1
|
Chrysostomou A, Furlan C, Saccenti E. Machine learning based analysis of single-cell data reveals evidence of subject-specific single-cell gene expression profiles in acute myeloid leukaemia patients and healthy controls. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195062. [PMID: 39366464 DOI: 10.1016/j.bbagrm.2024.195062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Acute Myeloid Leukaemia (AML) is characterized by uncontrolled growth of immature myeloid cells, disrupting normal blood production. Treatment typically involves chemotherapy, targeted therapy, and stem cell transplantation but many patients develop chemoresistance, leading to poor outcomes due to the disease's high heterogeneity. In this study, we used publicly available single-cell RNA sequencing data and machine learning to classify AML patients and healthy, monocytes, dendritic and progenitor cells population. We found that gene expression profiles of AML patients and healthy controls can be classified at the individual level with high accuracy (>70 %) when using progenitor cells, suggesting the existence of subject-specific single cell transcriptomics profiles. The analysis also revealed molecular determinants of patient heterogeneity (e.g. TPSD1, CT45A1, and GABRA4) which could support new strategies for patient stratification and personalized treatment in leukaemia.
Collapse
Affiliation(s)
- Andreas Chrysostomou
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Chen T, Zhang Y, Zhang D, Zhou H. Immune-based subgroups uncover diverse tumor immunogenicity and implications for prognosis and precision therapy in acute myeloid leukemia. Front Immunol 2024; 15:1451486. [PMID: 39582863 PMCID: PMC11581856 DOI: 10.3389/fimmu.2024.1451486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Background Although a considerable proportion of acute myeloid leukemia (AML) patients achieve remission through chemotherapy, relapse remains a recurring and significant event leading to treatment failure. This study aims to investigate the immune landscape in AML and its potential implications for prognosis and chemo-/immune-therapy. Methods Integrated analyses based on multiple sequencing datasets of AML were performed. Various algorithms estimated immune infiltration in AML samples. A subgroup prediction model was developed, and comprehensive bioinformatics and machine learning algorithms were applied to compare immune-based subgroups in relation to clinical features, mutational landscapes, immune characterizations, drug sensitivities, and cellular hierarchies at the single-cell level. Results Two immune-based AML subgroups, G1 and G2, were identified. G1 demonstrated higher immune infiltration, a more monocytic phenotype, increased proportions of monocytes/macrophages, and higher FLT3, DNMT3A, and NPM1 mutation frequencies. It was associated with a poorer prognosis, lower proportions of various immune cell types and a lower T cell infiltration score (TIS). AML T-cell-based immunotherapy target antigens, including CLEC12A, Folate receptor β, IL1RAP and TIM3, showed higher expression levels in G1, while CD117, CD244, CD96, WT and TERT exhibited higher expression levels in G2. G1 samples demonstrated higher sensitivity to elesclomol and panobinostat but increased resistance to venetoclax compared to G2 samples. Moreover, we observed a positive correlation between sample immune infiltration and sample resistance to elesclomol and panobinostat, whereas a negative correlation was found with venetoclax resistance. Conclusion Our study enriches the current AML risk stratification and provides guidance for precision medicine in AML.
Collapse
Affiliation(s)
| | | | | | - Hebing Zhou
- Department of Hematology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Straube J, Janardhanan Y, Haldar R, Bywater MJ. Immune control in acute myeloid leukemia. Exp Hematol 2024; 138:104256. [PMID: 38876254 DOI: 10.1016/j.exphem.2024.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease, in that a multitude of oncogenic drivers and chromosomal abnormalities have been identified and associated with the leukemic transformation of myeloid blasts. However, little is known as to how individual mutations influence the interaction between the immune system and AML cells and the efficacy of the immune system in AML disease control. In this review, we will discuss how AML cells potentially activate the immune system and what evidence there is to support the role of the immune system in controlling this disease. We will specifically examine the importance of antigen presentation in fostering an effective anti-AML immune response, explore the disruption of immune responses during AML disease progression, and discuss the emerging role of the oncoprotein MYC in driving immune suppression in AML.
Collapse
Affiliation(s)
- Jasmin Straube
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia
| | | | - Rohit Haldar
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Megan J Bywater
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Wang T, Cui S, Lyu C, Wang Z, Li Z, Han C, Liu W, Wang Y, Xu R. Molecular precision medicine: Multi-omics-based stratification model for acute myeloid leukemia. Heliyon 2024; 10:e36155. [PMID: 39263156 PMCID: PMC11388765 DOI: 10.1016/j.heliyon.2024.e36155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Acute myeloid leukemia (AML), as the most common malignancy of the hematopoietic system, poses challenges in treatment efficacy, relapse, and drug resistance. In this study, we have utilized 151 RNA sequencing datasets, 194 DNA methylation datasets, and 200 somatic mutation datasets from the AML cohort in the TCGA database to develop a multi-omics stratification model. This model enables comparison of prognosis, clinical features, gene mutations, immune microenvironment and drug sensitivity across subgroups. External validation datasets have been sourced from the GEO database, which includes 562 mRNA datasets and 136 miRNA datasets from 984 adult AML patients. Through multi-omics-based stratification model, we classified 126 AML patients into 4 clusters (CS). CS4 had the best prognosis, with the youngest age, highest M3 subtype proportion, fewest copy number alterations, and common mutations in WT1, FLT3, and KIT genes. It showed sensitivity to HDAC inhibitors and BCL-2 inhibitors. Both the M3 subtype and CS4 were identified as independent protective factors for survival. Conversely, CS3 had the worst prognosis due to older age, high copy number alterations, and frequent mutations in RUNX1, DNMT3A, and TP53 genes. Additionally, it showed higher proportions of cytotoxic cells and Tregs, suggesting potential sensitivity to mTOR inhibitors. CS1 had a better prognosis than CS2, with more copy number alterations, while CS2 had higher monocyte proportions. CS1 showed good sensitivity to cytarabine, while CS2 was sensitive to RXR agonists. Both CS1 and CS2, which predominantly featured mutations in FLT3, NPM1, and DNMT3A genes, benefited from FLT3 inhibitors. Using the Kappa test, our stratification model underwent robust validation in the miRNA and mRNA external validation datasets. With advancements in sequencing technology and machine learning algorithms, AML is poised to transition towards multi-omics precision medicine in the future. We aspire for our study to offer new perspectives on multi-drug combination clinical trials and multi-targeted precision medicine for AML.
Collapse
Affiliation(s)
- Teng Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| | - Chunyi Lyu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenzhen Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| | - Zonghong Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Han
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weilin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| | - Ruirong Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| |
Collapse
|
5
|
Radpour R, Simillion C, Wang B, Abbas HA, Riether C, Ochsenbein AF. IL-9 secreted by leukemia stem cells induces Th1-skewed CD4+ T cells, which promote their expansion. Blood 2024; 144:888-903. [PMID: 38941612 DOI: 10.1182/blood.2024024000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT In acute myeloid leukemia (AML), leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) interact with various cell types in the bone marrow (BM) microenvironment, regulating their expansion and differentiation. To study the interaction of CD4+ and CD8+ T cells in the BM with LSCs and LPCs, we analyzed their transcriptome and predicted cell-cell interactions by unbiased high-throughput correlation network analysis. We found that CD4+ T cells in the BM of patients with AML were activated and skewed toward T-helper (Th)1 polarization, whereas interleukin-9 (IL-9)-producing (Th9) CD4+ T cells were absent. In contrast to normal hematopoietic stem cells, LSCs produced IL-9, and the correlation modeling predicted IL9 in LSCs as a main hub gene that activates CD4+ T cells in AML. Functional validation revealed that IL-9 receptor signaling in CD4+ T cells leads to activation of the JAK-STAT pathway that induces the upregulation of KMT2A and KMT2C genes, resulting in methylation on histone H3 at lysine 4 to promote genome accessibility and transcriptional activation. This induced Th1-skewing, proliferation, and effector cytokine secretion, including interferon gamma (IFN-γ) and tumor necrosis factor α (TNF-α). IFN-γ and, to a lesser extent, TNF-α produced by activated CD4+ T cells induced the expansion of LSCs. In accordance with our findings, high IL9 expression in LSCs and high IL9R, TNF, and IFNG expression in BM-infiltrating CD4+ T cells correlated with worse overall survival in AML. Thus, IL-9 secreted by AML LSCs shapes a Th1-skewed immune environment that promotes their expansion by secreting IFN-γ and TNF-α.
Collapse
MESH Headings
- Interleukin-9/genetics
- Interleukin-9/metabolism
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/immunology
- Th1 Cells/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Tumor Microenvironment/immunology
- Receptors, Interleukin-9/genetics
- Receptors, Interleukin-9/metabolism
- Interferon-gamma/metabolism
- Histone-Lysine N-Methyltransferase/genetics
Collapse
Affiliation(s)
- Ramin Radpour
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Bofei Wang
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Hussein A Abbas
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX
| | - Carsten Riether
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Kreissig S, Windisch R, Wichmann C. Deciphering Acute Myeloid Leukemia Associated Transcription Factors in Human Primary CD34+ Hematopoietic Stem/Progenitor Cells. Cells 2023; 13:78. [PMID: 38201282 PMCID: PMC10777941 DOI: 10.3390/cells13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hemato-oncological diseases account for nearly 10% of all malignancies and can be classified into leukemia, lymphoma, myeloproliferative diseases, and myelodysplastic syndromes. The causes and prognosis of these disease entities are highly variable. Most entities are not permanently controllable and ultimately lead to the patient's death. At the molecular level, recurrent mutations including chromosomal translocations initiate the transformation from normal stem-/progenitor cells into malignant blasts finally floating the patient's bone marrow and blood system. In acute myeloid leukemia (AML), the so-called master transcription factors such as RUNX1, KMT2A, and HOX are frequently disrupted by chromosomal translocations, resulting in neomorphic oncogenic fusion genes. Triggering ex vivo expansion of primary human CD34+ stem/progenitor cells represents a distinct characteristic of such chimeric AML transcription factors. Regarding oncogenic mechanisms of AML, most studies focus on murine models. However, due to biological differences between mice and humans, findings are only partly transferable. This review focuses on the genetic manipulation of human CD34+ primary hematopoietic stem/progenitor cells derived from healthy donors to model acute myeloid leukemia cell growth. Analysis of defined single- or multi-hit human cellular AML models will elucidate molecular mechanisms of the development, maintenance, and potential molecular intervention strategies to counteract malignant human AML blast cell growth.
Collapse
Affiliation(s)
| | | | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (S.K.)
| |
Collapse
|
7
|
Mumme H, Thomas BE, Bhasin SS, Krishnan U, Dwivedi B, Perumalla P, Sarkar D, Ulukaya GB, Sabnis HS, Park SI, DeRyckere D, Raikar SS, Pauly M, Summers RJ, Castellino SM, Wechsler DS, Porter CC, Graham DK, Bhasin M. Single-cell analysis reveals altered tumor microenvironments of relapse- and remission-associated pediatric acute myeloid leukemia. Nat Commun 2023; 14:6209. [PMID: 37798266 PMCID: PMC10556066 DOI: 10.1038/s41467-023-41994-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Acute myeloid leukemia (AML) microenvironment exhibits cellular and molecular differences among various subtypes. Here, we utilize single-cell RNA sequencing (scRNA-seq) to analyze pediatric AML bone marrow (BM) samples from diagnosis (Dx), end of induction (EOI), and relapse timepoints. Analysis of Dx, EOI scRNA-seq, and TARGET AML RNA-seq datasets reveals an AML blasts-associated 7-gene signature (CLEC11A, PRAME, AZU1, NREP, ARMH1, C1QBP, TRH), which we validate on independent datasets. The analysis reveals distinct clusters of Dx relapse- and continuous complete remission (CCR)-associated AML-blasts with differential expression of genes associated with survival. At Dx, relapse-associated samples have more exhausted T cells while CCR-associated samples have more inflammatory M1 macrophages. Post-therapy EOI residual blasts overexpress fatty acid oxidation, tumor growth, and stemness genes. Also, a post-therapy T-cell cluster associated with relapse samples exhibits downregulation of MHC Class I and T-cell regulatory genes. Altogether, this study deeply characterizes pediatric AML relapse- and CCR-associated samples to provide insights into the BM microenvironment landscape.
Collapse
Affiliation(s)
- Hope Mumme
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Upaasana Krishnan
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Pruthvi Perumalla
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Debasree Sarkar
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gulay B Ulukaya
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Himalee S Sabnis
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunita I Park
- Department of Pathology, Children's Healthcare of Atlanta, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Melinda Pauly
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
8
|
Zhang Z, Deng C, Zhu P, Yao D, Shi J, Zeng T, Huang W, Huang Z, Wu Z, Li J, Xiao M, Fu L. Single-cell RNA-seq reveals a microenvironment and an exhaustion state of T/NK cells in acute myeloid leukemia. Cancer Sci 2023; 114:3873-3883. [PMID: 37591615 PMCID: PMC10551605 DOI: 10.1111/cas.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous blood cancer. Effective immunotherapies for AML are hindered by a lack of understanding of the tumor microenvironment (TME). Here, we retrieved published single-cell RNA sequencing data for 128,688 cells derived from 29 bone marrow aspirates, including 21 AML patients and eight healthy donors. We established a global tumor ecosystem including nine main cell types. Myeloid, T, and NK cells were further re-clustered and annotated. Developmental trajectory analysis indicated that exhausted CD8+ T cells might develop via tissue residual memory T cells (TRM) in the AML TME. Significantly higher expression levels of exhaustion molecules in AML TRM cells suggested that these cells were influenced by the TME and entered an exhausted state. Meanwhile, the upregulation of checkpoint molecules and downregulation of granzyme were also observed in AML NK cells, suggesting an exhaustion state. In conclusion, our comprehensive profiling of T/NK subpopulations provides deeper insights into the AML immunosuppressive ecosystem, which is critical for immunotherapies.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Cong Deng
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Pei Zhu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Danlin Yao
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Jinlong Shi
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Tiansheng Zeng
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Wenhui Huang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Zeyong Huang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Zhihua Wu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Junyi Li
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Min Xiao
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Lin Fu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
9
|
Damiani D, Tiribelli M. Checkpoint Inhibitors in Acute Myeloid Leukemia. Biomedicines 2023; 11:1724. [PMID: 37371818 PMCID: PMC10295997 DOI: 10.3390/biomedicines11061724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The prognosis of acute myeloid leukemia (AML) remains unsatisfactory. Among the reasons for the poor response to therapy and high incidence of relapse, there is tumor cell immune escape, as AML blasts can negatively influence various components of the immune system, mostly weakening T-cells. Since leukemic cells can dysregulate immune checkpoints (ICs), receptor-based signal transductors that lead to the negative regulation of T-cells and, eventually, to immune surveillance escape, the inhibition of ICs is a promising therapeutic strategy and has led to the development of so-called immune checkpoint inhibitors (ICIs). ICIs, in combination with conventional chemotherapy, hypomethylating agents or targeted therapies, are being increasingly tested in cases of AML, but the results reported are often conflicting. Here, we review the main issues concerning the immune system in AML, the main pathways leading to immune escape and the results obtained from clinical trials of ICIs, alone or in combination, in newly diagnosed or relapsed/refractory AML.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, 33100 Udine, Italy;
- Department of Medicine, Udine University, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, 33100 Udine, Italy;
- Department of Medicine, Udine University, 33100 Udine, Italy
| |
Collapse
|
10
|
Atilla E, Benabdellah K. The Black Hole: CAR T Cell Therapy in AML. Cancers (Basel) 2023; 15:2713. [PMID: 37345050 DOI: 10.3390/cancers15102713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Despite exhaustive studies, researchers have made little progress in the field of adoptive cellular therapies for relapsed/refractory acute myeloid leukemia (AML), unlike the notable uptake for B cell malignancies. Various single antigen-targeting chimeric antigen receptor (CAR) T cell Phase I trials have been established worldwide and have recruited approximately 100 patients. The high heterogeneity at the genetic and molecular levels within and between AML patients resembles a black hole: a great gravitational field that sucks in everything. One must consider the fact that only around 30% of patients show a response; there are, however, consequential off-tumor effects. It is obvious that a new point of view is needed to achieve more promising results. This review first introduces the unique therapeutic challenges of not only CAR T cells but also other adoptive cellular therapies in AML. Next, recent single-cell sequencing data for AML to assess somatically acquired alterations at the DNA, epigenetic, RNA, and protein levels are discussed to give a perspective on cellular heterogeneity, intercellular hierarchies, and the cellular ecosystem. Finally, promising novel strategies are summarized, including more sophisticated next-generation CAR T, TCR-T, and CAR NK therapies; the approaches with which to tailor the microenvironment and target neoantigens; and allogeneic approaches.
Collapse
Affiliation(s)
- Erden Atilla
- Fred Hutchinson Cancer Research Center, Clinical Research Division, 1100 Fairview Ave N, Seattle, WA 98109, USA
- GENYO Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Health Sciences Technology Park, 18016 Granada, Spain
| | - Karim Benabdellah
- GENYO Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Health Sciences Technology Park, 18016 Granada, Spain
| |
Collapse
|
11
|
Austin RJ, Straube J, Halder R, Janardhanan Y, Bruedigam C, Witkowski M, Cooper L, Porter A, Braun M, Souza-Fonseca-Guimaraes F, Minnie SA, Cooper E, Jacquelin S, Song A, Bald T, Nakamura K, Hill GR, Aifantis I, Lane SW, Bywater MJ. Oncogenic drivers dictate immune control of acute myeloid leukemia. Nat Commun 2023; 14:2155. [PMID: 37059710 PMCID: PMC10104832 DOI: 10.1038/s41467-023-37592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous, aggressive hematological malignancy induced by distinct oncogenic driver mutations. The effect of specific AML oncogenes on immune activation or suppression is unclear. Here, we examine immune responses in genetically distinct models of AML and demonstrate that specific AML oncogenes dictate immunogenicity, the quality of immune response and immune escape through immunoediting. Specifically, expression of NrasG12D alone is sufficient to drive a potent anti-leukemia response through increased MHC Class II expression that can be overcome with increased expression of Myc. These data have important implications for the design and implementation of personalized immunotherapies for patients with AML.
Collapse
Affiliation(s)
- Rebecca J Austin
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Jasmin Straube
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Rohit Halder
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | | | - Claudia Bruedigam
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Matthew Witkowski
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Leanne Cooper
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Amy Porter
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Matthias Braun
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | | | - Simone A Minnie
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Centre, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Emily Cooper
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Sebastien Jacquelin
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Mater Research, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Axia Song
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Tobias Bald
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Institute of Experimental Oncology, University Hospital of Bonn, 53127, Bonn, Germany
| | - Kyohei Nakamura
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Geoffrey R Hill
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Centre, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Steven W Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia.
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, 4029, Australia.
| | - Megan J Bywater
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia.
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
12
|
Lomovskaya YV, Kobyakova MI, Senotov AS, Fadeeva IS, Lomovsky AI, Krasnov KS, Shtatnova DY, Akatov VS, Fadeev RS. Myeloid Differentiation Increases Resistance of Leukemic Cells to TRAIL-Induced Death by Reducing the Expression of DR4 and DR5 Receptors. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2023. [DOI: 10.1134/s1990747822060101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Su X, Ma G, Bai X, Zhang J, Li M, Zhang F, Sun T, Ma D, Lu F, Ji C. The prognostic marker FLVCR2 associated with tumor progression and immune infiltration for acute myeloid leukemia. Front Cell Dev Biol 2022; 10:978786. [PMID: 36313565 PMCID: PMC9597318 DOI: 10.3389/fcell.2022.978786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2024] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies in adults. The tumor microenvironment (TME) has a critical effect on AML occurrence, recurrence, and progression. The gene feline leukemia virus subgroup C cellular receptor family member 2 (FLVCR2) belongs to the major facilitator superfamily of transporter protein members, which is primarily involved in transporting small molecules. The potential role of FLVCR2 in the TME in AML has not been investigated. To clarify the expression and role of FLVCR2 in AML, we analyzed the Gene Expression Omnibus and The Cancer Genome Atlas databases and found that FLVCR2 mRNA expression significantly increased among patients with AML. Furthermore, based on an analysis of the Gene Expression Profiling Interactive Analysis database, FLVCR2 upregulation predicted dismal overall survival of patients with AML. Our validation analysis revealed the significant upregulation of FLVCR2 within the bone marrow of AML relative to healthy controls by western blotting and qPCR assays. Gene set enrichment analysis was conducted to explore FLVCR2's related mechanism in AML. We found that high FLVCR2 expression was related to infiltration degrees of immune cells and immune scores among AML cases, indicating that FLVCR2 possibly had a crucial effect on AML progression through the immune response. Specifically, FLVCR2 upregulation was negatively related to the immune infiltration degrees of activated natural killer cells, activated memory CD4+ T cells, activated dendritic cells, and CD8+ T cells using CIBERSORT analysis. According to the in vitro research, FLVCR2 silencing suppressed AML cell growth and promoted their apoptosis. This study provides insights into FLVCR2's effect on tumor immunity, indicating that it might serve as an independent prognostic biomarker and was related to immune infiltration within AML.
Collapse
Affiliation(s)
- Xiuhua Su
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoran Bai
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Zhang S, Sui M, Zhang Z, Su Y. Brusatol From Brucea javanica Suppresses Arsenic Trioxide-Induced PD-L1 Upregulation Through Inhibition of NRF2 in Leukemia Cells. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Overexpression of programed death-ligand 1 (PD-L1) is associated with poor prognosis in leukemia. Moreover, antitumor pharmaceuticals have been shown to induce immunoresistance, leading to reduced efficacy. Previous studies have indicated that arsenic trioxide (ATO) promotes immune evasion by inducing PD-L1 expression in solid tumors; however, little is known about its role in leukemia. A proportion of patients with acute promyelocytic leukemia were resistant to ATO therapy. Thus, this study aimed to investigate the effect of ATO on the expression of PD-L1 in leukemia cells and the underlying mechanism mediated through the nuclear factor erythroid 2 related factor (NRF2) protein. Brusatol, extracted from Brucea javanica, was selected as a unique NRF2 inhibitor, and we evaluated the possibility of using a regimen combining ATO/Brusatol in leukemia therapy. Promyelocytic NB4 and lymphocytic Jurkat cells were treated with ATO and brusatol either alone or in combination. We found that ATO significantly upregulated the expression of PD-L1 in NB4 and Jurkat cells at both the protein and mRNA levels compared with its expression in the untreated cell group. Mechanistically, ATO increased nuclear NRF2 expression and the extent of NRF2 binding to the PD-L1 promoter. Pharmacological inhibition of NRF2 by brusatol significantly blocked this effect, thereby reducing ATO-induced PD-L1 expression. In addition, the combination of brusatol and ATO showed stronger cytotoxicity than ATO alone indicated by cell counting kit-8 assay. Therefore, brusatol may further enhance the antileukemia effect of ATO not only by inhibiting ATO-induced PD-L1 expression but also by enhancing ATO-induced cytotoxicity. Our study provides a rationale for the clinical application of ATO/brusatol combination therapy.
Collapse
Affiliation(s)
- Shunji Zhang
- First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Meijuan Sui
- NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Zhuo Zhang
- NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yanhua Su
- First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
15
|
Lu J, Zheng G, Dong A, Chang X, Cao X, Liu M, Shi X, Wang C, Yang Y, Jia X. Prognostic characteristics of immune subtypes associated with acute myeloid leukemia and their identification in cell subsets based on single-cell sequencing analysis. Front Cell Dev Biol 2022; 10:990034. [PMID: 36211454 PMCID: PMC9540204 DOI: 10.3389/fcell.2022.990034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Immune genes play an important role in the development and progression of acute myeloid leukemia (AML). However, the role of immune genes in the prognosis and microenvironment of AML remains unclear. In this study, we analyzed 151 AML patients in the TCGA database for relevant immune cell infiltration. AML patients were divided into high and low immune cell infiltration clusters based on ssGSEA results. Immune-related pathways, AML pathways and glucose metabolism pathways were enriched in the high immune cell infiltration cluster. Then we screened the differential immune genes between the two immune cell infiltration clusters. Nine prognostic immune genes were finally identified in the train set by LASSO-Cox regression. We constructed a model in the train set based on the nine prognostic immune genes and validated the predictive capability in the test set. The areas under the ROC curve of the train set and the test set for ROC at 1, 3, 5 years were 0.807, 0.813, 0.815, and 0.731, 0.745, 0.830, respectively. The areas under ROC curve of external validation set in 1, 3, and 5 years were 0.564, 0.619, and 0.614, respectively. People with high risk scores accompanied by high TMB had been detected with the worst prognosis. Single-cell sequencing analysis revealed the expression of prognostic genes in AML cell subsets and pseudo-time analysis described the differentiation trajectory of cell subsets. In conclusion, our results reveal the characteristics of immune microenvironment and cell subsets of AML, while it still needs to be confirmed in larger samples studies. The prognosis model constructed with nine key immune genes can provide a new method to assess the prognosis of AML patients.
Collapse
Affiliation(s)
- Jie Lu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guowei Zheng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ani Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinyu Chang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiting Cao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengying Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunmei Wang
- Children’s Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Wang Y, Ma X, Huang J, Yang X, Kang M, Sun X, Li H, Wu Y, Zhang H, Zhu Y, Xue Y, Fang Y. Somatic FOXC1 insertion mutation remodels the immune microenvironment and promotes the progression of childhood acute lymphoblastic leukemia. Cell Death Dis 2022; 13:431. [PMID: 35504885 PMCID: PMC9065155 DOI: 10.1038/s41419-022-04873-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignant hematological diseases in children. An immunosuppressive microenvironment, particularly regulatory T cell (Treg) infiltration, has been documented to be highly associated with childhood ALL. This present study, based on genetic factors, was aimed at investigating the mutations potentially involved in the immunosuppressive microenvironment in childhood ALL. After whole-exome sequencing was used on DNA extracted from the T cells of ALL bone marrow samples, we found the FOXC1 H446HG induced a increased Treg while decreased cytotoxic T lymphocyte (CTL) in bone marrow. The mutation of FOXC1 in T cell promoted the proliferation of leukemia cells in vitro and in vivo. CpG islands formed by insertion mutation led to an abnormal increase in exon methylation and were associated with the suppression of FOXC1. Decreased FOXC1 attenuated the transcription of HDAC1, thus resulting in the activation of KLF10 through increasing H3K27 acetylation in the promoter region. In conclusion, the de novo insertion mutation in FOXC1 induced suppression of FOXC1, thereby promoting a Treg/CTL shift in the ALL immune microenvironment. The FOXC1 H446HG mutation might be a potential therapeutic target for ALL in the future.
Collapse
Affiliation(s)
- Yaping Wang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Xiaopeng Ma
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Jie Huang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Xiaoyun Yang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Meiyun Kang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Xiaoyan Sun
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Huimin Li
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Yijun Wu
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Heng Zhang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Yuting Zhu
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Yao Xue
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| | - Yongjun Fang
- grid.89957.3a0000 0000 9255 8984Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing Medical University, 72# Guangzhou Road, Nanjing, Jiangsu Province China
| |
Collapse
|
17
|
Redavid I, Conserva MR, Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Single-Cell Sequencing: Ariadne’s Thread in the Maze of Acute Myeloid Leukemia. Diagnostics (Basel) 2022; 12:diagnostics12040996. [PMID: 35454044 PMCID: PMC9024495 DOI: 10.3390/diagnostics12040996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a haematological neoplasm resulting from the accumulation of genetic and epigenetic alterations. Patients’ prognoses vary with AML genetic heterogeneity, which hampers successful treatments. Single-cell approaches have provided new insights of the clonal architecture of AML, revealing the mutational history from diagnosis, during treatment and to relapse. In this review, we imagine single-cell technologies as the Ariadne’s thread that will guide us out of the AML maze, provide a precise identikit of the leukemic cell at single-cell resolution and explore genomic, transcriptomic, epigenetic and proteomic levels.
Collapse
Affiliation(s)
- Immacolata Redavid
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Maria Rosa Conserva
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Luisa Anelli
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Antonella Zagaria
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Giorgina Specchia
- School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Pellegrino Musto
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
| | - Francesco Albano
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (I.R.); (M.R.C.); (L.A.); (A.Z.); (P.M.)
- Correspondence:
| |
Collapse
|
18
|
Wu W, Liang X, Li H, Huang X, Wan C, Xie Q, Liu Z. Landscape of T Cells in NK-AML(M4/M5) Revealed by Single-Cell Sequencing. J Leukoc Biol 2022; 112:745-758. [PMID: 35258858 DOI: 10.1002/jlb.5a0721-396rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Normal karyotype acute myeloid leukemia (NK-AML) is a highly heterogeneous malignancy that resides within a complex immune microenvironment, complicating efforts to reveal the interaction between leukemia cells and immune cells. Understanding tumor-infiltrating T cells is crucial to the advancement of immune therapies and the improvement of the prognosis for NK-AML patients. We performed single-cell RNA sequencing on bone marrow cells from 5 NK-AML (M4/M5) patients and 1 normal donor and paired single-cell T cell receptor (TCR) sequencing on single T cells. As a result, we identified 8 T cell clusters based on the gene expression characteristics of each subset in NK-AML and described their developmental trajectories. In NK-AML patients, specific clusters, such as mucosal-associated invariant T cells (MAITs), were preferentially enriched and potentially clonally expanded. These transcriptome and TCR data analyses provide valuable insights and rich resources for understanding the immune environment of NK-AML.
Collapse
Affiliation(s)
- Wenqi Wu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huiqun Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoke Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chengyao Wan
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiongni Xie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
19
|
Pinho S, Wei Q, Maryanovich M, Zhang D, Balandrán JC, Pierce H, Nakahara F, Di Staulo A, Bartholdy BA, Xu J, Borger DK, Verma A, Frenette PS. VCAM1 confers innate immune tolerance on haematopoietic and leukaemic stem cells. Nat Cell Biol 2022; 24:290-298. [PMID: 35210567 PMCID: PMC8930732 DOI: 10.1038/s41556-022-00849-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Haematopoietic stem cells (HSCs) home to the bone marrow via, in part, interactions with vascular cell adhesion molecule-1 (VCAM1)1-3. Once in the bone marrow, HSCs are vetted by perivascular phagocytes to ensure their self-integrity. Here we show that VCAM1 is also expressed on healthy HSCs and upregulated on leukaemic stem cells (LSCs), where it serves as a quality-control checkpoint for entry into bone marrow by providing 'don't-eat-me' stamping in the context of major histocompatibility complex class-I (MHC-I) presentation. Although haplotype-mismatched HSCs can engraft, Vcam1 deletion, in the setting of haplotype mismatch, leads to impaired haematopoietic recovery due to HSC clearance by mononuclear phagocytes. Mechanistically, VCAM1 'don't-eat-me' activity is regulated by β2-microglobulin MHC presentation on HSCs and paired Ig-like receptor-B (PIR-B) on phagocytes. VCAM1 is also used by cancer cells to escape immune detection as its expression is upregulated in multiple cancers, including acute myeloid leukaemia (AML), where high expression associates with poor prognosis. In AML, VCAM1 promotes disease progression, whereas VCAM1 inhibition or deletion reduces leukaemia burden and extends survival. These results suggest that VCAM1 engagement regulates a critical immune-checkpoint gate in the bone marrow, and offers an alternative strategy to eliminate cancer cells via modulation of the innate immune tolerance.
Collapse
Affiliation(s)
- Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Juan Carlos Balandrán
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Halley Pierce
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Fumio Nakahara
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anna Di Staulo
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Boris A. Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jianing Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniel K. Borger
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Amit Verma
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
20
|
Lomovskaya YV, Kobyakova MI, Senotov AS, Lomovsky AI, Minaychev VV, Fadeeva IS, Shtatnova DY, Krasnov KS, Zvyagina AI, Akatov VS, Fadeev RS. Macrophage-like THP-1 Cells Derived from High-Density Cell Culture Are Resistant to TRAIL-Induced Cell Death via Down-Regulation of Death-Receptors DR4 and DR5. Biomolecules 2022; 12:150. [PMID: 35204655 PMCID: PMC8961584 DOI: 10.3390/biom12020150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a highly selective and promising anticancer agent due to its specific apoptosis-inducing effect on tumor cells, rather than most normal cells. TRAIL is currently under investigation for use in the treatment of leukemia. However, the resistance of leukemic cells to TRAIL-induced apoptosis may limit its efficacy. The mechanisms of leukemic cell resistance to antitumor immunity remains a topical issue. In this work, we have found an increase in the resistance to TRAIL-induced cell death in human leukemia THP-1 cells, which was caused by differentiation into a macrophage-like phenotype in high-density culture in vitro. Stressful conditions, manifested by the inhibition of cell growth and the activation of cell death in high-density culture of THP-1 cells, induced the appearance of cells adhered to culture dishes. The THP-1ad cell line was derived by selection of these adhered cells. The genetic study, using STR and aCGH assays, has shown that THP-1ad cells were derived from THP-1 cells due to mutagenesis. The THP-1ad cells possessed high proliferative potential and a macrophage-like immunophenotype. The adhesion of THP-1ad cells to the extracellular matrix was mediated by αVβ5 integrin. The cytokine production, as well as the rise of intracellular ROS and NO activities by LPS in THP-1ad cell culture, were characteristic of macrophage-like cells. The THP-1ad cells were found to appear to increase in resistance to TRAIL-induced cell death in comparison with THP-1 cells. The mechanism of the increase in TRAIL-resistance can be related to a decrease in the expression of death receptors DR4 and DR5 on the THP-1ad cells. Thus, the macrophage-like phenotype formation with the maintenance of a high proliferative potential of leukemic cells, caused by stress conditions in high-density cell cultures in vitro, can induce an increase in resistance to TRAIL-induced cell death due to the loss of DR4 and DR5 receptors. The possible realization of these events in vivo may be the reason for tumor progression.
Collapse
Affiliation(s)
- Yana Vladimirovna Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Margarita Igorevna Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Anatoly Sergeevich Senotov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Alexey Igorevich Lomovsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Vladislav Valentinovich Minaychev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Irina Sergeevna Fadeeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Daria Yuryevna Shtatnova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
- Pushchino State Institute of Natural Science, 142290 Pushchino, Russia
| | - Kirill Sergeevich Krasnov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
- Pushchino State Institute of Natural Science, 142290 Pushchino, Russia
| | - Alena Igorevna Zvyagina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Vladimir Semenovich Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| | - Roman Sergeevich Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.V.L.); (M.I.K.); (A.S.S.); (A.I.L.); (V.V.M.); (I.S.F.); (D.Y.S.); (K.S.K.); (A.I.Z.); (V.S.A.)
| |
Collapse
|
21
|
Leotta S, Condorelli A, Sciortino R, Milone GA, Bellofiore C, Garibaldi B, Schininà G, Spadaro A, Cupri A, Milone G. Prevention and Treatment of Acute Myeloid Leukemia Relapse after Hematopoietic Stem Cell Transplantation: The State of the Art and Future Perspectives. J Clin Med 2022; 11:253. [PMID: 35011994 PMCID: PMC8745746 DOI: 10.3390/jcm11010253] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) for high-risk acute myeloid leukemia (AML) represents the only curative option. Progress has been made in the last two decades in the pre-transplant induction therapies, supportive care, selection of donors and conditioning regimens that allowed to extend the HSCT to a larger number of patients, including those aged over 65 years and/or lacking an HLA-identical donor. Furthermore, improvements in the prophylaxis of the graft-versus-host disease and of infection have dramatically reduced transplant-related mortality. The relapse of AML remains the major reason for transplant failure affecting almost 40-50% of the patients. From 10 to 15 years ago to date, treatment options for AML relapsing after HSCT were limited to conventional cytotoxic chemotherapy and donor leukocyte infusions (DLI). Nowadays, novel agents and targeted therapies have enriched the therapeutic landscape. Moreover, very recently, the therapeutic landscape has been enriched by manipulated cellular products (CAR-T, CAR-CIK, CAR-NK). In light of these new perspectives, careful monitoring of minimal-residual disease (MRD) and prompt application of pre-emptive strategies in the post-transplant setting have become imperative. Herein, we review the current state of the art on monitoring, prevention and treatment of relapse of AML after HSCT with particular attention on novel agents and future directions.
Collapse
Affiliation(s)
| | - Annalisa Condorelli
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, Via Santa Sofia 78, 95124 Catania, Italy; (S.L.); (R.S.); (G.A.M.); (C.B.); (B.G.); (G.S.); (A.S.); (A.C.); (G.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jiménez-Morales S, Aranda-Uribe IS, Pérez-Amado CJ, Ramírez-Bello J, Hidalgo-Miranda A. Mechanisms of Immunosuppressive Tumor Evasion: Focus on Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:737340. [PMID: 34867958 PMCID: PMC8636671 DOI: 10.3389/fimmu.2021.737340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy with high heterogeneity in its biological features and treatments. Although the overall survival (OS) of patients with ALL has recently improved considerably, owing to the application of conventional chemo-therapeutic agents, approximately 20% of the pediatric cases and 40-50% of the adult patients relapse during and after the treatment period. The potential mechanisms that cause relapse involve clonal evolution, innate and acquired chemoresistance, and the ability of ALL cells to escape the immune-suppressive tumor response. Currently, immunotherapy in combination with conventional treatment is used to enhance the immune response against tumor cells, thereby significantly improving the OS in patients with ALL. Therefore, understanding the mechanisms of immune evasion by leukemia cells could be useful for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Sammir Aranda-Uribe
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Departamento de Farmacología, División de Ciencias de la Salud, Universidad de Quintana Roo, Quintana Roo, Mexico
| | - Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julian Ramírez-Bello
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
23
|
Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance? Cancers (Basel) 2021; 13:cancers13215319. [PMID: 34771483 PMCID: PMC8582363 DOI: 10.3390/cancers13215319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite high rates of remission obtained with conventional chemotherapy, the persistence of leukemic cells after treatments, eventually exiting in disease relapse, remains the main challenge in acute myeloid leukemia (AML). Increasing evidence indicates that, besides AML cell mutations, stromal and immune cells, as leukemic microenvironment components, may protect AML cells from therapies. Here, we will recapitulate emerging bone marrow (BM) microenvironment-dependent mechanisms of therapy resistance. The understanding of these processes will help find new drug combinations and conceive novel and more effective treatments. Abstract Acute myeloid leukemia (AML) has been considered for a long time exclusively driven by critical mutations in hematopoietic stem cells. Recently, the contribution of further players, such as stromal and immune bone marrow (BM) microenvironment components, to AML onset and progression has been pointed out. In particular, mesenchymal stromal cells (MSCs) steadily remodel the leukemic niche, not only favoring leukemic cell growth and development but also tuning their responsiveness to treatments. The list of mechanisms driven by MSCs to promote a leukemia drug-resistant phenotype has progressively expanded. Moreover, the relative proportion and the activation status of immune cells in the BM leukemic microenvironment may vary by influencing their reactivity against leukemic cells. In that, the capacity of the stroma to re-program immune cells, thus promoting and/or hampering therapeutic efficacy, is emerging as a crucial aspect in AML biology, adding an extra layer of complexity. Current treatments for AML have mainly focused on eradicating leukemia cells, with little consideration for the leukemia-damaged BM niche. Increasing evidence on the contribution of stromal and immune cells in response to therapy underscores the need to hold the mutual interplay, which takes place in the BM. A careful dissection of these interactions will help provide novel applications for drugs already under experimentation and open a wide array of opportunities for new drug discovery.
Collapse
|
24
|
Comont T, Nicolau-Travers ML, Bertoli S, Recher C, Vergez F, Treiner E. MAIT cells numbers and frequencies in patients with acute myeloid leukemia at diagnosis: association with cytogenetic profile and gene mutations. Cancer Immunol Immunother 2021; 71:875-887. [PMID: 34477901 DOI: 10.1007/s00262-021-03037-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Harnessing or monitoring immune cells is actually a major topic in pre-clinical and clinical studies in acute myeloid leukemia (AML). Mucosal-Associated Invariant T cells (MAIT) constitute one of the largest subset of innate-like, cytotoxic T cell subsets in humans. Despite some papers suggesting a role for MAIT cells in cancer, their specific involvement remains unclear, especially in myeloid malignancies. This prospective monocentric study included 216 patients with a newly diagnosed AML. Circulating MAIT cells were quantified by flow cytometry at diagnosis and during intensive chemotherapy. We observed that circulating MAIT cells show a specific decline in AML patients at diagnosis compared to healthy donors. Post-induction monitored patients presented with a drastic drop in MAIT cell numbers, with recovery after one month. We also found correlation between decrease in MAIT cells number and adverse cytogenetic profile. FLT3-ITD and IDH ½ mutations were associated with higher MAIT cell numbers. Patients with high level of activated MAIT cells are under-represented within patients with a favorable cytogenetic profile, and over-represented among patients with IDH1 mutations or bi-allelic CEBPA mutations. We show for the first time that circulating MAIT cells are affected in newly diagnosed AML patients, suggesting a link between MAIT cells and AML progression. Our work fosters new studies to deepen our knowledge about the role of MAIT cells in cancer.
Collapse
Affiliation(s)
- Thibault Comont
- Department of Internal Medicine, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Laboratory of Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
| | | | - Sarah Bertoli
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- Department of Clinical Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Christian Recher
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- Department of Clinical Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Francois Vergez
- Laboratory of Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Emmanuel Treiner
- Laboratory of Immunology, CHU Toulouse, Toulouse, France.
- University Paul Sabatier III, Toulouse, France.
- Infinity, Inserm UMR1291, 330 Avenue de Grande Bretagne, 31000, Toulouse, France.
| |
Collapse
|
25
|
Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, Hassanzadeh A, Baradaran B, Ahmadi M, Saeedi H, Tahmasebi S, Jarahian M. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther 2021; 12:465. [PMID: 34412685 PMCID: PMC8377882 DOI: 10.1186/s13287-021-02420-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, 54001, Iraq.,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, 56001, Iraq
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ali Hassanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy, No. 2, Floor 4 Unit (G401), 69120, Heidelberg, Germany.
| |
Collapse
|
26
|
Can the New and Old Drugs Exert an Immunomodulatory Effect in Acute Myeloid Leukemia? Cancers (Basel) 2021; 13:cancers13164121. [PMID: 34439275 PMCID: PMC8393879 DOI: 10.3390/cancers13164121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The advent of novel immunotherapeutic strategies has revealed the importance of immune dysregulation and of a tolerogenic microenvironment for acute myeloid leukemia (AML) fitness. We reviewed the “off-target” effects on the immune system of different drugs used in the treatment of AML to explore the advantages of this unexpected interaction. Abstract Acute myeloid leukemia (AML) is considered an immune-suppressive neoplasm capable of evading immune surveillance through cellular and environmental players. Increasing knowledge of the immune system (IS) status at diagnosis seems to suggest ever more attention of the crosstalk between the leukemic clone and its immunologic counterpart. During the last years, the advent of novel immunotherapeutic strategies has revealed the importance of immune dysregulation and suppression for leukemia fitness. Considering all these premises, we reviewed the “off-target” effects on the IS of different drugs used in the treatment of AML, focusing on the main advantages of this interaction. The data reported support the idea that a successful therapeutic strategy should consider tailored approaches for performing leukemia eradication by both direct blasts killing and the engagement of the IS.
Collapse
|
27
|
Zeng T, Cui L, Huang W, Liu Y, Si C, Qian T, Deng C, Fu L. The establishment of a prognostic scoring model based on the new tumor immune microenvironment classification in acute myeloid leukemia. BMC Med 2021; 19:176. [PMID: 34348737 PMCID: PMC8340489 DOI: 10.1186/s12916-021-02047-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The high degree of heterogeneity brought great challenges to the diagnosis and treatment of acute myeloid leukemia (AML). Although several different AML prognostic scoring models have been proposed to assess the prognosis of patients, the accuracy still needs to be improved. As important components of the tumor microenvironment, immune cells played important roles in the physiological functions of tumors and had certain research value. Therefore, whether the tumor immune microenvironment (TIME) can be used to assess the prognosis of AML aroused our great interest. METHODS The patients' gene expression profile from 7 GEO databases was normalized after removing the batch effect. TIME cell components were explored through Xcell tools and then hierarchically clustered to establish TIME classification. Subsequently, a prognostic model was established by Lasso-Cox. Multiple GEO databases and the Cancer Genome Atlas dataset were employed to validate the prognostic performance of the model. Receiver operating characteristic (ROC) and the concordance index (C-index) were utilized to assess the prognostic efficacy. RESULTS After analyzing the composition of TIME cells in AML, we found infiltration of ten types of cells with prognostic significance. Then using hierarchical clustering methods, we established a TIME classification system, which clustered all patients into three groups with distinct prognostic characteristics. Using the differential genes between the first and third groups in the TIME classification, we constructed a 121-gene prognostic model. The model successfully divided 1229 patients into the low and high groups which had obvious differences in prognosis. The high group with shorter overall survival had more patients older than 60 years and more poor-risk patients (both P< 0.001). Besides, the model can perform well in multiple datasets and could further stratify the cytogenetically normal AML patients and intermediate-risk AML population. Compared with the European Leukemia Net Risk Stratification System and other AML prognostic models, our model had the highest C-index and the largest AUC of the ROC curve, which demonstrated that our model had the best prognostic efficacy. CONCLUSION A prognostic model for AML based on the TIME classification was constructed in our study, which may provide a new strategy for precision treatment in AML.
Collapse
Affiliation(s)
- Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Chaozeng Si
- Information Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Cong Deng
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
28
|
Immunotherapy in AML: a brief review on emerging strategies. Clin Transl Oncol 2021; 23:2431-2447. [PMID: 34160771 DOI: 10.1007/s12094-021-02662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML), the most common form of leukemia amongst adults, is one of the most important hematological malignancies. Epidemiological data show both high incidence rates and low survival rates, especially in secondary cases among adults. Although classic and novel chemotherapeutic approaches have extensively improved disease prognosis and survival, the need for more personalized and target-specific methods with less side effects have been inevitable. Therefore, immunotherapeutic methods are of importance. In the following review, primarily a brief understanding of the molecular basis of the disease has been represented. Second, prior to the introduction of immunotherapeutic approaches, the entangled relationship of AML and patient's immune system has been discussed. At last, mechanistic and clinical evidence of each of the immunotherapy approaches have been covered.
Collapse
|
29
|
Yingjuan W, Li Z, Wei C, Xiaoyuan W. Identification of prognostic genes and construction of a novel gene signature in the skin melanoma based on the tumor microenvironment. Medicine (Baltimore) 2021; 100:e26017. [PMID: 34032721 PMCID: PMC8154473 DOI: 10.1097/md.0000000000026017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/29/2021] [Indexed: 01/04/2023] Open
Abstract
Skin melanoma remains a highly prevalent and yet deadly form of cancer, with the exact degree of melanoma-associated mortality being strongly dependent upon the local tumor microenvironment. The exact composition of stromal and immune cells within this microenvironmental region has the potential to profoundly impact melanoma progression and prognosis. As such, the present study was designed with the goal of clarifying the predictive relevance of stromal and immune cell-related genes in melanoma patients through comprehensive bioinformatics analyses. We therefore analyzed melanoma sample gene expression within The Cancer Genome Atlas database and employed the ESTIMATE algorithm as a means of calculating both stromal and immune scores that were in turn used for identifying differentially expressed genes (DEGs). Subsequently, univariate analyses were used to detect DEGs associated with melanoma patient survival, and through additional functional enrichment analyses, we determined that these survival-related DEGs are largely related to inflammatory and immune responses. A prognostic signature comprised of 10 genes (IL15, CCL8, CLIC2, SAMD9L, TLR2, HLA.DQB1, IGHV1-18, RARRES3, GBP4, APOBEC3G) was generated. This 10-gene signature effectively separated melanoma patients into low- and high-risk groups based upon their survival. These low- and high-risk groups also exhibited distinct immune statuses and differing degrees of immune cell infiltration. In conclusion, our results offer novel insights into a number of microenvironment-associated genes that impact survival outcomes in melanoma patients, potentially highlighting these genes as viable therapeutic targets.
Collapse
|
30
|
Isidori A, Cerchione C, Daver N, DiNardo C, Garcia-Manero G, Konopleva M, Jabbour E, Ravandi F, Kadia T, Burguera ADLF, Romano A, Loscocco F, Visani G, Martinelli G, Kantarjian H, Curti A. Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Front Oncol 2021; 11:656218. [PMID: 34041025 PMCID: PMC8143531 DOI: 10.3389/fonc.2021.656218] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
In the past few years, our improved knowledge of acute myeloid leukemia (AML) pathogenesis has led to the accelerated discovery of new drugs and the development of innovative therapeutic approaches. The role of the immune system in AML development, growth and recurrence has gained increasing interest. A better understanding of immunological escape and systemic tolerance induced by AML blasts has been achieved. The extraordinary successes of immune therapies that harness the power of T cells in solid tumors and certain hematological malignancies have provided new stimuli in this area of research. Accordingly, major efforts have been made to develop immune therapies for the treatment of AML patients. The persistence of leukemia stem cells, representing the most relevant cause of relapse, even after allogeneic stem cell transplant (allo-SCT), remains a major hurdle in the path to cure for AML patients. Several clinical trials with immune-based therapies are currently ongoing in the frontline, relapsed/refractory, post-allo-SCT and minimal residual disease/maintenance setting, with the aim to improve survival of AML patients. This review summarizes the available data with immune-based therapeutic modalities such as monoclonal antibodies (naked and conjugated), T cell engagers, adoptive T-cell therapy, adoptive-NK therapy, checkpoint blockade via PD-1/PD-L1, CTLA4, TIM3 and macrophage checkpoint blockade via the CD47/SIRPa axis, and leukemia vaccines. Combining clinical results with biological immunological findings, possibly coupled with the discovery of biomarkers predictive for response, will hopefully allow us to determine the best approaches to immunotherapy in AML.
Collapse
Affiliation(s)
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Courtney DiNardo
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Marina Konopleva
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Elias Jabbour
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Tapan Kadia
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Alessandra Romano
- Dipartimento di Chirurgia e Specialità Medico-Chirurgiche, Sezione di Ematologia, Università degli Studi di Catania, Catania, Italy
| | | | - Giuseppe Visani
- Haematology and Stem Cell Transplant Center, AORMN, Pesaro, Italy
| | - Giovanni Martinelli
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Hagop Kantarjian
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
31
|
Li R, Ding Z, Jin P, Wu S, Jiang G, Xiang R, Wang W, Jin Z, Li X, Xue K, Wu X, Li J. Development and Validation of a Novel Prognostic Model for Acute Myeloid Leukemia Based on Immune-Related Genes. Front Immunol 2021; 12:639634. [PMID: 34025649 PMCID: PMC8131848 DOI: 10.3389/fimmu.2021.639634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
The prognosis of acute myeloid leukemia (AML) is closely related to immune response changes. Further exploration of the pathobiology of AML focusing on immune-related genes would contribute to the development of more advanced evaluation and treatment strategies. In this study, we established a novel immune-17 signature based on transcriptome data from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We found that immune biology processes and transcriptional dysregulations are critical factors in the development of AML through enrichment analyses. We also formulated a prognostic model to predict the overall survival of AML patients by using LASSO (Least Absolute Shrinkage and Selection Operator) regression analysis. Furthermore, we incorporated the immune-17 signature to improve the prognostic accuracy of the ELN2017 risk stratification system. We concluded that the immune-17 signature represents a novel useful model for evaluating AML survival outcomes and may be implemented to optimize treatment selection in the next future.
Collapse
Affiliation(s)
- Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuoyou Ding
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ge Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rufang Xiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Wu
- Department of Children Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Rastogi N, Baker S, Man S, Uger RA, Wong M, Coles SJ, Hodges M, Gilkes AF, Knapper S, Darley RL, Tonks A. Use of an anti-CD200-blocking antibody improves immune responses to AML in vitro and in vivo. Br J Haematol 2021; 193:155-159. [PMID: 32996123 PMCID: PMC9851282 DOI: 10.1111/bjh.17125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/22/2023]
Abstract
Treatment of relapsed/resistant acute myeloid leukaemia (AML) remains a significant area of unmet patient need, the outlook for most patients remaining extremely poor. A promising approach is to augment the anti-tumour immune response in these patients; most cancers do not activate immune effector cells because they express immunosuppressive ligands. We have previously shown that CD200 (an immunosuppressive ligand) is overexpressed in AML and confers an inferior overall survival compared to CD200low/neg patients. Here we show that a fully human anti-CD200 antibody (TTI-CD200) can block the interaction of CD200 with its receptor and restore AML immune responses in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/immunology
- Antibodies, Blocking/pharmacology
- Antigens, CD/drug effects
- Antigens, CD/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Case-Control Studies
- Cytokine-Induced Killer Cells/immunology
- Humans
- Immunity/drug effects
- Immunity/immunology
- Immunosuppression Therapy/methods
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Ligands
- Mice
- Models, Animal
- Secondary Prevention/methods
- Transplantation, Heterologous/methods
Collapse
Affiliation(s)
- Namrata Rastogi
- Department of HaematologyDivision of Cancer & GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUK
- School of BiosciencesEuropean Cancer Stem Cell Research InstituteCardiff UniversityCardiffCF24 4HQUK
| | - Sarah Baker
- Department of HaematologyDivision of Cancer & GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUK
| | - Stephen Man
- Department of HaematologyDivision of Cancer & GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUK
| | | | - Mark Wong
- Trillium Therapeutics IncMississaugaONCanada
| | - Steven J. Coles
- School of Science and the EnvironmentUniversity of WorcesterWorcestershireWR2 6AJUK
| | - Marie Hodges
- Department of HaematologyDivision of Cancer & GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUK
- Cardiff Experimental and Cancer Medicine Centre (ECMC)School of MedicineCardiff UniversityCardiffCF14 4XNUK
| | - Amanda F. Gilkes
- Department of HaematologyDivision of Cancer & GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUK
- Cardiff Experimental and Cancer Medicine Centre (ECMC)School of MedicineCardiff UniversityCardiffCF14 4XNUK
| | - Steven Knapper
- Department of HaematologyDivision of Cancer & GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUK
| | - Richard L. Darley
- Department of HaematologyDivision of Cancer & GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUK
| | - Alex Tonks
- Department of HaematologyDivision of Cancer & GeneticsSchool of MedicineCardiff UniversityCardiffCF14 4XNUK
| |
Collapse
|
33
|
Liu H, Meng S, Yang N, Chen J, Yao H, Zhang Y, Zhang H, Lei B, Wang X, Chen S, Wang T, Wang Y, Wang J, Zhang W. Identification and functional study of novel oligonucleotides: CpG Seq 13 and CpG Seq 19. Immunotherapy 2021; 13:571-585. [PMID: 33781095 DOI: 10.2217/imt-2019-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study explored new immunoadjuvants with stronger immune activity to enhance therapeutic effects against leukemia. Materials & methods: Whole blood and bone marrow of acute myeloid leukemia (AML) patients and healthy volunteers were collected. Isolated mononuclear cells were treated with two newly designed CpG oligodeoxynucleotides, CpG sequence 13 and 19, and known CpG oligodeoxynucleotides and analyzed via flow cytometry. Results: CpG Seq 13 and 19 possess strong immune activation and enhance the proliferation, degranulation and cytotoxicity of T cells. They also inhibit AML cell proliferation. When CpG Seq 13/19 are combined with anti-OX40 antibodies, the cytotoxicity of T cells on AML cells are further enhanced. Conclusion: CpG Seq 13 and 19 are strong immune adjuvant candidates for AML treatment.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shan Meng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Nan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jinqiu Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huan Yao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hui Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bo Lei
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xugeng Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Sheping Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ting Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yueli Wang
- Department of Hematology, South Hospital, Tongchuan People's Hospital, Tongchuan, 727000, China
| | - Jin Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wanggang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
34
|
Wells G, Kennedy PT, Dahal LN. Investigating the Role of Indoleamine 2,3-Dioxygenase in Acute Myeloid Leukemia: A Systematic Review. Front Immunol 2021; 12:651687. [PMID: 33777052 PMCID: PMC7988196 DOI: 10.3389/fimmu.2021.651687] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/10/2021] [Indexed: 01/01/2023] Open
Abstract
Background: The immunomodulatory enzyme, indoleamine 2,3-dioxygenase (IDO) facilitates tryptophan catabolism at the rate-limiting step of the kynurenine (Kyn) pathway. IDO expression and elevations in Kyn metabolites are associated with immunosuppressive tumor microenvironment including T cell proliferative arrest and generation of regulatory T cells (Tregs) which can favor tumor progression. However, the extent of the role of IDO in acute myeloid leukemia (AML) is currently ill-defined. This study reviews the role of IDO-driven Treg function in AML and evaluates the current body of evidence implicating IDO in AML pathogenesis. Method: Studies related to IDO in AML were identified through a systematic review of PubMed and Scopus. Data extracted described sample analysis, IDO expression, IDO in prognosis, techniques used in Treg phenotypic studies, and the effect of IDO inhibitors. Results: Twenty studies were included in the systematic review. Expression of IDO was identified in a range of cells in AML, both inducible and constitutive. Seven studies indicated an association between elevated expression and poor clinical prognosis. Six studies suggested a positive correlation between IDO expression and Treg induction, with FoxP3 being the prominent Treg phenotypic marker. Of eight studies investigating IDO inhibition, some reported reductions in Treg frequency and enhanced effector T cell proliferation. Conclusion: This review highlights that IDO expression in AML is associated with poor prognosis and measurement of IDO and its Kyn metabolites may offer utility as prospective prognostic markers. Pharmacological inhibition of IDO using novel drugs may hold promise for the treatment of AML.
Collapse
Affiliation(s)
- Georgia Wells
- Department of Pharmacology and Therapeutics, Faculty of Life and Health Sciences, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Paul T Kennedy
- Department of Pharmacology and Therapeutics, Faculty of Life and Health Sciences, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, Faculty of Life and Health Sciences, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
35
|
Swatler J, Turos-Korgul L, Kozlowska E, Piwocka K. Immunosuppressive Cell Subsets and Factors in Myeloid Leukemias. Cancers (Basel) 2021; 13:cancers13061203. [PMID: 33801964 PMCID: PMC7998753 DOI: 10.3390/cancers13061203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Effector immune system cells have the ability to kill tumor cells. However, as a cancer (such as leukemia) develops, it inhibits and evades the effector immune response. Such a state of immunosuppression can be driven by several factors – receptors, soluble cytokines, as well as by suppressive immune cells. In this review, we describe factors and cells that constitute immunosuppressive microenvironment of myeloid leukemias. We characterize factors of direct leukemic origin, such as inhibitory receptors, enzymes and extracellular vesicles. Furthermore, we describe suppressive immune cells, such as myeloid derived suppressor cells and regulatory T cells. Finally, we sum up changes in these drivers of immune evasion in myeloid leukemias during therapy. Abstract Both chronic myeloid leukemia and acute myeloid leukemia evade the immune response during their development and disease progression. As myeloid leukemia cells modify their bone marrow microenvironment, they lead to dysfunction of cytotoxic cells, such as CD8+ T cells or NK cells, simultaneously promoting development of immunosuppressive regulatory T cells and suppressive myeloid cells. This facilitates disease progression, spreading of leukemic blasts outside the bone marrow niche and therapy resistance. The following review focuses on main immunosuppressive features of myeloid leukemias. Firstly, factors derived directly from leukemic cells – inhibitory receptors, soluble factors and extracellular vesicles, are described. Further, we outline function, properties and origin of main immunosuppressive cells - regulatory T cells, myeloid derived suppressor cells and macrophages. Finally, we analyze interplay between recovery of effector immunity and therapeutic modalities, such as tyrosine kinase inhibitors and chemotherapy.
Collapse
Affiliation(s)
- Julian Swatler
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
| | - Laura Turos-Korgul
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
| | - Ewa Kozlowska
- Department of Immunology, Institute of Functional Biology and Ecology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (J.S.); (L.T.-K.)
- Correspondence:
| |
Collapse
|
36
|
Wu L, Jiang M, Yu P, Li J, Ouyang W, Feng C, Zhao WL, Dai Y, Huang J. Single-Cell Transcriptome Analysis Identifies Ligand-Receptor Pairs Associated With BCP-ALL Prognosis. Front Oncol 2021; 11:639013. [PMID: 33777800 PMCID: PMC7987943 DOI: 10.3389/fonc.2021.639013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a blood cancer that originates from the abnormal proliferation of B-lymphoid progenitors. Cell population components and cell–cell interaction in the bone marrow microenvironment are significant factors for progression, relapse, and therapy resistance of BCP-ALL. In this study, we identified specifically expressed genes in B cells and myeloid cells by analyzing single-cell RNA sequencing data for seven BCP-ALL samples and four healthy samples obtained from a public database. Integrating 1356 bulk RNA sequencing samples from a public database and our previous study, we found a total of 57 significant ligand–receptor pairs (24 upregulated and 33 downregulated) in the autocrine crosstalk network of B cells. Via assessment of the communication between B cells and myeloid cells, another 29 ligand–receptor pairs were discovered, some of which notably affected survival outcomes. A score-based model was constructed with least absolute shrinkage and selection operator (LASSO) using these ligand–receptor pairs. Patients with higher scores had poorer prognoses. This model can be applied to create predictions for both pediatric and adult BCP-ALL patients.
Collapse
Affiliation(s)
- Liang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Ouyang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Feng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Khaldoyanidi S, Nagorsen D, Stein A, Ossenkoppele G, Subklewe M. Immune Biology of Acute Myeloid Leukemia: Implications for Immunotherapy. J Clin Oncol 2021; 39:419-432. [PMID: 33434043 PMCID: PMC8078464 DOI: 10.1200/jco.20.00475] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | - Anthony Stein
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Gerrit Ossenkoppele
- Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, the Netherlands
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
38
|
Zhu R, Tao H, Lin W, Tang L, Hu Y. Identification of an Immune-Related Gene Signature Based on Immunogenomic Landscape Analysis to Predict the Prognosis of Adult Acute Myeloid Leukemia Patients. Front Oncol 2020; 10:574939. [PMID: 33330048 PMCID: PMC7714942 DOI: 10.3389/fonc.2020.574939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by highly heterogeneous molecular lesions and cytogenetic abnormalities. Immune disorders in AML and impaired immune cell function have been found to be associated with abnormal karyotypes in AML patients. Immunotherapy has become an alternative therapeutic method that can improve the outcomes of AML patients. For solid tumors, the expression patterns of genes associated with the immune microenvironment provide valuable prognostic information. However, the prognostic roles of immune genes in AML have not been studied as yet. In this study, we identified 136 immune-related genes associated with overall survival in AML patients through a univariate Cox regression analysis using data from TCGA-AML and GTEx datasets. Next, we selected 24 hub genes from among the 136 genes based on the PPI network analysis. The 24 immune-related hub genes further underwent multivariate Cox regression analysis and LASSO regression analysis. Finally, a 6 immune-related gene signature was constructed to predict the prognosis of AML patients. The function of the hub IRGs and the relationships between hub IRGs and transcriptional factors were investigated. We found that higher levels of expression of CSK, MMP7, PSMA7, PDCD1, IKBKG, and ISG15 were associated with an unfavorable prognosis of AML patients. Meanwhile, patients in the TCGA-AML datasets were divided into a high risk score group and a low risk score group, based on the median risk score value. Patients in the high risk group tended to show poorer prognosis [P = 0.00019, HR = 1.89 (1.26–2.83)]. The area under the curve (AUC) was 0.6643. Multivariate Cox Regression assay confirmed that the 6 IRG signature was an independent prognostic factor for AML. The prognostic role of the immune related-gene signature was further validated using an independent AML dataset, GSE37642. In addition, patients in the high risk score group in the TCGA dataset were found to be of an advanced age, IDH mutation, and M5 FAB category. These results suggested that the proposed immune related-gene signature may serve as a potential prognostic tool for AML patients.
Collapse
Affiliation(s)
- Ruiqi Zhu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huishan Tao
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyi Lin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Taghiloo S, Asgarian-Omran H. Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways. Crit Rev Oncol Hematol 2020; 157:103164. [PMID: 33271388 DOI: 10.1016/j.critrevonc.2020.103164] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Immune surveillance mechanisms comprising of adaptive and innate immune systems are naturally designed to eliminate AML development. However, leukemic cells apply various immune evasion mechanisms to deviate host immune responses resulting tumor progression. One of the recently well-known immune escape mechanisms is over-expression of immune checkpoint receptors and their ligands. Introduction of blocking antibodies targeting co-inhibitory molecules achieved invaluable success in tumor targeted therapy. Moreover, several new co-inhibitory pathways are currently studying for their potential impacts on improving anti-tumor immune responses. Although immunotherapeutic strategies based on the blockade of immune checkpoint molecules have shown promising results in a number of hematological malignances, their effectiveness in AML patients showed less remarkable success. This review discusses current knowledge about the involvement of co-inhibitory signaling pathways in immune evasion mechanisms of AML and potential application of immune checkpoint inhibitors for targeted immunotherapy of this malignancy.
Collapse
Affiliation(s)
- Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
40
|
Dong X, Zhang D, Zhang J, Chen X, Zhang Y, Zhang Y, Zhou X, Chen T, Zhou H. Immune prognostic risk score model in acute myeloid leukemia with normal karyotype. Oncol Lett 2020; 20:380. [PMID: 33154778 DOI: 10.3892/ol.2020.12243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 01/14/2023] Open
Abstract
Acute myeloid leukemia with normal karyotype (NK-AML) is a group of diseases with high heterogeneity and immunological processes are significantly associated with its initiation and development. The implication of the immunogenomic landscape in the prognosis of patients with NK-AML has remained largely elusive. In the present study, the expression profiles of immune-related genes (IRGs) were examined and their association with overall survival (OS) was determined in 60 patients with NK-AML from The Cancer Genome Atlas dataset and 104 patients from the Gene Expression Omnibus (GEO) dataset no. GSE71014. Univariate Cox regression analysis was used to identify 42 and 203 IRGs in the two respective cohorts, which were significantly associated with OS in NK-AML. A risk model was constructed based on the regression coefficient and expression values of nine survival-associated IRGs shared between the two datasets [zinc finger CCCH-type containing, antiviral 1 like; transferrin receptor; suppressor of cytokine signaling 1; ELAV like RNA binding protein 1; roundabout guidance receptor 3; unc-93 homolog B1, Toll-like receptor signaling regulator; protein tyrosine phosphatase non-receptor type 6; interleukin 2 receptor subunit alpha (IL2RA) and IL3RA]. Using this risk model, patients with NK-AML may be divided into high- and low-risk groups in prognostic predictions. The area under the receiver operating characteristic curve for predicting OS was 0.793. The prognostic role of this risk model was successfully verified in another independent cohort (GEO dataset no. GSE71014). The prognostic risk score was positively associated with age and fms related receptor tyrosine kinase 3 mutation and correlated with infiltration by T regulatory cells. In conclusion, the results of the present study provided an IRG score model for prognostic stratification of adult patients with NK-AML, as well as further insight into the implication of IRGs in NK-AML that may lead to the development of novel immunotherapy approaches for this disease.
Collapse
Affiliation(s)
- Xiaomin Dong
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Danyang Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Juan Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Xiaolei Chen
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Yue Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Yong Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Xiaohuan Zhou
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Tingting Chen
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Hebing Zhou
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
41
|
Wang S, Yang L, Liu Y, Xu Y, Zhang D, Jiang Z, Wang C, Liu Y. A Novel Immune-Related Competing Endogenous RNA Network Predicts Prognosis of Acute Myeloid Leukemia. Front Oncol 2020; 10:1579. [PMID: 32850463 PMCID: PMC7432272 DOI: 10.3389/fonc.2020.01579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a genetically, biologically and clinically heterogeneous hematopoietic malignancy that is highly dependent on the bone marrow (BM) microenvironment. Infiltrated immune cells and stromal cells are an important part of the BM microenvironment and significantly affect the progression of AML. Recently, the competing endogenous RNA hypothesis has gained great interests in the study of molecular and biological mechanisms of tumor occurrence and progression. However, research on how competing endogenous RNA relates to leukemia tumor microenvironment remains uninvestigated. Methods In this study, mRNA, miRNA and lncRNA data and clinical information of the AML cohort were obtained from The Cancer Genome Atlas (TCGA) database, and the immune and stromal scores were calculated using the ESTIMATE algorithm. Results We found that immune scores were significantly correlated with cytogenetic risk and overall survival, and also identified microenvironment-related mRNAs, miRNAs, and lncRNAs based on the immune and stromal scores. Differentially expressed mRNAs and lncRNAs were applied to weighted correlation network analysis (WGCNA) to identify the modules most relevant to the immune microenvironment of AML. Using miRNA database to predict miRNA-targeted genes, we established the immune-related competing endogenous RNA network consisting of 33 lncRNAs, 21 miRNAs and 135 mRNAs. Prognostic analysis was performed on the genes in the immune-related competing endogenous RNA network to screen out 15 lncRNAs, 2 miRNAs and 31 mRNAs with prognostic values. Conclusion In summary, we identified a novel immune-related mRNA-miRNA-lncRNA competing endogenous RNA network associated with the prognosis of AML, which may contribute to better understanding of the development and progression of AML and to serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Yang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Liu
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Yan Xu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Sokołowska A, Świerzko AS, Gajek G, Gołos A, Michalski M, Nowicki M, Szala-Poździej A, Wolska-Washer A, Brzezińska O, Wierzbowska A, Jamroziak K, Kowalski ML, Thiel S, Matsushita M, Jensenius JC, Cedzyński M. Associations of ficolins and mannose-binding lectin with acute myeloid leukaemia in adults. Sci Rep 2020; 10:10561. [PMID: 32601370 PMCID: PMC7324623 DOI: 10.1038/s41598-020-67516-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
We investigated clinical associations of ficolins and mannose-binding lectin (MBL) in 157 patients suffering from acute myeloid leukaemia (AML). Concentrations of ficolin-1, ficolin-2, ficolin-3 and MBL (before chemotherapy) in serum were determined as were selected polymorphisms of the corresponding genes (FCN1, FCN2, FCN3 and MBL2). The control group (C) consisted of 267 healthy unrelated individuals. Median level of ficolin-1 in patients was lower (p < 0.000001) while median levels of ficolin-2, ficolin-3 and MBL were higher (p < 0.000001, p < 0.000001 and p = 0.0016, respectively) compared with controls. These findings were generally associated with AML itself, however the highest MBL levels predicted higher risk of severe hospital infections (accompanied with bacteremia and/or fungaemia) (p = 0.012) while the lowest ficolin-1 concentrations tended to be associated with prolonged (> 7 days) fever (p = 0.026). Genotyping indicated an association of G/G homozygosity (corresponding to FCN1 gene - 542 G > A polymorphism) with malignancy [p = 0.004, OR = 2.95, 95% CI (1.41-6.16)]. Based on ROC analysis, ficolin-1, -2 and -3 may be considered candidate supplementary biomarkers of AML. Their high potential to differentiate between patients from non-malignant controls but also from persons suffering from other haematological cancers (multiple myeloma and lymphoma) was demonstrated.
Collapse
Affiliation(s)
- Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Aleksandra Gołos
- Department of Hematology, Institute of Hematology and Transfusion Medicine, I. Gandhi 14, 02-776, Warsaw, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Copernicus Memorial Hospital in Łódź Comprehensive Cancer Center and Traumatology, Pabianicka 62, 93-513, Lodz, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Hematology, Medical University of Łódź, Ciołkowskiego 2, 93-510, Lodz, Poland
| | - Olga Brzezińska
- Department of Immunology and Allergy, Medical University of Łódź, Pomorska 251, 92-213, Lodz, Poland
- Department of Rheumatology, Medical University of Łódź, Pieniny 30, 92-003, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Łódź, Ciołkowskiego 2, 93-510, Lodz, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, I. Gandhi 14, 02-776, Warsaw, Poland
| | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Łódź, Pomorska 251, 92-213, Lodz, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Jens C Jensenius
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland.
| |
Collapse
|
43
|
Li Z, Philip M, Ferrell PB. Alterations of T-cell-mediated immunity in acute myeloid leukemia. Oncogene 2020; 39:3611-3619. [PMID: 32127646 PMCID: PMC7234277 DOI: 10.1038/s41388-020-1239-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a systemic, heterogeneous hematologic malignancy with poor overall survival. While some malignancies have seen improvements in clinical outcomes with immunotherapy, success of these agents in AML remains elusive. Despite limited progress, stem cell transplantation and donor lymphocyte infusions show that modulation of the immune system can improve overall survival of AML patients. Understanding the causes of immune evasion and disease progression will identify potential immune-mediated targets in AML. This review explores immunosuppressive mechanisms that alter T-cell-mediated immunity in AML.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P. Brent Ferrell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
44
|
Witkowski MT, Kousteni S, Aifantis I. Mapping and targeting of the leukemic microenvironment. J Exp Med 2020; 217:e20190589. [PMID: 31873722 PMCID: PMC7041707 DOI: 10.1084/jem.20190589] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/04/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous studies support a role of the microenvironment in maintenance of the leukemic clone, as well as in treatment resistance. It is clear that disruption of the normal bone marrow microenvironment is sufficient to promote leukemic transformation and survival in both a cell autonomous and non-cell autonomous manner. In this review, we provide a snapshot of the various cell types shown to contribute to the leukemic microenvironment as well as treatment resistance. Several of these studies suggest that leukemic blasts occupy specific cellular and biochemical "niches." Effective dissection of critical leukemic niche components using single-cell approaches has allowed a more precise and extensive characterization of complexity that underpins both the healthy and malignant bone marrow microenvironment. Knowledge gained from these observations can have an important impact in the development of microenvironment-directed targeted approaches aimed at mitigating disease relapse.
Collapse
Affiliation(s)
- Matthew T. Witkowski
- Department of Pathology, New York University School of Medicine, New York, NY
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Stavroula Kousteni
- Department of Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| |
Collapse
|
45
|
Mendez LM, Posey RR, Pandolfi PP. The Interplay Between the Genetic and Immune Landscapes of AML: Mechanisms and Implications for Risk Stratification and Therapy. Front Oncol 2019; 9:1162. [PMID: 31781488 PMCID: PMC6856667 DOI: 10.3389/fonc.2019.01162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
AML holds a unique place in the history of immunotherapy by virtue of being among the first malignancies in which durable remissions were achieved with "adoptive immunotherapy," now known as allogeneic stem cell transplantation. The successful deployment of unselected adoptive cell therapy established AML as a disease responsive to immunomodulation. Classification systems for AML have been refined and expanded over the years in an effort to capture the variability of this heterogeneous disease and risk-stratify patients. Current systems increasingly incorporate information about cytogenetic alterations and genetic mutations. The advent of next generation sequencing technology has enabled the comprehensive identification of recurrent genetic mutations, many with predictive power. Recurrent genetic mutations found in AML have been intensely studied from a cell intrinsic perspective leading to the genesis of multiple, recently approved targeted therapies including IDH1/2-mutant inhibitors and FLT3-ITD/-TKD inhibitors. However, there is a paucity of data on the effects of these targeted agents on the leukemia microenvironment, including the immune system. Recently, the phenomenal success of checkpoint inhibitors and CAR-T cells has re-ignited interest in understanding the mechanisms leading to immune dysregulation and suppression in leukemia, with the objective of harnessing the power of the immune system via novel immunotherapeutics. A paradigm has emerged that places crosstalk with the immune system at the crux of any effective therapy. Ongoing research will reveal how AML genetics inform the composition of the immune microenvironment paving the way for personalized immunotherapy.
Collapse
Affiliation(s)
- Lourdes M. Mendez
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Ryan R. Posey
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Pandolfi
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
46
|
Molica M, Breccia M, Foa R, Jabbour E, Kadia TM. Maintenance therapy in AML: The past, the present and the future. Am J Hematol 2019; 94:1254-1265. [PMID: 31429099 DOI: 10.1002/ajh.25620] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/29/2022]
Abstract
Curative treatment in acute myeloid leukemia (AML) depends on successful induction therapy to achieve a complete remission (CR), and subsequent post-remission therapy to prevent relapse. High relapse rates after consolidation therapy and after allogeneic stem cell transplant contribute to suboptimal outcomes in AML patients, and continue to represent a difficult challenge. Effective maintenance therapy could play an important role in prolonging the remission interval in the post-consolidation setting, especially in high risk AML patients. Maintenance treatment approaches based on conventional chemotherapy, immunotherapy, hypomethylating agents, and targeted small molecules have been explored in this setting, but no data so far have been convincing enough to establish this approach as the standard of care. However, ongoing and future studies including novel targeted therapies may demonstrate promising efficacy that could facilitate incorporation of maintenance therapy into clinical practice. In this review we summarize previous and ongoing approaches of maintenance therapy in AML and discuss the most promising strategies.
Collapse
Affiliation(s)
- Matteo Molica
- Hematology, Department of Translational and Precision MedicineUniversity Sapienza Rome Roma Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision MedicineUniversity Sapienza Rome Roma Italy
| | - Roberto Foa
- Hematology, Department of Translational and Precision MedicineUniversity Sapienza Rome Roma Italy
| | - Elias Jabbour
- Department of LeukemiaThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Tapan M. Kadia
- Department of LeukemiaThe University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
47
|
Identification of prognostic genes in the acute myeloid leukemia immune microenvironment based on TCGA data analysis. Cancer Immunol Immunother 2019; 68:1971-1978. [PMID: 31650199 DOI: 10.1007/s00262-019-02408-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022]
Abstract
Acute myeloid leukemia (AML) is a common and lethal hematopoietic malignancy that is highly dependent on the bone marrow (BM) microenvironment. Infiltrating immune and stromal cells are important components of the BM microenvironment and significantly influence the progression of AML. This study aimed to elucidate the value of immune/stromal cell-associated genes for AML prognosis by integrated bioinformatics analysis. We obtained expression profiles from The Cancer Genome Atlas (TCGA) database and used the ESTIMATE algorithm to calculate immune scores and stromal scores; we then identified differentially expressed genes (DEGs) based on these scores. Overall survival analysis was applied to reveal common DEGs of prognostic value. Subsequently, we conducted a functional enrichment analysis, generated a protein-protein interaction (PPI) network and performed an interrelation analysis of immune system processes, showing that these genes are mainly associated with the immune/inflammatory response. Finally, eight genes (CD163, CYP27A1, KCNA5, PPM1J, FOLR1, IL1R2, MYOF, VSIG2) were verified to be significantly associated with AML prognosis in the Gene Expression Omnibus (GEO) database. In summary, we identified key microenvironment-related genes that affect the outcomes of AML patients and might serve as therapeutic targets.
Collapse
|
48
|
Ye C, Ma S, Xia B, Zheng C. Weighted Gene Coexpression Network Analysis Identifies Cysteine-Rich Intestinal Protein 1 (CRIP1) as a Prognostic Gene Associated with Relapse in Patients with Acute Myeloid Leukemia. Med Sci Monit 2019; 25:7396-7406. [PMID: 31577790 PMCID: PMC6790098 DOI: 10.12659/msm.918092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is associated with a high relapse rate and poor prognosis. This study aimed to use weighted gene coexpression network analysis (WGCNA) of gene coexpression networks to identify candidate prognostic biomarker genes in patients with AML and to investigate the expression of these genes in the human U937 cell line in vitro. MATERIAL AND METHODS RNA-seq data were retrieved from the Cancer Genome Atlas (TCGA) and included bone marrow samples and survival data of patients with AML (N=151), patients who did not relapse after treatment (N=119), and patients with relapse (N=40). Differentially expressed genes were identified, WGCNA was used to detect functional modules, and survival analysis was performed. The Cell Counting Kit-8 (CCK-8) assay investigated the proliferation of U937 cells transfected with short hairpin RNAs (shRNAs), shCRIP1, shHIST1H1C, and shHIST1H1E. RNA-seq analysis identified gene expression following CRIP1 knockdown. RESULTS Eighty-two genes were associated with both relapse and prognosis in patients with AML. There were two prognosis-related gene modules in the coexpression network. In the coexpression network, the histone cluster 1 H1 family member gene, HIST1H1C had the maximum relapse fold change, HIST1H1E had the lowest survival p-value, and the cysteine-rich intestinal protein 1 (CRIP1) gene had the most edge numbers and was significantly associated with poor prognosis (P=0.0165786). RNA-seq data showed that there was a significant difference in gene expression after CRIP1 knockdown in U937 cells. CONCLUSIONS WGCNA of gene coexpression networks identified CRIP1 as a potential prognostic biomarker gene in patients with AML.
Collapse
Affiliation(s)
- Chengyu Ye
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland).,Department of Radiotherapy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Blood Chemotherapy, Wenzhou Central Hospital, Wenzhou, Zhejiang, China (mainland)
| | - Shenglin Ma
- Department of Radiotherapy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Bing Xia
- Department of Radiotherapy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Cuiping Zheng
- Department of Blood Chemotherapy, Wenzhou Central Hospital, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
49
|
Witkowski MT, Lasry A, Carroll WL, Aifantis I. Immune-Based Therapies in Acute Leukemia. Trends Cancer 2019; 5:604-618. [PMID: 31706508 PMCID: PMC6859901 DOI: 10.1016/j.trecan.2019.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022]
Abstract
Treatment resistance remains a leading cause of acute leukemia-related deaths. Thus, there is an unmet need to develop novel approaches to improve outcome. New immune-based therapies with chimeric antigen receptor (CAR) T cells, bi-specific T cell engagers (BiTEs), and immune checkpoint blockers (ICBs) have emerged as effective treatment options for chemoresistant B cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML). However, many patients show resistance to these immune-based approaches. This review describes crucial lessons learned from immune-based approaches targeting high-risk B-ALL and AML, such as the leukemia-intrinsic (e.g., target antigen loss, tumor heterogeneity) and -extrinsic (e.g., immunosuppressive microenvironment) mechanisms that drive treatment resistance, and discusses alternative approaches to enhance the effectiveness of these immune-based treatment regimens.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Disease Susceptibility
- Humans
- Immunity
- Immunotherapy/methods
- Immunotherapy, Adoptive
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Matthew T Witkowski
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | - Audrey Lasry
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - William L Carroll
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Pediatrics, New York University School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
50
|
Xue C, Zhang J, Zhang G, Xue Y, Zhang G, Wu X. Elevated SPINK2 gene expression is a predictor of poor prognosis in acute myeloid leukemia. Oncol Lett 2019; 18:2877-2884. [PMID: 31452767 PMCID: PMC6704320 DOI: 10.3892/ol.2019.10665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) has a high mortality rate and its clinical management remains challenging. The aim of the present study was to identify the hub genes involved in AML. In order to do so, the gene expression data of the GSE9476 database, including 26 AML and 10 normal samples, were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were then identified via bioinformatics analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed on DEGs. Furthermore, the most upregulated genes were selected for further investigation in the Oncomine, gene expression profiling interactive analysis and UALCAN datasets. In total, 1,744 upregulated and 1,956 downregulated genes were detected. The GO and KEGG results revealed that upregulated genes were enriched in metabolic processes, while downregulated genes were associated with the immune response. Serine protease inhibitor Kazal-type 2 (SPINK2) ranked first among all the upregulated genes and was regarded as a hub gene in the development of AML. The overexpression of SPINK2 was validated in 12 patients with AML from the Linyi Central Hospital and in data from the Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Furthermore, the UALCAN and GEPIA datasets demonstrated that patients with high SPINK2 levels had shorter survival times. In conclusion, the results from the present study revealed that the SPINK2 gene was upregulated in patients with AML and that elevated SPINK2 expression was associated with poor outcomes in these patients.
Collapse
Affiliation(s)
- Cuiling Xue
- Department of Hematology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jialing Zhang
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Guiju Zhang
- Department of Nursing, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Yuyan Xue
- Pediatric Department, Chinese Medicine Hospital, Linyi, Shandong 276400, P.R. China
| | - Guiyan Zhang
- Ultrasonography Department, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Xia Wu
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|