1
|
Zhang W, Xiao L, Li D, Hu Y, Yu W. New Strategies for Responding to SARS-CoV-2: The Present and Future of Dual-Target Drugs. J Med Chem 2024; 67:11522-11542. [PMID: 38967785 DOI: 10.1021/acs.jmedchem.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The 2019 coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths, posing a serious threat to public health and safety. Rapid mutations of SARS-CoV-2 and complex interactions among multiple targets during infection pose a risk of expiry for small molecule inhibitors. This suggests that the traditional concept of "one bug, one drug" could be ineffective in dealing with the coronavirus. The dual-target drug strategy is expected to be the key to ending coronavirus infections. However, the lack of design method and improper combination of dual-targets poses obstacle to the discovery of new dual-target drugs. In this Perspective, we summarized the profiles concerning drug design methods, structure-activity relationships, and pharmacological parameters of dual-target drugs for the treatment of COVID-19. Importantly, we underscored how target combination and rational drug design illuminate the development of dual-target drugs for SARS-CoV-2.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lecheng Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Gupta G, Verkhivker G. Exploring Binding Pockets in the Conformational States of the SARS-CoV-2 Spike Trimers for the Screening of Allosteric Inhibitors Using Molecular Simulations and Ensemble-Based Ligand Docking. Int J Mol Sci 2024; 25:4955. [PMID: 38732174 PMCID: PMC11084335 DOI: 10.3390/ijms25094955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Understanding mechanisms of allosteric regulation remains elusive for the SARS-CoV-2 spike protein, despite the increasing interest and effort in discovering allosteric inhibitors of the viral activity and interactions with the host receptor ACE2. The challenges of discovering allosteric modulators of the SARS-CoV-2 spike proteins are associated with the diversity of cryptic allosteric sites and complex molecular mechanisms that can be employed by allosteric ligands, including the alteration of the conformational equilibrium of spike protein and preferential stabilization of specific functional states. In the current study, we combine conformational dynamics analysis of distinct forms of the full-length spike protein trimers and machine-learning-based binding pocket detection with the ensemble-based ligand docking and binding free energy analysis to characterize the potential allosteric binding sites and determine structural and energetic determinants of allosteric inhibition for a series of experimentally validated allosteric molecules. The results demonstrate a good agreement between computational and experimental binding affinities, providing support to the predicted binding modes and suggesting key interactions formed by the allosteric ligands to elicit the experimentally observed inhibition. We establish structural and energetic determinants of allosteric binding for the experimentally known allosteric molecules, indicating a potential mechanism of allosteric modulation by targeting the hinges of the inter-protomer movements and blocking conformational changes between the closed and open spike trimer forms. The results of this study demonstrate that combining ensemble-based ligand docking with conformational states of spike protein and rigorous binding energy analysis enables robust characterization of the ligand binding modes, the identification of allosteric binding hotspots, and the prediction of binding affinities for validated allosteric modulators, which is consistent with the experimental data. This study suggested that the conformational adaptability of the protein allosteric sites and the diversity of ligand bound conformations are both in play to enable efficient targeting of allosteric binding sites and interfere with the conformational changes.
Collapse
Affiliation(s)
- Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA;
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA;
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
3
|
Zhang J, Zhao L, Bai Y, Li S, Zhang M, Wei B, Wang X, Xue Y, Li L, Ma G, Tang Y, Wang X. An ascidian Polycarpa aurata-derived pan-inhibitor against coronaviruses targeting M pro. Bioorg Med Chem Lett 2024; 103:129706. [PMID: 38508325 DOI: 10.1016/j.bmcl.2024.129706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Coronaviruses (CoVs) are responsible for a wide range of illnesses in both animals and human. The main protease (Mpro) of CoVs is an attractive drug target, owing its critical and highly conserved role in viral replication. Here, we developed and refined an enzymatic technique to identify putative Mpro inhibitors from 189 marine chemicals and 46 terrestrial natural products. The IC50 values of Polycarpine (1a), a marine natural substance we studied and synthesized, are 30.0 ± 2.5 nM for SARS-CoV-2 Mpro and 0.12 ± 0.05 μM for PEDV Mpro. Our research further demonstrated that pretreatment with Polycarpine (1a) inhibited the betacoronavirus SARS-CoV-2 and alphacoronavirus PEDV multiplication in Vero-E6 cells. As a result, Polycarpine (1a), a pan-inhibitor of Mpro, will function as an effective and promising antiviral option to combat CoVs infection and as a foundation for further therapeutic research.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Lili Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| | - Yuxin Bai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Shanshan Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Meifang Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Bo Wei
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xianyang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Guiliang Ma
- Department of General Surgery, Qingdao Municipal Hospital, No. 5, Donghaizhong Road, Qingdao 266071, China.
| | - Yu Tang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| |
Collapse
|
4
|
Malar DS, Verma K, Prasanth MI, Tencomnao T, Brimson JM. Network analysis-guided drug repurposing strategies targeting LPAR receptor in the interplay of COVID, Alzheimer's, and diabetes. Sci Rep 2024; 14:4328. [PMID: 38383841 PMCID: PMC10882047 DOI: 10.1038/s41598-024-55013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has greatly affected global health. Emerging evidence suggests a complex interplay between Alzheimer's disease (AD), diabetes (DM), and COVID-19. Given COVID-19's involvement in the increased risk of other diseases, there is an urgent need to identify novel targets and drugs to combat these interconnected health challenges. Lysophosphatidic acid receptors (LPARs), belonging to the G protein-coupled receptor family, have been implicated in various pathological conditions, including inflammation. In this regard, the study aimed to investigate the involvement of LPARs (specifically LPAR1, 3, 6) in the tri-directional relationship between AD, DM, and COVID-19 through network analysis, as well as explore the therapeutic potential of selected anti-AD, anti-DM drugs as LPAR, SPIKE antagonists. We used the Coremine Medical database to identify genes related to DM, AD, and COVID-19. Furthermore, STRING analysis was used to identify the interacting partners of LPAR1, LPAR3, and LPAR6. Additionally, a literature search revealed 78 drugs on the market or in clinical studies that were used for treating either AD or DM. We carried out docking analysis of these drugs against the LPAR1, LPAR3, and LPAR6. Furthermore, we modeled the LPAR1, LPAR3, and LPAR6 in a complex with the COVID-19 spike protein and performed a docking study of selected drugs with the LPAR-Spike complex. The analysis revealed 177 common genes implicated in AD, DM, and COVID-19. Protein-protein docking analysis demonstrated that LPAR (1,3 & 6) efficiently binds with the viral SPIKE protein, suggesting them as targets for viral infection. Furthermore, docking analysis of the anti-AD and anti-DM drugs against LPARs, SPIKE protein, and the LPARs-SPIKE complex revealed promising candidates, including lupron, neflamapimod, and nilotinib, stating the importance of drug repurposing in the drug discovery process. These drugs exhibited the ability to bind and inhibit the LPAR receptor activity and the SPIKE protein and interfere with LPAR-SPIKE protein interaction. Through a combined network and targeted-based therapeutic intervention approach, this study has identified several drugs that could be repurposed for treating COVID-19 due to their expected interference with LPAR(1, 3, and 6) and spike protein complexes. In addition, it can also be hypothesized that the co-administration of these identified drugs during COVID-19 infection may not only help mitigate the impact of the virus but also potentially contribute to the prevention or management of post-COVID complications related to AD and DM.
Collapse
Affiliation(s)
- Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
- Department of Molecular Epidemiology, ICMR- National Institute of Malaria Research (NIMR), New Delhi, India.
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research Unit for Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
5
|
Mulgaonkar N, Wang H, Zhang J, Roundy CM, Tang W, Chaki SP, Pauvolid-Corrêa A, Hamer GL, Fernando S. Montelukast and Telmisartan as Inhibitors of SARS-CoV-2 Omicron Variant. Pharmaceutics 2023; 15:1891. [PMID: 37514075 PMCID: PMC10385313 DOI: 10.3390/pharmaceutics15071891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Earlier studies with montelukast (M) and telmisartan (T) have revealed their potential antiviral properties against SARS-CoV-2 wild-type (WT) but have not assessed their efficacy against emerging Variants of Concern (VOCs) such as Omicron. Our research fills this gap by investigating these drugs' impact on VOCs, a topic that current scientific literature has largely overlooked. We employed computational methodologies, including molecular mechanics and machine learning tools, to identify drugs that could potentially disrupt the SARS-CoV-2 spike RBD-ACE2 protein interaction. This led to the identification of two FDA-approved small molecule drugs, M and T, conventionally used for treating asthma and hypertension, respectively. Our study presents an additional potential use for these drugs as antivirals. Our results show that both M and T can inhibit not only the WT SARS-CoV-2 but also, in the case of M, the Omicron variant, without reaching cytotoxic concentrations. This novel finding fills an existing gap in the literature and introduces the possibility of repurposing these drugs for SARS-CoV-2 VOCs, an essential step in responding to the evolving global pandemic.
Collapse
Affiliation(s)
- Nirmitee Mulgaonkar
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA
| | - Haoqi Wang
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA
| | - Junrui Zhang
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA
| | | | - Wendy Tang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sankar Prasad Chaki
- Texas A&M Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX 77843, USA
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sandun Fernando
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Cheng FJ, Ho CY, Li TS, Chen Y, Yeh YL, Wei YL, Huynh TK, Chen BR, Ko HY, Hsueh CS, Tan M, Wu YC, Huang HC, Tang CH, Chen CH, Tu CY, Huang WC. Umbelliferone and eriodictyol suppress the cellular entry of SARS-CoV-2. Cell Biosci 2023; 13:118. [PMID: 37381062 DOI: 10.1186/s13578-023-01070-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Artemisia argyi (A. argyi), also called Chinese mugwort, has been widely used to control pandemic diseases for thousands of years since ancient China due to its anti-microbial infection, anti-allergy, and anti-inflammation activities. Therefore, the potential of A. argyi and its constituents in reducing the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated in this study. RESULTS Among the phytochemicals in A. argyi, eriodictyol and umbelliferone were identified to target transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2) proteins, the essential factors for the cellular entry of SARS-CoV-2, in both FRET-based enzymatic assays and molecular docking analyses. These two ingredients of A. argyi suppressed the infection of ACE2-expressed HEK-293 T cells with lentiviral-based pseudo-particles (Vpp) expressing wild-type and variants of SARS-CoV-2 spike (S) protein (SARS-CoV-2 S-Vpp) via interrupting the interaction between S protein and cellular receptor ACE2 and reducing the expressions of ACE2 and TMPRSS2. Oral administration with umbelliferone efficiently prevented the SARS-CoV-2 S-Vpp-induced inflammation in the lung tissues of BALB/c mice. CONCLUSIONS Eriodictyol and umbelliferone, the phytochemicals of Artemisia argyi, potentially suppress the cellular entry of SARS-CoV-2 by preventing the protein binding activity of the S protein to ACE2.
Collapse
Affiliation(s)
- Fang-Ju Cheng
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chien-Yi Ho
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 404, Taiwan
- Division of Family Medicine, Physical Examination Center, China Medical University Hsinchu Hospital, Hsinchu, 302, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, 302, Taiwan
| | - Tzong-Shiun Li
- Department of Plastic Surgery, and Innovation Research Center, Show Chwan Memorial Hospital, Changhua, 500, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yeh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yi-Lun Yeh
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Thanh Kieu Huynh
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Bo-Rong Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Hung-Yu Ko
- Cognitive Science, University of California San Diego, San Diego, CA, 92093, USA
| | - Chen-Si Hsueh
- Taichung Girls' Senior High School, Taichung, 403, Taiwan
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 404, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chia-Hung Chen
- School of Medicine, China Medical University, Taichung, 404, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, 404, Taiwan
| | - Chih-Yen Tu
- School of Medicine, China Medical University, Taichung, 404, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, 404, Taiwan
| | - Wei-Chien Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, 302, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 413, Taiwan.
- Drug Development Center, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
7
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
8
|
McCarthy MW. Montelukast as a potential treatment for COVID-19. Expert Opin Pharmacother 2023; 24:551-555. [PMID: 36927284 DOI: 10.1080/14656566.2023.2192866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
INTRODUCTION Montelukast is a leukotriene inhibitor that is widely used to treat chronic asthma and allergic rhinitis. The drug interferes with molecular signaling pathways produced by leukotrienes in a variety of cells and tissues throughout the human body that lead to tightening of airway muscles, production of aberrant pulmonary fluid (airway edema), and in some cases, pulmonary inflammation. AREAS COVERED Montelukast has also been noted to have anti-inflammatory properties, suggesting it may have a role in the treatment of coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has been noted to induce misfiring of the immune system in some patients. A literature search of PubMed was performed to identify all relevant studies of montelukast and SARS-CoV-2 through 27 January 2023. EXPERT OPINION Montelukast has been the subject of small studies of SARS-CoV-2 and will be included in a large, randomized, double-blind, placebo-controlled study of outpatients with COVID-19 sponsored by the United States National Institutes of Health known as Accelerating COVID-19 Therapeutic Interventions and Vaccines-6. This paper reviews what is known about montelukast, an inexpensive, well-tolerated, and widely available medication, and examines the rationale for using this drug to potentially treat patients with COVID-19.
Collapse
|
9
|
Serezani CH, Divangahi M, Peters-Golden M. Leukotrienes in Innate Immunity: Still Underappreciated after All These Years? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:221-227. [PMID: 36649580 DOI: 10.4049/jimmunol.2200599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
Leukotrienes (LTs) are lipid mediators derived from the 5-lipoxygenase pathway of arachidonate metabolism. Though best known for their role in asthma, they have broad actions that touch on virtually every aspect of mammalian biology. In a Brief Review published in the journal in 2005, we presented the existing evidence supporting a role for LTs in host defense. In this updated Brief Review, we focus on selected advances since then. We detail new insights into mechanisms and regulation of LT biosynthesis; the protective roles of LTs in the host response to diverse classes of pathogens, with an emphasis on viruses, including SARS-CoV-2; the phagocyte signal transduction mechanisms by which LTs exert their antimicrobial actions; the capacity for overexuberant LT production to promote tissue damage; and roles of LTs in the noninfectious immune-relevant conditions neuroinflammation and cancer.
Collapse
Affiliation(s)
- C Henrique Serezani
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Maziar Divangahi
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology & Immunology, McGill University Health Centre, Montreal, QC, Canada
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Marc Peters-Golden
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI; and
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
10
|
Shamkh IM, Elkazzaz M, Radwan ES, Najeeb J, Rehman MT, AlAjmi MF, Shahwan M, Sufyan M, Alaqeel NK, Ibrahim IA, Jabbar B, Khan MS, Karpiński TM, Haikal A, Aljowaie RM, Almutairi SM, Ahmed A. AI-driven Discovery of Celecoxib and Dexamethasone for Exploring their Mode of Action as Human Interleukin (IL-6) Inhibitors to Treat COVID-19-induced Cytokine Storm in Humans. Curr Pharm Des 2023; 29:2752-2762. [PMID: 37921134 DOI: 10.2174/0113816128260449231017091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND In the case of COVID-19 patients, it has been observed that the immune system of the infected person exhibits an extreme inflammatory response known as cytokine release syndrome (CRS) where the inflammatory cytokines are swiftly produced in quite large amounts in response to infective stimuli. Numerous case studies of COVID-19 patients with severe symptoms have documented the presence of higher plasma concentrations of human interleukin-6 (IL-6), which suggests that IL-6 is a crucial factor in the pathophysiology of the disease. In order to prevent CRS in COVID-19 patients, the drugs that can exhibit binding interactions with IL-6 and block the signaling pathways to decrease the IL-6 activity may be repurposed. METHODS This research work focused on molecular docking-based screening of the drugs celecoxib (CXB) and dexamethasone (DME) to explore their potential to interact with the binding sites of IL-6 protein and reduce the hyper-activation of IL-6 in the infected personnel. RESULTS Both of the drugs were observed to bind with the IL-6 (IL-6 receptor alpha chain) and IL-6Rα receptor with the respective affinities of -7.3 kcal/mol and -6.3 kcal/mol, respectively, for CXB and DME. Moreover, various types of binding interactions of the drugs with the target proteins were also observed in the docking studies. The dynamic behaviors of IL-6/IL-6Rα in complex with the drugs were also explored through molecular dynamics simulation analysis. The results indicated significant stabilities of the acquired drug-protein complexes up to 100 ns. CONCLUSION The findings of this study have suggested the potential of the drugs studied to be utilized as antagonists for countering CRS in COVID-19 ailment. This study presents the studied drugs as promising candidates both for the clinical and pre-clinical treatment of COVID-19.
Collapse
Affiliation(s)
- Israa M Shamkh
- Chemo and Bioinformatics Lab, Bio Search Research Institution BSRI, Giza 12613, Egypt
| | - Mahmoud Elkazzaz
- Department of Chemistry and Biochemistry, Faculty of Science, Damietta University, Damietta 7952567, Egypt
| | - Enas S Radwan
- Faculty of Science, Zarqa University, Zarqa 13132, Jordan
| | - Jawayria Najeeb
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nouf Khalifa Alaqeel
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibrahim A Ibrahim
- Botany and Microbiology Department (Biotechnology Program), Faculty of Science, Damietta University, Damietta, Egypt
| | - Basit Jabbar
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mohammad Shahbaz Khan
- Children's National Hospital, George Washington University, Washington, DC 20010, USA
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, Poznań 61-712, Poland
| | - Abdullah Haikal
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Amr Ahmed
- Director of Tuberculosis Ghubera Mobile Team, Public Health Department, First Health Cluster, Ministry of Health, Riyadh 966-11, Saudi Arabia
| |
Collapse
|
11
|
Chen Y, Wang X, Shi H, Zou P. Montelukast Inhibits HCoV-OC43 Infection as a Viral Inactivator. Viruses 2022; 14:v14050861. [PMID: 35632604 PMCID: PMC9143845 DOI: 10.3390/v14050861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses (CoVs) consist of a large group of RNA viruses causing various diseases in humans and in lots of animals. Human coronavirus (HCoV) OC43, the prototype of beta-coronavirus discovered in the 1960s, has been circulating in humans for long time, and infection with other emerging strains of beta-coronavirus (SARS-CoV, SARS-CoV-2, and MERS-CoV) can lead to severe illness and death. In this study, we found that montelukast, a leukotriene receptor antagonist, potently inhibited the infection of HCoV-OC43 in distinct cells in a dose- and time- dependent manner. Additionally, the results showed that montelukast induced release of HCoV-OC43 genomic RNA by disrupting the integrity of the viral lipid membrane, and irreversibly inhibited viral infection. Considering the similarity among HCoV-OC43, MERS-CoV, and SARS-CoV-2, it suggests that montelukast may be a potential candidate for the treatment of human beta-coronavirus infection.
Collapse
Affiliation(s)
| | | | | | - Peng Zou
- Correspondence: ; Tel.: +86-21-3799-0333 (ext. 5273)
| |
Collapse
|