1
|
Zhang A, Zhang J, Li X, Zhou X, Feng Y, Zhu L, Zhang H, Sun L, Li T. Deciphering odontogenic myxoma: the role of copy number variations as diagnostic signatures. J Zhejiang Univ Sci B 2024; 25:1071-1082. [PMID: 39743294 DOI: 10.1631/jzus.b2400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/10/2024] [Indexed: 01/04/2025]
Abstract
In light of the lack of reliable molecular markers for odontogenic myxoma (OM), the detection of copy number variation (CNV) may present a more objective method for assessing ambiguous cases. In this study, we employed multiregional microdissection sequencing to integrate morphological features with genomic profiling. This allowed us to reveal the CNV profiles of OM and compare them with dental papilla (DP), dental follicle (DF), and odontogenic fibroma (OF) tissues. We identified a distinct and robustly consistent CNV pattern in 93.75% (30/32) of OM cases, characterized by CNV gain events in chromosomes 4, 5, 8, 10, 12, 16, 17, 20, and 21. This pattern significantly differed from the CNV patterns observed in DP, DF, and OF. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated potential links between this CNV patterns and the calcium signaling pathway and salivary secretion, while Gene Ontology (GO) term analysis implicated CNV patterns in tumor adhesion, tooth development, and cell proliferation. Comprehensive CNV analysis accurately identified a case that was initially disputable between OF and OM as OM. Our findings provide a reliable diagnostic clue and fresh insights into the molecular biological mechanism underlying OM.
Collapse
Affiliation(s)
- Aobo Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Xuefen Li
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xia Zhou
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yanrui Feng
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Heyu Zhang
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China. ,
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China. ,
| | - Lisha Sun
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China. ,
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China. ,
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| |
Collapse
|
2
|
Loktionova MV, Mohammadian M, Choopani R, Kheiri S, Mohammadian-Hafshejani A. Investigating the relationship between insulin use and all-cause mortality, breast cancer mortality, and recurrence risk in diabetic patients with breast cancer: A comprehensive systematic review and meta-analysis. PLoS One 2024; 19:e0314565. [PMID: 39636922 PMCID: PMC11620406 DOI: 10.1371/journal.pone.0314565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The co-occurrence of breast cancer and diabetes presents complex clinical challenges, as each condition may influence the progression and management of the other, potentially worsening patient outcomes. This study aims to examine the association between insulin use and the risks of all-cause mortality, breast cancer-specific mortality, and recurrence in diabetic patients with breast cancer. METHODS A systematic review and meta-analysis were conducted using studies identified from multiple databases, including Web of Science, Scopus, PubMed, Cochrane, Google Scholar, and Embase. The meta-analysis approach was used to estimate the relative risk (RR) of the relationship between insulin use and the risks of all-cause mortality, breast cancer-specific mortality, and recurrence in diabetic patients with breast cancer. Heterogeneity among studies was assessed using statistical tests such as the Chi-square test, I2, and forest plots. Meta-regression and sensitivity analyses were performed to explore sources of heterogeneity. The quality of the included studies was assessed using the Newcastle-Ottawa Scale checklist. Data were analyzed using Stata version 17 (Stata Corp, College Station, Texas). RESULTS Data from 22 studies conducted between 2002 and 2023, with a total of 159,674 participants, were analyzed. Nineteen studies were rated as high quality, and three as moderate quality. Diabetic patients with breast cancer who received insulin had a 1.65 (95% CI: 1.36-2.02; P < 0.001; I2 = 89.7%) times higher risk of overall mortality compared to those who did not use insulin. Meta-regression revealed that sample size and study quality were significant contributors to heterogeneity (P ≤ 0.10). Furthermore, insulin use was associated with a 1.22 (95% CI: 1.05-1.42; P = 0.009; I2 = 37.9%) times higher risk of breast cancer-specific mortality. For breast cancer recurrence, insulin use was associated with a 1.45 (95% CI: 1.19-1.77; P < 0.001; I2 = 3.4%) times higher risk. Sensitivity analysis confirmed the stability of the results across all outcomes. CONCLUSION This meta-analysis provides strong evidence that insulin use in diabetic patients with breast cancer is associated with increased risks of overall mortality, breast cancer-specific mortality, and recurrence. These findings underscore the need for careful consideration of insulin therapy in this patient population.
Collapse
Affiliation(s)
- Marina V. Loktionova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Mahdi Mohammadian
- MSc in Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Choopani
- Assistant Professor of Neonatal-Perinatal Medicine, Department of Pediatrics, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soleiman Kheiri
- Professor of Biostatistics, Department of Epidemiology and Biostatistics, School of Public Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abdollah Mohammadian-Hafshejani
- Assistant Professor of Epidemiology, Modeling in Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Adham SA, Al Kalbani A, Al Zeheimi N, Al Dalali M, Al Kharusi N, Siddiqi A, Al Maskari A. Glycemic load impacts the response of acquired resistance in breast cancer cells to chemotherapeutic drugs in vitro. PLoS One 2024; 19:e0311345. [PMID: 39576770 PMCID: PMC11584130 DOI: 10.1371/journal.pone.0311345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/17/2024] [Indexed: 11/24/2024] Open
Abstract
Resisting chemotherapy is a significant hurdle in treating breast cancer. Locally advanced breast cancer patients undergo four cycles of Adriamycin and Cyclophosphamide, followed by four cycles of Paclitaxel before surgery. Some patients resist this regimen, and their cancer recurred. Our study aimed to understand the underlying mechanisms of acquired resistance during these specific treatment phases. We explored how breast cancer cells, resistant to chemotherapy, respond to different glucose levels, shedding light on the intricate relationship between diabetes, breast cancer subtype, and resistance to preoperative chemotherapy. We examined two groups of cell lines: the standard MDA-MB-231 and MCF7 cells and their resistant counterparts after exposure to four cycles of Adriamycin and cyclophosphamide (4xAC) or four cycles of 4xAC and Paclitaxel (4xAC+4xPAC), aiming to unravel the mechanisms and cellular responses at these critical treatment stages. Notably, under normal and low glucose conditions, the resistant MDA-MB-231 cells showed accelerated growth compared to the control cells, while the resistant MCF7 cells proliferated more slowly than their original counterparts. Resistance to 4xAC resulted in significant cell death in both cell lines, especially under low glucose conditions, in contrast to control or 4xAC+4xPAC-resistant cells. The similarity between the MCF7 4xAC+4xPAC resistant cells and the control might be due to the P-AKT expression pattern in response to glucose levels since the levels were constant in MCF7 4xAC in all glucose concentrations. Molecular analysis revealed specific protein accumulations explaining the heightened proliferation and invasion in resistant MDA-MB-231 cells and their ability to withstand low glucose levels compared to MCF7. In conclusion, increased drug involvement corresponds to increased cell resistance, and changes in glucose levels differentially impact resistant variant cells to different drugs. The findings can be translated clinically to explain patients' differential responses to preoperative chemotherapy cycles considering their breast cancer subtype and diabetic status.
Collapse
Affiliation(s)
- Sirin A. Adham
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Azza Al Kalbani
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Noura Al Zeheimi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Muna Al Dalali
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Noor Al Kharusi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Azeeza Siddiqi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Aliya Al Maskari
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
4
|
Niazmand A, Nedaeinia R, Vatandoost N, Jafarpour S, Safabakhsh S, Kolahdouz M, Ferns GA, Salehi R. The impacts of dipeptidyl- peptidase 4 (DPP-4) inhibitors on common female malignancies: A systematic review. Gene 2024; 927:148659. [PMID: 38866262 DOI: 10.1016/j.gene.2024.148659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The inhibition of dipeptidyl- peptidase 4 (DPP-4) is an essential therapy for controlling hyperglycemia in patients with type 2 diabetes (T2DM). However, the role of DPP-4 in cancer is not yet clear, with some studies suggesting that it may either promote or suppress tumors. This makes it crucial to have personalized treatment for diabetic women with cancer to effectively manage their diabetes whilst and preventing cancer mortality. To address this issue, we conducted an integrative in-silico analysis and systematic review of the literature to comprehensively examine the relationship between DPP-4 expression and the effects of its inhibitors on prevalent female malignancies. We specifically chose studies that examined the effects of DPP-4 expression and DPP-4 inhibition (DPP-4i) on prevalent cancers in women, such as breast cancer (BC), ovarian cancer (OV), cervical cancer (CC), and endometrial cancer (EC). These studies comprised those conducted both in vivo and in vitro. The review of the literature indicated that DPP-4i may worsen aggressive traits such as metastasis, Epithelial-to-mesenchymal transition (EMT), and chemotherapy resistance in BC cells. However, cohort studies on diabetic and BC patients did not confirm these findings. In vitro studies indicate that on OV, DPP-4 upregulation has been shown to prevent metastasis, while CCappears to be influenced by DPP-4 expression in terms of cell migration. sitagliptin, a pharmaceutical inhibitor of DPP-4, had a significant impact on reducing adhesion in CC cells in vitro. Overexpression of DPP-4 increased cell migration and proliferation in CC and EC cells, and hence the application of sitagliptin is expected to prevent this effect. On the other hand, the result of in-silico data confirmed that a significant correlation exists between DPP-4 expression and immune cell infiltration in breast, ovarian, cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) as well as downregulated in these cancers compared to their normal tissue samples. Furthermore, a significant (p < 0.05) effect on OS of BC and CESC patients has been reported due to the elevation of DPP-4 methylation on a specific CPG Island. These findings could aid in creating specialized treatments for diabetic women with specific malignancies, but caution should be exercised when considering the patient's medical history and cancer type.
Collapse
Affiliation(s)
- Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Jafarpour
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU 96910, USA
| | - Mahsa Kolahdouz
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PH, Sussex, UK
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Nkoana JK, Mphahlele MJ, More GK, Choong YS. Exploring the 3,5-Dibromo-4,6-dimethoxychalcones and Their Flavone Derivatives as Dual α-Glucosidase and α-Amylase Inhibitors with Antioxidant and Anticancer Potential. Antioxidants (Basel) 2024; 13:1255. [PMID: 39456508 PMCID: PMC11505200 DOI: 10.3390/antiox13101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The rising levels of type 2 diabetes mellitus (T2DM) and the poor medical effects of the commercially available antidiabetic drugs necessitate the development of potent analogs to treat this multifactorial metabolic disorder. It has been demonstrated that targeting two or more biochemical targets associated with the onset and progression of diabetes along with oxidative stress and/or cancer could be a significant strategy for treating complications related to this metabolic disorder. The 3,5-dibromo-4,6-dimethoxychalcones (2a-f) and the corresponding flavone derivatives (3a-f) were synthesized and characterized using spectroscopic (NMR, HR-MS and FT-IR) techniques. The inhibitory effect of both series of compounds against α-glucosidase and α-amylase was evaluated in vitro through enzymatic assays. Selected compounds were also evaluated for potential to activate or inhibit superoxide dismutase. Compound 3c was selected as a representative model for the flavone series and evaluated spectrophotometrically for potential to coordinate Cu(II) and/or Zn(II) ions implicated in the metal-catalyzed free radical generation. A plausible mechanism for metal-chelation of the test compounds is presented. Furthermore, the most active compounds from each series against the test carbohydrate-hydrolyzing enzymes were selected and evaluated for their antigrowth effect on the human breast (MCF-7) and lung (A549) cancer cell lines and for cytotoxicity against the African Green Monkey kidney (Vero) cell line. The parent chalcone 2a and flavone derivatives 3a, 3c and 3e exhibited relatively high inhibitory activity against the MCF-7 cells with IC50 values of 4.12 ± 0.55, 8.50 ± 0.82, 5.10 ± 0.61 and 6.96 ± 0.66 μM, respectively. The chalcones 2a and 2c exhibited significant cytotoxicity against the A549 cells with IC50 values of 7.40 ± 0.67 and 9.68 ± 0.80 μM, respectively. Only flavone 3c exhibited relatively strong and comparable cytotoxicity against the MCF-7 and A549 cell lines with IC50 values of 6.96 ± 0.66 and 6.42 ± 0.79 μM, respectively. Both series of compounds exhibited strong activity against the MCF-7 and A549 cell lines compared to the analogous quercetin (IC50 = 35.40 ± 1.78 and 35.38 ± 1.78 μM, respectively) though moderate compared to nintedanib (IC50 = 0.53 ± 0.11 and 0.74 ± 0.15 μM, respectively). The test compounds generally exhibited reduced cytotoxicity against the Vero cells compared to this anticancer drug. Molecular docking revealed strong alignment of the test compounds with the enzyme backbone to engage in hydrogen bonding interaction/s and hydrophobic contacts with the residues in the active sites of α-glucosidase and α-amylase. The test compounds possess favorable drug-likeness properties, supporting their potential as therapeutic candidates against T2DM.
Collapse
Affiliation(s)
- Jackson K. Nkoana
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Malose J. Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Garland K. More
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, George Town 11800, Penang, Malaysia;
| |
Collapse
|
6
|
Zhao M, Chen YL, Yang LH. Advancements in the study of glucose metabolism in relation to tumor progression and treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:11-18. [PMID: 39111717 DOI: 10.1016/j.pbiomolbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Sugar serves as the primary energy source for mammals, with glucose metabolism facilitating energy acquisition in human cells. The proper functioning of intracellular glucose metabolism is essential for the maintenance of orderly and healthy physiological activities. Tumor cells, characterized by uncontrolled growth, exhibit dysregulated proliferation and apoptosis processes, leading to abnormal alterations in glucose metabolism. Specifically, tumor cells exhibit a shift towards aerobic glycolysis, resulting in the production of lactic acid that can be utilized as a metabolic intermediate for sustained tumor cell growth. This article provides a comprehensive overview of the enzymes involved in glucose metabolism and the alterations in gene expression that occur during tumor progression. It also examines the current research on targeting abnormal glucose metabolism processes for tumor treatment and discusses potential future directions for utilizing glucose metabolism as a therapeutic target.
Collapse
Affiliation(s)
- Meng Zhao
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Department of Pathophysiology, College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Lian-He Yang
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
7
|
Sergi D, Melloni M, Passaro A, Neri LM. Influence of Type 2 Diabetes and Adipose Tissue Dysfunction on Breast Cancer and Potential Benefits from Nutraceuticals Inducible in Microalgae. Nutrients 2024; 16:3243. [PMID: 39408212 PMCID: PMC11478231 DOI: 10.3390/nu16193243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer (BC) represents the most prevalent cancer in women at any age after puberty. From a pathogenetic prospective, despite a wide array of risk factors being identified thus far, poor metabolic health is emerging as a putative risk factor for BC. In particular, type 2 diabetes mellitus (T2DM) provides a perfect example bridging the gap between poor metabolic health and BC risk. Indeed, T2DM is preceded by a status of hyperinsulinemia and is characterised by hyperglycaemia, with both factors representing potential contributors to BC onset and progression. Additionally, the aberrant secretome of the dysfunctional, hypertrophic adipocytes, typical of obesity, characterised by pro-inflammatory mediators, is a shared pathogenetic factor between T2DM and BC. In this review, we provide an overview on the effects of hyperglycaemia and hyperinsulinemia, hallmarks of type 2 diabetes mellitus, on breast cancer risk, progression, treatment and prognosis. Furthermore, we dissect the role of the adipose-tissue-secreted adipokines as additional players in the pathogenesis of BC. Finally, we focus on microalgae as a novel superfood and a source of nutraceuticals able to mitigate BC risk by improving metabolic health and targeting cellular pathways, which are disrupted in the context of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Önder T, Ateş Ö, Öner İ, Karaçin C. Triglyceride-Glucose Index: A Candidate Prognostic Marker in HR-Positive/HER2-Negative Metastatic Breast Cancer Patients Treated With CDK4/6 Inhibitors. Clin Breast Cancer 2024; 24:519-526. [PMID: 38879437 DOI: 10.1016/j.clbc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024]
Abstract
AIMS AND OBJECTIVES Although cyclin-dependent kinase 4/6 inhibitors (CDK 4/6i) are a vital part of the treatment of hormone receptor (HR)-positive/HER-2-negative metastatic breast cancer (BC), individuals have different sensitivities to CDK4/6i, indicating the need for biomarkers. The fasting triglyceride glucose (TyG) index is an easily accessible surrogate marker of insulin resistance (IR). Herein, we investigated the prognostic significance of the fasting triglyceride glucose (TyG) index in HR+/HER2- metastatic BC patients treated with CDK4/6i plus endocrine therapy (ET). METHODS About 333 patients with HR+/HER2-metastatic BC treated with CDK4/6i plus ET were analyzed retrospectively. The TyG index was calculated within 3 months before the initiation of CDK4/6i plus ET. The median value of 8.43 was taken as the cutoff for the TyG index. RESULTS The median overall survival (OS) was 73.6 months (95% CI, 66.0-81.1) in the whole cohort. The progression-free survival (PFS) was significantly longer in the low-TyG subgroup than in the high-TyG subgroup (30.1 vs. 21.3 months, multivariate adjusted [HR] = 0.666, 95% CI, 0.450-0.987, P = .043). While the median OS was not reached in the low TyG subgroup, it was 69.0 months in the high TyG subgroup (multivariate-adjusted HR = 0.513, 95% CI, 0.281-0.936, P = .030). Although the ORR and DCR were numerically greater in the low-TyG subgroup, no significant differences were observed between the low-TyG subgroup and high-TyG subgroup (28.1% vs. 24.7%, P = .476; 83.2% vs. 80.1%, P = .463, respectively). CONCLUSIONS These data imply that the TyG index could be a predictive biomarker for the therapeutic efficacy of CDK4/6is. Extensive prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Tuğba Önder
- Health Sciences University, Dr Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Department of Medical Oncology, Yenimahalle Ankara, Turkey.
| | - Öztürk Ateş
- Health Sciences University, Dr Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Department of Medical Oncology, Yenimahalle Ankara, Turkey
| | - İrem Öner
- Health Sciences University, Dr Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Department of Medical Oncology, Yenimahalle Ankara, Turkey
| | - Cengiz Karaçin
- Health Sciences University, Dr Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Department of Medical Oncology, Yenimahalle Ankara, Turkey
| |
Collapse
|
9
|
Huang Y, Chen C, Liu Y, Tan B, Xiang Q, Chen Q, Wang Y, Yang W, He J, Zhou D, Wang Y, Gao K, Zheng D, Zhai R. Downregulation of tRF-Cys-GCA-029 by hyperglycemia promotes tumorigenesis and glycolysis of diabetic breast cancer through upregulating PRKCG translation. Breast Cancer Res 2024; 26:117. [PMID: 39039568 PMCID: PMC11265092 DOI: 10.1186/s13058-024-01870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) affects up to one-third of breast cancer (BC) patients. Patients with co-existing BC and DM (BC-DM) have worsened BC prognosis. Nevertheless, the molecular mechanisms orchestrating BC-DM prognosis remain poorly understood. tRNA-derived fragments (tRFs) have been shown to regulate cancer progression. However, the biological role of tRFs in BC-DM has not been explored. METHODS tRF levels in tumor tissues and cells were detected by tRF sequencing and qRT-PCR. The effects of tRF on BC cell malignancy were assessed under euglycemic and hyperglycemic conditions in vitro. Metabolic changes were assessed by lactate, pyruvate, and extracellular acidification rate (ECAR) assays. Diabetic animal model was used to evaluate the impacts of tRF on BC tumor growth. RNA-sequencing (RNA-seq), qRT-PCR, Western blot, polysome profiling, luciferase reporter assay, and rescue experiments were performed to explore the regulatory mechanisms of tRF in BC-DM. RESULTS We identified that tRF-Cys-GCA-029 was downregulated in BC-DM tissues and under hyperglycemia conditions in BC cells. Functionally, downregulation of tRF-Cys-GCA-029 promoted BC cell proliferation and migration in a glucose level-dependent manner. tRF-Cys-GCA-029 knockdown also enhanced glycolysis metabolism in BC cells, indicated by increasing lactate/pyruvate production and ECAR levels. Notably, injection of tRF-Cys-GCA-029 mimic significantly suppressed BC tumor growth in diabetic-mice. Mechanistically, tRF-Cys-GCA-029 regulated BC cell malignancy and glycolysis via interacting with PRKCG in two ways: binding to the coding sequence (CDS) of PRKCG mRNA to regulate its transcription and altering polysomal PRKCG mRNA expression to modify its translation. CONCLUSIONS Hyperglycemia-downregulated tRF-Cys-GCA-029 enhances the malignancy and glycolysis of BC cells. tRF-Cys-GCA-029-PRKCG-glycolysis axis may be a potential therapeutic target against BC-DM.
Collapse
Affiliation(s)
- Yongyi Huang
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Cheng Chen
- Department of Cell Biology, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Yang Liu
- Department of Surgery, Cancer Hospital of Harbin Medical University, Harbin, 150081, China
| | - Binbin Tan
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Qin Xiang
- Department of Cell Biology, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Qianqian Chen
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Yiling Wang
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Wenhan Yang
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Jingsong He
- Department of Breast Surgery, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Duanyang Zhou
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Yuting Wang
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Kaiping Gao
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518055, China.
| | - Duo Zheng
- Department of Cell Biology, Shenzhen University Medical School, Shenzhen, 518055, China.
| | - Rihong Zhai
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Xu JX, Zhu QL, Bi YM, Peng YC. New evidence: Metformin unsuitable as routine adjuvant for breast cancer: a drug-target mendelian randomization analysis. BMC Cancer 2024; 24:691. [PMID: 38844880 PMCID: PMC11155042 DOI: 10.1186/s12885-024-12453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
PURPOSE The potential efficacy of metformin in breast cancer (BC) has been hotly discussed but never conclusive. This genetics-based study aimed to evaluate the relationships between metformin targets and BC risk. METHODS Metformin targets from DrugBank and genome-wide association study (GWAS) data from IEU OpenGWAS and FinnGen were used to investigate the breast cancer (BC)-metformin causal link with various Mendelian Randomization (MR) methods (e.g., inverse-variance-weighting). The genetic association between type 2 diabetes (T2D) and the drug target of metformin was also analyzed as a positive control. Sensitivity and pleiotropic tests ensured reliability. RESULTS The primary targets of metformin are PRKAB1, ETFDH and GPD1L. We found a causal association between PRKAB1 and T2D (odds ratio [OR] 0.959, P = 0.002), but no causal relationship was observed between metformin targets and overall BC risk (PRKAB1: OR 0.990, P = 0.530; ETFDH: OR 0.986, P = 0.592; GPD1L: OR 1.002, P = 0.806). A noteworthy causal relationship was observed between ETFDH and estrogen receptor (ER)-positive BC (OR 0.867, P = 0.018), and between GPD1L and human epidermal growth factor receptor 2 (HER2)-negative BC (OR 0.966, P = 0.040). Other group analyses did not yield positive results. CONCLUSION The star target of metformin, PRKAB1, does not exhibit a substantial causal association with the risk of BC. Conversely, metformin, acting as an inhibitor of ETFDH and GPD1L, may potentially elevate the likelihood of developing ER-positive BC and HER2-negative BC. Consequently, it is not advisable to employ metformin as a standard supplementary therapy for BC patients without T2D.
Collapse
Affiliation(s)
- Jing-Xuan Xu
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
| | - Qi-Long Zhu
- Pharmacy Department, The Ninth People's Hospital of Chongqing, Chongqing, 400015, China
| | - Yu-Miao Bi
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yu-Chong Peng
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
11
|
Li H, Zhang Y, He Y, Huang J, Yao J, Zhuang X. Association between consumption of sweeteners and endometrial cancer risk: a systematic review and meta-analysis of observational studies. Br J Nutr 2024; 131:63-72. [PMID: 37424288 DOI: 10.1017/s0007114523001484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The purpose of this study is to further investigate the relationship between sweetener exposure and the risk of endometrial cancer (EC). Up until December 2022, a literature search in an electronic database was carried out utilizing PubMed, Web of Science, Ovid, and Scopus. The odds ratio (OR) and 95 % confidence interval (CI) were used to evaluate the results. Sweeteners were divided into nutritional sweeteners (generally refers to sugar, such as sucrose and glucose) and non-nutritional sweeteners (generally refers to artificial sweeteners, such saccharin and aspartame). Ten cohort studies and two case-control studies were eventually included. The study found that in 12 studies, compared with the non-exposed group, the incidence rate of EC in the sweetener exposed group was higher (OR = 1·15, 95 % CI = [1·07, 1·24]). Subgroup analysis showed that in 11 studies, the incidence rate of EC in the nutritional sweetener exposed group was higher than that in the non-exposed group (OR = 1·25, 95 % CI = [1·14, 1·38]). In 4 studies, there was no difference in the incidence rate of EC between individuals exposed to non-nutritional sweeteners and those who were not exposed to non-nutritional sweeteners (OR = 0·90, 95 % CI = [0·81, 1·01]). This study reported that the consumption of nutritional sweeteners may increase the risk of EC, whereas there was no significant relationship between the exposure of non-nutritional sweeteners and the incidence of EC. Based on the results of this study, it is recommended to reduce the intake of nutritional sweeteners, but it is uncertain whether use of on-nutritional sweeteners instead of nutritional sweetener.
Collapse
Affiliation(s)
- Huiping Li
- Gynecology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Yeyuan Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianing Huang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Yao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xieyan Zhuang
- Gynecology Department of Mingzhou Hospital, Ningbo, 315000Zhejiang, People's Republic of China
| |
Collapse
|
12
|
Guo L, Kong D, Liu J, Luo L, Zheng W, Chen C, Sun S. Searching for Essential Genes and Targeted Drugs Common to Breast Cancer and Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:238-255. [PMID: 37157194 DOI: 10.2174/1386207326666230508113036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND It is documented that osteoarthritis can promote the progression of breast cancer (BC). OBJECTIVE This study aims to search for the essential genes associated with breast cancer (BC) and osteoarthritis (OA), explore the relationship between epithelial-mesenchymal transition (EMT)- related genes and the two diseases, and identify the candidate drugs. METHODS The genes related to both BC and OA were determined by text mining. Protein-protein Interaction (PPI) analysis was carried out, and as a result, the exported genes were found to be related to EMT. PPI and the correlation of mRNA of these genes were also analyzed. Different kinds of enrichment analyses were performed on these genes. A prognostic analysis was performed on these genes for examining their expression levels at different pathological stages, in different tissues, and in different immune cells. Drug-gene interaction database was employed for potential drug discovery. RESULTS A total number of 1422 genes were identified as common to BC and OA and 58 genes were found to be related to EMT. We found that HDAC2 and TGFBR1 were significantly poor in overall survival. High expression of HDAC2 plays a vital role in the increase of pathological stages. Four immune cells might play a role in this process. Fifty-seven drugs were identified that could potentially have therapeutic effects. CONCLUSION EMT may be one of the mechanisms by which OA affects BC. Using the drugs can have potential therapeutic effects, which may benefit patients with both diseases and broaden the indications for drug use.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Lan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
13
|
Winz C, Zong WX, Suh N. Endocrine-disrupting compounds and metabolomic reprogramming in breast cancer. J Biochem Mol Toxicol 2023; 37:e23506. [PMID: 37598318 PMCID: PMC10840637 DOI: 10.1002/jbt.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Endocrine-disrupting chemicals pose a growing threat to human health through their increasing presence in the environment and their potential interactions with the mammalian endocrine systems. Due to their structural similarity to hormones like estrogen, these chemicals can interfere with endocrine signaling, leading to many deleterious effects. Exposure to estrogenic endocrine-disrupting compounds (EDC) is a suggested risk factor for the development of breast cancer, one of the most frequently diagnosed cancers in women. However, the mechanisms through which EDCs contribute to breast cancer development remain elusive. To rapidly proliferate, cancer cells undertake distinct metabolic programs to utilize existing nutrients in the tumor microenvironment and synthesize macromolecules de novo. EDCs are known to dysregulate cell signaling pathways related to cellular metabolism, which may be an important mechanism through which they exert their cancer-promoting effects. These altered pathways can be studied via metabolomic analysis, a new advancement in -omics technologies that can interrogate molecular pathways that favor cancer development and progression. This review will summarize recent discoveries regarding EDCs and the metabolic reprogramming that they may induce to facilitate the development of breast cancer.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Tatsch JM, Furman DP, Nobre RM, Wurzer KM, da Silva LC, Picheth GF, Ramos EA, Acco A, Klassen G. Dulaglutide as a demethylating agent to improve the outcome of breast cancer. Epigenomics 2023; 15:1309-1322. [PMID: 38174426 DOI: 10.2217/epi-2023-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Background: Dulaglutide emerged as a promising therapeutic option for diabetes mellitus Type 2 (DM2). Aims: Owing to epigenetic similarities between the pathophysiology of DM2 and breast cancer (BC), we investigated the antitumor effect of dulaglutide. Materials & methods: To investigate the effect of dulaglutide, we analyzed the expression of methylated gene promoter regions in BC (ESR1, CDH1 and ADAM33). Results: Dulaglutide increased the expression of ESR1, CDH1 and ADAM33 up to fourfold in the MDA-MB-231 lineage by demethylating the gene promoter regions. This effect was translated to in vivo antitumoral activity and revealed significant tumor inhibition by combining the half-dose of methotrexate with dulaglutide. Conclusion: This therapy may mitigate the severe side effects commonly associated with chemotherapy.
Collapse
Affiliation(s)
- Júlia M Tatsch
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Diana P Furman
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Rodrigo Mb Nobre
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Karin M Wurzer
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Liziane Cm da Silva
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Guilherme F Picheth
- Department of Biochemistry Federal University of Paraná, Curitiba, PR, Brazil
| | - Edneia As Ramos
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
15
|
Magwaza NM, More GK, Gildenhuys S, Mphahlele MJ. In Vitro α-Glucosidase and α-Amylase Inhibition, Cytotoxicity and Free Radical Scavenging Profiling of the 6-Halogeno and Mixed 6,8-Dihalogenated 2-Aryl-4-methyl-1,2-dihydroquinazoline 3-Oxides. Antioxidants (Basel) 2023; 12:1971. [PMID: 38001824 PMCID: PMC10669220 DOI: 10.3390/antiox12111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Series of the 6-bromo/iodo substituted 2-aryl-4-methyl-1,2-dihydroquinazoline-3-oxides and their mixed 6,8-dihalogenated (Br/I and I/Br) derivatives were evaluated for inhibitory properties against α-glucosidase and/or α-amylase activities and for cytotoxicity against breast (MCF-7) and lung (A549) cancer cell lines. The 6-bromo-2-phenyl substituted 3a and its corresponding 6-bromo-8-iodo-2-phenyl-substituted derivative 3i exhibited dual activity against α-glucosidase (IC50 = 1.08 ± 0.02 μM and 1.01 ± 0.05 μM, respectively) and α-amylase (IC50 = 5.33 ± 0.01 μM and 1.18 ± 0.06 μM, respectively) compared to acarbose (IC50 = 4.40 ± 0.05 μM and 2.92 ± 0.02 μM, respectively). The 6-iodo-2-(4-fluorophenyl)-substituted derivative 3f, on the other hand, exhibited strong activity against α-amylase and significant inhibitory effect against α-glucosidase with IC50 values of 0.64 ± 0.01 μM and 9.27 ± 0.02 μM, respectively. Compounds 3c, 3l and 3p exhibited the highest activity against α-glucosidase with IC50 values of 1.04 ± 0.03, 0.92 ± 0.01 and 0.78 ± 0.05 μM, respectively. Moderate cytotoxicity against the MCF-7 and A549 cell lines was observed for these compounds compared to the anticancer drugs doxorubicin (IC50 = 0.25 ± 0.05 μM and 0.36 ± 0.07 μM, respectively) and gefitinib (IC50 = 0.19 ± 0.04 μM and 0.25 ± 0.03 μM, respectively), and their IC50 values are in the range of 10.38 ± 0.08-25.48 ± 0.08 μM and 11.39 ± 0.12-20.00 ± 0.05 μM, respectively. The test compounds generally exhibited moderate to strong antioxidant capabilities, as demonstrated via robust free radical scavenging activity assays, viz., DPPH and NO. The potential of selected derivatives to inhibit superoxide dismutase (SOD) was also investigated via enzymatic assay in vitro. Molecular docking revealed the N-O moiety as essential to facilitate electrostatic interactions of the test compounds with the protein residues in the active site of α-glucosidase and α-amylase. The presence of bromine and/or iodine atoms resulted in increased hydrophobic (alkyl and/or π-alkyl) interactions and therefore increased inhibitory effect against both enzymes.
Collapse
Affiliation(s)
- Nontokozo M. Magwaza
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Garland K. More
- College of Agriculture and Environmental Sciences Laboratories, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Samantha Gildenhuys
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Malose J. Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| |
Collapse
|
16
|
Mkrtumyan AM, Markova TN, Ovchinnikova MA, Ivanova IA, Kuzmenko KV. Metformin as an activator of AMP-activated protein kinase. Known and new mechanisms of action. DIABETES MELLITUS 2023; 26:585-595. [DOI: 10.14341/dm13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metformin, known in the medical community as the drug of first choice for type 2 diabetes mellitus, belongs to the group of biguanides and has proven to be an effective treatment in clinical practice. Our knowledge of the pharmacodynamic properties of metformin has long been limited to the following well-known mechanisms: a decrease in hyperglycemia due to an increase in peripheral insulin sensitivity, glucose utilization by cells, inhibition of hepatic gluconeogenesis, an increase in the capacity of all types of membrane glucose transporters, activation of fibrinolysis, and a decrease in the levels of atherogenic lipoproteins. Recent studies show that the range of positive pleiotropic effects of metformin is not limited to the above, and that the molecular mechanisms of its action are more complex than previously thought. This article presents a less known, but equally important action of metformin, in particular, its anti-oncogenic, antiviral, and anti-aging effects. In our study, we highlight that the activation of 5’-adenosine monophosphate-activated protein kinase (AMPK) should be considered as the primary mechanism of action through which almost all beneficial effects are achieved. In the light of recent scientific advances in metformin pharmacology, together with the pathogenetic uncertainty of the term «biguanide», it seems fair and reasonable to apply a more relevant definition to the drugn, namely «AMPK activator».
Collapse
Affiliation(s)
- A. M. Mkrtumyan
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - T. N. Markova
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry;
Moscow City Clinical Hospital № 52
| | | | - I. A. Ivanova
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - K. V. Kuzmenko
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| |
Collapse
|
17
|
Nurzhan S, Bekezhankyzy Z, Ding H, Berdigaliyev N, Sergazy S, Gulyayev A, Shulgau Z, Triggle CR, Aljofan M. The Effect of Different Glucose Concentrations on the Antiproliferative Activity of Metformin in MCF-7 Breast Cancer Cells. Pharmaceutics 2023; 15:2186. [PMID: 37765157 PMCID: PMC10537756 DOI: 10.3390/pharmaceutics15092186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The glucose-lowering drug metformin has been reported to have anticancer properties through unknown mechanisms. Other unknown factors that may influence its anticancer potential include the glycemic status of the patient. Therefore, the objective of this study is to determine the effect of different glucose environments on the antiproliferative potency and the cellular mechanism of action of metformin. Human breast cancer cells, MCF-7, were incubated in low, normal, elevated, and high glucose environments and treated with metformin. The antiproliferative potential of metformin and its effect on protein expression as well as its ability to induce cellular apoptosis and autophagy under different glucose environments, were determined using different molecular techniques. Metformin significantly inhibited cellular proliferation in a time- and glucose-concentration-dependent manner. In comparison to elevated glucose, low normal glucose alone induced a significant level of autophagy that was further increased in the presence of metformin. While glucose concentration did not appear to have an effect on the antiproliferative potency of metformin, the cellular basis of action was shown to be glucose-dependent. The antiproliferative mechanism of action of metformin in elevated and low normal glucose environments is mTOR-dependent, whereas, in the high glucose environment, the antiproliferative mechanism is independent of mTOR. This is the first study to report that both the antiproliferative potency and the cellular mechanism of action aredependent on the concentration of glucose.
Collapse
Affiliation(s)
- Sholpan Nurzhan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (S.N.); (Z.B.); (N.B.)
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
| | - Zhibek Bekezhankyzy
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (S.N.); (Z.B.); (N.B.)
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, Education City, Doha P.O. Box 24144, Qatar; (H.D.); (C.R.T.)
| | - Nurken Berdigaliyev
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (S.N.); (Z.B.); (N.B.)
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
| | - Shynggys Sergazy
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
- Drug Discovery and Development Laboratory, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
- Research Institute of Balneology and Medical Rehabilitation, Akmola Region, Burabay 021708, Kazakhstan
| | - Alexander Gulyayev
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
- Drug Discovery and Development Laboratory, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
- Research Institute of Balneology and Medical Rehabilitation, Akmola Region, Burabay 021708, Kazakhstan
| | - Zarina Shulgau
- National Center for Biotechnology, Astana Z05K8D5, Kazakhstan; (S.S.); (A.G.)
- Drug Discovery and Development Laboratory, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
| | - Christopher R. Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, Education City, Doha P.O. Box 24144, Qatar; (H.D.); (C.R.T.)
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (S.N.); (Z.B.); (N.B.)
- Drug Discovery and Development Laboratory, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan
| |
Collapse
|
18
|
Stella S, Massimino M, Manzella L, Parrinello NL, Vitale SR, Martorana F, Vigneri P. Glucose-dependent effect of insulin receptor isoforms on tamoxifen antitumor activity in estrogen receptor-positive breast cancer cells. Front Endocrinol (Lausanne) 2023; 14:1081831. [PMID: 37361518 PMCID: PMC10289407 DOI: 10.3389/fendo.2023.1081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Breast cancer is the most common malignancy in women, and it is linked to several risk factors including genetic alterations, obesity, estrogen signaling, insulin levels, and glucose metabolism deregulation. Insulin and Insulin-like growth factor signaling exert a mitogenic and pro-survival effect. Indeed, epidemiological and pre-clinical studies have shown its involvement in the development, progression, and therapy resistance of several cancer types including breast cancer. Insulin/Insulin-like growth factor signaling is triggered by two insulin receptor isoforms identified as IRA and IRB and by Insulin-like growth factor receptor I. Both classes of receptors show high homology and can initiate the intracellular signaling cascade alone or by hybrids formation. While the role of Insulin-like growth factor receptor I in breast cancer progression and therapy resistance is well established, the effects of insulin receptors in this context are complex and not completely elucidated. Methods We used estrogen-dependent insulin-like growth factor receptor I deleted gene (MCF7IGFIRKO) breast cancer cell models, lentivirally transduced to over-express empty-vector (MCF7IGFIRKO/EV), IRA (MCF7IGFIRKO/IRA) or IRB (MCF7IGFIRKO/IRB), to investigate the role of insulin receptors on the antiproliferative activity of tamoxifen in presence of low and high glucose concentrations. The tamoxifen-dependent cytotoxic effects on cell proliferation were determined by MTT assay and clonogenic potential measurement. Cell cycle and apoptosis were assessed by FACS, while immunoblot was used for protein analysis. Gene expression profiling was investigated by a PCR array concerning genes involved in apoptotic process by RT-qPCR. Results We found that glucose levels played a crucial role in tamoxifen response mediated by IRA and IRB. High glucose increased the IC50 value of tamoxifen for both insulin receptors and IRA-promoted cell cycle progression more than IRB, independently of glucose levels and insulin stimulation. IRB, in turn, showed anti-apoptotic properties, preserving cells' survival after prolonged tamoxifen exposure, and negatively modulated pro-apoptotic genes when compared to IRA. Discussion Our findings suggest that glucose levels modify insulin receptors signaling and that this event can interfere with the tamoxifen therapeutic activity. The investigation of glucose metabolism and insulin receptor expression could have clinical implications in Estrogen Receptor positive breast cancer patients receiving endocrine treatments.
Collapse
Affiliation(s)
- Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Nunziatina Laura Parrinello
- Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico-S. Marco”, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| |
Collapse
|
19
|
Park HJ, Rhie SJ, Shim I. The effects of physical exercise therapy on weight control: its regulation of adipocyte physiology and metabolic capacity. J Exerc Rehabil 2023; 19:141-148. [PMID: 37435589 PMCID: PMC10331143 DOI: 10.12965/jer.2346232.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/13/2023] Open
Abstract
Factors associated with increased body mass, including dyslipidemia, hypertension, insulin resistance, vascular endothelial dysfunction and sleep disorders, may contribute to the exacerbation of cardiovascular disease. These health problems associated with obesity are caused by accumulated metabolism and physical and emotional stress. Lifestyle, especially exercise, is a major therapeutic strategy for the treatment and management of obesity-induced metabolic problems. Metabolic disease often co-occurs with abdominal obesity. Exercise is necessary for the treatment of obesity, diabetes and cardiovascular disease. A potential benefit of exercise is to promote fat burning and energy use increases both during exercise itself and in the post-exercise period. Exercise suppresses basal metabolic rate and also has many health benefits. Why should we exercise to lose weight? Does physical activity help lower blood pressure, blood cholesterol, and blood sugar? In this article, we review the positive effects of physical exercise on weight maintenance and weight loss, and the effectiveness of physical exercise on the treatment and prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon,
Korea
| | - Sung Ja Rhie
- Department of Beauty Design, Halla University, Wonju,
Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
| |
Collapse
|
20
|
Ayodeji SA, Bao B, Teslow EA, Polin LA, Dyson G, Bollig-Fischer A, Fehl C. Hyperglycemia and O-GlcNAc transferase activity drive a cancer stem cell pathway in triple-negative breast cancer. Cancer Cell Int 2023; 23:102. [PMID: 37231419 PMCID: PMC10210312 DOI: 10.1186/s12935-023-02942-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Enhanced glucose metabolism is a feature of most tumors, but downstream functional effects of aberrant glucose flux are difficult to mechanistically determine. Metabolic diseases including obesity and diabetes have a hyperglycemia component and are correlated with elevated pre-menopausal cancer risk for triple-negative breast cancer (TNBC). However, determining pathways for hyperglycemic disease-coupled cancer risk remains a major unmet need. One aspect of cellular sugar utilization is the addition of the glucose-derived protein modification O-GlcNAc (O-linked N-acetylglucosamine) via the single human enzyme that catalyzes this process, O-GlcNAc transferase (OGT). The data in this report implicate roles of OGT and O-GlcNAc within a pathway leading to cancer stem-like cell (CSC) expansion. CSCs are the minor fraction of tumor cells recognized as a source of tumors as well as fueling metastatic recurrence. The objective of this study was to identify a novel pathway for glucose-driven expansion of CSC as a potential molecular link between hyperglycemic conditions and CSC tumor risk factors. METHODS We used chemical biology tools to track how a metabolite of glucose, GlcNAc, became linked to the transcriptional regulatory protein tet-methylcytosine dioxygenase 1 (TET1) as an O-GlcNAc post-translational modification in three TNBC cell lines. Using biochemical approaches, genetic models, diet-induced obese animals, and chemical biology labeling, we evaluated the impact of hyperglycemia on CSC pathways driven by OGT in TNBC model systems. RESULTS We showed that OGT levels were higher in TNBC cell lines compared to non-tumor breast cells, matching patient data. Our data identified that hyperglycemia drove O-GlcNAcylation of the protein TET1 via OGT-catalyzed activity. Suppression of pathway proteins by inhibition, RNA silencing, and overexpression confirmed a mechanism for glucose-driven CSC expansion via TET1-O-GlcNAc. Furthermore, activation of the pathway led to higher levels of OGT production via feed-forward regulation in hyperglycemic conditions. We showed that diet-induced obesity led to elevated tumor OGT expression and O-GlcNAc levels in mice compared to lean littermates, suggesting relevance of this pathway in an animal model of the hyperglycemic TNBC microenvironment. CONCLUSIONS Taken together, our data revealed a mechanism whereby hyperglycemic conditions activated a CSC pathway in TNBC models. This pathway can be potentially targeted to reduce hyperglycemia-driven breast cancer risk, for instance in metabolic diseases. Because pre-menopausal TNBC risk and mortality are correlated with metabolic diseases, our results could lead to new directions including OGT inhibition for mitigating hyperglycemia as a risk factor for TNBC tumorigenesis and progression.
Collapse
Affiliation(s)
- Saheed A Ayodeji
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, USA
| | - Bin Bao
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Emily A Teslow
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lisa A Polin
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Greg Dyson
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Aliccia Bollig-Fischer
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, USA.
| |
Collapse
|
21
|
Samuel SM, Varghese E, Satheesh NJ, Triggle CR, Büsselberg D. Metabolic heterogeneity in TNBCs: A potential determinant of therapeutic efficacy of 2-deoxyglucose and metformin combinatory therapy. Biomed Pharmacother 2023; 164:114911. [PMID: 37224753 DOI: 10.1016/j.biopha.2023.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
Breast cancers (BCs) remain the leading cause of cancer-related deaths among women worldwide. Among the different types of BCs, treating the highly aggressive, invasive, and metastatic triple-negative BCs (TNBCs) that do not respond to hormonal/human epidermal growth factor receptor 2 (HER2) targeted interventions since they lack ER/PR/HER2 receptors remains challenging. While almost all BCs depend on glucose metabolism for their proliferation and survival, studies indicate that TNBCs are highly dependent on glucose metabolism compared to non-TNBC malignancies. Hence, limiting/inhibiting glucose metabolism in TNBCs should curb cell proliferation and tumor growth. Previous reports, including ours, have shown the efficacy of metformin, the most widely prescribed antidiabetic drug, in reducing cell proliferation and growth in MDA-MB-231 and MDA-MB-468 TNBC cells. In the current study, we investigated and compared the anticancer effects of either metformin (2 mM) in glucose-starved or 2-deoxyglucose (10 mM; glycolytic inhibitor; 2DG) exposed MDA-MB-231 and MDA-MB-468 TNBC cells. Assays for cell proliferation, rate of glycolysis, cell viability, and cell-cycle analysis were performed. The status of proteins of the mTOR pathway was assessed by Western blot analysis. Metformin treatment in glucose-starved and 2DG (10 mM) exposed TNBC cells inhibited the mTOR pathway compared to non-treated glucose-starved cells or 2DG/metformin alone treated controls. Cell proliferation is also significantly reduced under these combination treatment conditions. The results indicate that combining a glycolytic inhibitor and metformin could prove an efficient therapeutic approach for treating TNBCs, albeit the efficacy of the combination treatment may depend on metabolic heterogeneity across various subtypes of TNBCs.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Noothan Jyothi Satheesh
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
22
|
Acar Çevik U, Celik I, Paşayeva L, Fatullayev H, Bostancı HE, Özkay Y, Kaplancıklı ZA. New benzimidazole-oxadiazole derivatives: Synthesis, α-glucosidase, α-amylase activity, and molecular modeling studies as potential antidiabetic agents. Arch Pharm (Weinheim) 2023; 356:e2200663. [PMID: 36760015 DOI: 10.1002/ardp.202200663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Benzimidazole-1,3,4-oxadiazole derivatives (5a-z) were synthesized and characterized with different spectroscopic techniques such as 1 H NMR, 13 C NMR, and HRMS. The synthesized analogs were examined against α-glucosidase and α-amylase enzymes to determine their antidiabetic potential. Compounds 5g and 5q showed the most activity with 35.04 ± 1.28 and 47.60 ± 2.16 µg/mL when compared with the reference drug acarbose (IC50 = 54.63 ± 1.95 µg/mL). Compounds 5g, 5o, 5s, and 5x were screened against the α-amylase enzyme and were found to show excellent potential, with IC50 values ranging from 22.39 ± 1.40 to 32.07 ± 1.55 µg/mL, when compared with the standard acarbose (IC50 = 46.21 ± 1.49 µg/mL). The antioxidant activities of the effective compounds (5o, 5g, 5s, 5x, and 5q) were evaluated by TAS methods. A molecular docking research study was conducted to identify the active site and explain the functions of the active chemicals. To investigate the most likely binding mode of the substances 5g, 5o, 5q, 5s, and 5x, a molecular dynamics simulation was also carried out.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Leyla Paşayeva
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hanifa Fatullayev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hayrani E Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer A Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
23
|
Zhang Y, Zhou F, Guan J, Zhou L, Chen B. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules 2023; 13:250. [PMID: 36830619 PMCID: PMC9953052 DOI: 10.3390/biom13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Hematologic malignancies (HMs) mainly include acute and chronic leukemia, lymphoma, myeloma and other heterogeneous tumors that seriously threaten human life and health. The common effective treatments are radiotherapy, chemotherapy and hematopoietic stem cell transplantation (HSCT), which have limited options and are prone to tumor recurrence and (or) drug resistance. Metformin is the first-line drug for the treatment of type 2 diabetes (T2DM). Recently, studies identified the potential anti-cancer ability of metformin in both T2DM patients and patients that are non-diabetic. The latest epidemiological and preclinical studies suggested a potential benefit of metformin in the prevention and treatment of patients with HM. The mechanism may involve the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway by metformin as well as other AMPK-independent pathways to exert anti-cancer properties. In addition, combining current conventional anti-cancer drugs with metformin may improve the efficacy and reduce adverse drug reactions. Therefore, metformin can also be used as an adjuvant therapeutic agent for HM. This paper highlights the anti-hyperglycemic effects and potential anti-cancer effects of metformin, and also compiles the in vitro and clinical trials of metformin as an anti-cancer and chemosensitizing agent for the treatment of HM. The need for future research on the use of metformin in the treatment of HM is indicated.
Collapse
Affiliation(s)
| | | | | | | | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
24
|
García-Chico C, López-Ortiz S, Peñín-Grandes S, Pinto-Fraga J, Valenzuela PL, Emanuele E, Ceci C, Graziani G, Fiuza-Luces C, Lista S, Lucia A, Santos-Lozano A. Physical Exercise and the Hallmarks of Breast Cancer: A Narrative Review. Cancers (Basel) 2023; 15:324. [PMID: 36612320 PMCID: PMC9818971 DOI: 10.3390/cancers15010324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Growing evidence suggests that, among the different molecular/cellular pathophysiological mechanisms associated with cancer, there are 14 hallmarks that play a major role, including: (i) sustaining proliferative signaling, (ii) evading growth suppressors, (iii) activating invasion and metastasis, (iv) enabling replicative immortality, (v) inducing angiogenesis, (vi) resisting cell death, (vii) reprogramming energy metabolism, (viii) evading immune destruction, (ix) genome instability and mutations, (x) tumor-promoting inflammation, (xi) unlocking phenotypic plasticity, (xii) nonmutational epigenetic reprogramming, (xiii) polymorphic microbiomes, and (xiv) senescent cells. These hallmarks are also associated with the development of breast cancer, which represents the most prevalent tumor type in the world. The present narrative review aims to describe, for the first time, the effects of physical activity/exercise on these hallmarks. In summary, an active lifestyle, and particularly regular physical exercise, provides beneficial effects on all major hallmarks associated with breast cancer, and might therefore help to counteract the progression of the disease or its associated burden.
Collapse
Affiliation(s)
- Celia García-Chico
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
| | - Susana López-Ortiz
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
| | - Saúl Peñín-Grandes
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
| | - José Pinto-Fraga
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
| | - Pedro L. Valenzuela
- Research Institute of the Hospital 12 de Octubre (‘Imas12’ [PaHerg Group]), 28041 Madrid, Spain
- Department of Systems Biology, University of Alcalá, 28871 Madrid, Spain
| | | | - Claudia Ceci
- Departmental Faculty of Medicine, Saint Camillus International University of Health and Medical Sciences, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carmen Fiuza-Luces
- Research Institute of the Hospital 12 de Octubre (‘Imas12’ [PaHerg Group]), 28041 Madrid, Spain
| | - Simone Lista
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre (‘Imas12’ [PaHerg Group]), 28041 Madrid, Spain
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH, Miguel de Cervantes European University, 27038 Valladolid, Spain
- Research Institute of the Hospital 12 de Octubre (‘Imas12’ [PaHerg Group]), 28041 Madrid, Spain
| |
Collapse
|
25
|
Liu B, Peng Q, Wang YW, Qiu J, Zhu J, Ma R. Prognostic and clinicopathological significance of fatty acid synthase in breast cancer: A systematic review and meta-analysis. Front Oncol 2023; 13:1153076. [PMID: 37124526 PMCID: PMC10135304 DOI: 10.3389/fonc.2023.1153076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Background Aberrant expression of fatty acid synthase (FASN) was demonstrated in various tumors including breast cancer. A meta-analysis was conducted to investigate the role of FASN in breast cancer development and its potential prognostic significance. Methods The Web of Science, PubMed, Embase, and Cochrane Library databases were searched to identify studies that evaluated the relationship between FASN expression and overall survival (OS), relapse-free survival (RFS), and disease-free survival (DFS) of breast cancer patients. To analyze the clinicopathological and prognostic values of FASN expression in breast cancer, pooled hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals (CIs) were clustered based on random-effects models. To confirm whether the findings were stable and impartial, a sensitivity analysis was performed, and publication bias was estimated. Data were analyzed using Engauge Digitizer version 5.4 and Stata version 15.0. Results Five studies involving 855 participants were included. Patients with higher FASN expression did not have a shorter survival period compared to those with lower FASN expression (summary HR: OS, 0.73 [95% CI, 0.41-1.32; P=0.300]; DFS/RFS, 1.65 [95% CI, 0.61-4.43; P=0.323]). However, increased FASN expression was correlated with large tumor size (OR, 2.04; 95% CI, 1.04-4.00; P=0.038), higher human epidermal growth factor receptor 2 (HER2) positivity (OR, 1.53; 95% CI, 1.05-2.23; P=0.028). No significant associations were observed between FASN expression and histological grade (OR, 0.92; 95% CI, 0.41-2.04; P=0.832), Tumor Node Metastasis (TNM) stage (OR, 1.11; 95% CI, 0.49-2.53; P=0.795), nodal metastasis (OR, 1.42; 95% CI, 0.84-2.38; P=0.183), Ki-67 labelling index (OR, 0.64; 95% CI, 0.15-2.63; P=0.533), estrogen receptor (ER) status (OR, 0.90; 95% CI, 0.61-1.32; P=0.586), or progesterone receptor (PR) status (OR, 0.67; 95% CI, 0.29-1.56; P=0.354). Conclusion FASN is associated with HER2 expression and may contribute to tumor growth, but it has no significant impact on the overall prognosis of breast cancer.
Collapse
Affiliation(s)
- Binyan Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qi Peng
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ya-Wen Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianhao Qiu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiang Zhu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Rong Ma
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- *Correspondence: Rong Ma,
| |
Collapse
|
26
|
Peng G, Yan J, Shi P, Li H. LINC01140 Hinders the Development of Breast Cancer Through Targeting miR-200b-3p to Downregulate DMD. Cell Transplant 2023; 32:9636897231211202. [PMID: 38009192 PMCID: PMC10683380 DOI: 10.1177/09636897231211202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are frequently reported to be involved in breast cancer (BC) oncogenicity. The goal of this study was to probe lncRNA LINC01140's role and action mechanism in BC. Relative LINC01140, miR-200b-3p, and dystrophin (DMD) levels were determined using quantitative real-time polymerase chain reaction (qRT-PCR). DMD protein levels in BC cells were quantified using Western blotting, and the targeting relationships were validated by luciferase reporter assays and RNA immunoprecipitation experiments. The proliferative potential of the cells was evaluated using CCK-8 and colony formation tests, while the migratory and invasive abilities of the cells were assessed using scratch and transwell assays. Apoptosis was assessed by flow cytometry. Nude mouse models have been established to allow the examination of tumor growth in vivo. Pronounced downregulation of LINC01140 and DMD, as well as upregulation of miR-200b-3p, was observed in BC. LINC01140 binds directly to miR-200b-3p to downregulate DMD expression. Ectopic LINC01140 expression not only limited tumor growth in vivo but also diminished the proliferation, migration, and invasion abilities of BC cells in vitro, however, it induced apoptosis in BC cells. Elevated miR-200b-3p expression stimulated the tumorigenic potential of BC cells and attenuated the suppressive effect of LINC01140 or DMD overexpression on BC cell malignancy, whereas DMD overexpression restricted the tumorigenic potential of BC cells. Overall, LINC01140 prevents BC development via the miR-200b-3p-DMD axis. These findings support the latent potential and usefulness of the LINC01140-miR-200b-3p-DMD network as a target for BC therapy.
Collapse
Affiliation(s)
- Gongling Peng
- Department of Thyroid and Breast, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Yan
- Department of Thyroid and Breast, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Shi
- Department of Thyroid and Breast, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Li
- Department of Thyroid and Breast, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Nawaz M, Taha M, Qureshi F, Ullah N, Selvaraj M, Shahzad S, Chigurupati S, Abubshait SA, Ahmad T, Chinnam S, Hisaindee S. Synthesis, α-amylase and α-glucosidase inhibition and molecular docking studies of indazole derivatives. J Biomol Struct Dyn 2022; 40:10730-10740. [PMID: 34463216 DOI: 10.1080/07391102.2021.1947892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Herein, we report the synthesis and inhibitory potential of indazole (Methyl 1H-indazole-4-carboxylate) derivatives (1-13) against α-amylase and α-glucosidase enzymes. The described derivatives demonstrated good inhibitory potential with IC50 values, ranging between 15.04 ± 0.05 to 76.70 ± 0.06 µM ± SEM for α-amylase and 16.99 ± 0.19 to 77.97 ± 0.19 µM ± SEM for α-glucosidase, respectively. In particular, compounds (8-10 and 12) displayed significant inhibitory activities against both the screened enzymes, with their inhibitory potential comparable to the standard acarbose (12.98 ± 0.03 and 12.79 ± 0.17 µM ± SEM, respectively). Additionally, the influence of different substituents on enzyme inhibition activities was assessed to study the structure activity relationships. Molecular docking simulations were performed to rationalize the binding of derivatives/compounds with enzymes. All the synthesized derivatives (1-13) were characterized with the aid of spectroscopic instruments such as 1H-NMR, 13C-NMR, HR-MS, elemental analysis and FTIR.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faiza Qureshi
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Manikandan Selvaraj
- School of Chemical Engineering, Monash University, Selangor Darul Ehsan, Malaysia
| | - Sumaira Shahzad
- School of Business Administration, College of International Education, Zhejiang Gongshang University, Hangzhou, China
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Samar A Abubshait
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Department of Chemistry, College of Science and Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Tauqir Ahmad
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Sampath Chinnam
- Department of Chemistry, B.M.S. College of Engineering, Bengaluru, Karnataka, India
| | - Soleiman Hisaindee
- Chemistry Department, College of Science, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
28
|
Li H, Yao Q, Li C, Fan L, Wu H, Zheng N, Wang J. Lactoferrin Inhibits the Development of T2D-Induced Colon Tumors by Regulating the NT5DC3/PI3K/AKT/mTOR Signaling Pathway. Foods 2022; 11:foods11243956. [PMID: 36553697 PMCID: PMC9777659 DOI: 10.3390/foods11243956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Although increasing evidence shows the association between type 2 diabetes (T2D) and colorectal cancer, the related mechanism remains unclear. This study examined the suppressive effect of lactoferrin (LF) on the development of T2D-induced colon cancer. First, a co-cultured cell model consisting of NCM460 and HT29 cells was constructed to mimic the progression of T2D into colon cancer. The migration ability of NCM460 cells increased significantly (p < 0.05) after cultivation in HT29 cell medium (high glucose), while LF suppressed the progression of T2D to colon cancer by regulating the 5′-nucleotidase domain-containing 3 (NT5DC3) protein and the PI3K/AKT/mTOR signaling pathway in diabetic BALB/c mice and in cell models. A mutation assay of the phosphorylation site in the NT5DC3 protein and a surface plasmon resonance (SPR) protein binding test were performed to further ascertain a mechanistic link between LF and the NT5DC3 protein. The results indicated that LF specifically bound to the NT5DC3 protein to activate its phosphorylation at the Thr6 and Ser11 sites. Next, metabolic-specific staining and localization experiments further confirmed that LF acted as a phosphate donor for NT5DC3 protein phosphorylation by regulating the downstream metabolic pathway in T2D-induced colon tumors, which was specifically accomplished by controlling Thr6/Ser11 phosphorylation in NT5DC3 and its downstream effectors. These data on LF and NT5DC3 protein may suggest a new therapeutic strategy for cancer prevention, especially in T2D patients susceptible to colon cancer.
Collapse
Affiliation(s)
- Huiying Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (H.L.); (J.W.)
| | - Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaonan Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoming Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (H.L.); (J.W.)
| |
Collapse
|
29
|
Ennis CS, Llevenes P, Qiu Y, Dries R, Denis GV. The crosstalk within the breast tumor microenvironment in type II diabetes: Implications for cancer disparities. Front Endocrinol (Lausanne) 2022; 13:1044670. [PMID: 36531496 PMCID: PMC9751481 DOI: 10.3389/fendo.2022.1044670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity-driven (type 2) diabetes (T2D), the most common metabolic disorder, both increases the incidence of all molecular subtypes of breast cancer and decreases survival in postmenopausal women. Despite this clear link, T2D and the associated dysfunction of diverse tissues is often not considered during the standard of care practices in oncology and, moreover, is treated as exclusion criteria for many emerging clinical trials. These guidelines have caused the biological mechanisms that associate T2D and breast cancer to be understudied. Recently, it has been illustrated that the breast tumor microenvironment (TME) composition and architecture, specifically the surrounding cellular and extracellular structures, dictate tumor progression and are directly relevant for clinical outcomes. In addition to the epithelial cancer cell fraction, the breast TME is predominantly made up of cancer-associated fibroblasts, adipocytes, and is often infiltrated by immune cells. During T2D, signal transduction among these cell types is aberrant, resulting in a dysfunctional breast TME that communicates with nearby cancer cells to promote oncogenic processes, cancer stem-like cell formation, pro-metastatic behavior and increase the risk of recurrence. As these cells are non-malignant, despite their signaling abnormalities, data concerning their function is never captured in DNA mutational databases, thus we have limited insight into mechanism from publicly available datasets. We suggest that abnormal adipocyte and immune cell exhaustion within the breast TME in patients with obesity and metabolic disease may elicit greater transcriptional plasticity and cellular heterogeneity within the expanding population of malignant epithelial cells, compared to the breast TME of a non-obese, metabolically normal patient. These challenges are particularly relevant to cancer disparities settings where the fraction of patients seen within the breast medical oncology practice also present with co-morbid obesity and metabolic disease. Within this review, we characterize the changes to the breast TME during T2D and raise urgent molecular, cellular and translational questions that warrant further study, considering the growing prevalence of T2D worldwide.
Collapse
Affiliation(s)
- Christina S. Ennis
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| | - Pablo Llevenes
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Yuhan Qiu
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Ruben Dries
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, United States
| | - Gerald V. Denis
- Boston University-Boston Medical Center Cancer Center, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Shipley Prostate Cancer Research Professor, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
30
|
Samuel SM, Varghese E, Kubatka P, Büsselberg D. Tirzepatide-Friend or Foe in Diabetic Cancer Patients? Biomolecules 2022; 12:1580. [PMID: 36358930 PMCID: PMC9687454 DOI: 10.3390/biom12111580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 09/25/2023] Open
Abstract
It is a well-accepted fact that obesity and diabetes increase the risk of incidence of different cancers and their progression, leading to a decrease in the quality of life among affected cancer patients. In addition to decreasing the risk of cancers, maintaining a healthy body mass index (BMI)/body weight and/or blood glucose levels within the normal range critically impacts the response to anti-cancer therapy among affected individuals. A cancer patient managing their body weight and maintaining blood glucose control responds better to anti-cancer therapy than obese individuals and those whose blood glucose levels remain higher than normal during therapeutic intervention. In some cases, anti-diabetic/glucose-lowering drugs, some of which are also used to promote weight loss, were found to possess anti-cancer potential themselves and/or support anti-cancer therapy when used to treat such patients. On the other hand, certain glucose-lowering drugs promoted the cancer phenotype and risked cancer progression when used for treatment. Tirzepatide (TRZD), the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide/gastric inhibitory peptide (GIP) agonist, has recently gained interest as a promising injectable drug for the treatment of type 2 diabetes and was approved by the FDA after successful clinical trials (SURPASS 1/2/3/4 and 5, NCT03954834, NCT03987919, NCT03882970, NCT03730662, and NCT04039503). In addition, the reports from the SURMOUNT-1 clinical trial (NCT04184622) support the use of TRZD as an anti-obesity drug. In the current review article, we examine the possibility and molecular mechanisms of how TRZD intervention could benefit cancer therapeutics or increase the risk of cancer progression when used as an anti-diabetic drug in diabetic patients.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
31
|
The Juggernaut of Adaptive Metabolism in Cancers: Implications and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14215202. [DOI: 10.3390/cancers14215202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
The disease of cancer instills a sense of fear and dread among patients and the next of kin who are indirectly affected by the deteriorating quality of life of their loved ones [...]
Collapse
|
32
|
The emerging role of 27-hydroxycholesterol in cancer development and progression: An update. Int Immunopharmacol 2022; 110:109074. [PMID: 35978522 DOI: 10.1016/j.intimp.2022.109074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023]
|
33
|
Kleckner AS, Kleckner IR, Culakova E, Shayne M, Belcher EK, Gudina AT, Williams AM, Onitilo AA, Hopkins JO, Gross H, Mustian KM, Peppone LJ, Janelsins MC. The association between cancer-related fatigue and diabetes from pre-chemotherapy to 6 months post-chemotherapy. Support Care Cancer 2022; 30:7655-7663. [PMID: 35678881 PMCID: PMC10079326 DOI: 10.1007/s00520-022-07189-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To quantify the relationship between diabetes and fatigue from pre-chemotherapy to 6 months post-chemotherapy for women with breast cancer compared to women without a history of cancer (controls). METHODS This was a secondary analysis from a nationwide prospective longitudinal study of female patients with breast cancer undergoing chemotherapy and controls. Diabetes diagnosis (yes/no) was obtained at baseline, and cancer-related fatigue was measured using the Multidimensional Fatigue Symptom Inventory (MFSI) pre-, post-, and 6 months post-chemotherapy in patients; controls were assessed at equivalent time points. Repeated measures mixed effects models estimated the association between fatigue and diabetes controlling for cancer (yes/no), body mass index, exercise and smoking habits, baseline anxiety and depressive symptoms, menopausal status, marital status, race, and education. RESULTS Among 439 patients and 235 controls (52.8 ± 10.5 years old), diabetes was twice as prevalent among patients as controls (11.6% vs. 6.8%). At baseline, diabetes was associated with worse fatigue (4.1 ± 1.7 points, p = 0.017). Also, diabetes was associated with clinically meaningful worse fatigue throughout the study period among all participants (5.2 ± 1.9 points, p = 0.008) and patients alone (4.5 ± 2.0, p = 0.023). For the MFSI subdomains among patients, diabetes was associated with worse general (p = 0.005) and mental fatigue (p = 0.026). CONCLUSIONS Diabetes was twice as prevalent in women with breast cancer compared to controls, and diabetes was associated with more severe cancer-related fatigue in patients before and after chemotherapy and at 6 months post-chemotherapy. Interventions that address diabetes management may also help address cancer-related fatigue during chemotherapy treatment. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01382082, first posted June 27, 2011.
Collapse
Affiliation(s)
- Amber S Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, 655 W. Lombard Ave., 7th floor, Baltimore, MD, 21201, USA.
| | - Ian R Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, 655 W. Lombard Ave., 7th floor, Baltimore, MD, 21201, USA
| | - Eva Culakova
- Division of Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Michelle Shayne
- Department of Medicine, University of Rochester Medical Center, 265 Crittenden Blvd. CU 420658, Rochester, NY, 14642, USA
| | - Elizabeth K Belcher
- Department of Psychological Science, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Abdi T Gudina
- Division of Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - AnnaLynn M Williams
- Department of Epidemiology & Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Judith O Hopkins
- Southeast Clinical Oncology Research (SCOR) Consortium, Winston-Salem, Weston, NC, USA
| | - Howard Gross
- Dayton Clinical Oncology Program, Dayton, OH, USA
| | - Karen M Mustian
- Division of Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Luke J Peppone
- Division of Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Michelle C Janelsins
- Division of Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
34
|
Кузнецов КО, Сафина ЭР, Гаймакова ДВ, Фролова ЯС, Оганесян ИЮ, Садертдинова АГ, Назмиева КА, Исламгулов АХ, Каримова АР, Галимова АМ, Ризванова ЭВ. [Metformin and malignant neoplasms: a possible mechanism of antitumor action and prospects for use in practice]. PROBLEMY ENDOKRINOLOGII 2022; 68:45-55. [PMID: 36337018 PMCID: PMC9762452 DOI: 10.14341/probl13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
Metformin is a first-line antidiabetic drug for the treatment of type 2 diabetes mellitus (DM2); its molecular target is AMP-activated protein kinase (AMPK), which is involved in many metabolic processes. Metformin not only reduces blood glucose levels and improves insulin sensitivity, but also inhibits lipolysis and reduces cardiovascular risk in patients with DM2. In recent years, it has been proven that metformin slows down the aging process, stimulates hair growth, eliminates cognitive impairment, and also has an antitumor effect. Most basic studies have shown that metformin inhibits the growth of tumor cells and promotes cellular apoptosis, while clinical studies show contradictory results. This discrepancy can be explained by the difference in the concentration of metformin between basic and clinical studies. The maximum daily dose of metformin for patients with DM2 is 2500 mg / day, and the dose used in basic research was much higher. Metformin directly activates the AMPK signaling pathway, inhibits the production of reactive oxygen species, induces the activation of mTORC1, inhibits cyclin D1, which leads to a reduction in the risk of the occurrence and development of malignant neoplasms. In addition, metformin indirectly inhibits tumor growth, proliferation, invasion and metastasis by reducing the concentration of glucose in the blood, insulin resistance, as well as by reducing inflammation and affecting the tumor microenvironment. Glycolysis plays an important role in the energy metabolism of tumors, and metformin is able to have an inhibitory effect on it. Currently, studies of the mechanism of antitumor effects of metformin are becoming more extensive and in-depth, but there are still some contradictions.
Collapse
Affiliation(s)
- К. О. Кузнецов
- Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
| | - Э. Р. Сафина
- Башкирский государственный медицинский университет
| | | | - Я. С. Фролова
- Первый Московский государственный медицинский университет им. И.М. Сеченова
| | - И. Ю. Оганесян
- Первый Московский государственный медицинский университет им. И.М. Сеченова
| | | | | | | | | | | | | |
Collapse
|
35
|
Devericks EN, Carson MS, McCullough LE, Coleman MF, Hursting SD. The obesity-breast cancer link: a multidisciplinary perspective. Cancer Metastasis Rev 2022; 41:607-625. [PMID: 35752704 PMCID: PMC9470704 DOI: 10.1007/s10555-022-10043-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Obesity, exceptionally prevalent in the USA, promotes the incidence and progression of numerous cancer types including breast cancer. Complex, interacting metabolic and immune dysregulation marks the development of both breast cancer and obesity. Obesity promotes chronic low-grade inflammation, particularly in white adipose tissue, which drives immune dysfunction marked by increased pro-inflammatory cytokine production, alternative macrophage activation, and reduced T cell function. Breast tissue is predominantly composed of white adipose, and developing breast cancer readily and directly interacts with cells and signals from adipose remodeled by obesity. This review discusses the biological mechanisms through which obesity promotes breast cancer, the role of obesity in breast cancer health disparities, and dietary interventions to mitigate the adverse effects of obesity on breast cancer. We detail the intersection of obesity and breast cancer, with an emphasis on the shared and unique patterns of immune dysregulation in these disease processes. We have highlighted key areas of breast cancer biology exacerbated by obesity, including incidence, progression, and therapeutic response. We posit that interception of obesity-driven breast cancer will require interventions that limit protumor signaling from obese adipose tissue and that consider genetic, structural, and social determinants of the obesity–breast cancer link. Finally, we detail the evidence for various dietary interventions to offset obesity effects in clinical and preclinical studies of breast cancer. In light of the strong associations between obesity and breast cancer and the rising rates of obesity in many parts of the world, the development of effective, safe, well-tolerated, and equitable interventions to limit the burden of obesity on breast cancer are urgently needed.
Collapse
Affiliation(s)
- Emily N Devericks
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meredith S Carson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael F Coleman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D Hursting
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
Liu Q, Aggarwal A, Wu M, Darwish OA, Baldino K, Haug V, Agha RA, Orgill DP, Panayi AC. Impact of diabetes on outcomes in breast reconstruction: A systematic review and meta-analysis. J Plast Reconstr Aesthet Surg 2022; 75:1793-1804. [PMID: 35351394 DOI: 10.1016/j.bjps.2022.02.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND As rates of breast cancer and type II diabetes increase, so does the number of women with diabetes undergoing breast reconstruction (BR). Patients with diabetes are at increased risk of postoperative complications. This meta-analysis seeks to evaluate the post-operative outcomes of women with diabetes who underwent BR following mastectomy. METHOD This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The EMBASE, PUBMED, and MEDLINE electronic databases were searched from inception to November 1, 2020 for studies published in English. Outcomes evaluated were overall complications, surgical complications, and longer hospital stay. Subgroup analysis investigated outcomes, such as implant/flap failure, infection, and necrosis. RESULTS Sixty-five studies met our inclusion criteria and 38 provided data to be included in the meta-analysis. A total of 151,585 patients were included, of which 9299 had diabetes. Women with diabetes were more likely to experience overall complications (11.6% vs 5.6%; p<0.0001) and surgical complications (7.7% vs 3.3%; p<0.0001), and were more likely to have a prolonged hospital stay (p = 0.04) than women without diabetes. Subgroup analysis showed that implant loss (2.5% vs 1.6%; p = 0.0003), infection (6.8% vs 2.5%; p<0.0001) and necrosis (23.8% vs 6.5; p = 0.001) were significantly higher in women with diabetes. CONCLUSIONS This study provides evidence that diabetes mellitus increases the risk of complications in patients with breast cancer undergoing BR after mastectomy. Prospective studies are required to establish whether diabetes that is well-controlled prior to reconstruction, including diabetes that is paired with adjuvant radiation therapy, reduces the perioperative risks.
Collapse
Affiliation(s)
- Qinxin Liu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States of America; Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ayushi Aggarwal
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States of America; University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Mengfan Wu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States of America; Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Oliver A Darwish
- California Northstate University College of Medicine, Elk Grove, CA 95757, United States of America
| | - Kodi Baldino
- The University of Connecticut School of Medicine, Farmington, CT 06030, United States of America
| | - Valentin Haug
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Riaz A Agha
- Department of Plastic Surgery, Barts Health NHS Trust, London, United Kingdom
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
37
|
Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Sci 2022; 294:120370. [DOI: 10.1016/j.lfs.2022.120370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
|
38
|
Metformin and Breast Cancer: Where Are We Now? Int J Mol Sci 2022; 23:ijms23052705. [PMID: 35269852 PMCID: PMC8910543 DOI: 10.3390/ijms23052705] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most prevalent cancer and the leading cause of cancer-related death among women worldwide. Type 2 diabetes–associated metabolic traits such as hyperglycemia, hyperinsulinemia, inflammation, oxidative stress, and obesity are well-known risk factors for breast cancer. The insulin sensitizer metformin, one of the most prescribed oral antidiabetic drugs, has been suggested to function as an antitumoral agent, based on epidemiological and retrospective clinical data as well as preclinical studies showing an antiproliferative effect in cultured breast cancer cells and animal models. These benefits provided a strong rationale to study the effects of metformin in routine clinical care of breast cancer patients. However, the initial enthusiasm was tempered after disappointing results in randomized controlled trials, particularly in the metastatic setting. Here, we revisit the current state of the art of metformin mechanisms of action, critically review past and current metformin-based clinical trials, and briefly discuss future perspectives on how to incorporate metformin into the oncologist’s armamentarium for the prevention and treatment of breast cancer.
Collapse
|
39
|
Silva C, Andrade N, Guimarães JT, Cardoso E, Meireles C, Pinto V, Paiva J, Martel F. The pro-proliferative effect of insulin in human breast epithelial DMBA-transformed and non-transformed cell lines is PI3K-, mTOR- and GLUT1-dependent. Cell Biochem Funct 2022; 40:127-137. [PMID: 35014047 DOI: 10.1002/cbf.3681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is linked to an increased risk of breast cancer. We aimed to investigate how T2DM-associated characteristics (high levels of glucose, insulin, leptin, inflammatory mediators and oxidative stress) influence breast cancer carcinogenesis, in DMBA-treated (MCF-12ADMBA ) and non-treated breast epithelial (MCF-12A) cell lines. Insulin (50 nM) promotes cell proliferation, 3 H-DG uptake and lactic acid production in both cell lines. The stimulatory effects of insulin upon cell proliferation and 3 H-DG uptake were hampered by rapamycin, LY294001 and BAY-876, in both cell lines. In conclusion, hyperinsulinemia, one important characteristic of T2DM, contributes to the initiation of breast cancer by a PI3K- and mTOR-dependent mechanism involving increased GLUT1-mediated glucose uptake. SIGNIFICANCE: The pro-proliferative effect of insulin in human breast epithelial DMBA-transformed and non-transformed cell lines is PI3K-, mTOR- and GLUT1-dependent.
Collapse
Affiliation(s)
- Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Tiago Guimarães
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Clinical Pathology, São João Hospital Centre, Porto, Portugal.,Institute of Public Health, University of Porto, Porto, Portugal
| | - Emília Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Catarina Meireles
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Vanessa Pinto
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,iLoF, Intelligent Lab on Fiber, Limited, Oxford, UK
| | - Joana Paiva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,iLoF, Intelligent Lab on Fiber, Limited, Oxford, UK.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
40
|
Tan XJ, Mustafa N, Mashor MY, Rahman KSA. Automated knowledge-assisted mitosis cells detection framework in breast histopathology images. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:1721-1745. [PMID: 35135226 DOI: 10.3934/mbe.2022081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Based on the Nottingham Histopathology Grading (NHG) system, mitosis cells detection is one of the important criteria to determine the grade of breast carcinoma. Mitosis cells detection is a challenging task due to the heterogeneous microenvironment of breast histopathology images. Recognition of complex and inconsistent objects in the medical images could be achieved by incorporating domain knowledge in the field of interest. In this study, the strategies of the histopathologist and domain knowledge approach were used to guide the development of the image processing framework for automated mitosis cells detection in breast histopathology images. The detection framework starts with color normalization and hyperchromatic nucleus segmentation. Then, a knowledge-assisted false positive reduction method is proposed to eliminate the false positive (i.e., non-mitosis cells). This stage aims to minimize the percentage of false positive and thus increase the F1-score. Next, features extraction was performed. The mitosis candidates were classified using a Support Vector Machine (SVM) classifier. For evaluation purposes, the knowledge-assisted detection framework was tested using two datasets: a custom dataset and a publicly available dataset (i.e., MITOS dataset). The proposed knowledge-assisted false positive reduction method was found promising by eliminating at least 87.1% of false positive in both the dataset producing promising results in the F1-score. Experimental results demonstrate that the knowledge-assisted detection framework can achieve promising results in F1-score (custom dataset: 89.1%; MITOS dataset: 88.9%) and outperforms the recent works.
Collapse
Affiliation(s)
- Xiao Jian Tan
- Centre for Multimodal Signal Processing, Department of Electrical and Electronic Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University College (TARUC), Jalan Genting Kelang, Setapak 53300, Kuala Lumpur, Malaysia
| | - Nazahah Mustafa
- Biomedical Electronic Engineering Programme, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP) 02600 Arau, Perlis, Malaysia
| | - Mohd Yusoff Mashor
- Biomedical Electronic Engineering Programme, Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP) 02600 Arau, Perlis, Malaysia
| | - Khairul Shakir Ab Rahman
- Department of Pathology, Hospital Tuanku Fauziah 01000 Jalan Tun Abdul Razak Kangar Perlis, Malaysia
| |
Collapse
|
41
|
Srinivasan M, Arzoun H, Gk LB, Thangaraj SR. A Systematic Review: Does Insulin Resistance Affect the Risk and Survival Outcome of Breast Cancer in Women? Cureus 2022; 14:e21712. [PMID: 35145826 PMCID: PMC8803387 DOI: 10.7759/cureus.21712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 11/10/2022] Open
Abstract
Currently, breast cancer is one of the insidious malignancies that evolves silently, eventually leading to mortality, and has been recorded as one of the leading causes of cancer-related deaths around the globe. It is evident from numerous research studies that the etiology of breast cancer is multifaceted, both on an individual and environmental level. Insulin resistance, commonly known as metabolic syndrome, has been related to a poor breast cancer prognosis. There is presently limited data on the clinical features of insulin-resistant breast cancer patients. The purpose of this study is to examine the association between metabolic syndrome and its components impacting the risk and the prognosis of breast cancer, including the clinicopathological variables in patients with newly diagnosed breast cancer with and without already established diabetes. The authors extracted data from PubMed, Google Scholar, Science Direct, and Embase, intending to study the connections between these two entities. Studies from worldwide were selected to analyze the association between breast cancer and insulin resistance, including mammogram screening practices in a region-wise manner. The ultimate objective is to raise awareness of this association among practitioners worldwide. After analyzing several reports that included observational studies, it is to be concluded that insulin resistance impacts breast cancer both in regards to increasing the risk as well as affecting the survival outcome.
Collapse
Affiliation(s)
- Mirra Srinivasan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hadia Arzoun
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | | |
Collapse
|
42
|
Silva C, Andrade N, Rodrigues I, Ferreira AC, Soares ML, Martel F. The pro-proliferative effect of interferon-γ in breast cancer cell lines is dependent on stimulation of ASCT2-mediated glutamine cellular uptake. Life Sci 2021; 286:120054. [PMID: 34662550 DOI: 10.1016/j.lfs.2021.120054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
AIMS Type 2 diabetes mellitus (T2DM) is a risk factor for breast cancer initiation and progression. Glutamine (GLN) is a critical nutrient for cancer cells. The aim of this study was to investigate the effect of T2DM-associated compounds upon GLN uptake by breast cancer cells. MAIN METHODS The in vitro uptake of 3H-GLN by breast cancer (MCF-7 and MDA-MB-231) and non-tumorigenic (MCF-12A) cell lines was measured. KEY FINDINGS 3H-GLN uptake in the three cell lines is mainly Na+-dependent and sensitive to the ASCT2 inhibitor GPNA. IFN-γ increased total and Na+-dependent 3H-GLN uptake in the two breast cancer cell lines, and insulin increased total and Na+-dependent 3H-GLN uptake in the non-tumorigenic cell line. GPNA abolished the increase in 3H-GLN uptake promoted by these T2DM-associated compounds. ASCT2 knockdown confirmed that the increase in 3H-GLN uptake caused by IFN-γ (in breast cancer cells) and by insulin (in non-tumorigenic cells) is ASCT2-dependent. IFN-γ (in MDA-MB-231 cells) and insulin (in MCF-12A cells) increased ASCT2 transcript and protein levels. Importantly, the pro-proliferative effect of IFN-γ in breast cancer cell lines was associated with an increase in 3H-GLN uptake which was GPNA-sensitive, blocked by ASCT2 knockdown and mediated by activation of the PI3K-, STAT3- and STAT1 intracellular signalling pathways. SIGNIFICANCE IFN-γ and insulin possess pro-proliferative effects in breast cancer and non-cancer cell lines, respectively, which are dependent on an increase in ASCT2-mediated glutamine transport. Thus, an effective inhibition of ASCT2-mediated glutamine uptake may be a therapeutic strategy against human breast cancer in T2DM patients.
Collapse
Affiliation(s)
- Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Ilda Rodrigues
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - António Carlos Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Laboratório de Apoio à Investigação em Medicina Molecular, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Miguel Luz Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Laboratório de Apoio à Investigação em Medicina Molecular, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
43
|
Karmi O, Sohn YS, Zandalinas SI, Rowland L, King SD, Nechushtai R, Mittler R. Disrupting CISD2 function in cancer cells primarily impacts mitochondrial labile iron levels and triggers TXNIP expression. Free Radic Biol Med 2021; 176:92-104. [PMID: 34547371 PMCID: PMC8761261 DOI: 10.1016/j.freeradbiomed.2021.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
The CISD2 (NAF-1) protein plays a key role in regulating cellular homeostasis, aging, cancer and neurodegenerative diseases. It was found to control different calcium, reactive oxygen species (ROS), and iron signaling mechanisms. However, since most studies of CISD2 to date were conducted with cells that constitutively lack, overexpress, or contain mutations in CISD2, the relationships between these different signaling processes are unclear. To address the hierarchy of signaling events occurring in cells upon CISD2 disruption, we developed an inducible system to express CISD2, or the dominant-negative H114C inhibitor of CISD2, in human breast cancer cells. Here, we report that inducible disruption of CISD2 function causes an immediate disruption in mitochondrial labile iron (mLI), and that this disruption results in enhanced mitochondrial ROS (mROS) levels. We further show that alterations in cytosolic and ER calcium levels occur only after the changes in mLI and mROS levels happen and are unrelated to them. Interestingly, disrupting CISD2 function resulted in the enhanced expression of the tumor suppressor thioredoxin-interacting protein (TXNIP) that was dependent on the accumulation of mLI and associated with ferroptosis activation. CISD2 could therefore regulate the expression of TXNIP in cancer cells, and this regulation is dependent on alterations in mLI levels.
Collapse
Affiliation(s)
- Ola Karmi
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA; The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Yang-Sung Sohn
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Sara I Zandalinas
- The Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Linda Rowland
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Skylar D King
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Ron Mittler
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA; The Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA.
| |
Collapse
|
44
|
Abstract
Rates of obesity and diabetes have increased significantly over the past decades and the prevalence is expected to continue to rise further in the coming years. Many observations suggest that obesity and diabetes are associated with an increased risk of developing several types of cancers, including liver, pancreatic, endometrial, colorectal, and post-menopausal breast cancer. The path towards developing obesity and diabetes is affected by multiple factors, including adipokines, inflammatory cytokines, growth hormones, insulin resistance, and hyperlipidemia. The metabolic abnormalities associated with changes in the levels of these factors in obesity and diabetes have the potential to significantly contribute to the development and progression of cancer through the regulation of distinct signaling pathways. Here, we highlight the cellular and molecular pathways that constitute the links between obesity, diabetes, cancer risk and mortality. This includes a description of the existing evidence supporting the obesity-driven morphological and functional alternations of cancer cells and adipocytes through complex interactions within the tumor microenvironment.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Touchstone Diabetes Center, Department of Internal Medicine, Dallas, TX, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Corresponding author: Philipp E. Scherer https://orcid.org/0000-0003-0680-3392 Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA E-mail:
| |
Collapse
|
45
|
Jaiswal P, Tripathi V, Nayak A, Kataria S, Lukashevich V, Das A, Parmar HS. A molecular link between diabetes and breast cancer: Therapeutic potential of repurposing incretin-based therapies for breast cancer. Curr Cancer Drug Targets 2021; 21:829-848. [PMID: 34468298 DOI: 10.2174/1568009621666210901101851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
Female breast cancer recently surpassed lung cancer and became the most commonly diagnosed cancer worldwide. As per the recent data from WHO, breast cancer accounts for one out of every 8 cancer cases diagnosed among an estimated 2.3 million new cancer cases. Breast cancer is the most prevailing cancer type among women causing the highest number of cancer-related mortality. It has been estimated that in 2020, 68,5000 women died due to this disease. Breast cancers have varying degrees of molecular heterogeneity; therefore, they are divided into various molecular clinical sub types. Recent reports suggest that type 2 diabetes (one of the common chronic diseases worldwide) is linked to the higher incidence, accelerated progression, and aggressiveness of different cancers; especially breast cancer. Breast cancer is hormone-dependent in nature and has a cross-talk with metabolism. A number of antidiabetic therapies are known to exert beneficial effects on various types of cancers, including breast cancer. However, only a few reports are available on the role of incretin-based antidiabetic therapies in cancer as a whole and in breast cancer in particular. The present review sheds light on the potential of incretin based therapies on breast cancer and explores the plausible underlying mechanisms. Additionally, we have also discussed the sub types of breast cancer as well as the intricate relationship between diabetes and breast cancer.
Collapse
Affiliation(s)
- Pooja Jaiswal
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Versha Tripathi
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Aakruti Nayak
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Shreya Kataria
- School of Biotechnology, Devi Ahilya University, Indore-452001. M.P., India
| | - Vladimir Lukashevich
- Institute of Physiology of the National Academy of Sciences of Belarus, Minsk-220072. Belarus
| | - Apurba Das
- Department of Chemical Sciences, IIT, Indore, Simrol, Indore, M.P., India
| | | |
Collapse
|
46
|
Wang B, Wang S, Wang W, Liu E, Guo S, Zhao C, Niu J, Zhang Z. Hyperglycemia Promotes Liver Metastasis of Colorectal Cancer via Upregulation of Integrin αvβ6. Med Sci Monit 2021; 27:e930921. [PMID: 34408123 PMCID: PMC8383819 DOI: 10.12659/msm.930921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Diabetes is related to higher risk of multiple cancers. This study aimed to explore the effect and mechanism of diabetes on liver metastasis of CRC. Material/Methods Overall and liver metastasis-free survival in diabetic and non-diabetic CRC patients were compared by Kaplan-Meier analysis. Expression of αvβ6 was detected by immunohistochemistry in clinical specimens. Effects of hyperglycemia on αvβ6 expression in colon cancer cells were assessed by western blot, real-time PCR, and flowcytometry. Effects of hyperglycemia on migration and invasion were demonstrated by Transwell assay. Expression and activity of MMP-9 and MMP-2 were determined by real-time PCR and gelatin zymography. Liver metastatic nodules were counted and β6 expression was detected by western blot in a liver metastasis mouse model. Results CRC patients with diabetes had poorer overall and liver metastasis-free survival, and diabetes was associated with higher αvβ6 expression in CRC specimens. Hyperglycemia promoted the invasion and migration of colon cancer cells, and upregulated the expression and activity of MMP-9, which were attenuated by inhibition of αvβ6. Hyperglycemia upregulated the expression of β6 and cell surface expression of αvβ6, which was reduced by ERK inhibitor. The in vitro results were confirmed in vivo in the mouse model. Conclusions Our study demonstrated the enhancing effect of hyperglycemia on liver metastasis of CRC, and showed that αvβ6 was involved in this process, suggesting that control of glucose levels and inhibition of αvβ6 can reduce the risk of liver metastasis in diabetic CRC patients.
Collapse
Affiliation(s)
- Ben Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Shanjie Wang
- Department of General Surgery, People's Hospital, Zhangqiu District, Jinan, Shandong, China (mainland)
| | - Wenke Wang
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Enyu Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Sen Guo
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Chuanzong Zhao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jun Niu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
47
|
Luo X, Storey S, Gandhi P, Zhang Z, Metzger M, Huang K. Analyzing the symptoms in colorectal and breast cancer patients with or without type 2 diabetes using EHR data. Health Informatics J 2021; 27:14604582211000785. [PMID: 33726552 DOI: 10.1177/14604582211000785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This research extracted patient-reported symptoms from free-text EHR notes of colorectal and breast cancer patients and studied the correlation of the symptoms with comorbid type 2 diabetes, race, and smoking status. An NLP framework was developed first to use UMLS MetaMap to extract all symptom terms from the 366,398 EHR clinical notes of 1694 colorectal cancer (CRC) patients and 3458 breast cancer (BC) patients. Semantic analysis and clustering algorithms were then developed to categorize all the relevant symptoms into eight symptom clusters defined by seed terms. After all the relevant symptoms were extracted from the EHR clinical notes, the frequency of the symptoms reported from colorectal cancer (CRC) and breast cancer (BC) patients over three time-periods post-chemotherapy was calculated. Logistic regression (LR) was performed with each symptom cluster as the response variable while controlling for diabetes, race, and smoking status. The results show that the CRC and BC patients with Type 2 Diabetes (T2D) were more likely to report symptoms than CRC and BC without T2D over three time-periods in the cancer trajectory. We also found that current smokers were more likely to report anxiety (CRC, BC), neuropathic symptoms (CRC, BC), anxiety (BC), and depression (BC) than non-smokers.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Huang
- Indiana University School of Medicine, USA.,Regenstrief Institute, USA
| |
Collapse
|
48
|
Stochino-Loi E, Major AL, Gillon TER, Ayoubi JM, Feki A, Bouquet de Joliniere J. Metformin, the Rise of a New Medical Therapy for Endometriosis? A Systematic Review of the Literature. Front Med (Lausanne) 2021; 8:581311. [PMID: 34046415 PMCID: PMC8144644 DOI: 10.3389/fmed.2021.581311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Medical treatments for endometriosis aim to control pain symptoms and stop progression of endometriotic lesions. However, their adverse effects and their contraceptive effect in women who desire pregnancy, limit their long terms use. Although there is only one study investigating the effects of metformin on women with endometriosis, metformin seems to have a unique therapeutic potential. It may be a helpful anti-inflammatory and antiproliferative agent in the treatment of endometriosis. As such metformin may be more beneficial thanks to the lack of serious side effects.
Collapse
Affiliation(s)
- Emanuela Stochino-Loi
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| | - Attila L Major
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland.,Femina Gynecology Center, Geneva, Switzerland
| | - Tessa E R Gillon
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| | - Jean-Marc Ayoubi
- Department of Obstetrics and Gynecology, Foch Hospital, University of West Paris, Suresnes, France
| | - Anis Feki
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| | - Jean Bouquet de Joliniere
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
49
|
Ligorio F, Zambelli L, Bottiglieri A, Castagnoli L, Zattarin E, Lobefaro R, Ottini A, Vingiani A, Pupa SM, Bianchi GV, Capri G, Pruneri G, de Braud F, Vernieri C. Hormone receptor status influences the impact of body mass index and hyperglycemia on the risk of tumor relapse in early-stage HER2-positive breast cancer patients. Ther Adv Med Oncol 2021; 13:17588359211006960. [PMID: 33948122 PMCID: PMC8053837 DOI: 10.1177/17588359211006960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/11/2021] [Indexed: 01/22/2023] Open
Abstract
Background: High body mass index (BMI) has been associated with worse clinical outcomes in patients with early-stage breast cancer (BC), and its negative effects could be mediated by hyperglycemia/diabetes. However, the prognostic impact of high BMI in early-stage HER2-positive (HER2+) BC patients remains controversial. Methods: We conducted a retrospective study to investigate the impact of baseline BMI or glycemia on relapse-free survival (RFS) and overall survival (OS) in patients with surgically resected, stage I–III HER2+ BC treated with standard-of-care, trastuzumab-containing adjuvant biochemotherapy. The optimal BMI and glycemia cut-off values for RFS were identified through maximally selected rank statistics. Cox regression models were used to assess the impact of BMI, glycemia and other relevant variables on clinical outcomes. Results: Among 505 patients included in the study, a BMI cut-off of 27.77 kg/m2 was identified as the best threshold to discriminate between patients with low BMI (n = 390; 77.2%) or high BMI (n = 115; 22.8%). At multivariable analysis, higher BMI was associated with significantly worse RFS [hazard ratio 2.26; 95% confidence interval (CI): 1.08–4.74, p = 0.031] and worse OS (hazard ratio 2.25, 95% CI 1.03–4.94, p = 0.043) in the whole patient population. The negative impact of high BMI was only observed in patients with hormone receptor (HR)-negative/HER2+ BC (hazard ratio 2.29; 95% CI: 1.01–5.20; p = 0.047), but not in patients with HR-positive (HR+)/HER2+ BC (hazard ratio 1.36; 95% CI: 0.61–3.07, p = 0.452). By contrast, hyperglycemia (⩾109 mg/dl) at baseline was associated with a trend toward significantly worse RFS at multivariable analysis only in patients with HR+/HER2+ BC (hazard ratio 2.52; 95% CI: 0.89–7.1; p = 0.080). Conclusions: High BMI is associated with worse clinical outcomes in early-stage HR−/HER2+ BC patients treated with trastuzumab-containing adjuvant biochemotherapy, while baseline hyperglycemia could be a predictor of worse RFS in HR+/HER2+ BC patients. Prospective studies are needed to investigate if modifying patient BMI/glycemia during treatment can improve clinical outcomes.
Collapse
Affiliation(s)
| | - Luca Zambelli
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Lorenzo Castagnoli
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Targeting Unit, Department of Research, Milan, Italy
| | - Emma Zattarin
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Arianna Ottini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Fondazione IRCCS Istituto Nazionale dei Tumori, Department of Pathology, Milan, Italy
| | - Serenella M Pupa
- Fondazione IRCCS Istituto Nazionale dei Tumori, Molecular Targeting Unit, Department of Research, Milan, Italy
| | | | - Giuseppe Capri
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giancarlo Pruneri
- Fondazione IRCCS Istituto Nazionale dei Tumori, Department of Pathology, Milan, Italy
| | | | - Claudio Vernieri
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| |
Collapse
|
50
|
Eldakhakhny BM, Al Sadoun H, Choudhry H, Mobashir M. In-Silico Study of Immune System Associated Genes in Case of Type-2 Diabetes With Insulin Action and Resistance, and/or Obesity. Front Endocrinol (Lausanne) 2021; 12:641888. [PMID: 33927693 PMCID: PMC8078136 DOI: 10.3389/fendo.2021.641888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes and obesity are among the leading human diseases and highly complex in terms of diagnostic and therapeutic approaches and are among the most frequent and highly complex and heterogeneous in nature. Based on epidemiological evidence, it is known that the patients suffering from obesity are considered to be at a significantly higher risk of type-2 diabetes. There are several pieces of evidence that support the hypothesis that these diseases interlinked and obesity may aggravate the risk(s) of type-2 diabetes. Multi-level unwanted alterations such as (epi-) genetic alterations, changes at the transcriptional level, and altered signaling pathways (receptor, cytoplasmic, and nuclear level) are the major sources that promote several complex diseases, and such a heterogeneous level of complexity is considered as a major barrier in the development of therapeutics. With so many known challenges, it is critical to understand the relationships and the shared causes between type-2 diabetes and obesity, and these are difficult to unravel and understand. For this purpose, we have selected publicly available datasets of gene expression for obesity and type-2 diabetes, have unraveled the genes and the pathways associated with the immune system, and have also focused on the T-cell signaling pathway and its components. We have applied a simplified computational approach to understanding differential gene expression and patterns and the enriched pathways for obesity and type-2 diabetes. Furthermore, we have also analyzed genes by using network-level understanding. In the analysis, we observe that there are fewer genes that are commonly differentially expressed while a comparatively higher number of pathways are shared between them. There are only 4 pathways that are associated with the immune system in case of obesity and 10 immune-associated pathways in case of type-2 diabetes, and, among them, only 2 pathways are commonly altered. Furthermore, we have presented SPNS1, PTPN6, CD247, FOS, and PIK3R5 as the overexpressed genes, which are the direct components of TCR signaling.
Collapse
Affiliation(s)
- Basmah Medhat Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hadeel Al Sadoun
- Stem Cell Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Cancer and Mutagenesis Unit, Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Mobashir
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|