect predictability of melodic sequences. Brain Cogn 2020; 138:103621. [DOI: 10.1016/j.bandc.2019.103621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
32
|
Quiroga‐Martinez DR, C. Hansen N, Højlund A, Pearce M, Brattico E, Vuust P. Musical prediction error responses similarly reduced by predictive uncertainty in musicians and non‐musicians. Eur J Neurosci 2020; 51:2250-2269. [DOI: 10.1111/ejn.14667] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/26/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Niels C. Hansen
- The MARCS Institute for Brain, Behaviour, and Development Western Sydney University Sydney NSW Australia
| | - Andreas Højlund
- Center for Functionally Integrative Neuroscience Aarhus University Aarhus Denmark
| | - Marcus Pearce
- Center for Music in the Brain Aarhus University & The Royal Academy of music Aarhus Denmark
- School of Electronic Engineering and Computer Science Queen Mary University of London London UK
| | - Elvira Brattico
- Center for Music in the Brain Aarhus University & The Royal Academy of music Aarhus Denmark
| | - Peter Vuust
- Center for Music in the Brain Aarhus University & The Royal Academy of music Aarhus Denmark
| |
Collapse
|
33
|
Cheung VK, Harrison PM, Meyer L, Pearce MT, Haynes JD, Koelsch S. Uncertainty and Surprise Jointly Predict Musical Pleasure and Amygdala, Hippocampus, and Auditory Cortex Activity. Curr Biol 2019; 29:4084-4092.e4. [DOI: 10.1016/j.cub.2019.09.067] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
|