1
|
Deng F, Yang D, Qing L, Chen Y, Zou J, Jia M, Wang Q, Jiang R, Huang L. Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway: a potential therapeutic approach for neurodegenerative diseases. Neural Regen Res 2025; 20:3095-3112. [PMID: 39589173 DOI: 10.4103/nrr.nrr-d-24-00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut microbiota and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut-brain axis. The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites, which activates the vagus nerve and modulates the immune and neuroendocrine systems. Conversely, alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota, creating a dynamic network of microbial-host interactions. This reciprocal regulation affects neurodevelopment, neurotransmitter control, and behavioral traits, thus playing a role in the modulation of neurological diseases. The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation, mitochondrial dysfunction, abnormal energy metabolism, microglial activation, oxidative stress, and neurotransmitter release, which collectively influence the onset and progression of neurological diseases. This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway, along with its implications for potential therapeutic interventions in neurological diseases. Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders. This can be achieved through various methods such as dietary modifications, probiotic supplements, Chinese herbal extracts, combinations of Chinese herbs, and innovative dosage forms. These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Fengcheng Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lingxi Qing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yifei Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jilian Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Meiling Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Runda Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lihua Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Reid DM, Choe JY, Bruce MA, Thorpe RJ, Jones HP, Phillips NR. Mitochondrial Functioning: Front and Center in Defining Psychosomatic Mechanisms of Allostasis in Health and Disease. Methods Mol Biol 2025; 2868:91-110. [PMID: 39546227 DOI: 10.1007/978-1-0716-4200-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
There is increased awareness among basic and clinical scientists that psychological and social stress can have detrimental effects on physical, cognitive, and mental health. Data have been published indicating that social, economic, psychological, and physical environmental stress can influence behavior that has biological and physiological consequences-yet there are major gaps in understanding the physiological and cellular processes that drive increased morbidity and mortality. The potential role of mitochondria has been highlighted in psychosomatic medicine, as their functionality in various biological and physiological processes has earned recognition. This review outlines the essential role of mitochondria by considering the numerous intracellular, extracellular, and physiological functions it regulates that position the organelle as a central mediator in responses to psychological stress. We then connect these functions to mitochondrial allostasis and allostatic load for further examination of the limitations of mitochondria to an adaptive psychological stress response where mitochondrial allostatic load may eventually lead to systemic pathophysiology. This review emphasizes how chronic social, economic, and psychological stress can contribute to mitochondrial dysfunction and predispose individuals to poorer health outcomes and death. Mitochondrial capacity, function, and activity may therefore serve as biomarkers for identifying individuals at high risk for developing comorbid conditions related to their psychosocial environment.
Collapse
Affiliation(s)
- Danielle Marie Reid
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Department of Neurology and Neurogenomics Informatics Center, Washington University in St. Louis, St. Louis, USA
| | - Jamie Y Choe
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Marino A Bruce
- Department of Behavioral and Social Sciences, University of Houston Tilman J. Fertitta Family College of Medicine, Houston, TX, USA
- UHPH Collaboratories, UH Population Health, University of Houston, Houston, USA
| | - Roland J Thorpe
- Program for Research on Men's Health, Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Harlan P Jones
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA.
| | - Nicole R Phillips
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Institute for Health Disparities, UNT Health Science Center, Fort Worth, TX, USA
- Institute for Translational Research, UNT Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
3
|
Song Z, Yan M, Zhang S, Hu B, Qing X, Shao Z, Chen S, Lv X, Liu H. Implications of circadian disruption on intervertebral disc degeneration: The mediating role of sympathetic nervous system. Ageing Res Rev 2024; 104:102633. [PMID: 39701186 DOI: 10.1016/j.arr.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
The circadian clock orchestrates a broad spectrum of physiological processes, crucially modulating human biology across an approximate 24-hour cycle. The circadian disturbances precipitated by modern lifestyle contribute to the occurrence of low back pain (LBP), mainly ascribed to intervertebral disc degeneration (IVDD). The intervertebral disc (IVD) exhibits rhythmic physiological behaviors, with fluctuations in osmotic pressure and hydration levels that synchronized with the diurnal cycle of activity and rest. Over recent decades, advanced molecular biology techniques have shed light on the association between circadian molecules and IVD homeostasis. The complex interplay between circadian rhythm disruption and IVDD is becoming increasingly evident, with the sympathetic nervous system (SNS) emerging as a potential mediator. Synchronized with circadian rhythm through suprachiasmatic nucleus, the SNS regulates diverse physiological functions and metabolic processes, profoundly influences the structural and functional integrity of the IVD. This review synthesizes the current understanding of circadian regulation and sympathetic innervation of the IVD, highlighting advancements in the comprehension of their interactions. We elucidate the impact of circadian system on the physiological functions of IVD through the SNS, advocating for the adoption of chronotherapy as a brand-new and effective strategy to ameliorate IVDD and alleviate LBP.
Collapse
Affiliation(s)
- Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuo Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Binwu Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
4
|
Yang P, Chen X, Yu F, Wang L, Li M, Bai Z, Xu H. CAR T cells secreting NGF-neutralizing scFv enhance efficacy in clear cell renal cell carcinoma by relieving immunosuppression through immunosympathectomy. J Immunother Cancer 2024; 12:e009910. [PMID: 39653553 PMCID: PMC11629019 DOI: 10.1136/jitc-2024-009910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells have demonstrated remarkable breakthroughs in treating hematologic malignancies, yet their efficacy in solid tumors is limited by the immunosuppressive microenvironment. Sympathetic nerves significantly contribute to this immunosuppressive milieu in solid tumors. However, the impact of tumor sympathetic denervation on enhancing CAR T-cell antitumor efficacy remains unclear. METHODS We screened for sympathetic gene sets in various types of cancers and investigated the association of sympathetic nerves with immunosuppression in renal clear cell carcinoma. Using antibodies to block the nerve growth factor (NGF) pathway, we explored sympathetic nerve distribution in tumor tissues and tumor progression. Additionally, we engineered CAR T cells to secrete NGF single chain fragment variable (scFv) to achieve tumor immunosympathectomy and assessed their antitumor efficacy. Bulk RNA sequencing and single-cell RNA sequencing analyses were conducted to evaluate changes in immune cell phenotypes within the tumor microenvironment. RESULTS Blocking the NGF pathway with antibodies effectively reduced sympathetic nerve distribution in tumor tissues and delayed tumor progression. CAR T cells engineered to secrete NGF scFv achieved a similar tumor immunosympathectomy and exhibited enhanced tumor suppression. RNA sequencing analyses revealed that this augmented effect was primarily due to the inhibition of the terminal exhaustion phenotype in tumor-infiltrating CD8 T cells and the prevention of macrophage polarization from M1 to M2. This approach maintained a stronger antitumor immune state at the tumor site. Additionally, splenic T cells also exhibited a more potent immune effector phenotype following the infusion of NGF scFv-secreting CAR T cells. CONCLUSIONS Our results suggest that immunosympathectomy is a novel approach to weaken tumor microenvironment immunosuppression and synergistically enhance CAR T-cell efficacy against solid tumors.
Collapse
Affiliation(s)
- Peiwei Yang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Xi Chen
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Fan Yu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
| | - Meng Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
| | - Zongke Bai
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Jürgens M, Claus M, Wingert S, Niemann JA, Picard LK, Hennes E, Haasler I, Hellwig B, Overbeck N, Reinders J, Rahnenführer J, Schedel M, Capellino S, Watzl C. Chronic stimulation desensitizes β2-adrenergic receptor responses in natural killer cells. Eur J Immunol 2024; 54:e2451299. [PMID: 39350450 PMCID: PMC11628883 DOI: 10.1002/eji.202451299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 12/11/2024]
Abstract
Adrenergic receptors (ARs) are preferentially expressed by innate lymphocytes such as natural killer (NK) cells. Here, we study the effect of epinephrine-mediated stimulation of the β2-adrenergic receptor (β2AR) on the function of human NK cells. Epinephrine stimulation inhibited early NK cell signaling events and blocked the function of the integrin LFA-1. This reduced the adhesion of NK cells to ICAM-1, explaining how NK cells are mobilized into the peripheral blood upon epinephrine release during acute stress or exercise. Additionally, epinephrine stimulation transiently reduced NK cell degranulation, serial killing, and cytokine production and affected metabolic changes upon NK cell activation via the cAMP-protein kinase A (PKA) pathway. Repeated exposure to β2AR agonists resulted in the desensitization of the β2AR via a PKA feedback loop-initiated G-protein switch. Therefore, acute epinephrine stimulation of chronically β2AR stimulated NK cells no longer resulted in inhibited signaling and reduced LFA-1 activity. Sustained stimulation by long-acting β2-agonists (LABA) not only inhibited NK cell functions but also resulted in desensitization of the β2AR. However, peripheral NK cells from LABA-treated asthma patients still reacted unchanged to epinephrine stimulation, demonstrating that local LABA administration does not result in detectable systemic effects on NK cells.
Collapse
Affiliation(s)
- Martin Jürgens
- Department for ImmunologyLeibniz Research Centre for Working Environment and Human Factors (IfADo) at TU DortmundDortmundGermany
| | - Maren Claus
- Department for ImmunologyLeibniz Research Centre for Working Environment and Human Factors (IfADo) at TU DortmundDortmundGermany
| | - Sabine Wingert
- Department for ImmunologyLeibniz Research Centre for Working Environment and Human Factors (IfADo) at TU DortmundDortmundGermany
| | - Jens Alexander Niemann
- Department for ImmunologyLeibniz Research Centre for Working Environment and Human Factors (IfADo) at TU DortmundDortmundGermany
| | - Lea Katharina Picard
- Department for ImmunologyLeibniz Research Centre for Working Environment and Human Factors (IfADo) at TU DortmundDortmundGermany
| | | | - Ina Haasler
- Department of Pulmonary MedicineUniversity Medicine Essen‐University Hospital‐RuhrlandklinikEssenGermany
| | - Birte Hellwig
- Department of StatisticsTU Dortmund UniversityDortmundGermany
| | - Nina Overbeck
- Analytical ChemistryLeibniz Research Centre for Working Environment and Human Factors (IfADo) at TU DortmundDortmundGermany
| | - Jörg Reinders
- Analytical ChemistryLeibniz Research Centre for Working Environment and Human Factors (IfADo) at TU DortmundDortmundGermany
| | | | - Michaela Schedel
- Department of Pulmonary MedicineUniversity Medicine Essen‐University Hospital‐RuhrlandklinikEssenGermany
- Department of Pulmonary MedicineUniversity Medicine Essen‐University HospitalEssenGermany
| | - Silvia Capellino
- Department for ImmunologyLeibniz Research Centre for Working Environment and Human Factors (IfADo) at TU DortmundDortmundGermany
| | - Carsten Watzl
- Department for ImmunologyLeibniz Research Centre for Working Environment and Human Factors (IfADo) at TU DortmundDortmundGermany
| |
Collapse
|
6
|
Dongdem JT, Etornam AE, Beletaa S, Alidu I, Kotey H, Wezena CA. The β 3-Adrenergic Receptor: Structure, Physiopathology of Disease, and Emerging Therapeutic Potential. Adv Pharmacol Pharm Sci 2024; 2024:2005589. [PMID: 39640497 PMCID: PMC11620816 DOI: 10.1155/2024/2005589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
The discovery and characterization of the signal cascades of the β-adrenergic receptors have made it possible to effectively target the receptors for drug development. β-Adrenergic receptors are a class A rhodopsin type of G protein-coupled receptors (GPCRs) that are stimulated mainly by catecholamines and therefore mediate diverse effects of the parasympathetic nervous system in eliciting "fight or flight" type responses. They are detectable in several human tissues where they control a plethora of physiological processes and therefore contribute to the pathogenesis of several disease conditions. Given the relevance of the β-adrenergic receptor as a molecular target for many pathological conditions, this comprehensive review aims at providing an in-depth exploration of the recent advancements in β3-adrenergic receptor research. More importantly, we delve into the prospects of the β3-adrenergic receptor as a therapeutic target across a variety of clinical domains.
Collapse
Affiliation(s)
- Julius T. Dongdem
- Department of Chemical Pathology, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Axandrah E. Etornam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Solomon Beletaa
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Issah Alidu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Hassan Kotey
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Cletus A. Wezena
- Department of Microbiology, Faculty of Biosciences, University for Development Studies, Tamale, Northern Region, Ghana
| |
Collapse
|
7
|
Walther LM, Gideon A, Sauter C, Leist M, Wirtz PH. Peripheral Blood Leukocyte Subpopulation Changes in Reaction to an Acute Psychosocial Stressor as Compared to an Active Placebo-Stressor in Healthy Young Males: Mediating Effects of Major Stress-Reactive Endocrine Parameters. Cells 2024; 13:1941. [PMID: 39682690 DOI: 10.3390/cells13231941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Psychosocial stress has been proposed to induce a redistribution of immune cells, but a comparison with an active placebo-psychosocial stress control condition is lacking so far. We investigated immune cell redistribution due to psychosocial stress compared to that resulting from an active placebo-psychosocial stress but otherwise identical control condition. Moreover, we tested for mediating effects of endocrine parameters and blood volume changes. The final study sample comprised 64 healthy young men who underwent either a psychosocial stress condition (Trier Social Stress Test; TSST; n = 38) or an active placebo-psychosocial stress control condition (PlacTSST; n = 26). Immune cell counts and hemoglobin, epinephrine, norepinephrine, ACTH, renin, and aldosterone levels, as well as those of saliva cortisol, were determined before and up to 30 min after the TSST/PlacTSST. The TSST induced greater increases in total leukocyte, monocyte, and lymphocyte levels as compared to the PlacTSST (p's ≤ 0.001), but in not granulocyte counts. Neutrophil granulocyte counts increased in reaction to both the TSST and PlacTSST (p's ≤ 0.001), while eosinophil and basophil granulocyte counts did not. The psychosocial stress-induced increases in immune cell counts from baseline to peak (i.e., +1 min after TSST cessation) were independently mediated by parallel increases in epinephrine (ab's ≤ -0.43; 95% CIs [LLs ≤ -0.66; ULs ≤ -0.09]). Subsequent decreases in immune cell counts from +1 min to +10 min after psychosocial stress cessation were mediated by parallel epinephrine, renin, and blood volume decreases (ab's ≥ 0.17; 95% CIs [LLs ≥ 0.02; ULs ≥ 0.35]). Our findings indicate that psychosocial stress specifically induces immune cell count increases in most leukocyte subpopulations that are not secondary to the physical or cognitive demands of the stress task. Increases in the number of circulating neutrophil granulocytes, however, are not psychosocial stress-specific and even occur in situations with a low probability of threat or harm. Our findings point to a major role of epinephrine in mediating stress-induced immune cell count increases and of epinephrine, renin, and blood volume changes in mediating subsequent immune cell count decreases from +1 min to +10 min after psychosocial stress cessation.
Collapse
Affiliation(s)
- Lisa-Marie Walther
- Biological Work and Health Psychology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - Angelina Gideon
- Biological Work and Health Psychology, University of Konstanz, 78457 Konstanz, Germany
| | - Christine Sauter
- Biological Work and Health Psychology, University of Konstanz, 78457 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Petra H Wirtz
- Biological Work and Health Psychology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
8
|
Katz AR, Huntwork MP, Kolls JK, Hewes JL, Ellsworth CR, Clark RDE, Carlson JC. Impact of psychological stressors on natural killer cell function: A comprehensive analysis based on stressor type, duration, intensity, and species. Physiol Behav 2024; 288:114734. [PMID: 39547436 DOI: 10.1016/j.physbeh.2024.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Patients with natural killer (NK) cell deficiency or dysfunction are more susceptible to infections by Herpesviridae viruses, herpesvirus-related cancers, and macrophage activation syndromes. This review summarizes research on NK cell dysfunction following psychological stress, focusing on stressor type, duration, age of exposure, and species studied. Psychological stressors negatively affect NK cell activity (NKCA) across species. Prolonged stress leads to more significant decreases in NK cell number and function, with rehabilitation efforts proving ineffective in reversing these effects. Early life and prolonged stress exposure particularly increases the risk of infections and cancer due to impaired NKCA. The review also highlights that stress impacts males and females differently, with females exhibiting a more immunosuppressed NK cell phenotype. Notably, mice respond differently compared to humans and other animals, making them unsuitable for NK cell stress-related studies. Most studies measured NKCA using cytolytic assays against K-562 or YAC-1 cells. Although the exact mechanisms of NK cell dysfunction under stress remain unclear, potential causes include reduced release of secretory lysosomes with perforin or granzyme, impaired NK cell synapse formation, decreased expression of synapse-related molecules like CD2 or LFA-1 (CD11a), altered activating receptor expression, and dysregulated signaling pathways, such as decreased Erk1/2 phosphorylation and NFkB signaling. These mechanisms are not mutually exclusive, and future research is needed to clarify these pathways and develop therapeutic interventions for stress-induced immune dysregulation.
Collapse
Affiliation(s)
- Alexis R Katz
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Margaret P Huntwork
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Allergy and Clinical Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay K Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jenny L Hewes
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder R Ellsworth
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Robert D E Clark
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - John C Carlson
- Department of Allergy and Immunology, Ochsner Health System, New Orleans, LA 70121, USA
| |
Collapse
|
9
|
Kizil B, De Virgiliis F, Scheiermann C. Neural control of tumor immunity. FEBS J 2024; 291:4670-4679. [PMID: 39304984 DOI: 10.1111/febs.17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/02/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024]
Abstract
Communication between the nervous system and the immune system has evolved to optimally respond to potentially dangerous stimuli both from within and outside the body. Tumors pose a severe threat to an organism and current therapies are insufficient for tumor regression in the majority of cases. Studies show that tumors are innervated by peripheral nerves from the sensory, parasympathetic and sympathetic nervous systems. Interactions between cancer cells, nerves and immune cells regulate overall tumor progression. Clinical studies have indicated the potential of targeting the peripheral nervous system for promoting anti-tumor immune responses. This view point provides an opinion on the current evidence and therapeutic potential of manipulating neuro-immune communications in cancer.
Collapse
Affiliation(s)
- Burak Kizil
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Francesco De Virgiliis
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
- Geneva Center for Inflammation Research (GCIR), Geneva, Switzerland
- Translational Research Centre in Onco-Hematology (CRTOH), Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), Switzerland
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel-Center for Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Ghasemi M, Mehranfard N. Neuroprotective actions of norepinephrine in neurological diseases. Pflugers Arch 2024; 476:1703-1725. [PMID: 39136758 DOI: 10.1007/s00424-024-02999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Shafa Street, Urmia, 5715793731, Iran.
| |
Collapse
|
11
|
Avagimyan A, Kajaia N, Gabunia L, Trofimenko A, Sulashvili N, Sanikidze T, Gorgaslidze N, Challa A, Sheibani M. The place of beta-adrenergic receptor blockers in the treatment of arterial hypertension: From bench-to-bedside. Curr Probl Cardiol 2024; 49:102734. [PMID: 38944226 DOI: 10.1016/j.cpcardiol.2024.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Arterial hypertension is a multifaceted condition influenced by numerous pathophysiological factors. The key contributors to its pathogenesis encompass an unhealthy lifestyle, dysregulation of the sympathetic nervous system, alterations in the activity of adrenergic receptors, disruptions in sodium metabolism, structural and functional abnormalities in the vascular bed, as well as endothelial dysfunction, low-grade inflammation, oxidative stress etc. Despite extensive research into the mechanisms of arterial hypertension development over the centuries, its pathogenesis remains incompletely understood, and the selection of an effective treatment strategy continues to pose a significant challenge. Arterial hypertension is characterized by a diminished sensitivity of the β-adrenergic system, leading to the utilization of β-adrenergic blockers and other antihypertensive drugs in its treatment. This review delves into the mechanisms of action of beta-adrenergic receptor blockers in the treatment of hypertension and their respective effects.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Kajaia
- Tbilisi State Medical University, Tbilisi, Georgia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gerhardt T, Huynh P, McAlpine CS. Neuroimmune circuits in the plaque and bone marrow regulate atherosclerosis. Cardiovasc Res 2024:cvae167. [PMID: 39086175 DOI: 10.1093/cvr/cvae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 08/02/2024] Open
Abstract
Atherosclerosis remains the leading cause of death globally. Although its focal pathology is atheroma that develops in arterial walls, atherosclerosis is a systemic disease involving contributions by many organs and tissues. It is now established that the immune system causally contributes to all phases of atherosclerosis. Recent and emerging evidence positions the nervous system as a key modulator of inflammatory processes that underly atherosclerosis. This neuro-immune crosstalk, we are learning, is bidirectional, and immune regulated afferent signaling is becoming increasingly recognized in atherosclerosis. Here, we summarize data and concepts that link the immune and nervous systems in atherosclerosis by focusing on two important sites, the arterial vessel and the bone marrow.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friede Springer Center for Cardiovascular Prevention at Charité, Berlin, Germany
| | - Pacific Huynh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Akinyemi DE, Chevre R, Soehnlein O. Neuro-immune crosstalk in hematopoiesis, inflammation, and repair. Trends Immunol 2024; 45:597-608. [PMID: 39030115 DOI: 10.1016/j.it.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
Innate immune cells are primary effectors during host defense and in sterile inflammation. Their production in the bone marrow is tightly regulated by growth and niche factors, and their activity at sites of inflammation is orchestrated by a network of alarmins and cytokines. Yet, recent work highlights a significant role of the peripheral nervous system in these processes. Sympathetic neural pathways play a key role in regulating blood cell homeostasis, and sensory neural pathways mediate pro- or anti-inflammatory signaling in a tissue-specific manner. Here, we review emerging evidence of the fine titration of hematopoiesis, leukocyte trafficking, and tissue repair via neuro-immune crosstalk, and how its derailment can accelerate chronic inflammation, as in atherosclerosis.
Collapse
Affiliation(s)
- Damilola Emmanuel Akinyemi
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| | - Raphael Chevre
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
14
|
da Silva RP, Costa DM, da Cruz-Filho J, Santos TDO, Dos Anjos-Santos HC, Vasconcelos ABS, Heck LC, Kettelhut ÍDC, Navegantes LC, Dos Santos JR, de Souza PRM, Badauê-Passos D, Mecawi AS, DeSantana JM, Lustrino D. Reduced sympathetic activity is associated with the development of pain and muscle atrophy in a female rat model of fibromyalgia. Physiol Behav 2024; 281:114575. [PMID: 38692384 DOI: 10.1016/j.physbeh.2024.114575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Fibromyalgia (FM) is characterized by chronic widespread musculoskeletal pain accompanied by fatigue and muscle atrophy. Although its etiology is not known, studies have shown that FM patients exhibit altered function of the sympathetic nervous system (SNS), which regulates nociception and muscle plasticity. Nevertheless, the precise SNS-mediated mechanisms governing hyperalgesia and skeletal muscle atrophy in FM remain unclear. Thus, we employed two distinct FM-like pain models, involving intramuscular injections of acidic saline (pH 4.0) or carrageenan in prepubertal female rats, and evaluated the catecholamine content, adrenergic signaling and overall muscle proteolysis. Subsequently, we assessed the contribution of the SNS to the development of hyperalgesia and muscle atrophy in acidic saline-injected rats treated with clenbuterol (a selective β2-adrenergic receptor agonist) and in animals maintained under baseline conditions and subjected to epinephrine depletion through adrenodemedullation (ADM). Seven days after inducing an FM-like model with acidic saline or carrageenan, we observed widespread mechanical hyperalgesia along with loss of strength and/or muscle mass. These changes were associated with reduced catecholamine content, suggesting a common underlying mechanism. Notably, treatment with a β2-agonist alleviated hyperalgesia and prevented muscle atrophy in acidic saline-induced FM-like pain, while epinephrine depletion induced mechanical hyperalgesia and increased muscle proteolysis in animals under baseline conditions. Together, the results suggest that reduced sympathetic activity is involved in the development of pain and muscle atrophy in the murine model of FM analyzed.
Collapse
Affiliation(s)
- Raquel Prado da Silva
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Daniely Messias Costa
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - João da Cruz-Filho
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Tatiane de Oliveira Santos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Hevely Catharine Dos Anjos-Santos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Alan Bruno Silva Vasconcelos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lilian Carmo Heck
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ísis do Carmo Kettelhut
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Carlos Navegantes
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Ronaldo Dos Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Daniel Badauê-Passos
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - André Souza Mecawi
- Department of Biophysics, São Paulo Medical School, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Josimari Melo DeSantana
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Danilo Lustrino
- Laboratory of Basic and Behavioral Neuroendocrinology (LANBAC), Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
15
|
Rodríguez-Santiago Y, Garay-Canales CA, Nava-Castro KE, Morales-Montor J. Sexual dimorphism in colorectal cancer: molecular mechanisms and treatment strategies. Biol Sex Differ 2024; 15:48. [PMID: 38867310 PMCID: PMC11170921 DOI: 10.1186/s13293-024-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION Sexual dimorphism significantly influences cancer incidence and prognosis. Notably, females exhibit a lower risk and favorable prognosis for non-reproductive cancers compared to males, a pattern observable beyond the scope of risk behaviors such as alcohol consumption and smoking. Colorectal cancer, ranking third in global prevalence and second in mortality, disproportionately affects men. Sex steroid hormones, particularly estrogens and androgens, play crucial roles in cancer progression, considering epidemiological in vivo and in vitro, in general estrogens imparting a protective effect in females and androgens correlating with an increasing risk of colorectal cancer development. MAIN BODY The hormonal impact on immune response is mediated by receptor interactions, resulting in heightened inflammation, modulation of NF-kB, and fostering an environment conducive to cancer progression and metastasis. These molecules also influence the enteric nervous system, that is a pivotal in neuromodulator release and intestinal neuron stimulation, also contributes to cancer development, as evidenced by nerve infiltration into tumors. Microbiota diversity further intersects with immune, hormonal, and neural mechanisms, influencing colorectal cancer dynamics. A comprehensive understanding of hormonal influences on colorectal cancer progression, coupled with the complex interplay between immune responses, microbiota diversity and neurotransmitter imbalances, underpins the development of more targeted and effective therapies. CONCLUSIONS Estrogens mitigate colorectal cancer risk by modulating anti-tumor immune responses, enhancing microbial diversity, and curbing the pro-tumor actions of the sympathetic and enteric nervous systems. Conversely, androgens escalate tumor growth by dampening anti-tumor immune activity, reducing microbial diversity, and facilitating the release of tumor-promoting factors by the nervous system. These findings hold significant potential for the strategic purposing of drugs to fine-tune the extensive impacts of sex hormones within the tumor microenvironment, promising advancements in colorectal cancer therapies.
Collapse
Affiliation(s)
- Yair Rodríguez-Santiago
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1er piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Claudia Angelica Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Atmosféricas, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, 04510, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México.
| |
Collapse
|
16
|
Mandal SK, Yadav P, Sheth RA. The Neuroimmune Axis and Its Therapeutic Potential for Primary Liver Cancer. Int J Mol Sci 2024; 25:6237. [PMID: 38892423 PMCID: PMC11172507 DOI: 10.3390/ijms25116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The autonomic nervous system plays an integral role in motion and sensation as well as the physiologic function of visceral organs. The nervous system additionally plays a key role in primary liver diseases. Until recently, however, the impact of nerves on cancer development, progression, and metastasis has been unappreciated. This review highlights recent advances in understanding neuroanatomical networks within solid organs and their mechanistic influence on organ function, specifically in the liver and liver cancer. We discuss the interaction between the autonomic nervous system, including sympathetic and parasympathetic nerves, and the liver. We also examine how sympathetic innervation affects metabolic functions and diseases like nonalcoholic fatty liver disease (NAFLD). We also delve into the neurobiology of the liver, the interplay between cancer and nerves, and the neural regulation of the immune response. We emphasize the influence of the neuroimmune axis in cancer progression and the potential of targeted interventions like neurolysis to improve cancer treatment outcomes, especially for hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | | | - Rahul A. Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1471, Houston, TX 77030-4009, USA; (S.K.M.); (P.Y.)
| |
Collapse
|
17
|
Moura MM, Monteiro A, Salgado AJ, Silva NA, Monteiro S. Disrupted autonomic pathways in spinal cord injury: Implications for the immune regulation. Neurobiol Dis 2024; 195:106500. [PMID: 38614275 DOI: 10.1016/j.nbd.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.
Collapse
Affiliation(s)
- Maria M Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal.
| |
Collapse
|
18
|
Fang S, Wong CK. Anti-Inflammatory Effects of Glucagon-Like Peptide-1 Receptor Agonists via the Neuroimmune Axis. DNA Cell Biol 2024; 43:267-270. [PMID: 38579130 DOI: 10.1089/dna.2024.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have shown efficacy in the treatment of metabolic disease-related complications, partially attributable to their anti-inflammatory properties. However, the specific cell types and pathways involved in these effects were not fully understood. A recent study by Wong et al. demonstrated the importance of the brain GLP-1R in mediating the anti-inflammatory effects of GLP-1RAs in Toll-like receptor and sepsis-mediated inflammation. In this discussion, we review the existing literature on the action of GLP-1RAs in inflammation and explore the implications of these recent findings.
Collapse
Affiliation(s)
- Susanna Fang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Chi Kin Wong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Cieślik M, Strobel SD, Bryniarski P, Twardowska H, Chmielowski A, Rudek M, Felkle D, Zięba K, Kaleta K, Jarczyński M, Nowak B, Bryniarski K, Nazimek K. Hypotensive drugs mitigate the high-sodium diet-induced pro-inflammatory activation of mouse macrophages in vivo. Biomed Pharmacother 2024; 175:116648. [PMID: 38677242 DOI: 10.1016/j.biopha.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Nowadays, there is an increasing emphasis on the need to alleviate the chronic inflammatory response to effectively treat hypertension. However, there are still gaps in our understanding on how to achieve this. Therefore, research on interaction of antihypertensive drugs with the immune system is extremely interesting, since their therapeutic effect could partly result from amelioration of hypertension-related inflammation, in which macrophages seem to play a pivotal role. Thus, current comprehensive studies have investigated the impact of repeatedly administered hypotensive drugs (captopril, olmesartan, propranolol, carvedilol, amlodipine, verapamil) on macrophage functions in the innate and adaptive immunity, as well as if drug-induced effects are affected by a high-sodium diet (HSD), one of the key environmental risk factors of hypertension. Although the assayed medications increased the generation of reactive oxygen and nitrogen intermediates by macrophages from standard fed donors, they reversed HSD-induced enhancing effects on macrophage oxidative burst and secretion of pro-inflammatory cytokines. On the other hand, some drugs increased macrophage phagocytic activity and the expression of surface markers involved in antigen presentation, which translated into enhanced macrophage ability to activate B cells for antibody production. Moreover, the assayed medications augmented macrophage function and the effector phase of contact hypersensitivity reaction, but suppressed the sensitization phase of cell-mediated hypersensitivity under HSD conditions. Our current findings contribute to the recognition of mechanisms, by which excessive sodium intake affects macrophage immune activity in hypertensive individuals, and provide evidence that the assayed medications mitigate most of the HSD-induced adverse effects, suggesting their additional protective therapeutic activity.
Collapse
Affiliation(s)
- Martyna Cieślik
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Spencer D Strobel
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Paweł Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Hanna Twardowska
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Adam Chmielowski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Michał Rudek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Dominik Felkle
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Zięba
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Konrad Kaleta
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Mateusz Jarczyński
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta St., Krakow 31-121, Poland.
| |
Collapse
|
20
|
Zhang H, Yang Y, Cao Y, Guan J. Effects of chronic stress on cancer development and the therapeutic prospects of adrenergic signaling regulation. Biomed Pharmacother 2024; 175:116609. [PMID: 38678960 DOI: 10.1016/j.biopha.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Long-term chronic stress is an important factor in the poor prognosis of cancer patients. Chronic stress reduces the tissue infiltration of immune cells in the tumor microenvironment (TME) by continuously activating the adrenergic signaling, inhibits antitumor immune response and tumor cell apoptosis while also inducing epithelial-mesenchymal transition (EMT) and tumor angiogenesis, promoting tumor invasion and metastasis. This review first summarizes how adrenergic signaling activates intracellular signaling by binding different adrenergic receptor (AR) heterodimers. Then, we focused on reviewing adrenergic signaling to regulate multiple functions of immune cells, including cell differentiation, migration, and cytokine secretion. In addition, the article discusses the mechanisms by which adrenergic signaling exerts pro-tumorigenic effects by acting directly on the tumor itself. It also highlights the use of adrenergic receptor modulators in cancer therapy, with particular emphasis on their potential role in immunotherapy. Finally, the article reviews the beneficial effects of stress intervention measures on cancer treatment. We think that enhancing the body's antitumor response by adjusting adrenergic signaling can enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing Key Laboratory of OTIR, Beijing, 100091, China.
| | - Jingzhi Guan
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100071, China.
| |
Collapse
|
21
|
Yang P, Bian ZQ, Song ZB, Yang CY, Wang L, Yao ZX. Dominant mechanism in spinal cord injury-induced immunodeficiency syndrome (SCI-IDS): sympathetic hyperreflexia. Rev Neurosci 2024; 35:259-269. [PMID: 37889575 DOI: 10.1515/revneuro-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Clinical studies have shown that individuals with spinal cord injury (SCI) are particularly susceptible to infectious diseases, resulting in a syndrome called SCI-induced immunodeficiency syndrome (SCI-IDS), which is the leading cause of death after SCI. It is believed that SCI-IDS is associated with exaggerated activation of sympathetic preganglionic neurons (SPNs). After SCI, disruption of bulbospinal projections from the medulla oblongata C1 neurons to the SPNs results in the loss of sympathetic inhibitory modulation from the brain and brainstem and the occurrence of abnormally high levels of spinal sympathetic reflexes (SSR), named sympathetic hyperreflexia. As the post-injury survival time lengthens, mass recruitment and anomalous sprouting of excitatory interneurons within the spinal cord result in increased SSR excitability, resulting in an excess sympathetic output that disrupts the immune response. Therefore, we first analyze the structural underpinnings of the spinal cord-sympathetic nervous system-immune system after SCI, then demonstrate the progress in highlighting mechanisms of SCI-IDS focusing on norepinephrine (NE)/Beta 2-adrenergic receptor (β2-AR) signal pathways, and summarize recent preclinical studies examining potential means such as regulating SSR and inhibiting β2-AR signal pathways to improve immune function after SCI. Finally, we present research perspectives such as to promote the effective regeneration of C1 neurons to rebuild the connection of C1 neurons with SPNs, to regulate excitable or inhibitory interneurons, and specifically to target β2-AR signal pathways to re-establish neuroimmune balance. These will help us design effective strategies to reverse post-SCI sympathetic hyperreflexia and improve the overall quality of life for individuals with SCI.
Collapse
Affiliation(s)
- Ping Yang
- Department of Neurobiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhi-Qun Bian
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhen-Bo Song
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Cheng-Ying Yang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Li Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhong-Xiang Yao
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
22
|
Switzer B, Puzanov I, Gandhi S, Repasky EA. Targeting beta-adrenergic receptor pathways in melanoma: how stress modulates oncogenic immunity. Melanoma Res 2024; 34:89-95. [PMID: 38051781 PMCID: PMC10906201 DOI: 10.1097/cmr.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
The intricate pathways of the sympathetic nervous system hold an inherently protective role in the setting of acute stress. This is achieved through dynamic immunomodulatory and neurobiological networks. However, excessive and chronic exposure to these stress-induced stimuli appears to cause physiologic dysfunction through several mechanisms that may impair psychosocial, neurologic, and immunologic health. Numerous preclinical observations have identified the beta-2 adrenergic receptor (β2-AR) subtype to possess the strongest impact on immune dysfunction in the setting of chronic stressful stimuli. This prolonged expression of β2-ARs appears to suppress immune surveillance and promote tumorigenesis within multiple cancer types. This occurs through several pathways, including (1) decreasing the frequency and function of CD8 + T-cells infiltrating the tumor microenvironment (TME) via inhibition of metabolic reprogramming during T cell activation, and (2) establishing an immunosuppressive profile within the TME including promotion of an exhausted T cell phenotype while simultaneously enhancing local and paracrine metastatic potential. The use of nonselective β-AR antagonists appears to reverse many chronic stress-induced tumorigenic pathways and may also provide an additive therapeutic benefit for various immune checkpoint modulating agents including commonly utilized immune checkpoint inhibitors. Here we review the translational and clinical observations highlighting the foundational hypotheses that chronic stress-induced β-AR signaling promotes a pro-tumoral immunophenotype and that blockade of these pathways may augment the therapeutic response of immune checkpoint inhibition within the scope of melanoma.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
23
|
Sun S, Li P, Wang J, Zhao D, Yang T, Zhou P, Su R, Zheng Z, Li S. Novel Scaffold Agonists of the α 2A Adrenergic Receptor Identified via Ensemble-Based Strategy. Molecules 2024; 29:1097. [PMID: 38474611 DOI: 10.3390/molecules29051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The α2A adrenergic receptor (α2A-AR) serves as a critical molecular target for sedatives and analgesics. However, α2A-AR ligands with an imidazole ring also interact with an imidazoline receptor as well as other proteins and lead to undesirable effects, motivating us to develop more novel scaffold α2A-AR ligands. For this purpose, we employed an ensemble-based ligand discovery strategy, integrating long-term molecular dynamics (MD) simulations and virtual screening, to identify new potential α2A-AR agonists with novel scaffold. Our results showed that compounds SY-15 and SY-17 exhibited significant biological effects in the preliminary evaluation of protein kinase A (PKA) redistribution assays. They also reduced levels of intracellular cyclic adenosine monophosphate (cAMP) in a dose-dependent manner. Upon treatment of the cells with 100 μM concentrations of SY-15 and SY-17, there was a respective decrease in the intracellular cAMP levels by 63.43% and 53.83%. Subsequent computational analysis was conducted to elucidate the binding interactions of SY-15 and SY-17 with the α2A-AR. The binding free energies of SY-15 and SY-17 calculated by MD simulations were -45.93 and -71.97 kcal/mol. MD simulations also revealed that both compounds act as bitopic agonists, occupying the orthosteric site and a novel exosite of the receptor simultaneously. Our findings of integrative computational and experimental approaches could offer the potential to enhance ligand affinity and selectivity through dual-site occupancy and provide a novel direction for the rational design of sedatives and analgesics.
Collapse
Affiliation(s)
- Shiyang Sun
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Pengyun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jiaqi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Dongsheng Zhao
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Tingting Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhibing Zheng
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Song Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
24
|
Abdul-Ridha A, de Zhang LA, Betrie AH, Deluigi M, Vaid TM, Whitehead A, Zhang Y, Davis B, Harris R, Simmonite H, Hubbard RE, Gooley PR, Plückthun A, Bathgate RA, Chalmers DK, Scott DJ. Identification of a Novel Subtype-Selective α 1B-Adrenoceptor Antagonist. ACS Chem Neurosci 2024; 15:671-684. [PMID: 38238043 PMCID: PMC10854767 DOI: 10.1021/acschemneuro.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024] Open
Abstract
α1A-, α1B-, and α1D-adrenoceptors (α1-ARs) are members of the adrenoceptor G protein-coupled receptor family that are activated by adrenaline (epinephrine) and noradrenaline. α1-ARs are clinically targeted using antagonists that have minimal subtype selectivity, such as prazosin and tamsulosin, to treat hypertension and benign prostatic hyperplasia, respectively. Abundant expression of α1-ARs in the heart and central nervous system (CNS) makes these receptors potential targets for the treatment of cardiovascular and CNS disorders, such as heart failure, epilepsy, and Alzheimer's disease. Our understanding of the precise physiological roles of α1-ARs, however, and their involvement in disease has been hindered by the lack of sufficiently subtype-selective tool compounds, especially for α1B-AR. Here, we report the discovery of 4-[(2-hydroxyethyl)amino]-6-methyl-2H-chromen-2-one (Cpd1), as an α1B-AR antagonist that has 10-15-fold selectivity over α1A-AR and α1D-AR. Through computational and site-directed mutagenesis studies, we have identified the binding site of Cpd1 in α1B-AR and propose the molecular basis of α1B-AR selectivity, where the nonconserved V19745.52 residue plays a major role, with contributions from L3146.55 within the α1B-AR pocket. By exploring the structure-activity relationships of Cpd1 at α1B-AR, we have also identified 3-[(cyclohexylamino)methyl]-6-methylquinolin-2(1H)-one (Cpd24), which has a stronger binding affinity than Cpd1, albeit with reduced selectivity for α1B-AR. Cpd1 and Cpd24 represent potential leads for α1B-AR-selective drug discovery and novel tool molecules to further study the physiology of α1-ARs.
Collapse
Affiliation(s)
- Alaa Abdul-Ridha
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lazarus A. de Zhang
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | | | - Mattia Deluigi
- Department
of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Tasneem M. Vaid
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alice Whitehead
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Yifan Zhang
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ben Davis
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
| | - Richard Harris
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
| | | | - Roderick E. Hubbard
- Vernalis
(R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
- Department
of Chemistry, University of York, York YO10 5DD, U.K.
| | - Paul R. Gooley
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Plückthun
- Department
of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ross A.D. Bathgate
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David K. Chalmers
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Daniel J. Scott
- The
Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- The
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
25
|
Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP, Bomer N, Voors AA, van der Meer P. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 2024; 21:119-149. [PMID: 37709934 DOI: 10.1038/s41569-023-00919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
26
|
Tiligada E, Gafarov D, Zaimi M, Vitte J, Levi-Schaffer F. Novel Immunopharmacological Drugs for the Treatment of Allergic Diseases. Annu Rev Pharmacol Toxicol 2024; 64:481-506. [PMID: 37722722 DOI: 10.1146/annurev-pharmtox-051623-091038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The exponential rise in the prevalence of allergic diseases since the mid-twentieth century has led to a genuine public health emergency and has also fostered major progress in research on the underlying mechanisms and potential treatments. The management of allergic diseases benefits from the biological revolution, with an array of novel immunomodulatory therapeutic and investigational tools targeting players of allergic inflammation at distinct pathophysiological steps. Prominent examples include therapeutic monoclonal antibodies against cytokines, alarmins, and their receptors, as well as small-molecule modifiers of signal transduction mainly mediated by Janus kinases and Bruton's tyrosine kinases. However, the first-line therapeutic options have yet to switch from symptomatic to disease-modifying interventions. Here we present an overview of available drugs in the context of our current understanding of allergy pathophysiology, identify potential therapeutic targets, and conclude by providing a selection of candidate immunopharmacological molecules under investigation for potential future use in allergic diseases.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Daria Gafarov
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joana Vitte
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
- Desbrest Institute of Epidemiology and Public Health, University of Montpellier, INSERM
- Montpellier, France
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
27
|
Wong CK, McLean BA, Baggio LL, Koehler JA, Hammoud R, Rittig N, Yabut JM, Seeley RJ, Brown TJ, Drucker DJ. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab 2024; 36:130-143.e5. [PMID: 38113888 DOI: 10.1016/j.cmet.2023.11.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert anti-inflammatory effects relevant to the chronic complications of type 2 diabetes. Although GLP-1RAs attenuate T cell-mediated gut and systemic inflammation directly through the gut intraepithelial lymphocyte GLP-1R, how GLP-1RAs inhibit systemic inflammation in the absence of widespread immune expression of the GLP-1R remains uncertain. Here, we show that GLP-1R activation attenuates the induction of plasma tumor necrosis factor alpha (TNF-α) by multiple Toll-like receptor agonists. These actions are not mediated by hematopoietic or endothelial GLP-1Rs but require central neuronal GLP-1Rs. In a cecal slurry model of polymicrobial sepsis, GLP-1RAs similarly require neuronal GLP-1Rs to attenuate detrimental responses associated with sepsis, including sickness, hypothermia, systemic inflammation, and lung injury. Mechanistically, GLP-1R activation leads to reduced TNF-α via α1-adrenergic, δ-opioid, and κ-opioid receptor signaling. These data extend emerging concepts of brain-immune networks and posit a new gut-brain GLP-1R axis for suppression of peripheral inflammation.
Collapse
Affiliation(s)
- Chi Kin Wong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Brent A McLean
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jacqueline A Koehler
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Rola Hammoud
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Nikolaj Rittig
- Medical/Steno Aarhus Research Laboratory, Aarhus University Hospital, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Julian M Yabut
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Brooke AK, Murrow DP, Caldwell KCN, Witt CE, Ross AE. Measuring neuron-regulated immune cell physiology via the alpha-2 adrenergic receptor in an ex vivo murine spleen model. Cell Mol Life Sci 2023; 80:354. [PMID: 37945921 PMCID: PMC11071927 DOI: 10.1007/s00018-023-05012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The communication between the nervous and immune systems plays a crucial role in regulating immune cell function and inflammatory responses. Sympathetic neurons, which innervate the spleen, have been implicated in modulating immune cell activity. The neurotransmitter norepinephrine (NE), released by sympathetic neurons, influences immune cell responses by binding to adrenergic receptors on their surface. The alpha-2 adrenergic receptor (α2AR), expressed predominantly on sympathetic neurons, has received attention due to its autoreceptor function and ability to modulate NE release. In this study, we used fast-scan cyclic voltammetry (FSCV) to provide the first subsecond measurements of NE released in the white pulp region of the spleen and validated it with yohimbine, a known antagonist of α2AR. For further application of FSCV in neuroimmunology, we investigated the extent to which subsecond NE from sympathetic neurons is important for immune cell physiology and cytokine production, focusing on tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and interleukin-6 (IL-6). Our findings provide insights into the regulatory mechanisms underlying sympathetic-immune interactions and show the significance of using FSCV, a traditional neurochemistry technique, to study these neuroimmune mechanisms.
Collapse
Affiliation(s)
- Alexandra K Brooke
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Daniel P Murrow
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Kaejaren C N Caldwell
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Colby E Witt
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA.
| |
Collapse
|
29
|
Jin M, Wei Z, Ramalingam N, Xiao M, Xu A, Yu X, Song Q, Liu W, Zhao J, Zhang D, Selkoe DJ, Li S. Activation of β 2-adrenergic receptors prevents AD-type synaptotoxicity via epigenetic mechanisms. Mol Psychiatry 2023; 28:4877-4888. [PMID: 37365243 DOI: 10.1038/s41380-023-02145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
We previously reported that prolonged exposure to an enriched environment (EE) enhances hippocampal synaptic plasticity, with one of the significant mechanistic pathways being activation of β2-adrenergic receptor (β2-AR) signaling, thereby mitigating the synaptotoxic effects of soluble oligomers of amyloid β-protein (oAβ). However, the detailed mechanism remained elusive. In this work, we recorded field excitatory postsynaptic potentials (fEPSP) in the CA1 region of mouse hippocampal slices treated with or without toxic Aβ-species. We found that pharmacological activation of β2-AR, but not β1-AR, selectively mimicked the effects of EE in enhancing LTP and preventing oAβ-induced synaptic dysfunction. Mechanistic analyses showed that certain histone deacetylase (HDAC) inhibitors mimicked the benefits of EE, but this was not seen in β2-AR knockout mice, suggesting that activating β2-AR prevents oAβ-mediated synaptic dysfunction via changes in histone acetylation. EE or activation of β-ARs each decreased HDAC2, whereas Aβ oligomers increased HDAC2 levels in the hippocampus. Further, oAβ-induced inflammatory effects and neurite degeneration were prevented by either β2-AR agonists or certain specific HDAC inhibitors. These preclinical results suggest that activation of β2-AR is a novel potential therapeutic strategy to mitigate oAβ-mediated features of AD.
Collapse
Affiliation(s)
- Ming Jin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zhiyun Wei
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Meng Xiao
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, 518172, China
| | - Anqi Xu
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
| | - Xiaohan Yu
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
| | - Qingyang Song
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
| | - Wen Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jianhua Zhao
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
- Henan Key Laboratory of Neurorestoratology, Xinxiang, Henan, 453100, China
| | - Dainan Zhang
- Department of Neurology, Xinxiang Medical University, Xinxiang, 453100, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Mughrabi IT, Gerber M, Jayaprakash N, Palandira SP, Al-Abed Y, Datta-Chaudhuri T, Smith C, Pavlov VA, Zanos S. Voltammetry in the spleen assesses real-time immunomodulatory norepinephrine release elicited by autonomic neurostimulation. J Neuroinflammation 2023; 20:236. [PMID: 37848937 PMCID: PMC10583388 DOI: 10.1186/s12974-023-02902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The noradrenergic innervation of the spleen is implicated in the autonomic control of inflammation and has been the target of neurostimulation therapies for inflammatory diseases. However, there is no real-time marker of its successful activation, which hinders the development of anti-inflammatory neurostimulation therapies and mechanistic studies in anti-inflammatory neural circuits. METHODS In mice, we performed fast-scan cyclic voltammetry (FSCV) in the spleen during intravenous injections of norepinephrine (NE), and during stimulation of the vagus, splanchnic, or splenic nerves. We defined the stimulus-elicited charge generated at the oxidation potential for NE (~ 0.88 V) as the "NE voltammetry signal" and quantified the dependence of the signal on NE dose and intensity of neurostimulation. We correlated the NE voltammetry signal with the anti-inflammatory effect of splenic nerve stimulation (SpNS) in a model of lipopolysaccharide- (LPS) induced endotoxemia, quantified as suppression of TNF release. RESULTS The NE voltammetry signal is proportional to the estimated peak NE blood concentration, with 0.1 μg/mL detection threshold. In response to SpNS, the signal increases within seconds, returns to baseline minutes later, and is blocked by interventions that deplete NE or inhibit NE release. The signal is elicited by efferent, but not afferent, electrical or optogenetic vagus nerve stimulation, and by splanchnic nerve stimulation. The magnitude of the signal during SpNS is inversely correlated with subsequent TNF suppression in endotoxemia and explains 40% of the variance in TNF measurements. CONCLUSIONS FSCV in the spleen provides a marker for real-time monitoring of anti-inflammatory activation of the splenic innervation during autonomic stimulation.
Collapse
Affiliation(s)
- Ibrahim T Mughrabi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Michael Gerber
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Santhoshi P Palandira
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Corey Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Valentin A Pavlov
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| |
Collapse
|
31
|
Boahen A, Hu D, Adams MJ, Nicholls PK, Greene WK, Ma B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front Immunol 2023; 14:1254054. [PMID: 37767094 PMCID: PMC10520967 DOI: 10.3389/fimmu.2023.1254054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri-Kembangan, Selangor, Malaysia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Murray J. Adams
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K. Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
32
|
Maggio MC, Miniaci A, Gallizzi R, Civino A. "Neuroimmunoendocrinology" in Children with Rheumatic Diseases: How Glucocorticoids Are the Orchestra Director. Int J Mol Sci 2023; 24:13192. [PMID: 37685999 PMCID: PMC10487400 DOI: 10.3390/ijms241713192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The neural, the endocrine, and the immune systems are studied as distinct districts in physiological and pathological settings. However, these systems must be investigated with an integrative approach, while also considering that therapeutic agents, such as glucocorticoids, can induce a reversible or irreversible change of this homeostasis. Children and adolescents affected by rheumatic diseases frequently need treatment with corticosteroids, and the treatment must sometimes be continued for a long time. In the biological era, the treat-to-target strategy allowed a real revolution in treatment, with significant steroid dose sparing or, in many patients, steroid treatment withdrawal. In this review, the impact of glucocorticoids on endocrine, immune, and neurologic targets is analyzed, and the crosstalk between these systems is highlighted. In this narrative review, we explore the reasoning as to why glucocorticoids can disrupt this homeostasis, we summarize some of the key results supporting the impact of glucocorticoids treatment on endocrine, immune, and neurologic systems, and we discuss the data reported in the international literature.
Collapse
Affiliation(s)
- Maria Cristina Maggio
- University Department PROMISE “G. D’Alessandro”, University of Palermo, Via del Vespro 129, 90100 Palermo, Italy;
| | - Angela Miniaci
- Paediatric Rheumatology, UOC of Paediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Romina Gallizzi
- Paediatric Unit, Department of Health Science, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Adele Civino
- Paediatric Rheumatology and Immunology, Vito Fazzi Hospital, 73100 Lecce, Italy;
| |
Collapse
|
33
|
Janket SJ, Fraser DD, Baird AE, Tamimi F, Sohaei D, Conte HA, Prassas I, Diamandis EP. Tachykinins and the potential causal factors for post-COVID-19 condition. THE LANCET. MICROBE 2023; 4:e642-e650. [PMID: 37327802 PMCID: PMC10263974 DOI: 10.1016/s2666-5247(23)00111-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
The most prevalent symptoms of post-COVID-19 condition are pulmonary dysfunction, fatigue and muscle weakness, anxiety, anosmia, dysgeusia, headaches, difficulty in concentrating, sexual dysfunction, and digestive disturbances. Hence, neurological dysfunction and autonomic impairments predominate in post-COVID-19 condition. Tachykinins including the most studied substance P are neuropeptides expressed throughout the nervous and immune systems, and contribute to many physiopathological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems and participate in inflammation, nociception, and cell proliferation. Substance P is a key molecule in neuroimmune crosstalk; immune cells near the peripheral nerve endings can send signals to the brain with cytokines, which highlights the important role of tachykinins in neuroimmune communication. We reviewed the evidence that relates the symptoms of post-COVID-19 condition to the functions of tachykinins and propose a putative pathogenic mechanism. The antagonism of tachykinins receptors can be a potential treatment target.
Collapse
Affiliation(s)
- Sok-Ja Janket
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - Douglas D Fraser
- Paediatric Critical Care, Western University and Lawson Health Research Institute, London, ON, Canada
| | - Alison E Baird
- Department of Neurology, SUNY Health Sciences University, Brooklyn, NY, USA
| | - Faleh Tamimi
- College of Dental Medicine, Qatar University, Doha, Qatar
| | - Dorsa Sohaei
- McGill University School of Medicine, Montreal, QC, Canada
| | - Harry A Conte
- Department of Infectious Diseases, Johnson Memorial Hospital, Stafford Springs, CT, USA
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | | |
Collapse
|
34
|
Gui H, Chen X, Li L, Zhu L, Jing Q, Nie Y, Zhang X. Psychological distress influences lung cancer: Advances and perspectives on the immune system and immunotherapy. Int Immunopharmacol 2023; 121:110251. [PMID: 37348230 DOI: 10.1016/j.intimp.2023.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 06/24/2023]
Abstract
Lung cancer has the highest incidence rate and mortality worldwide. Moreover, multiple factors may cause heterogeneity in the efficacy of immunotherapy for lung cancer, and preclinical studies have gradually uncovered the promotive effects of psychological distress (PD) on tumor hallmarks. Therefore, treatment targeted at PD may be a vital factor in adjusting and improving immunotherapy for lung cancer. Here, by focusing on the central nervous system, as well as stress-related crucial neurotransmitters and hormones, we highlight the effects of PD on the lung immune system, the lung tumor microenvironment (TME) and immunotherapy, which brings a practicable means and psychosocial perspective to lung cancer treatment.
Collapse
Affiliation(s)
- Huan Gui
- Department of Hyperbaric Oxygen, People`s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China; School of Medicine, Guizhou University, Guiyang 550025, China
| | - Xulong Chen
- School of Medicine, Guizhou University, Guiyang 550025, China; Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Linzhao Li
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Lan Zhu
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Qianyu Jing
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yingjie Nie
- School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Xiangyan Zhang
- School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| |
Collapse
|
35
|
Adori M, Bhat S, Gramignoli R, Valladolid-Acebes I, Bengtsson T, Uhlèn M, Adori C. Hepatic Innervations and Nonalcoholic Fatty Liver Disease. Semin Liver Dis 2023; 43:149-162. [PMID: 37156523 PMCID: PMC10348844 DOI: 10.1055/s-0043-57237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. Increased sympathetic (noradrenergic) nerve tone has a complex role in the etiopathomechanism of NAFLD, affecting the development/progression of steatosis, inflammation, fibrosis, and liver hemodynamical alterations. Also, lipid sensing by vagal afferent fibers is an important player in the development of hepatic steatosis. Moreover, disorganization and progressive degeneration of liver sympathetic nerves were recently described in human and experimental NAFLD. These structural alterations likely come along with impaired liver sympathetic nerve functionality and lack of adequate hepatic noradrenergic signaling. Here, we first overview the anatomy and physiology of liver nerves. Then, we discuss the nerve impairments in NAFLD and their pathophysiological consequences in hepatic metabolism, inflammation, fibrosis, and hemodynamics. We conclude that further studies considering the spatial-temporal dynamics of structural and functional changes in the hepatic nervous system may lead to more targeted pharmacotherapeutic advances in NAFLD.
Collapse
Affiliation(s)
- Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sadam Bhat
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ismael Valladolid-Acebes
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Mathias Uhlèn
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Csaba Adori
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Larra MF, Capellino S, Schwendich E, von Haugwitz L, Reinders J, Wascher E. Immediate and Delayed Salivary Cytokine Responses during Repeated Exposures to Cold Pressor Stress. Neuroimmunomodulation 2023; 30:81-92. [PMID: 36917961 DOI: 10.1159/000529625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION Excessive stress is increasingly recognized as an important trigger of many diseases prevalent in modern societies, and monitoring such stress-related effects could aid prevention. The measurement of salivary markers of inflammation is emerging as a promising tool to non-invasively quantify stress' effects on immune processes in everyday life and thereby detect early aberrations before the manifestation of serious health problems. However, more laboratory-controlled research is needed in order to establish the timescale and determinants of salivary cytokine responses to acute stress. METHODS We repeatedly exposed participants to Cold Pressor Stress Test (CPT) or a control procedure and measured a wide array of salivary cytokines as well as subjective, cardiovascular, and cortisol stress reactions. CPT exposure was repeated every 15 min, 3 times in total, with a duration of 3 min each. Saliva was sampled immediately after the first two exposures as well as in 15-min intervals until 60 min after the onset of the first intervention. RESULTS We found that many cytokines were detectable in saliva. Specific stress effects were limited to IL-8 and IL-6, however, which decreased immediately or 15 min after stress onset, respectively. Moreover, IL-8 was negatively correlated to cortisol output in the stress but not in the control group. Significant increases were also observed in salivary TNFα and IFNγ; however, these effects were similar under both stress and control conditions. DISCUSSION Our results show that particular salivary cytokines may be sensitive to immediate effects of acute CPT-induced stress and also highlight the importance of employing control procedures to discern stress effects from unrelated variations in salivary cytokines.
Collapse
Affiliation(s)
- Mauro F Larra
- Department of Ergonomics, IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Silvia Capellino
- Department of Immunology, Research Group of Neuroimmunology, IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Elena Schwendich
- Department of Immunology, Research Group of Neuroimmunology, IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Leon von Haugwitz
- Department of Ergonomics, IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jörg Reinders
- Department of Toxicology, IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Edmund Wascher
- Department of Ergonomics, IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
37
|
Parrado AC, Salaverry LS, Macchi R, Bessone ML, Mangone FM, Castro M, Canellada AM, Rey-Roldán EB. Immunomodulatory effect of dopamine in human keratinocytes and macrophages under chronical bisphenol-A exposure conditions. Immunobiology 2023; 228:152335. [PMID: 36689825 DOI: 10.1016/j.imbio.2023.152335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Dopamine is a key neurotransmitter that links the nervous and the immune system. Bisphenol A (BPA) is an endocrine disruptor with a wide distribution in the environment that is used in the manufacturing of plastic products. Evidence shows that BPA can interfere with the central dopaminergic transmission; however, there are no previous reports of this effect outside the central nervous system. Thus, the aim of this work was to investigate the in vitro mechanisms of action involved in the response to dopamine in both human keratinocyte and macrophage cell lines chronically exposed to BPA. Dopamine modulates cytokine secretion and NF-κB expression in BPA-treated HaCaT keratinocytes, without modifying these parameters in BPA-treated THP-1 macrophages. In addition, dopamine increases MMP activity in both BPA-treated cell lines, although it decreases keratinocytes migration. We suggest the immunomodulatory effect of dopamine might be different in keratinocytes and macrophages under chronical BPA exposure conditions. These findings revealed for the first time the in vitro immunomodulatory effect of dopamine in the presence of BPA at peripheral level.
Collapse
Affiliation(s)
- Andrea Cecilia Parrado
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), Junín 956, Buenos Aires C113AAD, Argentina.
| | - Luciana S Salaverry
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C113AAD, Argentina.
| | - Rosario Macchi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C113AAD, Argentina.
| | - Marco L Bessone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C113AAD, Argentina.
| | - Franco M Mangone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C113AAD, Argentina; Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Argentina(1).
| | - Marisa Castro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), Junín 956, Buenos Aires C113AAD, Argentina.
| | - Andrea M Canellada
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), Junín 956, Buenos Aires C113AAD, Argentina.
| | - Estela B Rey-Roldán
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), Junín 956, Buenos Aires C113AAD, Argentina.
| |
Collapse
|
38
|
Pilipović I, Stojić-Vukanić Z, Leposavić G. Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis. Pharmacol Ther 2023; 243:108358. [PMID: 36804434 DOI: 10.1016/j.pharmthera.2023.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
This review summarizes recent findings related to the role of the sympathetic nervous system (SNS) in pathogenesis of multiple sclerosis (MS) and its commonly used experimental model - experimental autoimmune encephalomyelitis (EAE). They indicate that noradrenaline, the key end-point mediator of the SNS, acting through β-adrenoceptor, has a contributory role in the early stages of MS/EAE development. This stage is characterized by the SNS hyperactivity (increased release of noradrenaline) reflecting the net effect of different factors, such as the disease-associated inflammation, stress, vitamin D hypovitaminosis, Epstein-Barr virus infection and dysbiosis. Thus, the administration of propranolol, a non-selective β-adrenoceptor blocker, readily crossing the blood-brain barrier, to experimental rats before the autoimmune challenge and in the early (preclinical/prodromal) phase of the disease mitigates EAE severity. This phenomenon has been ascribed to the alleviation of neuroinflammation (due to attenuation of primarily microglial activation/proinflammatory functions) and the diminution of the magnitude of the primary CD4+ T-cell autoimmune response (the effect associated with impaired autoantigen uptake by antigen presenting cells and their migration into draining lymph nodes). The former is partly related to breaking of the catecholamine-dependent self-amplifying microglial feed-forward loop and the positive feedback loop between microglia and the SNS, leading to down-regulation of the SNS hyperactivity and its enhancing influence on microglial activation/proinflammatory functions and the magnitude of autoimmune response. The effects of propranolol are shown to be more prominent in male EAE animals, the phenomenon important as males (like men) are likely to develop clinically more severe disease. Thus, these findings could serve as a firm scientific background for formulation of a new sex-specific immune-intervention strategy for the early phases of MS (characterized by the SNS hyperactivity) exploiting anti-(neuro)inflammatory and immunomodulatory properties of propranolol and other relatively cheap and safe adrenergic drugs with similar therapeutic profile.
Collapse
Affiliation(s)
- Ivan Pilipović
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- University of Belgrade-Faculty of Pharmacy, Department of Microbiology and Immunology, Belgrade, Serbia
| | - Gordana Leposavić
- University of Belgrade-Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia.
| |
Collapse
|
39
|
Li S. The β-adrenergic hypothesis of synaptic and microglial impairment in Alzheimer's disease. J Neurochem 2023; 165:289-302. [PMID: 36799441 DOI: 10.1111/jnc.15782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease originating partly from amyloid β protein-induced synaptic failure. As damaging of noradrenergic neurons in the locus coeruleus (LC) occurs at the prodromal stage of AD, activation of adrenergic receptors could serve as the first line of defense against the onset of the disease. Activation of β2 -ARs strengthens long-term potentiation (LTP) and synaptic activity, thus improving learning and memory. Physical stimulation of animals exposed to an enriched environment (EE) leads to the activation of β2 -ARs and prevents synaptic dysfunction. EE also suppresses neuroinflammation, suggesting that β2 -AR agonists may play a neuroprotective role. The β2 -AR agonists used for respiratory diseases have been shown to have an anti-inflammatory effect. Epidemiological studies further support the beneficial effects of β2 -AR agonists on several neurodegenerative diseases. Thus, I propose that β2 -AR agonists may provide therapeutic value in combination with novel treatments for AD.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Dexmedetomidine Protects against Airway Inflammation and Airway Remodeling in a Murine Model of Chronic Asthma through TLR4/NF- κB Signaling Pathway. Mediators Inflamm 2023; 2023:3695469. [PMID: 36846195 PMCID: PMC9946744 DOI: 10.1155/2023/3695469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Asthma is a common respiratory disease characterized by chronic airway inflammation. Dexmedetomidine (DEX), a highly selective α2 adrenergic receptor agonist, has been shown to participate in regulating inflammatory states and thus exert organ protective actions. However, the potential of DEX in asthma is still unknown. This study is aimed at investigating the role of DEX in a mouse model of house dust mite- (HDM-) induced asthma and exploring its underlying mechanism. Here, we found that DEX treatment significantly ameliorated airway hyperresponsiveness, airway inflammation, and airway remodeling in the asthmatic mice, which were similar to the efficacy of the reference anti-inflammatory drug dexamethasone. In addition, DEX reversed the increased expression of toll-like receptor 4 (TLR4) and its downstream signaling adaptor molecule nuclear factor-κB (NF-κB) in the lung tissue of asthmatic mice. Furthermore, these protective effects of DEX were abolished by yohimbine, an α2 adrenergic receptor antagonist. These results indicate that DEX is capable of ameliorating airway inflammation and remodeling in asthmatic mice, and this protective effect is associated with the inhibition of the TLR4/NF-κB signaling pathway.
Collapse
|
41
|
ß-Adrenoreceptors in Human Cancers. Int J Mol Sci 2023; 24:ijms24043671. [PMID: 36835082 PMCID: PMC9964924 DOI: 10.3390/ijms24043671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer is the leading cause of death and represents a significant economic burden worldwide. The numbers are constantly growing as a result of increasing life expectancy, toxic environmental factors, and adoption of Western lifestyle. Among lifestyle factors, stress and the related signaling pathways have recently been implicated in the development of tumors. Here we present some epidemiological and preclinical data concerning stress-related activation of the ß-adrenoreceptors (ß-ARs), which contributes to the formation, sequential transformation, and migration of different tumor cell types. We focused our survey on research results for breast and lung cancer, melanoma, and gliomas published in the past five years. Based on the converging evidence, we present a conceptual framework of how cancer cells hijack a physiological mechanism involving ß-ARs toward a positive modulation of their own survival. In addition, we also highlight the potential contribution of ß-AR activation to tumorigenesis and metastasis formation. Finally, we outline the antitumor effects of targeting the ß-adrenergic signaling pathways, methods for which primarily include repurposed ß-blocker drugs. However, we also call attention to the emerging (though as yet largely explorative) method of chemogenetics, which has a great potential in suppressing tumor growth either by selectively modulating neuronal cell groups involved in stress responses affecting cancer cells or by directly manipulating specific (e.g., the ß-AR) receptors on a tumor and its microenvironment.
Collapse
|
42
|
Gopinath A, Mackie PM, Phan LT, Mirabel R, Smith AR, Miller E, Franks S, Syed O, Riaz T, Law BK, Urs N, Khoshbouei H. Who Knew? Dopamine Transporter Activity Is Critical in Innate and Adaptive Immune Responses. Cells 2023; 12:cells12020269. [PMID: 36672204 PMCID: PMC9857305 DOI: 10.3390/cells12020269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The dopamine transporter (DAT) regulates the dimension and duration of dopamine transmission. DAT expression, its trafficking, protein-protein interactions, and its activity are conventionally studied in the CNS and within the context of neurological diseases such as Parkinson's Diseases and neuropsychiatric diseases such as drug addiction, attention deficit hyperactivity and autism. However, DAT is also expressed at the plasma membrane of peripheral immune cells such as monocytes, macrophages, T-cells, and B-cells. DAT activity via an autocrine/paracrine signaling loop regulates macrophage responses to immune stimulation. In a recent study, we identified an immunosuppressive function for DAT, where blockade of DAT activity enhanced LPS-mediated production of IL-6, TNF-α, and mitochondrial superoxide levels, demonstrating that DAT activity regulates macrophage immune responses. In the current study, we tested the hypothesis that in the DAT knockout mice, innate and adaptive immunity are perturbed. We found that genetic deletion of DAT (DAT-/-) results in an exaggerated baseline inflammatory phenotype in peripheral circulating myeloid cells. In peritoneal macrophages obtained from DAT-/- mice, we identified increased MHC-II expression and exaggerated phagocytic response to LPS-induced immune stimulation, suppressed T-cell populations at baseline and following systemic endotoxemia and exaggerated memory B cell expansion. In DAT-/- mice, norepinephrine and dopamine levels are increased in spleen and thymus, but not in circulating serum. These findings in conjunction with spleen hypoplasia, increased splenic myeloid cells, and elevated MHC-II expression, in DAT-/- mice further support a critical role for DAT activity in peripheral immunity. While the current study is only focused on identifying the role of DAT in peripheral immunity, our data point to a much broader implication of DAT activity than previously thought. This study is dedicated to the memory of Dr. Marc Caron who has left an indelible mark in the dopamine transporter field.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (A.G.); (H.K.)
| | - Phillip M. Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Leah T. Phan
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Rosa Mirabel
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Aidan R. Smith
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Emily Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Stephen Franks
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Ohee Syed
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Tabish Riaz
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Nikhil Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (A.G.); (H.K.)
| |
Collapse
|
43
|
Cong Z, Yang C, Zeng Z, Wu C, Zhao F, Shen Z, Xiao H, Zhu X. α 1-adrenoceptor stimulation ameliorates lipopolysaccharide-induced lung injury by inhibiting alveolar macrophage inflammatory responses through NF-κB and ERK1/2 pathway in ARDS. Front Immunol 2023; 13:1090773. [PMID: 36685596 PMCID: PMC9853445 DOI: 10.3389/fimmu.2022.1090773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Catecholamines such as norepinephrine or epinephrine have been reported to participate in the development of acute respiratory distress syndrome (ARDS) by activating adrenergic receptors (ARs). But the role of α1-AR in this process has yet to be elucidated. Methods In this study, ARDS mouse model was induced by intratracheal instillation of lipopolysaccharide. After treatment with α1-AR agonist phenylephrine or antagonist prazosin, lung pathological injury, alveolar barrier disruption and inflammation, and haemodynamic changes were evaluated. Cytokine levels and cell viability of alveolar macrophages were measured in vitro. Nuclear factor κB (NF-κB), mitogen-activated protein kinase, and Akt signalling pathways were analysed by western blot. Results It showed that α1-AR activation alleviated lung injuries, including reduced histopathological damage, cytokine expression, and inflammatory cell infiltration, and improved alveolar capillary barrier integrity of ARDS mice without influencing cardiovascular haemodynamics. In vitro experiments suggested that α1-AR stimulation inhibited secretion of TNF-α, IL-6, CXCL2/MIP-2, and promoted IL-10 secretion, but did not affect cell viability. Moreover, α1-AR stimulation inhibited NF-κB and enhanced ERK1/2 activation without significantly influencing p38, JNK, or Akt activation. Discussion Our studies reveal that α1-AR stimulation could ameliorate lipopolysaccharide-induced lung injury by inhibiting NF-κB and promoting ERK1/2 to suppress excessive inflammatory responses of alveolar macrophages.
Collapse
Affiliation(s)
- Zhukai Cong
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China,Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Cui Yang
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zhaojin Zeng
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Changyi Wu
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Feng Zhao
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Ziyuan Shen
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China,National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China,Key Laboratory of Cardiovascular Receptors Research, Beijing, China,*Correspondence: Xi Zhu, ; Han Xiao,
| | - Xi Zhu
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China,*Correspondence: Xi Zhu, ; Han Xiao,
| |
Collapse
|
44
|
Mughrabi IT, Ochani M, Tanovic M, Wang P, Diamond B, Sherry B, Pavlov VA, Ozen S, Kastner DL, Chae JJ, Al-Abed Y. Galantamine attenuates autoinflammation in a mouse model of familial mediterranean fever. Mol Med 2022; 28:148. [PMID: 36494621 PMCID: PMC9733251 DOI: 10.1186/s10020-022-00571-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autoinflammatory diseases, a diverse group of inherited conditions characterized by excessive innate immune activation, have limited therapeutic options. Neuroimmune circuits of the inflammatory reflex control innate immune overactivation and can be stimulated to treat disease using the acetylcholinesterase inhibitor galantamine. METHODS We tested the efficacy of galantamine in a rodent model of the prototypical autoinflammatory disease familial Mediterranean fever (FMF). Multiple chronic disease markers were evaluated in animals that received long-term galantamine treatment compared to vehicle. RESULTS Long-term treatment with galantamine attenuated the associated splenomegaly and anemia which are characteristic features of this disease. Further, treatment reduced inflammatory cell infiltration into affected organs and a subcutaneous air pouch. CONCLUSIONS These findings suggest that galantamine attenuates chronic inflammation in this mouse model of FMF. Further research is warranted to explore the therapeutic potential of galantamine in FMF and other autoinflammatory diseases.
Collapse
Affiliation(s)
- Ibrahim T. Mughrabi
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.416477.70000 0001 2168 3646Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Mahendar Ochani
- grid.416477.70000 0001 2168 3646Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Mirza Tanovic
- grid.416477.70000 0001 2168 3646Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Ping Wang
- grid.416477.70000 0001 2168 3646Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Betty Diamond
- grid.416477.70000 0001 2168 3646Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Barbara Sherry
- grid.416477.70000 0001 2168 3646Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Valentin A. Pavlov
- grid.416477.70000 0001 2168 3646Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Seza Ozen
- grid.14442.370000 0001 2342 7339Division of Rheumatology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Daniel L. Kastner
- grid.280128.10000 0001 2233 9230Inflammatory Disease Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Jae Jin Chae
- grid.280128.10000 0001 2233 9230Inflammatory Disease Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Yousef Al-Abed
- grid.416477.70000 0001 2168 3646Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| |
Collapse
|