1
|
Trende R, Darling TL, Gan T, Wang D, Boon ACM. Barcoded SARS-CoV-2 viruses define the impact of duration and route of exposure on the transmission bottleneck in a hamster model. SCIENCE ADVANCES 2025; 11:eads2927. [PMID: 39813353 PMCID: PMC11778309 DOI: 10.1126/sciadv.ads2927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
The transmission bottleneck, defined as the number of viruses shed from one host to infect another, is an important determinant of the rate of virus evolution and the level of immunity required to protect against virus transmission. Despite its importance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission bottleneck remains poorly characterized. We adapted a SARS-CoV-2 reverse genetics system to generate a pool of >200 isogenic SARS-CoV-2 viruses harboring specific 6-nucleotide barcodes, infected donor hamsters with this pool, and exposed contact hamsters to paired infected donors, varying the duration and route of exposure. Following exposure, the nasal turbinates, trachea, and lungs were collected and the number of barcodes in each tissue was enumerated. We found that longer and more direct exposures increased the transmission bottleneck and that the upper airway is the primary source of transmitted virus in this model. Together, these findings highlight the utility of barcoded viruses as tools to rigorously study virus transmission.
Collapse
Affiliation(s)
- Reed Trende
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adrianus C. M. Boon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Li C, Culhane MR, Schroeder DC, Cheeran MCJ, Galina Pantoja L, Jansen ML, Torremorell M. Quantifying the impact of vaccination on transmission and diversity of influenza A variants in pigs. J Virol 2024; 98:e0124524. [PMID: 39530665 DOI: 10.1128/jvi.01245-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Global evolutionary dynamics of influenza A virus (IAV) are fundamentally driven by the extent of virus diversity generated, transmitted, and shaped in individual hosts. How vaccination affects the degree of IAV genetic diversity that can be transmitted and expanded in pigs is unknown. To evaluate the effect of vaccination on the transmission of genetically distinct IAV variants and their diversity after transmission in pigs, we examined the whole genome of IAV recovered from the nasal cavities of pigs vaccinated with different influenza immunization regimens after being infected simultaneously by H1N1 and H3N2 IAVs using a seeder pig model. We found that the seeder pigs harbored more diversified virus populations than the contact pigs. Among contact pigs, H3N2 and H1N1 viruses recovered from pigs vaccinated with a single dose of an unmatched modified live vaccine generally accumulated more extensive genetic mutations than non-vaccinated pigs. Furthermore, the non-sterilizing immunity elicited by the single-dose-modified live vaccine may have exerted positive selection on H1 antigenic regions as we detected significantly higher nonsynonymous but lower synonymous evolutionary rates in H1 antigenic regions than non-antigenic regions. In addition, we observed that the vaccinated pigs shared significantly less proportion of H3N2 variants with seeder pigs than unvaccinated pigs. These results indicated that vaccination might reduce the impact of transmitted influenza variants on the overall diversity of IAV populations harbored in recipient pigs and that within-host genetic selection of IAV is more likely to occur in pigs vaccinated with improperly matched vaccines.IMPORTANCEUnderstanding how vaccination shapes the diversity of influenza variants that transmit and propagate among pigs is essential for designing effective IAV surveillance and control programs. Current knowledge about the transmission of IAV variants has primarily been explored in humans during natural infection. However, how immunity elicited by improperly matched vaccines affects the degree of IAV genetic diversity that can be transmitted and expanded in pigs at the whole-genome level is unknown. We analyzed IAV sequences from samples collected daily from experimentally infected pigs vaccinated with various protocols in a field-represented IAV co-infection model. We found that vaccine-induced non-sterilizing immunity might promote genetic variation on the IAV genome and drive positive selection at antigenic sites during infection. In addition, a smaller proportion of H3N2 viral variants were shared between seeder pigs and vaccinated pigs, suggesting the influence of vaccination on shaping the virus genomic diversity in recipient pigs during the transmission events.
Collapse
Affiliation(s)
- Chong Li
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Declan C Schroeder
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Maxim C-J Cheeran
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | |
Collapse
|
3
|
Bendall EE, Dimcheff D, Papalambros L, Fitzsimmons WJ, Zhu Y, Schmitz J, Halasa N, Chappell J, Martin ET, Biddle JE, Smith-Jeffcoat SE, Rolfes MA, Mellis A, Talbot HK, Grijalva C, Lauring AS. In depth sequencing of a serially sampled household cohort reveals the within-host dynamics of Omicron SARS-CoV-2 and rare selection of novel spike variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624722. [PMID: 39605326 PMCID: PMC11601520 DOI: 10.1101/2024.11.21.624722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
SARS-CoV-2 has undergone repeated and rapid evolution to circumvent host immunity. However, outside of prolonged infections in immunocompromised hosts, within-host positive selection has rarely been detected. The low diversity within-hosts and strong genetic linkage among genomic sites make accurately detecting positive selection difficult. Longitudinal sampling is a powerful method for detecting selection that has seldom been used for SARS-CoV-2. Here we combine longitudinal sampling with replicate sequencing to increase the accuracy of and lower the threshold for variant calling. We sequenced 577 specimens from 105 individuals from a household cohort primarily during the BA.1/BA.2 variant period. There was extremely low diversity and a low rate of divergence. Specimens had 0-12 intrahost single nucleotide variants (iSNV) at >0.5% frequency, and the majority of the iSNV were at frequencies <2%. Within-host dynamics were dominated by genetic drift and purifying selection. Positive selection was rare but highly concentrated in spike. Two individuals with BA.1 infections had S:371F, a lineage defining substitution for BA.2. A Wright Fisher Approximate Bayesian Computational model identified positive selection at 14 loci with 7 in spike, including S:448 and S:339. We also detected significant genetic hitchhiking between synonymous changes and nonsynonymous iSNV under selection. The detectable immune-mediated selection may be caused by the relatively narrow antibody repertoire in individuals during the early Omicron phase of the SARS-CoV-2 pandemic. As both the virus and population immunity evolve, understanding the corresponding shifts in SARS-CoV-2 within-host dynamics will be important.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Derek Dimcheff
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Leigh Papalambros
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan Schmitz
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - H. Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carlos Grijalva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam S. Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Ježić M, Nuskern L, Peranić K, Popović M, Ćurković-Perica M, Mendaš O, Škegro I, Poljak I, Vidaković A, Idžojtić M. Regional Variability of Chestnut ( Castanea sativa) Tolerance Toward Blight Disease. PLANTS (BASEL, SWITZERLAND) 2024; 13:3060. [PMID: 39519976 PMCID: PMC11548496 DOI: 10.3390/plants13213060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Since its introduction into Europe in the first half of the 20th century, Cryphonectria parasitica has been gradually spreading across the natural range of the sweet chestnut (Castanea sativa Mill.), infecting the trees and causing lethal bark cankers. Serendipitously, a hyperparasitic Cryphonectria hypovirus 1 (CHV1), which attenuates C. parasitica virulence in combination with more tolerant European chestnut species, was able to ward off the worst effect of the disease. In North America, unfortunately, the native Castanea dentata is now functionally extinct since it occurs only as root sprouts in eastern deciduous forests where it was once dominant. In our work, we investigated changes in C. parasitica populations over time and the regional variability in chestnut populations' tolerance toward the blight disease. While vegetative compatibility (vc) type diversity and prevalence of hypovirulence remained similar as in previous studies, in the Buje population, unlike in previous studies, we were unable to find any hypovirulent fungal strains. The most common vegetative compatibility types (vc types) were EU-1, EU-2 and EU-12. However, several rare EU-types were found, including one previously unreported: EU-46. By inoculating several C. parasitica strains on tree stems from several chestnut populations, we observed that the induced lesion size was affected by the type of inoculum (CHV1-free or CHV1-infected), genotype-related individual chestnut stem and chestnut stem population of origin-related variability. The largest lesions were induced by CHV1-free fungal isolate DOB-G: 20.13 cm2 (95% C.I. 18.10-22.15) and the smallest by CHV1-infected L14/EP713: 2.49 cm2 (95% C.I. 1.59-3.39). Surprisingly, the size of the lesions induced by other CHV1-infected strains fell somewhere in between these extremes. The size of induced lesions was dependent on the population of origin as well and ranged from 11.60 cm2 (95% C.I. 9.87-13.33) for stems from the Moslavačka gora population to 17.75 cm2 (95% C.I. 15.63-19.87) for stems from Ozalj.
Collapse
Affiliation(s)
- Marin Ježić
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Lucija Nuskern
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Karla Peranić
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Maja Popović
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
- Institute of Forest Engineering, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Mirna Ćurković-Perica
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Ozren Mendaš
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Ivan Škegro
- Division of Microbiology, Department of Biology, Faculty of Science, University of Zagreb, Marulićev Trg 9a, 10000 Zagreb, Croatia; (L.N.); (K.P.); (M.P.); (M.Ć.-P.); (O.M.); (I.Š.)
| | - Igor Poljak
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska 23, 10000 Zagreb, Croatia; (I.P.); (A.V.); (M.I.)
| | - Antonio Vidaković
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska 23, 10000 Zagreb, Croatia; (I.P.); (A.V.); (M.I.)
| | - Marilena Idžojtić
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska 23, 10000 Zagreb, Croatia; (I.P.); (A.V.); (M.I.)
| |
Collapse
|
5
|
Pauciullo S, Zulian V, La Frazia S, Paci P, Garbuglia AR. Spillover: Mechanisms, Genetic Barriers, and the Role of Reservoirs in Emerging Pathogens. Microorganisms 2024; 12:2191. [PMID: 39597581 PMCID: PMC11596118 DOI: 10.3390/microorganisms12112191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Viral spillover represents the transmission of pathogen viruses from one species to another that can give rise to an outbreak. It is a critical concept that has gained increasing attention, particularly after the SARS-CoV-2 pandemic. However, the term is often used inaccurately to describe events that do not meet the true definition of spillover. This review aims to clarify the proper use of the term and provides a detailed analysis of the mechanisms driving zoonotic spillover, with a focus on the genetic and environmental factors that enable viruses to adapt to new hosts. Key topics include viral genetic variability in reservoir species, biological barriers to cross-species transmission, and the factors that influence viral adaptation and spread in novel hosts. The review also examines the role of evolutionary processes such as mutation and epistasis, alongside ecological conditions that facilitate the emergence of new pathogens. Ultimately, it underscores the need for more accurate predictive models and improved surveillance to better anticipate and mitigate future spillover events.
Collapse
Affiliation(s)
- Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Paola Paci
- Department of Computer, Control, and Management Engineering “A. Ruberti” (DIAG), Sapienza University of Rome, 00185 Rome, Italy;
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| |
Collapse
|
6
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid intra-host diversification and evolution of SARS-CoV-2 in advanced HIV infection. Nat Commun 2024; 15:7240. [PMID: 39174553 PMCID: PMC11341811 DOI: 10.1038/s41467-024-51539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions, but the processes responsible for these observations are incompletely understood. Here we use high-throughput, single-genome amplification and sequencing (HT-SGS) to sequence SARS-CoV-2 spike genes from people with HIV (PWH, n = 22) and people without HIV (PWOH, n = 25). In PWOH and PWH with CD4 T cell counts (i.e., CD4 counts) ≥ 200 cells/μL, we find that most SARS-CoV-2 genomes sampled in each person share one spike sequence. By contrast, in people with advanced HIV infection (i.e., CD4 counts < 200 cells/μL), HT-SGS reveals a median of 46 distinct linked groupings of spike mutations per person. Elevated intra-host spike diversity in people with advanced HIV infection is detected immediately after COVID-19 symptom onset, and early intra-host spike diversity predicts SARS-CoV-2 shedding duration among PWH. Analysis of longitudinal timepoints reveals rapid fluctuations in spike sequence populations, replacement of founder sequences by groups of new haplotypes, and positive selection at functionally important residues. These findings demonstrate remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern.
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinal N Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Li Y, Song Y, Xiao Y, Wang T, Li L, Liu M, Li J, Wang J. The Characteristic of HBV Quasispecies Is Related to Occult HBV Infection of Infants Born to Highly Viremic Mothers. Viruses 2024; 16:1104. [PMID: 39066265 PMCID: PMC11281566 DOI: 10.3390/v16071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Although a combination of immunoprophylaxis and antiviral therapy can effectively prevent mother-to-child transmission (MTCT) of hepatitis B virus (HBV), a considerable number of infants born to highly viremic mothers still develop occult HBV infection (OBI). To uncover the virological factor and risk predictor for OBI in infants, we found that the diversity and complexity of maternal HBV quasispecies in the case group were lower than those in the control group. Mutations with significant differences between the two groups were most enriched in the NTCPbd and PreC regions. Genetic distance at the amino-acid level of the PreC region, especially the combination of three amino-acid mutations in the PreC region, could strongly predict the risk of OBI in infants. HBV quasispecies in OBI infants were highly complex, and the non-synonymous substitutions were mainly found in the RT and HBsAg regions. The sK47E (rtQ55R) and sP49L mutations in OBI infants might contribute to OBI through inhibiting the production of HBV DNA and HBsAg, respectively. This study found the potential virological factors and risk predictors for OBI in infants born to highly viremic mothers, which might be helpful for controlling OBI in infants.
Collapse
Affiliation(s)
- Yi Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yarong Song
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yiwei Xiao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tong Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lili Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Minmin Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jie Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Trende R, Darling TL, Gan T, Wang D, Boon AC. Barcoded SARS-CoV-2 viruses define the impact of time and route of transmission on the transmission bottleneck in a Syrian hamster model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.597602. [PMID: 38915710 PMCID: PMC11195048 DOI: 10.1101/2024.06.08.597602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The transmission bottleneck, defined as the number of viruses that transmit from one host to infect another, is an important determinant of the rate of virus evolution and the level of immunity required to protect against virus transmission. Despite its importance, SARS-CoV-2's transmission bottleneck remains poorly characterized, in part due to a lack of quantitative measurement tools. To address this, we adapted a SARS-CoV-2 reverse genetics system to generate a pool of >200 isogenic SARS-CoV-2 viruses harboring specific 6-nucleotide barcodes inserted in ORF10, a non-translated ORF. We directly inoculated donor Syrian hamsters intranasally with this barcoded virus pool and exposed a paired naïve contact hamster to each donor. Following exposure, the nasal turbinates, trachea, and lungs were collected, viral titers were measured, and the number of barcodes in each tissue were enumerated to quantify the transmission bottleneck. The duration and route (airborne, direct contact, and fomite) of exposure were varied to assess their impact on the transmission bottleneck. In airborne-exposed hamsters, the transmission bottleneck increased with longer exposure durations. We found that direct contact exposure produced the largest transmission bottleneck (average 27 BCs), followed by airborne exposure (average 16 BCs) then fomite exposure (average 8 BCs). Interestingly, we detected unique BCs in both the upper and lower respiratory tract of contact animals from all routes of exposure, suggesting that SARS-CoV-2 can directly infect hamster lungs. Altogether, these findings highlight the utility of barcoded viruses as tools to rigorously study virus transmission. In the future, barcoded SARS-CoV-2 will strengthen studies of immune factors that influence virus transmission.
Collapse
Affiliation(s)
- Reed Trende
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| | - Adrianus C.M. Boon
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine in St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Martin MA, Berg N, Koelle K. Influenza A genomic diversity during human infections underscores the strength of genetic drift and the existence of tight transmission bottlenecks. Virus Evol 2024; 10:veae042. [PMID: 38883977 PMCID: PMC11179161 DOI: 10.1093/ve/veae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Influenza infections result in considerable public health and economic impacts each year. One of the contributing factors to the high annual incidence of human influenza is the virus's ability to evade acquired immunity through continual antigenic evolution. Understanding the evolutionary forces that act within and between hosts is therefore critical to interpreting past trends in influenza virus evolution and in predicting future ones. Several studies have analyzed longitudinal patterns of influenza A virus genetic diversity in natural human infections to assess the relative contributions of selection and genetic drift on within-host evolution. However, in these natural infections, within-host viral populations harbor very few single-nucleotide variants, limiting our resolution in understanding the forces acting on these populations in vivo. Furthermore, low levels of within-host viral genetic diversity limit the ability to infer the extent of drift across transmission events. Here, we propose to use influenza virus genomic diversity as an alternative signal to better understand within- and between-host patterns of viral evolution. Specifically, we focus on the dynamics of defective viral genomes (DVGs), which harbor large internal deletions in one or more of influenza virus's eight gene segments. Our longitudinal analyses of DVGs show that influenza A virus populations are highly dynamic within hosts, corroborating previous findings based on viral genetic diversity that point toward the importance of genetic drift in driving within-host viral evolution. Furthermore, our analysis of DVG populations across transmission pairs indicates that DVGs rarely appeared to be shared, indicating the presence of tight transmission bottlenecks. Our analyses demonstrate that viral genomic diversity can be used to complement analyses based on viral genetic diversity to reveal processes that drive viral evolution within and between hosts.
Collapse
Affiliation(s)
- Michael A Martin
- Department of Pathology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, 1462 Clifton Road NE, Atlanta, GA 30322, USA
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Nick Berg
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
- National Institute of Allergy and Infectious Diseases Laboratory of Viral Disease, National Institutes of Health, 33 North Drive, Bethesda, MD 20814, USA
| | - Katia Koelle
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Schreiber A, Rodner F, Oberberg N, Anhlan D, Bletz S, Mellmann A, Planz O, Ludwig S. The host-targeted antiviral drug Zapnometinib exhibits a high barrier to the development of SARS-CoV-2 resistance. Antiviral Res 2024; 225:105840. [PMID: 38438015 DOI: 10.1016/j.antiviral.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Host targeting antiviral drugs (HTA) are directed against cellular mechanisms which can be exploited by viruses. These mechanisms are essential for viral replication, because missing functions cannot be compensated by the virus. However, this assumption needs experimental proof. Here we compared the HTA Zapnometinib (ZMN), with direct acting antivirals (DAA) (Remdesivir (RDV), Molnupiravir (MPV), Nirmatrelvir (NTV), Ritonavir (RTV), Paxlovid PAX)), in terms of their potency to induce reduced drug susceptibilities in SARS-CoV-2. During serial passage of δ-B1.617.2 adaptation to all DAAs occurred, while the inhibitory capacity of ZMN was not altered. Known single nucleotide polymorphisms (SNPs) responsible for partial resistances were found for RDV, NTV and PAX. Additionally, the high mutagenic potential of MPV was confirmed and decreased drug efficacies were found for the first time. Reduced DAA efficacy did not alter the inhibitory potential of ZMN. These results show that ZMN confers a high barrier towards the development of viral resistance and has the potential to act against partially DAA-insensitive viruses.
Collapse
Affiliation(s)
- André Schreiber
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Franziska Rodner
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Nicole Oberberg
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Darisuren Anhlan
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Stefan Bletz
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Oliver Planz
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard Karls University Tuebingen, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany.
| |
Collapse
|
11
|
Scarpa F, Sernicola L, Farcomeni S, Ciccozzi A, Sanna D, Casu M, Vitale M, Cicenia A, Giovanetti M, Romano C, Branda F, Ciccozzi M, Borsetti A. Phylodynamic and Evolution of the Hemagglutinin (HA) and Neuraminidase (NA) Genes of Influenza A(H1N1) pdm09 Viruses Circulating in the 2009 and 2023 Seasons in Italy. Pathogens 2024; 13:334. [PMID: 38668289 PMCID: PMC11054071 DOI: 10.3390/pathogens13040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
The influenza A(H1N1) pdm09 virus, which emerged in 2009, has been circulating seasonally since then. In this study, we conducted a comprehensive genome-based investigation to gain a detailed understanding of the genetic and evolutionary characteristics of the hemagglutinin (HA) and neuraminidase (NA) surface proteins of A/H1N1pdm09 strains circulating in Italy over a fourteen-year period from 2009 to 2023 in relation to global strains. Phylogenetic analysis revealed rapid transmission and diversification of viral variants during the early pandemic that clustered in clade 6B.1. In contrast, limited genetic diversity was observed during the 2023 season, probably due to the genetic drift, which provides the virus with a constant adaptability to the host; furthermore, all isolates were split into two main groups representing two clades, i.e., 6B.1A.5a.2a and its descendant 6B.1A.5a.2a.1. The HA gene showed a faster rate of evolution compared to the NA gene. Using FUBAR, we identified positively selected sites 41 and 177 for HA and 248, 286, and 455 for NA in 2009, as well as sites 22, 123, and 513 for HA and 339 for NA in 2023, all of which may be important sites related to the host immune response. Changes in glycosylation acquisition/loss at prominent sites, i.e., 177 in HA and 248 in NA, should be considered as a predictive tool for early warning signs of emerging pandemics, and for vaccine and drug development.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (D.S.)
| | - Leonardo Sernicola
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Rome, Italy; (L.S.); (S.F.)
| | - Stefania Farcomeni
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Rome, Italy; (L.S.); (S.F.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (D.S.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (D.S.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Marco Vitale
- Laboratorio di Biologia Molecolare—Fondazione Università Niccolò Cusano, 00166 Rome, Italy; (M.V.); (A.C.)
| | - Alessia Cicenia
- Laboratorio di Biologia Molecolare—Fondazione Università Niccolò Cusano, 00166 Rome, Italy; (M.V.); (A.C.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, MG, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, DF, Brazil
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (C.R.); (F.B.); (M.C.)
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (C.R.); (F.B.); (M.C.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (C.R.); (F.B.); (M.C.)
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Rome, Italy; (L.S.); (S.F.)
| |
Collapse
|
12
|
Samson S, Lord É, Makarenkov V. Assessing the emergence time of SARS-CoV-2 zoonotic spillover. PLoS One 2024; 19:e0301195. [PMID: 38574109 PMCID: PMC10994396 DOI: 10.1371/journal.pone.0301195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Understanding the evolution of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) and its relationship to other coronaviruses in the wild is crucial for preventing future virus outbreaks. While the origin of the SARS-CoV-2 pandemic remains uncertain, mounting evidence suggests the direct involvement of the bat and pangolin coronaviruses in the evolution of the SARS-CoV-2 genome. To unravel the early days of a probable zoonotic spillover event, we analyzed genomic data from various coronavirus strains from both human and wild hosts. Bayesian phylogenetic analysis was performed using multiple datasets, using strict and relaxed clock evolutionary models to estimate the occurrence times of key speciation, gene transfer, and recombination events affecting the evolution of SARS-CoV-2 and its closest relatives. We found strong evidence supporting the presence of temporal structure in datasets containing SARS-CoV-2 variants, enabling us to estimate the time of SARS-CoV-2 zoonotic spillover between August and early October 2019. In contrast, datasets without SARS-CoV-2 variants provided mixed results in terms of temporal structure. However, they allowed us to establish that the presence of a statistically robust clade in the phylogenies of gene S and its receptor-binding (RBD) domain, including two bat (BANAL) and two Guangdong pangolin coronaviruses (CoVs), is due to the horizontal gene transfer of this gene from the bat CoV to the pangolin CoV that occurred in the middle of 2018. Importantly, this clade is closely located to SARS-CoV-2 in both phylogenies. This phylogenetic proximity had been explained by an RBD gene transfer from the Guangdong pangolin CoV to a very recent ancestor of SARS-CoV-2 in some earlier works in the field before the BANAL coronaviruses were discovered. Overall, our study provides valuable insights into the timeline and evolutionary dynamics of the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Stéphane Samson
- Department of Computer Sciences, Université du Québec à Montréal, Montréal, Canada
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Étienne Lord
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Vladimir Makarenkov
- Department of Computer Sciences, Université du Québec à Montréal, Montréal, Canada
- Mila—Quebec AI Institute, Montreal, QC, Canada
| |
Collapse
|
13
|
Rudar J, Kruczkiewicz P, Vernygora O, Golding GB, Hajibabaei M, Lung O. Sequence signatures within the genome of SARS-CoV-2 can be used to predict host source. Microbiol Spectr 2024; 12:e0358423. [PMID: 38436242 PMCID: PMC10986507 DOI: 10.1128/spectrum.03584-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
We conducted an in silico analysis to better understand the potential factors impacting host adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in white-tailed deer, humans, and mink due to the strong evidence of sustained transmission within these hosts. Classification models trained on single nucleotide and amino acid differences between samples effectively identified white-tailed deer-, human-, and mink-derived SARS-CoV-2. For example, the balanced accuracy score of Extremely Randomized Trees classifiers was 0.984 ± 0.006. Eighty-eight commonly identified predictive mutations are found at sites under strong positive and negative selective pressure. A large fraction of sites under selection (86.9%) or identified by machine learning (87.1%) are found in genes other than the spike. Some locations encoded by these gene regions are predicted to be B- and T-cell epitopes or are implicated in modulating the immune response suggesting that host adaptation may involve the evasion of the host immune system, modulation of the class-I major-histocompatibility complex, and the diminished recognition of immune epitopes by CD8+ T cells. Our selection and machine learning analysis also identified that silent mutations, such as C7303T and C9430T, play an important role in discriminating deer-derived samples across multiple clades. Finally, our investigation into the origin of the B.1.641 lineage from white-tailed deer in Canada discovered an additional human sequence from Michigan related to the B.1.641 lineage sampled near the emergence of this lineage. These findings demonstrate that machine-learning approaches can be used in combination with evolutionary genomics to identify factors possibly involved in the cross-species transmission of viruses and the emergence of novel viral lineages.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible virus capable of infecting and establishing itself in human and wildlife populations, such as white-tailed deer. This fact highlights the importance of developing novel ways to identify genetic factors that contribute to its spread and adaptation to new host species. This is especially important since these populations can serve as reservoirs that potentially facilitate the re-introduction of new variants into human populations. In this study, we apply machine learning and phylogenetic methods to uncover biomarkers of SARS-CoV-2 adaptation in mink and white-tailed deer. We find evidence demonstrating that both non-synonymous and silent mutations can be used to differentiate animal-derived sequences from human-derived ones and each other. This evidence also suggests that host adaptation involves the evasion of the immune system and the suppression of antigen presentation. Finally, the methods developed here are general and can be used to investigate host adaptation in viruses other than SARS-CoV-2.
Collapse
Affiliation(s)
- Josip Rudar
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Integrative Biology & Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Peter Kruczkiewicz
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Oksana Vernygora
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - G. Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Mehrdad Hajibabaei
- Department of Integrative Biology & Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Shi YT, Harris JD, Martin MA, Koelle K. Transmission Bottleneck Size Estimation from De Novo Viral Genetic Variation. Mol Biol Evol 2024; 41:msad286. [PMID: 38158742 PMCID: PMC10798134 DOI: 10.1093/molbev/msad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Sequencing of viral infections has become increasingly common over the last decade. Deep sequencing data in particular have proven useful in characterizing the roles that genetic drift and natural selection play in shaping within-host viral populations. They have also been used to estimate transmission bottleneck sizes from identified donor-recipient pairs. These bottleneck sizes quantify the number of viral particles that establish genetic lineages in the recipient host and are important to estimate due to their impact on viral evolution. Current approaches for estimating bottleneck sizes exclusively consider the subset of viral sites that are observed as polymorphic in the donor individual. However, these approaches have the potential to substantially underestimate true transmission bottleneck sizes. Here, we present a new statistical approach for instead estimating bottleneck sizes using patterns of viral genetic variation that arise de novo within a recipient individual. Specifically, our approach makes use of the number of clonal viral variants observed in a transmission pair, defined as the number of viral sites that are monomorphic in both the donor and the recipient but carry different alleles. We first test our approach on a simulated dataset and then apply it to both influenza A virus sequence data and SARS-CoV-2 sequence data from identified transmission pairs. Our results confirm the existence of extremely tight transmission bottlenecks for these 2 respiratory viruses.
Collapse
Affiliation(s)
| | | | - Michael A Martin
- Department of Biology, Emory University, Atlanta, GA, USA
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (CEIRR), Atlanta, GA, USA
| |
Collapse
|
15
|
Wu Q, Kinoti WM, Habili N, Tyerman SD, Rinaldo A, Constable FE. Genetic Diversity of Grapevine Virus A in Three Australian Vineyards Using Amplicon High Throughput Sequencing (Amplicon-HTS). Viruses 2023; 16:42. [PMID: 38257742 PMCID: PMC10819895 DOI: 10.3390/v16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Shiraz disease (SD) is one of the most destructive viral diseases of grapevines in Australia and is known to cause significant economic loss to local growers. Grapevine virus A (GVA) was reported to be the key pathogen associated with this disease. This study aimed to better understand the diversity of GVA variants both within and between individual SD and grapevine leafroll disease (LRD) affected grapevines located at vineyards in South Australia. Amplicon high throughput sequencing (Amplicon-HTS) combined with median-joining networks (MJNs) was used to analyze the variability in specific gene regions of GVA variants. Several GVAII variant groups contain samples from both vineyards studied, suggesting that these GVAII variants were from a common origin. Variant groups analyzed by MJNs using the overall data set denote that there may be a possible relationship between variant groups of GVA and the geographical location of the grapevines.
Collapse
Affiliation(s)
- Qi Wu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Wycliff M. Kinoti
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Nuredin Habili
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
| | - Amy Rinaldo
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Fiona E. Constable
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
16
|
Holmes KE, VanInsberghe D, Ferreri LM, Elie B, Ganti K, Lee CY, Lowen AC. Viral expansion after transfer is a primary driver of influenza A virus transmission bottlenecks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567585. [PMID: 38014182 PMCID: PMC10680852 DOI: 10.1101/2023.11.19.567585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
For many viruses, narrow bottlenecks acting during transmission sharply reduce genetic diversity in a recipient host relative to the donor. Since genetic diversity represents adaptive potential, such losses of diversity are though to limit the opportunity for viral populations to undergo antigenic change and other adaptive processes. Thus, a detailed picture of evolutionary dynamics during transmission is critical to understanding the forces driving viral evolution at an epidemiologic scale. To advance this understanding, we used a novel barcoded virus library and a guinea pig model of transmission to decipher where in the transmission process diversity is lost for influenza A viruses. In inoculated guinea pigs, we show that a high level of viral genetic diversity is maintained across time. Continuity in the barcodes detected furthermore indicates that stochastic effects are not pronounced within inoculated hosts. Importantly, in both aerosol-exposed and direct contact-exposed animals, we observed many barcodes at the earliest time point(s) positive for infectious virus, indicating robust transfer of diversity through the environment. This high viral diversity is short-lived, however, with a sharp decline seen 1-2 days after initiation of infection. Although major losses of diversity at transmission are well described for influenza A virus, our data indicate that events that occur following viral transfer and during the earliest stages of natural infection have a predominant role in this process. This finding suggests that immune selection may have greater opportunity to operate during influenza A transmission than previously recognized.
Collapse
Affiliation(s)
- Katie E. Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lucas M. Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Baptiste Elie
- MIVEGEC, CNRS, IRD, Université de Montpellier, Montpellier, France
| | - Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (CEIRR), Atlanta, GA, USA
| |
Collapse
|
17
|
Roder AE, Johnson KEE, Knoll M, Khalfan M, Wang B, Schultz-Cherry S, Banakis S, Kreitman A, Mederos C, Youn JH, Mercado R, Wang W, Chung M, Ruchnewitz D, Samanovic MI, Mulligan MJ, Lässig M, Luksza M, Das S, Gresham D, Ghedin E. Optimized quantification of intra-host viral diversity in SARS-CoV-2 and influenza virus sequence data. mBio 2023; 14:e0104623. [PMID: 37389439 PMCID: PMC10470513 DOI: 10.1128/mbio.01046-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
High error rates of viral RNA-dependent RNA polymerases lead to diverse intra-host viral populations during infection. Errors made during replication that are not strongly deleterious to the virus can lead to the generation of minority variants. However, accurate detection of minority variants in viral sequence data is complicated by errors introduced during sample preparation and data analysis. We used synthetic RNA controls and simulated data to test seven variant-calling tools across a range of allele frequencies and simulated coverages. We show that choice of variant caller and use of replicate sequencing have the most significant impact on single-nucleotide variant (SNV) discovery and demonstrate how both allele frequency and coverage thresholds impact both false discovery and false-negative rates. When replicates are not available, using a combination of multiple callers with more stringent cutoffs is recommended. We use these parameters to find minority variants in sequencing data from SARS-CoV-2 clinical specimens and provide guidance for studies of intra-host viral diversity using either single replicate data or data from technical replicates. Our study provides a framework for rigorous assessment of technical factors that impact SNV identification in viral samples and establishes heuristics that will inform and improve future studies of intra-host variation, viral diversity, and viral evolution. IMPORTANCE When viruses replicate inside a host cell, the virus replication machinery makes mistakes. Over time, these mistakes create mutations that result in a diverse population of viruses inside the host. Mutations that are neither lethal to the virus nor strongly beneficial can lead to minority variants that are minor members of the virus population. However, preparing samples for sequencing can also introduce errors that resemble minority variants, resulting in the inclusion of false-positive data if not filtered correctly. In this study, we aimed to determine the best methods for identification and quantification of these minority variants by testing the performance of seven commonly used variant-calling tools. We used simulated and synthetic data to test their performance against a true set of variants and then used these studies to inform variant identification in data from SARS-CoV-2 clinical specimens. Together, analyses of our data provide extensive guidance for future studies of viral diversity and evolution.
Collapse
Affiliation(s)
- A. E. Roder
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - K. E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - M. Knoll
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - M. Khalfan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - B. Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - S. Schultz-Cherry
- Department of Infectious Diseases, St Jude Children Research Hospital, Memphis, Tennessee, USA
| | - S. Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - A. Kreitman
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - C. Mederos
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - J.-H. Youn
- Department of Laboratory Medicine, NIH, Bethesda, Maryland, USA
| | - R. Mercado
- Department of Laboratory Medicine, NIH, Bethesda, Maryland, USA
| | - W. Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - M. Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - D. Ruchnewitz
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - M. I. Samanovic
- Department of Medicine, New York University Langone Vaccine Center, New York, New York, USA
| | - M. J. Mulligan
- Department of Medicine, New York University Langone Vaccine Center, New York, New York, USA
| | - M. Lässig
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - M. Luksza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - S. Das
- Department of Laboratory Medicine, NIH, Bethesda, Maryland, USA
| | - D. Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - E. Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| |
Collapse
|
18
|
Wasik BR, Rothschild E, Voorhees IEH, Reedy SE, Murcia PR, Pusterla N, Chambers TM, Goodman LB, Holmes EC, Kile JC, Parrish CR. Understanding the divergent evolution and epidemiology of H3N8 influenza viruses in dogs and horses. Virus Evol 2023; 9:vead052. [PMID: 37692894 PMCID: PMC10484056 DOI: 10.1093/ve/vead052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
Cross-species virus transmission events can lead to dire public health emergencies in the form of epidemics and pandemics. One example in animals is the emergence of the H3N8 equine influenza virus (EIV), first isolated in 1963 in Miami, FL, USA, after emerging among horses in South America. In the early 21st century, the American lineage of EIV diverged into two 'Florida' clades that persist today, while an EIV transferred to dogs around 1999 and gave rise to the H3N8 canine influenza virus (CIV), first reported in 2004. Here, we compare CIV in dogs and EIV in horses to reveal their host-specific evolution, to determine the sources and connections between significant outbreaks, and to gain insight into the factors controlling their different evolutionary fates. H3N8 CIV only circulated in North America, was geographically restricted after the first few years, and went extinct in 2016. Of the two EIV Florida clades, clade 1 circulates widely and shows frequent transfers between the USA and South America, Europe and elsewhere, while clade 2 was globally distributed early after it emerged, but since about 2018 has only been detected in Central Asia. Any potential zoonotic threat of these viruses to humans can only be determined with an understanding of its natural history and evolution. Our comparative analysis of these three viral lineages reveals distinct patterns and rates of sequence variation yet with similar overall evolution between clades, suggesting epidemiological intervention strategies for possible eradication of H3N8 EIV.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Evin Rothschild
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ian E H Voorhees
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Stephanie E Reedy
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, Scotland
| | - Nicola Pusterla
- Department of Medicine & Epidemiology, School Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Thomas M Chambers
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Laura B Goodman
- Baker Institute for Animal Health, Department of Public and Ecosystems Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - James C Kile
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
19
|
Shi T, Harris JD, Martin MA, Koelle K. Transmission bottleneck size estimation from de novo viral genetic variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553219. [PMID: 37645981 PMCID: PMC10462048 DOI: 10.1101/2023.08.14.553219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Sequencing of viral infections has become increasingly common over the last decade. Deep sequencing data in particular have proven useful in characterizing the roles that genetic drift and natural selection play in shaping within-host viral populations. They have also been used to estimate transmission bottleneck sizes from identified donor-recipient pairs. These bottleneck sizes quantify the number of viral particles that establish genetic lineages in the recipient host and are important to estimate due to their impact on viral evolution. Current approaches for estimating bottleneck sizes exclusively consider the subset of viral sites that are observed as polymorphic in the donor individual. However, allele frequencies can change dramatically over the course of an individual's infection, such that sites that are polymorphic in the donor at the time of transmission may not be polymorphic in the donor at the time of sampling and allele frequencies at donor-polymorphic sites may change dramatically over the course of a recipient's infection. Because of this, transmission bottleneck sizes estimated using allele frequencies observed at a donor's polymorphic sites may be considerable underestimates of true bottleneck sizes. Here, we present a new statistical approach for instead estimating bottleneck sizes using patterns of viral genetic variation that arose de novo within a recipient individual. Specifically, our approach makes use of the number of clonal viral variants observed in a transmission pair, defined as the number of viral sites that are monomorphic in both the donor and the recipient but carry different alleles. We first test our approach on a simulated dataset and then apply it to both influenza A virus sequence data and SARS-CoV-2 sequence data from identified transmission pairs. Our results confirm the existence of extremely tight transmission bottlenecks for these two respiratory viruses, using an approach that does not tend to underestimate transmission bottleneck sizes.
Collapse
Affiliation(s)
- Teresa Shi
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jeremy D. Harris
- Department of Biology, Emory University, Atlanta, GA, USA
- Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN, USA
| | - Michael A. Martin
- Department of Biology, Emory University, Atlanta, GA, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (CEIRR), Atlanta GA, USA
| |
Collapse
|
20
|
Sun B, Ni M, Liu H, Liu D. Viral intra-host evolutionary dynamics revealed via serial passage of Japanese encephalitis virus in vitro. Virus Evol 2023; 9:veac103. [PMID: 37205166 PMCID: PMC10185921 DOI: 10.1093/ve/veac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/04/2022] [Accepted: 03/21/2023] [Indexed: 12/02/2023] Open
Abstract
Analyses of viral inter- and intra-host mutations could better guide the prevention and control of infectious diseases. For a long time, studies on viral evolution have focused on viral inter-host variations. Next-generation sequencing has accelerated the investigations of viral intra-host diversity. However, the theoretical basis and dynamic characteristics of viral intra-host mutations remain unknown. Here, using serial passages of the SA14-14-2 vaccine strain of Japanese encephalitis virus (JEV) as the in vitro model, the distribution characteristics of 1,788 detected intra-host single-nucleotide variations (iSNVs) and their mutated frequencies from 477 deep-sequenced samples were analyzed. Our results revealed that in adaptive (baby hamster kidney (BHK)) cells, JEV is under a nearly neutral selection pressure, and both non-synonymous and synonymous mutations represent an S-shaped growth trend over time. A higher positive selection pressure was observed in the nonadaptive (C6/36) cells, and logarithmic growth in non-synonymous iSNVs and linear growth in synonymous iSNVs were observed over time. Moreover, the mutation rates of the NS4B protein and the untranslated region (UTR) of the JEV are significantly different between BHK and C6/36 cells, suggesting that viral selection pressure is regulated by different cellular environments. In addition, no significant difference was detected in the distribution of mutated frequencies of iSNVs between BHK and C6/36 cells.
Collapse
Affiliation(s)
- Bangyao Sun
- School of Medical Laboratory, Weifang Medical University, Baotong West Street, Weifang 261053, China
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- University of Chinese Academy of Sciences, Yuquan Road 19#, Beijing 100049, China
| | - Ming Ni
- Beijing Institute of Radiation Medicine, Taiping Road 27#, Beijing 100850, China
| | - Haizhou Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- University of Chinese Academy of Sciences, Yuquan Road 19#, Beijing 100049, China
| |
Collapse
|
21
|
Nitschke MC, Black AJ, Bourrat P, Rainey PB. The effect of bottleneck size on evolution in nested Darwinian populations. J Theor Biol 2023; 561:111414. [PMID: 36639021 DOI: 10.1016/j.jtbi.2023.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Previous work has shown how a minimal ecological structure consisting of patchily distributed resources and recurrent dispersal between patches can scaffold Darwinian properties onto collections of cells. When the timescale of dispersal is long compared with the time to consume resources, patch fitness increases but comes at a cost to cell growth rates. This creates conditions that initiate evolutionary transitions in individuality. A key feature of the scaffold is a bottleneck created during dispersal, causing patches to be founded by single cells. The bottleneck decreases competition within patches and, hence, creates a strong hereditary link at the level of patches. Here, we construct a fully stochastic model to investigate the effect of bottleneck size on the evolutionary dynamics of both cells and collectives. We show that larger bottlenecks simply slow the dynamics, but, at some point, which depends on the parameters of the within-patch model, the direction of evolution towards the equilibrium reverses. Introduction of random fluctuations in bottleneck sizes with some positive probability of smaller sizes counteracts this, even when the probability of smaller bottlenecks is minimal.
Collapse
Affiliation(s)
- Matthew C Nitschke
- School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia.
| | - Andrew J Black
- School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Pierrick Bourrat
- Philosophy Department, Macquarie University, NSW 2109, Australia; Department of Philosophy and Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany; Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| |
Collapse
|
22
|
Braun KM, Haddock III LA, Crooks CM, Barry GL, Lalli J, Neumann G, Watanabe T, Imai M, Yamayoshi S, Ito M, Moncla LH, Koelle K, Kawaoka Y, Friedrich TC. Avian H7N9 influenza viruses are evolutionarily constrained by stochastic processes during replication and transmission in mammals. Virus Evol 2023; 9:vead004. [PMID: 36814938 PMCID: PMC9939568 DOI: 10.1093/ve/vead004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
H7N9 avian influenza viruses (AIVs) have caused over 1,500 documented human infections since emerging in 2013. Although wild-type H7N9 AIVs can be transmitted by respiratory droplets in ferrets, they have not yet caused widespread outbreaks in humans. Previous studies have revealed molecular determinants of H7N9 AIV host switching, but little is known about potential evolutionary constraints on this process. Here, we compare patterns of sequence evolution for H7N9 AIV and mammalian H1N1 viruses during replication and transmission in ferrets. We show that three main factors-purifying selection, stochasticity, and very narrow transmission bottlenecks-combine to severely constrain the ability of H7N9 AIV to effectively adapt to mammalian hosts in isolated, acute spillover events. We find rare evidence of natural selection favoring new, potentially mammal-adapting mutations within ferrets but no evidence of natural selection acting during transmission. We conclude that human-adapted H7N9 viruses are unlikely to emerge during typical spillover infections. Our findings are instead consistent with a model in which the emergence of a human-transmissible virus would be a rare and unpredictable, though highly consequential, 'jackpot' event. Strategies to control the total number of spillover infections will limit opportunities for the virus to win this evolutionary lottery.
Collapse
Affiliation(s)
| | | | - Chelsea M Crooks
- AIDS Vaccine Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 585 Science Dr. Madison, WI 53711, USA
| | - Gabrielle L Barry
- AIDS Vaccine Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 585 Science Dr. Madison, WI 53711, USA
| | - Joseph Lalli
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall Madison, WI 53706, US
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 575 Science Dr. Madison, WI 53711, USA
| | - Tokiko Watanabe
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka Suita City, Osaka 565-0871, Japan,Center for Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamadaoka Suita City, Osaka 565-0871, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1 Chome-21-1 Toyama Shinjuku City, Tokyo 162-8655, Japan
| | | | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan
| | | | | | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, 575 Science Dr. Madison, WI 53711, USA,Division of Virology, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai Minato City, Tokyo 108-0071, Japan,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 1 Chome-21-1 Toyama Shinjuku City, Tokyo 162-8655, Japan
| | | |
Collapse
|
23
|
Bendall EE, Callear AP, Getz A, Goforth K, Edwards D, Monto AS, Martin ET, Lauring AS. Rapid transmission and tight bottlenecks constrain the evolution of highly transmissible SARS-CoV-2 variants. Nat Commun 2023; 14:272. [PMID: 36650162 PMCID: PMC9844183 DOI: 10.1038/s41467-023-36001-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Transmission bottlenecks limit the spread of novel mutations and reduce the efficiency of selection along a transmission chain. While increased force of infection, receptor binding, or immune evasion may influence bottleneck size, the relationship between transmissibility and the transmission bottleneck is unclear. Here we compare the transmission bottleneck of non-VOC SARS-CoV-2 lineages to those of Alpha, Delta, and Omicron. We sequenced viruses from 168 individuals in 65 households. Most virus populations had 0-1 single nucleotide variants (iSNV). From 64 transmission pairs with detectable iSNV, we identify a per clade bottleneck of 1 (95% CI 1-1) for Alpha, Delta, and Omicron and 2 (95% CI 2-2) for non-VOC. These tight bottlenecks reflect the low diversity at the time of transmission, which may be more pronounced in rapidly transmissible variants. Tight bottlenecks will limit the development of highly mutated VOC in transmission chains, adding to the evidence that selection over prolonged infections may drive their evolution.
Collapse
Affiliation(s)
- Emily E Bendall
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Amy P Callear
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Getz
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Kendra Goforth
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Drew Edwards
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Emily T Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Adam S Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Influence of viral genome properties on polymerase fidelity. Trends Genet 2023; 39:9-14. [PMID: 36402624 DOI: 10.1016/j.tig.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022]
Abstract
The first step of viral evolution takes place during genome replication via the error-prone viral polymerase. Among the mutants that arise through this process, only a few well-adapted variants will be selected by natural selection, renewing the viral genome population. Viral polymerase-mediated errors are thought to occur stochastically. However, accumulating evidence suggests that viral polymerase-mediated mutations are heterogeneously distributed throughout the viral genome. Here, we review work that supports this concept and provides mechanistic insights into how specific features of the viral genome could modulate viral polymerase-mediated errors. A predisposition to accumulate viral polymerase-mediated errors at specific loci in the viral genome may guide evolution to specific pathways, thus opening new directions of research to better understand viral evolutionary dynamics.
Collapse
|
25
|
Bendall EE, Callear A, Getz A, Goforth K, Edwards D, Monto AS, Martin ET, Lauring AS. Rapid transmission and tight bottlenecks constrain the evolution of highly transmissible SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.12.511991. [PMID: 36263068 PMCID: PMC9580385 DOI: 10.1101/2022.10.12.511991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transmission bottlenecks limit the spread of novel mutations and reduce the efficiency of natural selection along a transmission chain. Many viruses exhibit tight bottlenecks, and studies of early SARS-CoV-2 lineages identified a bottleneck of 1-3 infectious virions. While increased force of infection, host receptor binding, or immune evasion may influence bottleneck size, the relationship between transmissibility and the transmission bottleneck is unclear. Here, we compare the transmission bottleneck of non-variant-of-concern (non-VOC) SARS-CoV-2 lineages to those of the Alpha, Delta, and Omicron variants. We sequenced viruses from 168 individuals in 65 multiply infected households in duplicate to high depth of coverage. In 110 specimens collected close to the time of transmission, within-host diversity was extremely low. At a 2% frequency threshold, 51% had no intrahost single nucleotide variants (iSNV), and 42% had 1-2 iSNV. In 64 possible transmission pairs with detectable iSNV, we identified a bottleneck of 1 infectious virion (95% CI 1-1) for Alpha, Delta, and Omicron lineages and 2 (95% CI 2-2) in non-VOC lineages. The latter was driven by a single iSNV shared in one non-VOC household. The tight transmission bottleneck in SARS-CoV-2 is due to low genetic diversity at the time of transmission, a relationship that may be more pronounced in rapidly transmissible variants. The tight bottlenecks identified here will limit the development of highly mutated VOC in typical transmission chains, adding to the evidence that selection over prolonged infections in immunocompromised patients may drive their evolution.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Callear
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Getz
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Kendra Goforth
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Drew Edwards
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Arnold S. Monto
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Adam S. Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Roder AE, Johnson KEE, Knoll M, Khalfan M, Wang B, Schultz-Cherry S, Banakis S, Kreitman A, Mederos C, Youn JH, Mercado R, Wang W, Ruchnewitz D, Samanovic MI, Mulligan MJ, Lassig M, Łuksza M, Das S, Gresham D, Ghedin E. Optimized Quantification of Intrahost Viral Diversity in SARS-CoV-2 and Influenza Virus Sequence Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.05.05.442873. [PMID: 36656775 PMCID: PMC9836620 DOI: 10.1101/2021.05.05.442873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High error rates of viral RNA-dependent RNA polymerases lead to diverse intra-host viral populations during infection. Errors made during replication that are not strongly deleterious to the virus can lead to the generation of minority variants. However, accurate detection of minority variants in viral sequence data is complicated by errors introduced during sample preparation and data analysis. We used synthetic RNA controls and simulated data to test seven variant calling tools across a range of allele frequencies and simulated coverages. We show that choice of variant caller, and use of replicate sequencing have the most significant impact on single nucleotide variant (SNV) discovery and demonstrate how both allele frequency and coverage thresholds impact both false discovery and false negative rates. We use these parameters to find minority variants in sequencing data from SARS-CoV-2 clinical specimens and provide guidance for studies of intrahost viral diversity using either single replicate data or data from technical replicates. Our study provides a framework for rigorous assessment of technical factors that impact SNV identification in viral samples and establishes heuristics that will inform and improve future studies of intrahost variation, viral diversity, and viral evolution. IMPORTANCE When viruses replicate inside a host, the virus replication machinery makes mistakes. Over time, these mistakes create mutations that result in a diverse population of viruses inside the host. Mutations that are neither lethal to the virus, nor strongly beneficial, can lead to minority variants that are minor members of the virus population. However, preparing samples for sequencing can also introduce errors that resemble minority variants, resulting in inclusion of false positive data if not filtered correctly. In this study, we aimed to determine the best methods for identification and quantification of these minority variants by testing the performance of seven commonly used variant calling tools. We used simulated and synthetic data to test their performance against a true set of variants, and then used these studies to inform variant identification in data from clinical SARS-CoV-2 clinical specimens. Together, analyses of our data provide extensive guidance for future studies of viral diversity and evolution.
Collapse
|
27
|
Hannon WW, Roychoudhury P, Xie H, Shrestha L, Addetia A, Jerome KR, Greninger AL, Bloom JD. Narrow transmission bottlenecks and limited within-host viral diversity during a SARS-CoV-2 outbreak on a fishing boat. Virus Evol 2022; 8:veac052. [PMID: 35799885 PMCID: PMC9257191 DOI: 10.1093/ve/veac052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
The long-term evolution of viruses is ultimately due to viral mutants that arise within infected individuals and transmit to other individuals. Here, we use deep sequencing to investigate the transmission of viral genetic variation among individuals during a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak that infected the vast majority of crew members on a fishing boat. We deep-sequenced nasal swabs to characterize the within-host viral population of infected crew members, using experimental duplicates and strict computational filters to ensure accurate variant calling. We find that within-host viral diversity is low in infected crew members. The mutations that did fix in some crew members during the outbreak are not observed at detectable frequencies in any of the sampled crew members in which they are not fixed, suggesting that viral evolution involves occasional fixation of low-frequency mutations during transmission rather than persistent maintenance of within-host viral diversity. Overall, our results show that strong transmission bottlenecks dominate viral evolution even during a superspreading event with a very high attack rate.
Collapse
Affiliation(s)
- William W Hannon
- Molecular and Cellular Biology Graduate Program, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA,Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | - Amin Addetia
- Molecular and Cellular Biology Graduate Program, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | - Alexander L Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | |
Collapse
|
28
|
Human pathogenic RNA viruses establish noncompeting lineages by occupying independent niches. Proc Natl Acad Sci U S A 2022; 119:e2121335119. [PMID: 35639694 PMCID: PMC9191635 DOI: 10.1073/pnas.2121335119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous pathogenic viruses are endemic in humans and cause a broad variety of diseases, but what is their potential for causing new pandemics? We show that most human pathogenic RNA viruses form multiple, cocirculating lineages with low turnover rates. These lineages appear to be largely noncompeting and occupy distinct epidemiological niches that are not regionally or seasonally defined, and their persistence appears to stem from limited outbreaks in small communities so that only a small fraction of the global susceptible population is infected at any time. However, due to globalization, interaction and competition between lineages might increase, potentially leading to increased diversification and pathogenicity. Thus, endemic viruses appear to merit global attention with respect to the prevention of future pandemics. Many pathogenic viruses are endemic among human populations and can cause a broad variety of diseases, some potentially leading to devastating pandemics. How virus populations maintain diversity and what selective pressures drive population turnover is not thoroughly understood. We conducted a large-scale phylodynamic analysis of 27 human pathogenic RNA viruses spanning diverse life history traits, in search of unifying trends that shape virus evolution. For most virus species, we identify multiple, cocirculating lineages with low turnover rates. These lineages appear to be largely noncompeting and likely occupy semiindependent epidemiological niches that are not regionally or seasonally defined. Typically, intralineage mutational signatures are similar to interlineage signatures. The principal exception are members of the family Picornaviridae, for which mutations in capsid protein genes are primarily lineage defining. Interlineage turnover is slower than expected under a neutral model, whereas intralineage turnover is faster than the neutral expectation, further supporting the existence of independent niches. The persistence of virus lineages appears to stem from limited outbreaks within small communities, so that only a small fraction of the global susceptible population is infected at any time. As disparate communities become increasingly connected through globalization, interaction and competition between lineages might increase as well, which could result in changing selective pressures and increased diversification and/or pathogenicity. Thus, in addition to zoonotic events, ongoing surveillance of familiar, endemic viruses appears to merit global attention with respect to the prevention or mitigation of future pandemics.
Collapse
|
29
|
Rice BL, Lessler J, McKee C, Metcalf CJE. Why do some coronaviruses become pandemic threats when others do not? PLoS Biol 2022; 20:e3001652. [PMID: 35576224 PMCID: PMC9135331 DOI: 10.1371/journal.pbio.3001652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Despite multiple spillover events and short chains of transmission on at least 4 continents, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has never triggered a pandemic. By contrast, its relative, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has, despite apparently little, if any, previous circulation in humans. Resolving the unsolved mystery of the failure of MERS-CoV to trigger a pandemic could help inform how we understand the pandemic potential of pathogens, and probing it underscores a need for a more holistic understanding of the ways in which viral genetic changes scale up to population-level transmission.
Collapse
Affiliation(s)
- Benjamin L. Rice
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Justin Lessler
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Clifton McKee
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton School of Public and International Affairs, Princeton University, Princeton, New Jersey, United States of America
- Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
30
|
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic demonstrates the threat posed by novel coronaviruses to human health. Coronaviruses share a highly conserved cell entry mechanism mediated by the spike protein, the sole product of the S gene. The structural dynamics by which the spike protein orchestrates infection illuminate how antibodies neutralize virions and how S mutations contribute to viral fitness. Here, we review the process by which spike engages its proteinaceous receptor, angiotensin converting enzyme 2 (ACE2), and how host proteases prime and subsequently enable efficient membrane fusion between virions and target cells. We highlight mutations common among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern and discuss implications for cell entry. Ultimately, we provide a model by which sarbecoviruses are activated for fusion competency and offer a framework for understanding the interplay between humoral immunity and the molecular evolution of the SARS-CoV-2 Spike. In particular, we emphasize the relevance of the Canyon Hypothesis (M. G. Rossmann, J Biol Chem 264:14587-14590, 1989) for understanding evolutionary trajectories of viral entry proteins during sustained intraspecies transmission of a novel viral pathogen.
Collapse
Affiliation(s)
- Kyle A. Wolf
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Interdiscipinary Ph.D. Program in Structural and Computational Biology and Quantitative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason C. Kwan
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
- Center for Excellence in Emerging Viral Threats, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
31
|
Abstract
Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.
Collapse
Affiliation(s)
- Jeannette L Tenthorey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , ,
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; , , .,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
32
|
Chung H, Noh JY, Koo BS, Hong JJ, Kim HK. SARS-CoV-2 mutations acquired during serial passage in human cell lines are consistent with several of those found in recent natural SARS-CoV-2 variants. Comput Struct Biotechnol J 2022; 20:1925-1934. [PMID: 35474907 PMCID: PMC9021118 DOI: 10.1016/j.csbj.2022.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 01/03/2023] Open
Abstract
Since the outbreak of coronavirus disease (COVID-19) in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into diverse variants. Here, an early isolate of SARS-CoV-2 was serially passaged in multiple cell lines of human origin in triplicate, and selected mutations were compared to those found in natural SARS-CoV-2 variants. In the spike protein, Q493R and Q498R substitutions from passaged viruses were consistent with those in the B.1.1.529 (Omicron) variant. Y144del and H655Y substitutions from passaged viruses were also reported in B.1.1.7 (Alpha), P.1 (Gamma), and B.1.1.529 (Omicron) variants. Several single nucleotide polymorphisms (SNPs) found in first-passaged viruses have also been identified as selected mutation sites in serially passaged viruses. Considering the consistent mutations found between serially passaged SARS-CoV-2 and natural variants, there may be host-specific selective mutation patterns of viral evolution in humans. Additional studies on the selective mutations in SARS-CoV-2 experiencing diverse host environments will help elucidate the direction of SARS-CoV-2 evolution. Importance SARS-CoV-2 isolate (SARS-CoV-2/human/KOR/KCDC03-NCCP43326/2020) was serially passaged in A549, CaCO2, and HRT-18 cells in triplicate. After 12 times of serial passages in each cell lines, several consistent selected mutations were found on spike protein between the serially passaged SARS-CoV-2 in human cell lines and recent natural variants of SARS-CoV-2 like omicron. On the non-spike protein genes, selected mutations were more frequent in viruses passaged in Caco-2 and HRT-18 cells (Colon epithelial-like) than in those passaged in A549 cells (Lung epithelial-like). In addition, several SNPs identified after one round of passaging were consistently identified as the selected mutation sites in serially passaged viruses. Thus, mutation patterns of SARS-CoV-2 in certain host environments may provide researchers information to understand and predict future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hoyin Chung
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Ji Yeong Noh
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Hye Kwon Kim
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
33
|
Bull MB, Gu H, Ma FNL, Perera LP, Poon LLM, Valkenburg SA. Next-generation T cell-activating vaccination increases influenza virus mutation prevalence. SCIENCE ADVANCES 2022; 8:eabl5209. [PMID: 35385318 PMCID: PMC8986104 DOI: 10.1126/sciadv.abl5209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
To determine the potential for viral adaptation to T cell responses, we probed the full influenza virus genome by next-generation sequencing directly ex vivo from infected mice, in the context of an experimental T cell-based vaccine, an H5N1-based viral vectored vaccinia vaccine Wyeth/IL-15/5Flu, versus the current standard-of-care, seasonal inactivated influenza vaccine (IIV) and unvaccinated conditions. Wyeth/IL-15/5Flu vaccination was coincident with increased mutation incidence and frequency across the influenza genome; however, mutations were not enriched within T cell epitope regions, but high allele frequency mutations within conserved hemagglutinin stem regions and PB2 mammalian adaptive mutations arose. Depletion of CD4+ and CD8+ T cell subsets led to reduced frequency of mutants in vaccinated mice; therefore, vaccine-mediated T cell responses were important drivers of virus diversification. Our findings suggest that Wyeth/IL-15/5Flu does not generate T cell escape mutants but increases stochastic events for virus adaptation by stringent bottlenecks.
Collapse
Affiliation(s)
- Maireid B. Bull
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fionn N. L. Ma
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Liyanage P. Perera
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1374, USA
| | - Leo L. M. Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sophie A. Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Low Pathogenicity H7N3 Avian Influenza Viruses Have Higher Within-Host Genetic Diversity Than a Closely Related High Pathogenicity H7N3 Virus in Infected Turkeys and Chickens. Viruses 2022; 14:v14030554. [PMID: 35336961 PMCID: PMC8951284 DOI: 10.3390/v14030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Within-host viral diversity offers a view into the early stages of viral evolution occurring after a virus infects a host. In recent years, advances in deep sequencing have allowed for routine identification of low-frequency variants, which are important sources of viral genetic diversity and can potentially emerge as a major virus population under certain conditions. We examined within-host viral diversity in turkeys and chickens experimentally infected with closely related H7N3 avian influenza viruses (AIVs), specifically one high pathogenicity AIV (HPAIV) and two low pathogenicity AIV (LPAIVs) with different neuraminidase protein stalk lengths. Consistent with the high mutation rates of AIVs, an abundance of intra-host single nucleotide variants (iSNVs) at low frequencies of 2–10% was observed in all samples collected. Furthermore, a small number of common iSNVs were observed between turkeys and chickens, and between directly inoculated and contact-exposed birds. Notably, the LPAIVs have significantly higher iSNV diversities and frequencies of nonsynonymous changes than the HPAIV in both turkeys and chickens. These findings highlight the dynamics of AIV populations within hosts and the potential impact of genetic changes, including mutations in the hemagglutinin gene that confers the high pathogenicity pathotype, on AIV virus populations and evolution.
Collapse
|
35
|
Hannon WW, Roychoudhury P, Xie H, Shrestha L, Addetia A, Jerome KR, Greninger AL, Bloom JD. Narrow transmission bottlenecks and limited within-host viral diversity during a SARS-CoV-2 outbreak on a fishing boat.. [PMID: 35169803 PMCID: PMC8845427 DOI: 10.1101/2022.02.09.479546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The long-term evolution of viruses is ultimately due to viral mutants that arise within infected individuals and transmit to other individuals. Here we use deep sequencing to investigate the transmission of viral genetic variation among individuals during a SARS-CoV-2 outbreak that infected the vast majority of crew members on a fishing boat. We deep-sequenced nasal swabs to characterize the within-host viral population of infected crew members, using experimental duplicates and strict computational filters to ensure accurate variant calling. We find that within-host viral diversity is low in infected crew members. The mutations that did fix in some crew members during the outbreak are not observed at detectable frequencies in any of the sampled crew members in which they are not fixed, suggesting viral evolution involves occasional fixation of low-frequency mutations during transmission rather than persistent maintenance of within-host viral diversity. Overall, our results show that strong transmission bottlenecks dominate viral evolution even during a superspreading event with a very high attack rate.
Collapse
|
36
|
Fay EJ, Balla KM, Roach SN, Shepherd FK, Putri DS, Wiggen TD, Goldstein SA, Pierson MJ, Ferris MT, Thefaine CE, Tucker A, Salnikov M, Cortez V, Compton SR, Kotenko SV, Hunter RC, Masopust D, Elde NC, Langlois RA. Natural rodent model of viral transmission reveals biological features of virus population dynamics. J Exp Med 2022; 219:e20211220. [PMID: 34958350 PMCID: PMC8713297 DOI: 10.1084/jem.20211220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Emerging viruses threaten global health, but few experimental models can characterize the virus and host factors necessary for within- and cross-species transmission. Here, we leverage a model whereby pet store mice or rats-which harbor natural rodent pathogens-are cohoused with laboratory mice. This "dirty" mouse model offers a platform for studying acute transmission of viruses between and within hosts via natural mechanisms. We identified numerous viruses and other microbial species that transmit to cohoused mice, including prospective new members of the Coronaviridae, Astroviridae, Picornaviridae, and Narnaviridae families, and uncovered pathogen interactions that promote or prevent virus transmission. We also evaluated transmission dynamics of murine astroviruses during transmission and spread within a new host. Finally, by cohousing our laboratory mice with the bedding of pet store rats, we identified cross-species transmission of a rat astrovirus. Overall, this model system allows for the analysis of transmission of natural rodent viruses and is a platform to further characterize barriers to zoonosis.
Collapse
Affiliation(s)
- Elizabeth J. Fay
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Keir M. Balla
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| | - Shanley N. Roach
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Frances K. Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Dira S. Putri
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN
| | - Talia D. Wiggen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | | | - Mark J. Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Claire E. Thefaine
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN
| | - Andrew Tucker
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Mark Salnikov
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - Valerie Cortez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Susan R. Compton
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
| | - Ryan C. Hunter
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Nels C. Elde
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
37
|
Siddle KJ, Krasilnikova LA, Moreno GK, Schaffner SF, Vostok J, Fitzgerald NA, Lemieux JE, Barkas N, Loreth C, Specht I, Tomkins-Tinch CH, Paull JS, Schaeffer B, Taylor BP, Loftness B, Johnson H, Schubert PL, Shephard HM, Doucette M, Fink T, Lang AS, Baez S, Beauchamp J, Hennigan S, Buzby E, Ash S, Brown J, Clancy S, Cofsky S, Gagne L, Hall J, Harrington R, Gionet GL, DeRuff KC, Vodzak ME, Adams GC, Dobbins ST, Slack SD, Reilly SK, Anderson LM, Cipicchio MC, DeFelice MT, Grimsby JL, Anderson SE, Blumenstiel BS, Meldrim JC, Rooke HM, Vicente G, Smith NL, Messer KS, Reagan FL, Mandese ZM, Lee MD, Ray MC, Fisher ME, Ulcena MA, Nolet CM, English SE, Larkin KL, Vernest K, Chaluvadi S, Arvidson D, Melchiono M, Covell T, Harik V, Brock-Fisher T, Dunn M, Kearns A, Hanage WP, Bernard C, Philippakis A, Lennon NJ, Gabriel SB, Gallagher GR, Smole S, Madoff LC, Brown CM, Park DJ, MacInnis BL, Sabeti PC. Transmission from vaccinated individuals in a large SARS-CoV-2 Delta variant outbreak. Cell 2022; 185:485-492.e10. [PMID: 35051367 PMCID: PMC8695126 DOI: 10.1016/j.cell.2021.12.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
An outbreak of over 1,000 COVID-19 cases in Provincetown, Massachusetts (MA), in July 2021-the first large outbreak mostly in vaccinated individuals in the US-prompted a comprehensive public health response, motivating changes to national masking recommendations and raising questions about infection and transmission among vaccinated individuals. To address these questions, we combined viral genomic and epidemiological data from 467 individuals, including 40% of outbreak-associated cases. The Delta variant accounted for 99% of cases in this dataset; it was introduced from at least 40 sources, but 83% of cases derived from a single source, likely through transmission across multiple settings over a short time rather than a single event. Genomic and epidemiological data supported multiple transmissions of Delta from and between fully vaccinated individuals. However, despite its magnitude, the outbreak had limited onward impact in MA and the US overall, likely due to high vaccination rates and a robust public health response.
Collapse
Affiliation(s)
| | - Lydia A Krasilnikova
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gage K Moreno
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Stephen F Schaffner
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Johanna Vostok
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | | | - Jacob E Lemieux
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nikolaos Barkas
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Ivan Specht
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Christopher H Tomkins-Tinch
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jillian S Paull
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Beau Schaeffer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Bradford P Taylor
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Bryn Loftness
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Hillary Johnson
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Petra L Schubert
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Hanna M Shephard
- Massachusetts Department of Public Health, Boston, MA 02199, USA; Applied Epidemiology Fellowship, Council of State and Territorial Epidemiologists, Atlanta, GA 30345, USA
| | - Matthew Doucette
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Timelia Fink
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Andrew S Lang
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Stephanie Baez
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - John Beauchamp
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Scott Hennigan
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Erika Buzby
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Stephanie Ash
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Jessica Brown
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Selina Clancy
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Seana Cofsky
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Luc Gagne
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Joshua Hall
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | | | | | | | - Megan E Vodzak
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Gordon C Adams
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Sarah D Slack
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Steven K Reilly
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lisa M Anderson
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | | | - Jonna L Grimsby
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | | | - James C Meldrim
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Heather M Rooke
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Gina Vicente
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Natasha L Smith
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Faye L Reagan
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Zoe M Mandese
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Matthew D Lee
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marianne C Ray
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Maesha A Ulcena
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Corey M Nolet
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sean E English
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Katie L Larkin
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kyle Vernest
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Deirdre Arvidson
- Barnstable County Department of Health and the Environment, Barnstable, MA 02630, USA
| | - Maurice Melchiono
- Barnstable County Department of Health and the Environment, Barnstable, MA 02630, USA
| | - Theresa Covell
- Barnstable County Department of Health and the Environment, Barnstable, MA 02630, USA
| | - Vaira Harik
- Barnstable County Department of Human Services, Barnstable, MA 02630, USA
| | - Taylor Brock-Fisher
- Community Tracing Collaborative, Commonwealth of Massachusetts, Boston, MA 02199, USA
| | - Molly Dunn
- Community Tracing Collaborative, Commonwealth of Massachusetts, Boston, MA 02199, USA
| | - Amanda Kearns
- Community Tracing Collaborative, Commonwealth of Massachusetts, Boston, MA 02199, USA
| | - William P Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Clare Bernard
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Niall J Lennon
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Glen R Gallagher
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA 02199, USA
| | | | | | - Daniel J Park
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bronwyn L MacInnis
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Massachusetts Consortium for Pathogen Readiness, Boston, MA 02115, USA.
| | - Pardis C Sabeti
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Massachusetts Consortium for Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
38
|
Bessière P, Figueroa T, Coggon A, Foret-Lucas C, Houffschmitt A, Fusade-Boyer M, Dupré G, Guérin JL, Delverdier M, Volmer R. Opposite Outcomes of the Within-Host Competition between High- and Low-Pathogenic H5N8 Avian Influenza Viruses in Chickens Compared to Ducks. J Virol 2022; 96:e0136621. [PMID: 34613804 PMCID: PMC8754203 DOI: 10.1128/jvi.01366-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) emerge from low-pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse genetics-engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8LP increased H5N8HP replication and pathogenesis. In contrast, the H5N8LP antagonized H5N8HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8LP, which correlated with H5N8HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variant interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between high- and low-pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention, and they underscore the importance of within-host viral variant interactions in virus evolution.
Collapse
Affiliation(s)
- Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Amelia Coggon
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Alexandre Houffschmitt
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxime Fusade-Boyer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Gabriel Dupré
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Jean-Luc Guérin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxence Delverdier
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
39
|
Gallego-García P, Varela N, Estévez-Gómez N, De Chiara L, Fernández-Silva I, Valverde D, Sapoval N, Treangen TJ, Regueiro B, Cabrera-Alvargonzález JJ, del Campo V, Pérez S, Posada D. OUP accepted manuscript. Virus Evol 2022; 8:veac008. [PMID: 35242361 PMCID: PMC8889950 DOI: 10.1093/ve/veac008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/21/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
A detailed understanding of how and when severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission occurs is crucial for designing effective prevention measures. Other than contact tracing, genome sequencing provides information to help infer who infected whom. However, the effectiveness of the genomic approach in this context depends on both (high enough) mutation and (low enough) transmission rates. Today, the level of resolution that we can obtain when describing SARS-CoV-2 outbreaks using just genomic information alone remains unclear. In order to answer this question, we sequenced forty-nine SARS-CoV-2 patient samples from ten local clusters in NW Spain for which partial epidemiological information was available and inferred transmission history using genomic variants. Importantly, we obtained high-quality genomic data, sequencing each sample twice and using unique barcodes to exclude cross-sample contamination. Phylogenetic and cluster analyses showed that consensus genomes were generally sufficient to discriminate among independent transmission clusters. However, levels of intrahost variation were low, which prevented in most cases the unambiguous identification of direct transmission events. After filtering out recurrent variants across clusters, the genomic data were generally compatible with the epidemiological information but did not support specific transmission events over possible alternatives. We estimated the effective transmission bottleneck size to be one to two viral particles for sample pairs whose donor–recipient relationship was likely. Our analyses suggest that intrahost genomic variation in SARS-CoV-2 might be generally limited and that homoplasy and recurrent errors complicate identifying shared intrahost variants. Reliable reconstruction of direct SARS-CoV-2 transmission based solely on genomic data seems hindered by a slow mutation rate, potential convergent events, and technical artifacts. Detailed contact tracing seems essential in most cases to study SARS-CoV-2 transmission at high resolution.
Collapse
Affiliation(s)
| | - Nair Varela
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Nuria Estévez-Gómez
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Loretta De Chiara
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Iria Fernández-Silva
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo 36310, Spain
| | - Diana Valverde
- CINBIO, Universidade de Vigo, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo 36310, Spain
| | | | | | - Benito Regueiro
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo 36213, Spain
- Microbiology and Parasitology Department, Medicine and Odontology, Universidade de Santiago, Santiago de Compostela 15782, Spain
| | - Jorge Julio Cabrera-Alvargonzález
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo 36213, Spain
| | - Víctor del Campo
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
- Department of Preventive Medicine, Complexo Hospitalario Universitario de Vigo (CHUVI), Sergas, Vigo 36213, Spain
| | | | | |
Collapse
|
40
|
Irwin NAT, Pittis AA, Richards TA, Keeling PJ. Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nat Microbiol 2021; 7:327-336. [PMID: 34972821 DOI: 10.1038/s41564-021-01026-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/12/2021] [Indexed: 01/19/2023]
Abstract
Gene exchange between viruses and their hosts acts as a key facilitator of horizontal gene transfer and is hypothesized to be a major driver of evolutionary change. Our understanding of this process comes primarily from bacteria and phage co-evolution, but the mode and functional importance of gene transfers between eukaryotes and their viruses remain anecdotal. Here we systematically characterized viral-eukaryotic gene exchange across eukaryotic and viral diversity, identifying thousands of transfers and revealing their frequency, taxonomic distribution and projected functions. Eukaryote-derived viral genes, abundant in the Nucleocytoviricota, highlighted common strategies for viral host-manipulation, including metabolic reprogramming, proteolytic degradation and extracellular modification. Furthermore, viral-derived eukaryotic genes implicate genetic exchange in the early evolution and diversification of eukaryotes, particularly through viral-derived glycosyltransferases, which have impacted structures as diverse as algal cell walls, trypanosome mitochondria and animal tissues. These findings illuminate the nature of viral-eukaryotic gene exchange and its impact on the evolution of viruses and their eukaryotic hosts.
Collapse
Affiliation(s)
- Nicholas A T Irwin
- Merton College, University of Oxford, Oxford, UK. .,Department of Zoology, University of Oxford, Oxford, UK. .,Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Alexandros A Pittis
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Abstract
The success of many viruses depends upon cooperative interactions between viral genomes. However, whenever cooperation occurs, there is the potential for 'cheats' to exploit that cooperation. We suggest that: (1) the biology of viruses makes viral cooperation particularly susceptible to cheating; (2) cheats are common across a wide range of viruses, including viral entities that are already well studied, such as defective interfering genomes, and satellite viruses. Consequently, the evolutionary theory of cheating could help us understand and manipulate viral dynamics, while viruses also offer new opportunities to study the evolution of cheating.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| |
Collapse
|
42
|
Siddle KJ, Krasilnikova LA, Moreno GK, Schaffner SF, Vostok J, Fitzgerald NA, Lemieux JE, Barkas N, Loreth C, Specht I, Tomkins-Tinch CH, Silbert J, Schaeffer B, Taylor BP, Loftness B, Johnson H, Schubert PL, Shephard HM, Doucette M, Fink T, Lang AS, Baez S, Beauchamp J, Hennigan S, Buzby E, Ash S, Brown J, Clancy S, Cofsky S, Gagne L, Hall J, Harrington R, Gionet GL, DeRuff KC, Vodzak ME, Adams GC, Dobbins ST, Slack SD, Reilly SK, Anderson LM, Cipicchio MC, DeFelice MT, Grimsby JL, Anderson SE, Blumenstiel BS, Meldrim JC, Rooke HM, Vicente G, Smith NL, Messer KS, Reagan FL, Mandese ZM, Lee MD, Ray MC, Fisher ME, Ulcena MA, Nolet CM, English SE, Larkin KL, Vernest K, Chaluvadi S, Arvidson D, Melchiono M, Covell T, Harik V, Brock-Fisher T, Dunn M, Kearns A, Hanage WP, Bernard C, Philippakis A, Lennon NJ, Gabriel SB, Gallagher GR, Smole S, Madoff LC, Brown CM, Park DJ, MacInnis BL, Sabeti PC. Evidence of transmission from fully vaccinated individuals in a large outbreak of the SARS-CoV-2 Delta variant in Provincetown, Massachusetts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34704102 PMCID: PMC8547534 DOI: 10.1101/2021.10.20.21265137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple summer events, including large indoor gatherings, in Provincetown, Massachusetts (MA), in July 2021 contributed to an outbreak of over one thousand COVID-19 cases among residents and visitors. Most cases were fully vaccinated, many of whom were also symptomatic, prompting a comprehensive public health response, motivating changes to national masking recommendations, and raising questions about infection and transmission among vaccinated individuals. To characterize the outbreak and the viral population underlying it, we combined genomic and epidemiological data from 467 individuals, including 40% of known outbreak-associated cases. The Delta variant accounted for 99% of sequenced outbreak-associated cases. Phylogenetic analysis suggests over 40 sources of Delta in the dataset, with one responsible for a single cluster containing 83% of outbreak-associated genomes. This cluster was likely not the result of extensive spread at a single site, but rather transmission from a common source across multiple settings over a short time. Genomic and epidemiological data combined provide strong support for 25 transmission events from, including many between, fully vaccinated individuals; genomic data alone provides evidence for an additional 64. Together, genomic epidemiology provides a high-resolution picture of the Provincetown outbreak, revealing multiple cases of transmission of Delta from fully vaccinated individuals. However, despite its magnitude, the outbreak was restricted in its onward impact in MA and the US, likely due to high vaccination rates and a robust public health response.
Collapse
|
43
|
Baloxavir Treatment Delays Influenza B Virus Transmission in Ferrets and Results in Limited Generation of Drug-Resistant Variants. Antimicrob Agents Chemother 2021; 65:e0113721. [PMID: 34424039 DOI: 10.1128/aac.01137-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Clinical efficacy of the influenza antiviral baloxavir marboxil (baloxavir) is compromised by treatment-emergent variants harboring a polymerase acidic protein I38T (isoleucine-38-threonine) substitution. However, the fitness of I38T-containing influenza B viruses (IBVs) remains inadequately defined. After the pharmacokinetics of the compound were confirmed in ferrets, animals were injected subcutaneously with 8 mg/kg of baloxavir acid (BXA) at 24 h postinoculation with recombinant BXA-sensitive (BXA-Sen, I38) or BXA-resistant (BXA-Res, I38T) B/Brisbane/60/2008 (Victoria lineage) virus. BXA treatment of donor ferrets reduced virus replication and delayed transmission of the BXA-Sen but not the BXA-Res IBV. The I38 genotype remained dominant in the BXA-Sen-infected animals, even with BXA treatment. In competitive-mixture experiments, no transmission to aerosol contacts was seen from BXA-treated donors coinfected with the BXA-Sen and BXA-Res B/Brisbane/60/2008 viruses. However, in parallel mixed infections with the B/Phuket/3073/2013 (Yamagata lineage) virus background, BXA treatment failed to block airborne transmission of the BXA-Res virus, and the I38T genotype generally predominated. Therefore, the relative fitness of BXA-Res IBVs is complex and dependent on the virus backbone and within-host virus competition. BXA treatment of single-virus-infected ferrets hampers aerosol transmission of the BXA-Sen virus and does not readily generate BXA-Res variants, whereas mixed infections may result in propagation of BXA-Res IBVs of the Yamagata lineage. Our findings confirm the antiviral potency of baloxavir against IBVs, while supporting optimization of the dosing regimen to maximize clinical benefit.
Collapse
|
44
|
López-Muñoz AD, Rastrojo A, Martín R, Alcamí A. Herpes simplex virus 2 (HSV-2) evolves faster in cell culture than HSV-1 by generating greater genetic diversity. PLoS Pathog 2021; 17:e1009541. [PMID: 34437654 PMCID: PMC8389525 DOI: 10.1371/journal.ppat.1009541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, respectively) are prevalent human pathogens of clinical relevance that establish long-life latency in the nervous system. They have been considered, along with the Herpesviridae family, to exhibit a low level of genetic diversity during viral replication. However, the high ability shown by these viruses to rapidly evolve under different selective pressures does not correlates with that presumed genetic stability. High-throughput sequencing has revealed that heterogeneous or plaque-purified populations of both serotypes contain a broad range of genetic diversity, in terms of number and frequency of minor genetic variants, both in vivo and in vitro. This is reminiscent of the quasispecies phenomenon traditionally associated with RNA viruses. Here, by plaque-purification of two selected viral clones of each viral subtype, we reduced the high level of genetic variability found in the original viral stocks, to more genetically homogeneous populations. After having deeply characterized the genetic diversity present in the purified viral clones as a high confidence baseline, we examined the generation of de novo genetic diversity under culture conditions. We found that both serotypes gradually increased the number of de novo minor variants, as well as their frequency, in two different cell types after just five and ten passages. Remarkably, HSV-2 populations displayed a much higher raise of nonconservative de novo minor variants than the HSV-1 counterparts. Most of these minor variants exhibited a very low frequency in the population, increasing their frequency over sequential passages. These new appeared minor variants largely impacted the coding diversity of HSV-2, and we found some genes more prone to harbor higher variability. These data show that herpesviruses generate de novo genetic diversity differentially under equal in vitro culture conditions. This might have contributed to the evolutionary divergence of HSV-1 and HSV-2 adapting to different anatomical niche, boosted by selective pressures found at each epithelial and neuronal tissue. Herpesviruses are highly human pathogens that establish latency in neurons of the peripheral nervous system. Colonization of nerve endings is required for herpes simplex virus (HSV) persistence and pathogenesis. HSV-1 global prevalence is much higher than HSV-2, in addition to their preferential tendency to infect the oronasal and genital areas, respectively. How these closely related viruses have been adapting and evolving to replicate and colonize these two different anatomical areas remains unclear. Herpesviruses were presumed to mutate much less than viruses with RNA genomes, due to the higher fidelity of the DNA polymerase and proofreading mechanisms when replicating. However, the worldwide accessibility and development of high-throughput sequencing technologies have revealed the heterogenicity and high diversity present in viral populations clinically isolated. Here we show that HSV-2 mutates much faster than HSV-1, when compared under similar and controlled cell culture conditions. This high mutation rate is translated into an increase in coding diversity, since the great majority of these new mutations lead to nonconservative changes in viral proteins. Understanding how herpesviruses differentially mutate under similar selective pressures is critical to prevent resistance to anti-viral drugs.
Collapse
Affiliation(s)
- Alberto Domingo López-Muñoz
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
45
|
Abstract
Despite their simplicity, viruses exhibit certain types of social interactions. Situations in which a given virus achieves higher fitness in combination with other members of the viral population have been described at the level of transmission, replication, suppression of host immune responses, and host killing, enabling the evolution of viral cooperation. Although cellular coinfection with multiple viral particles is the typical playground for these interactions, cooperation between viruses infecting different cells is also established through cellular and viral-encoded communication systems. In general, the stability of cooperation is compromised by cheater genotypes, as best exemplified by defective interfering particles. As predicted by social evolution theory, cheater invasion can be avoided when cooperators interact preferentially with other cooperators, a situation that is promoted in spatially structured populations. Processes such as transmission bottlenecks, organ compartmentalization, localized spread of infection foci, superinfection exclusion, and even discrete intracellular replication centers promote multilevel spatial structuring in viruses. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas and Universitat de València, 46980 Paterna, València, Spain;
| |
Collapse
|
46
|
Yeh TY, Contreras GP. Viral transmission and evolution dynamics of SARS-CoV-2 in shipboard quarantine. Bull World Health Organ 2021; 99:486-495. [PMID: 34248221 PMCID: PMC8243027 DOI: 10.2471/blt.20.255752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/20/2020] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To examine transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in shipboard quarantine of the Diamond Princess cruise ship. METHODS We obtained the full SARS-CoV-2 genome sequences of 28 samples from the Global Initiative on Sharing All Influenza Data database. The samples were collected between 10 and 25 February 2020 and came for individuals who had been tested for SARS-CoV-2 during the quarantine on the cruise ship. These samples were later sequenced in either Japan or the United States of America. We analysed evolution dynamics of SARS-CoV-2 using computational tools of phylogenetics, natural selection pressure and genetic linkage. FINDINGS The SARS-CoV-2 outbreak in the cruise most likely originated from either a single person infected with a virus variant identical to the WIV04 isolates, or simultaneously with another primary case infected with a virus containing the 11083G > T mutation. We identified a total of 24 new viral mutations across 64.2% (18/28) of samples, and the virus evolved into at least five subgroups. Increased positive selection of SARS-CoV-2 were statistically significant during the quarantine (Tajima's D: -2.03, P < 0.01; Fu and Li's D: -2.66, P < 0.01; and Zeng's E: -2.37, P < 0.01). Linkage disequilibrium analysis confirmed that ribonucleic acid (RNA) recombination with the11083G > T mutation also contributed to the increase of mutations among the viral progeny. CONCLUSION The findings indicate that the 11083G > T mutation of SARS-CoV-2 spread during shipboard quarantine and arose through de novo RNA recombination under positive selection pressure.
Collapse
Affiliation(s)
- Ting-Yu Yeh
- Auxergen Inc., Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, United States of America
| | - Gregory P Contreras
- Auxergen Inc., Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, United States of America
| |
Collapse
|
47
|
Abstract
Herpes simplex viruses (HSV) cause chronic infection in humans that are characterized by periodic episodes of mucosal shedding and ulcerative disease. HSV causes millions of infections world-wide, with lifelong bouts of viral reactivation from latency in neuronal ganglia. Infected individuals experience different levels of disease severity and frequency of reactivation. There are two distantly related HSV species, with HSV-1 infections historically found most often in the oral niche and HSV-2 infections in the genital niche. Over the last two decades, HSV-1 has emerged as the leading cause of first-episode genital herpes in multiple countries. While HSV-1 has the highest level of genetic diversity among human alpha-herpesviruses, it is not yet known how quickly the HSV-1 viral population in a human host adapts over time, or if there are population bottlenecks associated with viral reactivation and/or transmission. It is also unknown how the ecological environments in which HSV infections occur influence their evolutionary trajectory, or that of co-occurring viruses and microbes. In this review, we explore how HSV accrues genetic diversity within each new infection, and yet maintains its ability to successfully infect most of the human population. A holistic examination of the ecological context of natural human infections can expand our awareness of how HSV adapts as it moves within and between human hosts, and reveal the complexity of these lifelong human-virus interactions. These insights may in turn suggest new areas of exploration for other chronic pathogens that successfully evolve and persist among their hosts.
Collapse
|
48
|
Pezzoni G, Bregoli A, Chiapponi C, Grazioli S, Di Nardo A, Brocchi E. Retrospective Characterization of the 2006-2007 Swine Vesicular Disease Epidemic in Northern Italy by Whole Genome Sequence Analysis. Viruses 2021; 13:v13071186. [PMID: 34206208 PMCID: PMC8310173 DOI: 10.3390/v13071186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022] Open
Abstract
Advances in the epidemiological tracing of pathogen transmission have been largely driven by the increasing characterisation of whole-genome sequence data obtained at a finer resolution from infectious disease outbreaks. Dynamic models that integrate genomic and epidemiological data further enhance inference on the evolutionary history and transmission dynamics of epidemic outbreaks by reconstructing the network of ‘who-infected-whom’. Swine Vesicular Disease (SVD) was present in Italy from 1966 until 2015, and since the mid-1990s, it has mainly been circulating within Italy’s central-southern regions with sporadic incursions to the north of the country. However, a recrudescence of SVD in northern Italy was recorded between November 2006 and October 2007, leading to a large-scale epidemic that significantly affected the intensive pig industry of the Lombardy region. In this study, by using whole-genome sequence data in combination with epidemiological information on disease occurrences, we report a retrospective epidemiological investigation of the 2006–2007 SVD epidemic, providing new insights into the transmission dynamics and evolutionary mode of the two phases that characterised the epidemic event. Our analyses support evidence of undetected premises likely missed in the chain of observed infections, of which the role as the link between the two phases is reinforced by the tempo of SVD virus evolution. These silent transmissions, likely resulting from the gradual loss of a clear SVD clinical manifestation linked to sub-clinical infections, may pose a risk of failure in the early detection of new cases. This study emphasises the power of joint inference schemes based on genomic and epidemiological data integration to inform the transmission dynamics of disease epidemics, ultimately aimed at better disease control.
Collapse
Affiliation(s)
- Giulia Pezzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (G.P.); (A.B.); (C.C.); (S.G.); (E.B.)
| | - Arianna Bregoli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (G.P.); (A.B.); (C.C.); (S.G.); (E.B.)
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (G.P.); (A.B.); (C.C.); (S.G.); (E.B.)
| | - Santina Grazioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (G.P.); (A.B.); (C.C.); (S.G.); (E.B.)
| | - Antonello Di Nardo
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK
- Correspondence:
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (G.P.); (A.B.); (C.C.); (S.G.); (E.B.)
| |
Collapse
|
49
|
Valesano AL, Rumfelt KE, Dimcheff DE, Blair CN, Fitzsimmons WJ, Petrie JG, Martin ET, Lauring AS. Temporal dynamics of SARS-CoV-2 mutation accumulation within and across infected hosts. PLoS Pathog 2021; 17:e1009499. [PMID: 33826681 PMCID: PMC8055005 DOI: 10.1371/journal.ppat.1009499] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Analysis of SARS-CoV-2 genetic diversity within infected hosts can provide insight into the generation and spread of new viral variants and may enable high resolution inference of transmission chains. However, little is known about temporal aspects of SARS-CoV-2 intrahost diversity and the extent to which shared diversity reflects convergent evolution as opposed to transmission linkage. Here we use high depth of coverage sequencing to identify within-host genetic variants in 325 specimens from hospitalized COVID-19 patients and infected employees at a single medical center. We validated our variant calling by sequencing defined RNA mixtures and identified viral load as a critical factor in variant identification. By leveraging clinical metadata, we found that intrahost diversity is low and does not vary by time from symptom onset. This suggests that variants will only rarely rise to appreciable frequency prior to transmission. Although there was generally little shared variation across the sequenced cohort, we identified intrahost variants shared across individuals who were unlikely to be related by transmission. These variants did not precede a rise in frequency in global consensus genomes, suggesting that intrahost variants may have limited utility for predicting future lineages. These results provide important context for sequence-based inference in SARS-CoV-2 evolution and epidemiology.
Collapse
Affiliation(s)
- Andrew L. Valesano
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kalee E. Rumfelt
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Derek E. Dimcheff
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher N. Blair
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - William J. Fitzsimmons
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joshua G. Petrie
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emily T. Martin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Adam S. Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
50
|
Freitas O, Wahl LM, Campos PRA. Robustness and predictability of evolution in bottlenecked populations. Phys Rev E 2021; 103:042415. [PMID: 34005989 DOI: 10.1103/physreve.103.042415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/02/2021] [Indexed: 01/02/2023]
Abstract
Deterministic and stochastic evolutionary processes drive adaptation in natural populations. The strength of each component process is determined by the population size: deterministic components prevail in very large populations, while stochastic components are the driving mechanisms in small ones. Many natural populations, however, experience intermittent periods of growth, moving through states in which either stochastic or deterministic processes prevail. This growth is often countered by population bottlenecks, which abound in both natural and laboratory populations. Here we investigate how population bottlenecks shape the process of adaptation. We demonstrate that adaptive trajectories in populations experiencing regular bottlenecks can be naturally scaled in time units of generations; with this scaling the time courses of adaptation, fitness variance, and genetic diversity all become relatively insensitive to the timing of population bottlenecks, provided the bottleneck size exceeds a few thousand individuals. We also include analyses at the genotype level to investigate the impact of population bottlenecks on the predictability and distribution of evolutionary pathways. Irrespective of the timing of population bottlenecks, we find that predictability increases with population size. We also find that predictability of the adaptive pathways increases in increasingly rugged fitness landscapes. Overall, our work reveals that both the adaptation rate and the predictability of evolutionary trajectories are relatively robust to population bottlenecks.
Collapse
Affiliation(s)
- Osmar Freitas
- Evolutionary Dynamics Lab, Physics Department, Federal University of Pernambuco, Recife-PE, 50670-901, Brazil
| | - Lindi M Wahl
- Applied Mathematics, Western University, London, Ontario N6A 5B7, Canada
| | - Paulo R A Campos
- Evolutionary Dynamics Lab, Physics Department, Federal University of Pernambuco, Recife-PE, 50670-901, Brazil
| |
Collapse
|