1
|
Perens EA, Yelon D. Drivers of vessel progenitor fate define intermediate mesoderm dimensions by inhibiting kidney progenitor specification. Dev Biol 2024; 517:126-139. [PMID: 39307382 DOI: 10.1016/j.ydbio.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Proper organ formation depends on the precise delineation of organ territories containing defined numbers of progenitor cells. Kidney progenitors reside in bilateral stripes of posterior mesoderm that are referred to as the intermediate mesoderm (IM). Previously, we showed that the transcription factors Hand2 and Osr1 act to strike a balance between the specification of the kidney progenitors in the IM and the vessel progenitors in the laterally adjacent territory. Recently, the transcription factor Npas4l - an early and essential driver of vessel and blood progenitor formation - was shown to inhibit kidney development. Here we demonstrate how kidney progenitor specification is coordinated by hand2, osr1, and npas4l. We find that npas4l and the IM marker pax2a are transiently co-expressed in the posterior lateral mesoderm, and npas4l is necessary to inhibit IM formation. Consistent with the expression of npas4l flanking the medial and lateral sides of the IM, our findings suggest roles for npas4l in defining the IM boundaries at each of these borders. At the lateral IM border, hand2 promotes and osr1 inhibits the formation of npas4l-expressing lateral vessel progenitors, and hand2 requires npas4l to inhibit IM formation and to promote vessel formation. Meanwhile, npas4l appears to have an additional role in suppressing IM fate at the medial border: npas4l loss-of-function enhances hand2 mutant IM defects and results in excess IM generated outside of the lateral hand2-expressing territory. Together, our findings reveal that establishment of the medial and lateral boundaries of the IM requires inhibition of kidney progenitor specification by the neighboring drivers of vessel progenitor fate.
Collapse
Affiliation(s)
- Elliot A Perens
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, Division of Pediatric Nephrology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Deborah Yelon
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Zhang L, Wei X. Stepwise modulation of apical orientational cell adhesions for vertebrate neurulation. Biol Rev Camb Philos Soc 2023; 98:2271-2283. [PMID: 37534608 DOI: 10.1111/brv.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Neurulation transforms the neuroectoderm into the neural tube. This transformation relies on reorganising the configurational relationships between the orientations of intrinsic polarities of neighbouring cells. These orientational intercellular relationships are established, maintained, and modulated by orientational cell adhesions (OCAs). Here, using zebrafish (Danio rerio) neurulation as a major model, we propose a new perspective on how OCAs contribute to the parallel, antiparallel, and opposing intercellular relationships that underlie the neural plate-keel-rod-tube transformation, a stepwise process of cell aggregation followed by cord hollowing. We also discuss how OCAs in neurulation may be regulated by various adhesion molecules, including cadherins, Eph/Ephrins, Claudins, Occludins, Crumbs, Na+ /K+ -ATPase, and integrins. By comparing neurulation among species, we reveal that antiparallel OCAs represent a conserved mechanism for the fusion of the neural tube. Throughout, we highlight some outstanding questions regarding OCAs in neurulation. Answers to these questions will help us understand better the mechanisms of tubulogenesis of many tissues.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Psychology, Dalian Medical University, 9 South LvShun Road, Dalian, 116044, China
| | - Xiangyun Wei
- Departments of Ophthalmology, Developmental Biology, and Microbiology & Molecular Genetics, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
3
|
Cote LE, Feldman JL. Won't You be My Neighbor: How Epithelial Cells Connect Together to Build Global Tissue Polarity. Front Cell Dev Biol 2022; 10:887107. [PMID: 35800889 PMCID: PMC9253303 DOI: 10.3389/fcell.2022.887107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues form continuous barriers to protect against external environments. Within these tissues, epithelial cells build environment-facing apical membranes, junction complexes that anchor neighbors together, and basolateral surfaces that face other cells. Critically, to form a continuous apical barrier, neighboring epithelial cells must align their apico-basolateral axes to create global polarity along the entire tissue. Here, we will review mechanisms of global tissue-level polarity establishment, with a focus on how neighboring epithelial cells of different origins align their apical surfaces. Epithelial cells with different developmental origins and/or that polarize at different times and places must align their respective apico-basolateral axes. Connecting different epithelial tissues into continuous sheets or tubes, termed epithelial fusion, has been most extensively studied in cases where neighboring cells initially dock at an apical-to-apical interface. However, epithelial cells can also meet basal-to-basal, posing several challenges for apical continuity. Pre-existing basement membrane between the tissues must be remodeled and/or removed, the cells involved in docking are specialized, and new cell-cell adhesions are formed. Each of these challenges can involve changes to apico-basolateral polarity of epithelial cells. This minireview highlights several in vivo examples of basal docking and how apico-basolateral polarity changes during epithelial fusion. Understanding the specific molecular mechanisms of basal docking is an area ripe for further exploration that will shed light on complex morphogenetic events that sculpt developing organisms and on the cellular mechanisms that can go awry during diseases involving the formation of cysts, fistulas, atresias, and metastases.
Collapse
|
4
|
Hevia CF, Engel-Pizcueta C, Udina F, Pujades C. The neurogenic fate of the hindbrain boundaries relies on Notch3-dependent asymmetric cell divisions. Cell Rep 2022; 39:110915. [PMID: 35675784 DOI: 10.1016/j.celrep.2022.110915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/16/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Elucidating the cellular and molecular mechanisms that regulate the balance between progenitor cell proliferation and neuronal differentiation in the construction of the embryonic brain demands the combination of cell lineage and functional approaches. Here, we generate the comprehensive lineage of hindbrain boundary cells by using a CRISPR-based knockin zebrafish transgenic line that specifically labels the boundaries. We unveil that boundary cells asynchronously engage in neurogenesis undergoing a functional transition from neuroepithelial progenitors to radial glia cells, coinciding with the onset of Notch3 signaling that triggers their asymmetrical cell division. Upon notch3 loss of function, boundary cells lose radial glia properties and symmetrically divide undergoing neuronal differentiation. Finally, we show that the fate of boundary cells is to become neurons, the subtype of which relies on their axial position, suggesting that boundary cells contribute to refine the number and proportion of the distinct neuronal populations.
Collapse
Affiliation(s)
| | | | - Frederic Udina
- Department of Economics and Business, Universitat Pompeu Fabra, 08002 Barcelona, Spain; Data Science Center, Barcelona School of Economics, 08002 Barcelona, Spain
| | - Cristina Pujades
- Department of Medicine and Life Sciences, 08003 Barcelona, Spain.
| |
Collapse
|
5
|
Usami C, Inomata H. Rapalog-induced cell adhesion molecule inhibits mesoderm migration in Xenopus embryos by increasing frequency of adhesion to the ectoderm. Genes Cells 2022; 27:436-450. [PMID: 35437867 DOI: 10.1111/gtc.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
During the gastrula stage of Xenopus laevis, mesodermal cells migrate on the blastocoel roof (BCR) toward the animal pole. In this process, mesodermal cells directly adhere to the BCR via adhesion molecules, such as cadherins, which in turn trigger a repulsive reaction through factors such as Eph/ephrin. Therefore, the mesoderm and BCR repeatedly adhere to and detach from each other, and the frequency of this adhesion is thought to control mesoderm migration. Although knockdown of cadherin or Eph/ephrin causes severe gastrulation defects, these molecules have been reported to contribute not only to boundary formation but also to the internal function of each tissue. Therefore, it is possible that the defect caused by knockdown occurs due to tissue function abnormalities. To address this problem, we developed a method to specifically induce adhesion between different tissues using rapalog (an analog of rapamycin). When adhesion between the BCR and mesoderm was specifically enhanced by rapalog, mesoderm migration was strongly suppressed. Furthermore, we confirmed that rapalog significantly increased the frequency of adhesion between the two tissues. These results support the idea that the adhesion frequency controls mesoderm migration, and demonstrate that our method effectively enhances adhesion between specific tissues in vivo.
Collapse
Affiliation(s)
- Chisa Usami
- Axial Pattern Dynamics Team, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hidehiko Inomata
- Axial Pattern Dynamics Team, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
6
|
Fulton T, Verd B, Steventon B. The unappreciated generative role of cell movements in pattern formation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211293. [PMID: 35601454 PMCID: PMC9043703 DOI: 10.1098/rsos.211293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms underpinning the formation of patterned cellular landscapes has been the subject of extensive study as a fundamental problem of developmental biology. In most cases, attention has been given to situations in which cell movements are negligible, allowing researchers to focus on the cell-extrinsic signalling mechanisms, and intrinsic gene regulatory interactions that lead to pattern emergence at the tissue level. However, in many scenarios during development, cells rapidly change their neighbour relationships in order to drive tissue morphogenesis, while also undergoing patterning. To draw attention to the ubiquity of this problem and propose methodologies that will accommodate morphogenesis into the study of pattern formation, we review the current approaches to studying pattern formation in both static and motile cellular environments. We then consider how the cell movements themselves may contribute to the generation of pattern, rather than hinder it, with both a species specific and evolutionary viewpoint.
Collapse
Affiliation(s)
- Timothy Fulton
- Department of Genetics, University of Cambridge, Cambridge, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
7
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
8
|
Wilkinson DG. Interplay of Eph-Ephrin Signalling and Cadherin Function in Cell Segregation and Boundary Formation. Front Cell Dev Biol 2021; 9:784039. [PMID: 34869386 PMCID: PMC8633894 DOI: 10.3389/fcell.2021.784039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
The segregation of distinct cell populations to form sharp boundaries is crucial for stabilising tissue organisation, for example during hindbrain segmentation in craniofacial development. Two types of mechanisms have been found to underlie cell segregation: differential adhesion mediated by cadherins, and Eph receptor and ephrin signalling at the heterotypic interface which regulates cell adhesion, cortical tension and repulsion. An interplay occurs between these mechanisms since cadherins have been found to contribute to Eph-ephrin-mediated cell segregation. This may reflect that Eph receptor activation acts through multiple pathways to decrease cadherin-mediated adhesion which can drive cell segregation. However, Eph receptors mainly drive cell segregation through increased heterotypic tension or repulsion. Cadherins contribute to cell segregation by antagonising homotypic tension within each cell population. This suppression of homotypic tension increases the difference with heterotypic tension triggered by Eph receptor activation, and it is this differential tension that drives cell segregation and border sharpening.
Collapse
|
9
|
Perens EA, Diaz JT, Quesnel A, Askary A, Crump JG, Yelon D. osr1 couples intermediate mesoderm cell fate with temporal dynamics of vessel progenitor cell differentiation. Development 2021; 148:dev198408. [PMID: 34338289 PMCID: PMC8380454 DOI: 10.1242/dev.198408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
Transcriptional regulatory networks refine gene expression boundaries to define the dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that establish the boundary between the IM and neighboring vessel progenitors are poorly understood. Here, we delineate roles for the zinc-finger transcription factor Osr1 in kidney and vessel progenitor development. Zebrafish osr1 mutants display decreased IM formation and premature emergence of lateral vessel progenitors (LVPs). These phenotypes contrast with the increased IM and absent LVPs observed with loss of the bHLH transcription factor Hand2, and loss of hand2 partially suppresses osr1 mutant phenotypes. hand2 and osr1 are expressed together in the posterior mesoderm, but osr1 expression decreases dramatically prior to LVP emergence. Overexpressing osr1 during this timeframe inhibits LVP development while enhancing IM formation, and can rescue the osr1 mutant phenotype. Together, our data demonstrate that osr1 modulates the extent of IM formation and the temporal dynamics of LVP development, suggesting that a balance between levels of osr1 and hand2 expression is essential to demarcate the kidney and vessel progenitor territories.
Collapse
Affiliation(s)
- Elliot A. Perens
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
- Division of Pediatric Nephrology, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jessyka T. Diaz
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
- Division of Pediatric Nephrology, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Agathe Quesnel
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Amjad Askary
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - J. Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Abstract
During early development, the hindbrain is sub-divided into rhombomeres that underlie the organisation of neurons and adjacent craniofacial tissues. A gene regulatory network of signals and transcription factors establish and pattern segments with a distinct anteroposterior identity. Initially, the borders of segmental gene expression are imprecise, but then become sharply defined, and specialised boundary cells form. In this Review, we summarise key aspects of the conserved regulatory cascade that underlies the formation of hindbrain segments. We describe how the pattern is sharpened and stabilised through the dynamic regulation of cell identity, acting in parallel with cell segregation. Finally, we discuss evidence that boundary cells have roles in local patterning, and act as a site of neurogenesis within the hindbrain.
Collapse
Affiliation(s)
- Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Dept of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, KS 66160, USA
| | | |
Collapse
|
11
|
Qiu Y, Fung L, Schilling TF, Nie Q. Multiple morphogens and rapid elongation promote segmental patterning during development. PLoS Comput Biol 2021; 17:e1009077. [PMID: 34161317 PMCID: PMC8259987 DOI: 10.1371/journal.pcbi.1009077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 07/06/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The vertebrate hindbrain is segmented into rhombomeres (r) initially defined by distinct domains of gene expression. Previous studies have shown that noise-induced gene regulation and cell sorting are critical for the sharpening of rhombomere boundaries, which start out rough in the forming neural plate (NP) and sharpen over time. However, the mechanisms controlling simultaneous formation of multiple rhombomeres and accuracy in their sizes are unclear. We have developed a stochastic multiscale cell-based model that explicitly incorporates dynamic morphogenetic changes (i.e. convergent-extension of the NP), multiple morphogens, and gene regulatory networks to investigate the formation of rhombomeres and their corresponding boundaries in the zebrafish hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor (FGF), works together with the longer-range morphogen, retinoic acid (RA), to specify all of these boundaries and maintain accurately sized segments with sharp boundaries. At later stages of patterning, we show a nonlinear change in the shape of rhombomeres with rapid left-right narrowing of the NP followed by slower dynamics. Rapid initial convergence improves boundary sharpness and segment size by regulating cell sorting and cell fate both independently and coordinately. Overall, multiple morphogens and tissue dynamics synergize to regulate the sizes and boundaries of multiple segments during development. In segmental pattern formation, chemical gradients control gene expression in a concentration-dependent manner to specify distinct gene expression domains. Despite the stochasticity inherent to such biological processes, precise and accurate borders form between segmental gene expression domains. Previous work has revealed synergy between gene regulation and cell sorting in sharpening borders that are initially rough. However, it is still poorly understood how size and boundary sharpness of multiple segments are regulated in a tissue that changes dramatically in its morphology as the embryo develops. Here we develop a stochastic multiscale cell-base model to investigate these questions. Two novel strategies synergize to promote accurate segment formation, a combination of long- and short-range morphogens plus rapid tissue convergence, with one responsible for pattern initiation and the other enabling pattern refinement.
Collapse
Affiliation(s)
- Yuchi Qiu
- Department of Mathematics, University of California, Irvine, California, United States of America
| | - Lianna Fung
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
- * E-mail: (TFS); (QN)
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
- * E-mail: (TFS); (QN)
| |
Collapse
|
12
|
Weijts B, Shaked I, Ginsberg M, Kleinfeld D, Robin C, Traver D. Endothelial struts enable the generation of large lumenized blood vessels de novo. Nat Cell Biol 2021; 23:322-329. [PMID: 33837285 PMCID: PMC8500358 DOI: 10.1038/s41556-021-00664-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 03/05/2021] [Indexed: 02/01/2023]
Abstract
De novo blood vessel formation occurs through coalescence of endothelial cells (ECs) into a cord-like structure, followed by lumenization either through cell-1-3 or cord-hollowing4-7. Vessels generated in this manner are restricted in diameter to one or two ECs, and these models fail to explain how vasculogenesis can form large-diameter vessels. Here, we describe a model for large vessel formation that does not require a cord-like structure or a hollowing step. In this model, ECs coalesce into a network of struts in the future lumen of the vessel, a process dependent upon bone morphogenetic protein signalling. The vessel wall forms around this network and consists initially of only a few patches of ECs. To withstand external forces and to maintain the shape of the vessel, strut formation traps erythrocytes into compartments to form a rigid structure. Struts gradually prune and ECs from struts migrate into and become part of the vessel wall. Experimental severing of struts resulted in vessel collapse, disturbed blood flow and remodelling defects, demonstrating that struts enable the patency of large vessels during their formation.
Collapse
Affiliation(s)
- Bart Weijts
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA,Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands,Correspondence to: ;
| | - Iftach Shaked
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mark Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands,Regenerative Medicine Center, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - David Traver
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA,Correspondence to: ;
| |
Collapse
|
13
|
Gordon PM, Hamid F, Makeyev EV, Houart C. A conserved role for the ALS-linked splicing factor SFPQ in repression of pathogenic cryptic last exons. Nat Commun 2021; 12:1918. [PMID: 33771997 PMCID: PMC7997972 DOI: 10.1038/s41467-021-22098-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
The RNA-binding protein SFPQ plays an important role in neuronal development and has been associated with several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease. Here, we report that loss of sfpq leads to premature termination of multiple transcripts due to widespread activation of previously unannotated cryptic last exons (CLEs). These SFPQ-inhibited CLEs appear preferentially in long introns of genes with neuronal functions and can dampen gene expression outputs and/or give rise to short peptides interfering with the normal gene functions. We show that one such peptide encoded by the CLE-containing epha4b mRNA isoform is responsible for neurodevelopmental defects in the sfpq mutant. The uncovered CLE-repressive activity of SFPQ is conserved in mouse and human, and SFPQ-inhibited CLEs are found expressed across ALS iPSC-derived neurons. These results greatly expand our understanding of SFPQ function and uncover a gene regulation mechanism with wide relevance to human neuropathologies.
Collapse
Affiliation(s)
- Patricia M Gordon
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, Guy's Campus, King's College London, London, SE1 1UL, UK.
| | - Fursham Hamid
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
14
|
Pujades C. The multiple functions of hindbrain boundary cells: Tinkering boundaries? Semin Cell Dev Biol 2020; 107:179-189. [DOI: 10.1016/j.semcdb.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 02/01/2023]
|
15
|
Fagotto F. Tissue segregation in the early vertebrate embryo. Semin Cell Dev Biol 2020; 107:130-146. [DOI: 10.1016/j.semcdb.2020.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022]
|
16
|
Kindberg A, Hu JK, Bush JO. Forced to communicate: Integration of mechanical and biochemical signaling in morphogenesis. Curr Opin Cell Biol 2020; 66:59-68. [PMID: 32569947 PMCID: PMC7577940 DOI: 10.1016/j.ceb.2020.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023]
Abstract
Morphogenesis is a physical process that requires the generation of mechanical forces to achieve dynamic changes in cell position, tissue shape, and size as well as biochemical signals to coordinate these events. Mechanical forces are also used by the embryo to transmit detailed information across space and detected by target cells, leading to downstream changes in cellular properties and behaviors. Indeed, forces provide signaling information of complementary quality that can both synergize and diversify the functional outputs of biochemical signaling. Here, we discuss recent findings that reveal how mechanical signaling and biochemical signaling are integrated during morphogenesis and the possible context-specific advantages conferred by the interactions between these signaling mechanisms.
Collapse
Affiliation(s)
- Abigail Kindberg
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Sharrock TE, Sanson B. Cell sorting and morphogenesis in early Drosophila embryos. Semin Cell Dev Biol 2020; 107:147-160. [PMID: 32807642 DOI: 10.1016/j.semcdb.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
The regionalisation of growing tissues into compartments that do not mix is thought to be a common motif of animal development. Compartments and compartmental boundaries were discovered by lineage studies in the model organism Drosophila. Since then, many compartment boundaries have been identified in developing tissues, from insects to vertebrates. These are important for animal development, because boundaries localize signalling centres that control tissue morphogenesis. Compartment boundaries are boundaries of lineage restriction, where specific mechanisms keep boundaries straight and cells segregated. Here, we review the mechanisms of cell sorting at boundaries found in early Drosophila embryos. The parasegmental boundaries, separating anterior from posterior compartments in the embryo, keep cells segregated by increasing actomyosin contractility at boundary cell-cell interfaces. Differential actomyosin contractility in turn promotes fold formation and orients cell division. Earlier in development, actomyosin differentials are also important for cell sorting during axis extension. Specific cell surface asymmetries and signalling pathways are required to initiate and maintain these actomyosin differentials.
Collapse
Affiliation(s)
- Thomas E Sharrock
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Baudet S, Bécret J, Nicol X. Approaches to Manipulate Ephrin-A:EphA Forward Signaling Pathway. Pharmaceuticals (Basel) 2020; 13:ph13070140. [PMID: 32629797 PMCID: PMC7407804 DOI: 10.3390/ph13070140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma A (EphA) receptors and their ephrin-A ligands are key players of developmental events shaping the mature organism. Their expression is mostly restricted to stem cell niches in adults but is reactivated in pathological conditions including lesions in the heart, lung, or nervous system. They are also often misregulated in tumors. A wide range of molecular tools enabling the manipulation of the ephrin-A:EphA system are available, ranging from small molecules to peptides and genetically-encoded strategies. Their mechanism is either direct, targeting EphA receptors, or indirect through the modification of intracellular downstream pathways. Approaches enabling manipulation of ephrin-A:EphA forward signaling for the dissection of its signaling cascade, the investigation of its physiological roles or the development of therapeutic strategies are summarized here.
Collapse
|
19
|
Modeling of Wnt-mediated tissue patterning in vertebrate embryogenesis. PLoS Comput Biol 2020; 16:e1007417. [PMID: 32579554 PMCID: PMC7340325 DOI: 10.1371/journal.pcbi.1007417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 07/07/2020] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
During embryogenesis, morphogens form a concentration gradient in responsive tissue, which is then translated into a spatial cellular pattern. The mechanisms by which morphogens spread through a tissue to establish such a morphogenetic field remain elusive. Here, we investigate by mutually complementary simulations and in vivo experiments how Wnt morphogen transport by cytonemes differs from typically assumed diffusion-based transport for patterning of highly dynamic tissue such as the neural plate in zebrafish. Stochasticity strongly influences fate acquisition at the single cell level and results in fluctuating boundaries between pattern regions. Stable patterning can be achieved by sorting through concentration dependent cell migration and apoptosis, independent of the morphogen transport mechanism. We show that Wnt transport by cytonemes achieves distinct Wnt thresholds for the brain primordia earlier compared with diffusion-based transport. We conclude that a cytoneme-mediated morphogen transport together with directed cell sorting is a potentially favored mechanism to establish morphogen gradients in rapidly expanding developmental systems.
Collapse
|
20
|
Sidhwani P, Leerberg DM, Boezio GLM, Capasso TL, Yang H, Chi NC, Roman BL, Stainier DYR, Yelon D. Cardiac function modulates endocardial cell dynamics to shape the cardiac outflow tract. Development 2020; 147:dev185900. [PMID: 32439760 PMCID: PMC7328156 DOI: 10.1242/dev.185900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/27/2020] [Indexed: 01/06/2023]
Abstract
Physical forces are important participants in the cellular dynamics that shape developing organs. During heart formation, for example, contractility and blood flow generate biomechanical cues that influence patterns of cell behavior. Here, we address the interplay between function and form during the assembly of the cardiac outflow tract (OFT), a crucial connection between the heart and vasculature that develops while circulation is under way. In zebrafish, we find that the OFT expands via accrual of both endocardial and myocardial cells. However, when cardiac function is disrupted, OFT endocardial growth ceases, accompanied by reduced proliferation and reduced addition of cells from adjacent vessels. The flow-responsive TGFβ receptor Acvrl1 is required for addition of endocardial cells, but not for their proliferation, indicating distinct modes of function-dependent regulation for each of these essential cell behaviors. Together, our results indicate that cardiac function modulates OFT morphogenesis by triggering endocardial cell accumulation that induces OFT lumen expansion and shapes OFT dimensions. Moreover, these morphogenetic mechanisms provide new perspectives regarding the potential causes of cardiac birth defects.
Collapse
Affiliation(s)
- Pragya Sidhwani
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dena M Leerberg
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Giulia L M Boezio
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Teresa L Capasso
- Department of Human Genetics, Graduate School of Public Health, and Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hongbo Yang
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Beth L Roman
- Department of Human Genetics, Graduate School of Public Health, and Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, 61231 Bad Nauheim, Germany
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Kesavan G, Machate A, Hans S, Brand M. Cell-fate plasticity, adhesion and cell sorting complementarily establish a sharp midbrain-hindbrain boundary. Development 2020; 147:dev186882. [PMID: 32439756 DOI: 10.1242/dev.186882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/30/2020] [Indexed: 01/22/2023]
Abstract
The formation and maintenance of sharp boundaries between groups of cells play a vital role during embryonic development as they serve to compartmentalize cells with similar fates. Some of these boundaries also act as organizers, with the ability to induce specific cell fates and morphogenesis in the surrounding cells. The midbrain-hindbrain boundary (MHB) is such an organizer: it acts as a lineage restriction boundary to prevent the intermingling of cells with different developmental fates. However, the mechanisms underlying the lineage restriction process remain unclear. Here, using novel fluorescent knock-in reporters, live imaging, Cre/lox-mediated lineage tracing, atomic force microscopy-based cell adhesion assays and mutant analysis, we analyze the process of lineage restriction at the MHB and provide mechanistic details. Specifically, we show that lineage restriction occurs by the end of gastrulation, and that the subsequent formation of sharp gene expression boundaries in the developing MHB occur through complementary mechanisms, i.e. cell-fate plasticity and cell sorting. Furthermore, we show that cell sorting at the MHB involves differential adhesion among midbrain and hindbrain cells that is mediated by N-cadherin and Eph-ephrin signaling.
Collapse
Affiliation(s)
- Gokul Kesavan
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| |
Collapse
|
22
|
Tambalo M, Mitter R, Wilkinson DG. A single cell transcriptome atlas of the developing zebrafish hindbrain. Development 2020; 147:dev184143. [PMID: 32094115 PMCID: PMC7097387 DOI: 10.1242/dev.184143] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Segmentation of the vertebrate hindbrain leads to the formation of rhombomeres, each with a distinct anteroposterior identity. Specialised boundary cells form at segment borders that act as a source or regulator of neuronal differentiation. In zebrafish, there is spatial patterning of neurogenesis in which non-neurogenic zones form at boundaries and segment centres, in part mediated by Fgf20 signalling. To further understand the control of neurogenesis, we have carried out single cell RNA sequencing of the zebrafish hindbrain at three different stages of patterning. Analyses of the data reveal known and novel markers of distinct hindbrain segments, of cell types along the dorsoventral axis, and of the transition of progenitors to neuronal differentiation. We find major shifts in the transcriptome of progenitors and of differentiating cells between the different stages analysed. Supervised clustering with markers of boundary cells and segment centres, together with RNA-seq analysis of Fgf-regulated genes, has revealed new candidate regulators of cell differentiation in the hindbrain. These data provide a valuable resource for functional investigations of the patterning of neurogenesis and the transition of progenitors to neuronal differentiation.
Collapse
Affiliation(s)
- Monica Tambalo
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
23
|
Lamb-Echegaray ID, Noftz WA, Stinson JPC, Gabriele ML. Shaping of discrete auditory inputs to extramodular zones of the lateral cortex of the inferior colliculus. Brain Struct Funct 2019; 224:3353-3371. [PMID: 31729553 DOI: 10.1007/s00429-019-01979-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
The multimodal lateral cortex of the inferior colliculus (LCIC) exhibits a modular-extramodular micro-organization that is evident early in development. In addition to a set of neurochemical markers that reliably highlight its modular-extramodular organization (e.g. modules: GAD67-positive, extramodular zones: calretinin-positive, CR), mature projection patterns suggest that major LCIC afferents recognize and adhere to such a framework. In adult mice, distinct afferent projections appear segregated, with somatosensory inputs targeting LCIC modules and auditory inputs surrounding extramodular fields. Currently lacking is an understanding regarding the development and shaping of multimodal LCIC afferents with respect to its emerging modular-extramodular microarchitecture. Combining living slice tract-tracing and immunocytochemical approaches in GAD67-GFP knock-in mice, the present study characterizes the critical period of projection shaping for LCIC auditory afferents arising from its neighboring central nucleus (CNIC). Both crossed and uncrossed projection patterns exhibit LCIC extramodular mapping characteristics that emerge from initially diffuse distributions. Projection mismatch with GAD-defined modules and alignment with encompassing extramodular zones becomes increasingly clear over the early postnatal period (birth to postnatal day 12). CNIC inputs terminate almost exclusively in extramodular zones that express CR. These findings suggest multimodal LCIC inputs may initially be sparse and intermingle, prior to segregation into distinct processing streams. Future experiments are needed to determine the likely complex interactions and mechanisms (e.g. activity-dependent and independent) responsible for shaping early modality-specific LCIC circuits.
Collapse
Affiliation(s)
- Isabel D Lamb-Echegaray
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - William A Noftz
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jeremiah P C Stinson
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Mark L Gabriele
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA.
| |
Collapse
|
24
|
Cayuso J, Xu Q, Addison M, Wilkinson DG. Actomyosin regulation by Eph receptor signaling couples boundary cell formation to border sharpness. eLife 2019; 8:49696. [PMID: 31502954 PMCID: PMC6739871 DOI: 10.7554/elife.49696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
The segregation of cells with distinct regional identity underlies formation of a sharp border, which in some tissues serves to organise a boundary signaling centre. It is unclear whether or how border sharpness is coordinated with induction of boundary-specific gene expression. We show that forward signaling of EphA4 is required for border sharpening and induction of boundary cells in the zebrafish hindbrain, which we find both require kinase-dependent signaling, with a lesser input of PDZ domain-dependent signaling. We find that boundary-specific gene expression is regulated by myosin II phosphorylation, which increases actomyosin contraction downstream of EphA4 signaling. Myosin phosphorylation leads to nuclear translocation of Taz, which together with Tead1a is required for boundary marker expression. Since actomyosin contraction maintains sharp borders, there is direct coupling of border sharpness to boundary cell induction that ensures correct organisation of signaling centres.
Collapse
Affiliation(s)
- Jordi Cayuso
- The Francis Crick Institute, London, United Kingdom
| | - Qiling Xu
- The Francis Crick Institute, London, United Kingdom
| | | | | |
Collapse
|
25
|
Cambronero F, Ariza‐McNaughton L, Wiedemann LM, Krumlauf R. Inter‐rhombomeric interactions reveal roles for fibroblast growth factors signaling in segmental regulation of
EphA4
expression. Dev Dyn 2019; 249:354-368. [DOI: 10.1002/dvdy.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Leanne M. Wiedemann
- Stowers Institute for Medical Research Kansas City Missouri
- Department of Pathology and Laboratory MedicineKansas University Medical Center Kansas City Kansas
| | - Robb Krumlauf
- Stowers Institute for Medical Research Kansas City Missouri
- Division of Developmental NeurobiologyNational Institute for Medical Research London UK
- Department of Anatomy and Cell BiologyKansas University Medical School Kansas City Kansas
| |
Collapse
|
26
|
Wu Z, Ashlin TG, Xu Q, Wilkinson DG. Role of forward and reverse signaling in Eph receptor and ephrin mediated cell segregation. Exp Cell Res 2019; 381:57-65. [PMID: 31075258 PMCID: PMC6546932 DOI: 10.1016/j.yexcr.2019.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/02/2022]
Abstract
Eph receptor and ephrin signaling has a major role in segregating distinct cell populations to form sharp borders. Expression of interacting Ephs and ephrins typically occurs in complementary regions, such that polarised activation of both components occurs at the interface. Forward signaling through Eph receptors can drive cell segregation, but it is unclear whether reverse signaling through ephrins can also contribute. We have tested the role of reverse signaling, and of polarised versus non-polarised activation, in assays in which contact repulsion drives cell segregation and border sharpening. We find that polarised forward signaling drives stronger segregation than polarised reverse signaling. Nevertheless, reverse signaling contributes since bidirectional Eph and ephrin activation drives stronger segregation than unidirectional forward signaling alone. In contrast, non-polarised Eph activation drives little segregation. We propose that although polarised forward signaling is the principal driver of segregation, reverse signaling enables bidirectional repulsion which prevents mingling of each population into the other.
Collapse
Affiliation(s)
- Zhonglin Wu
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Tim G Ashlin
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Qiling Xu
- The Francis Crick Institute, London, NW1 1AT, UK
| | | |
Collapse
|
27
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
28
|
Niethamer TK, Bush JO. Getting direction(s): The Eph/ephrin signaling system in cell positioning. Dev Biol 2019; 447:42-57. [PMID: 29360434 PMCID: PMC6066467 DOI: 10.1016/j.ydbio.2018.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
In vertebrates, the Eph/ephrin family of signaling molecules is a large group of membrane-bound proteins that signal through a myriad of mechanisms and effectors to play diverse roles in almost every tissue and organ system. Though Eph/ephrin signaling has functions in diverse biological processes, one core developmental function is in the regulation of cell position and tissue morphology by regulating cell migration and guidance, cell segregation, and boundary formation. Often, the role of Eph/ephrin signaling is to translate patterning information into physical movement of cells and changes in morphology that define tissue and organ systems. In this review, we focus on recent advances in the regulation of these processes, and our evolving understanding of the in vivo signaling mechanisms utilized in distinct developmental contexts.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
29
|
Kindberg AA, Bush JO. Cellular organization and boundary formation in craniofacial development. Genesis 2019; 57:e23271. [PMID: 30548771 PMCID: PMC6503678 DOI: 10.1002/dvg.23271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Craniofacial morphogenesis is a highly dynamic process that requires changes in the behaviors and physical properties of cells in order to achieve the proper organization of different craniofacial structures. Boundary formation is a critical process in cellular organization, patterning, and ultimately tissue separation. There are several recurring cellular mechanisms through which boundary formation and cellular organization occur including, transcriptional patterning, cell segregation, cell adhesion and migratory guidance. Disruption of normal boundary formation has dramatic morphological consequences, and can result in human craniofacial congenital anomalies. In this review we discuss boundary formation during craniofacial development, specifically focusing on the cellular behaviors and mechanisms underlying the self-organizing properties that are critical for craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abigail A. Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
30
|
Voltes A, Hevia CF, Engel C, Dingare C, Calzolari S, Terriente J, Norden C, Lecaudey V, Pujades C. Yap/Taz-TEAD activity links mechanical cues to progenitor cell behavior during zebrafish hindbrain segmentation. Development 2019; 146:dev.176735. [DOI: 10.1242/dev.176735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Cells perceive their microenvironment through chemical and physical cues. However, how mechanical signals are interpreted during embryonic tissue deformation resulting in specific cell behaviors is largely unknown. The Yap/Taz family of transcriptional co-activators has emerged as an important regulator of tissue growth and regeneration, responding to physical cues from the extracellular matrix, cell shape changes and actomyosin cytoskeleton. In this study, we demonstrated the role of Yap/Taz-TEAD activity as a sensor of mechanical signals in the regulation of the progenitor behavior of boundary cells during zebrafish hindbrain compartmentalization. Monitoring of in vivo Yap/Taz-activity during hindbrain segmentation indicated that boundary cells responded to mechanical cues in a cell-autonomous manner through Yap/Taz-TEAD activity. Cell-lineage analysis revealed that Yap/Taz-TEAD boundary cells decreased their proliferative activity when Yap/Taz-TEAD activity ceased, which preceded changes in their cell fate from proliferating progenitors to differentiated neurons. Functional experiments demonstrated the pivotal role of Yap/Taz-TEAD signaling in maintaining progenitor features in the hindbrain boundary cell population.
Collapse
Affiliation(s)
- Adrià Voltes
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Covadonga F. Hevia
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Carolyn Engel
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | - Simone Calzolari
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Javier Terriente
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
31
|
Abstract
Studies of the vertebrate hindbrain have revealed parallel mechanisms that establish sharp segments with a distinct and homogeneous regional identity. Recent work has revealed roles of cell identity regulation and its relationships with cell segregation. At early stages, there is overlapping expression at segment borders of the Egr2 and Hoxb1 transcription factors that specify distinct identities, which is resolved by reciprocal repression. Computer simulations show that this dynamic regulation of cell identity synergises with cell segregation to generate sharp borders. Some intermingling between segments occurs at early stages, and ectopic egr2-expressing cells switch identity to match their new neighbours. This switching is mediated by coupling between egr2 expression and the level of retinoic acid signalling, which acts in a community effect to maintain homogeneous segmental identity. These findings reveal an interplay between cell segregation and the dynamic regulation of cell identity in the formation of sharp patterns in the hindbrain and raise the question of whether similar mechanisms occur in other tissues.
Collapse
|
32
|
Addison M, Xu Q, Cayuso J, Wilkinson DG. Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain. Dev Cell 2018; 45:606-620.e3. [PMID: 29731343 PMCID: PMC5988564 DOI: 10.1016/j.devcel.2018.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 10/25/2022]
Abstract
The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity.
Collapse
Affiliation(s)
- Megan Addison
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Qiling Xu
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jordi Cayuso
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
33
|
Evolutionary emergence of the rac3b/ rfng/ sgca regulatory cluster refined mechanisms for hindbrain boundaries formation. Proc Natl Acad Sci U S A 2018; 115:E3731-E3740. [PMID: 29610331 DOI: 10.1073/pnas.1719885115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments. Here, we identify the fundamental role of the small-GTPase Rac3b in actomyosin cable assembly at hindbrain boundaries. We show that the novel rac3b/rfng/sgca regulatory cluster, which is specifically expressed at the boundaries, emerged in the Ostariophysi superorder by chromosomal rearrangement that generated new cis-regulatory interactions. By combining 4C-seq, ATAC-seq, transgenesis, and CRISPR-induced deletions, we characterized this regulatory domain, identifying hindbrain boundary-specific cis-regulatory elements. Our results suggest that the capacity of boundaries to act as an elastic mesh for segregating rhombomeric cells evolved by cooption of critical genes to a novel regulatory block, refining the mechanisms for hindbrain segmentation.
Collapse
|
34
|
Javaherian S, D'Arcangelo E, Slater B, Londono C, Xu B, McGuigan AP. Modulation of cellular polarization and migration by ephrin/Eph signal-mediated boundary formation. Integr Biol (Camb) 2017; 9:934-946. [PMID: 29120470 DOI: 10.1039/c7ib00176b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compartment boundaries are essential for ensuring proper cell organization during embryo development and in adult tissues, yet the mechanisms underlying boundary establishment are not completely understood. A number of mechanisms, including (i) differential adhesion, (ii) differential tension, and (iii) cell signaling-mediated cell repulsion, are known to contribute and likely a context-dependent balance of each of these dictates boundary implementation. The ephrin/Eph signaling pathway is known to impact boundary formation in higher animals. In different contexts, ephrin/Eph signaling is known to modulate adhesive properties and migratory behavior of cells. Furthermore it has been proposed that ephrin/Eph signaling may modulate cellular tensile properties, leading to boundary implementation. It remains unclear however, whether, in different contexts, ephrin/Eph act through distinct dominant action modes (e.g. differential adhesion vs. cell repulsion), or whether ephrin/Eph signaling elicits multiple cellular changes simultaneously. Here, using micropatterning of cells over-expressing either EphB3 or ephrinB1, we assess the contribution of each these factors in one model. We show that in this system ephrinB1/EphB3-mediated boundaries are accompanied by modulation of tissue-level architecture and polarization of cell migration. These changes are associated with changes in cell shape and cytoskeletal organization also suggestive of altered cellular tension.
Collapse
Affiliation(s)
- Sahar Javaherian
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Royet A, Broutier L, Coissieux MM, Malleval C, Gadot N, Maillet D, Gratadou-Hupon L, Bernet A, Nony P, Treilleux I, Honnorat J, Liebl D, Pelletier L, Berger F, Meyronet D, Castets M, Mehlen P. Ephrin-B3 supports glioblastoma growth by inhibiting apoptosis induced by the dependence receptor EphA4. Oncotarget 2017; 8:23750-23759. [PMID: 28423606 PMCID: PMC5410341 DOI: 10.18632/oncotarget.16077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
Abstract
EphA4, an Ephrins tyrosine kinase receptor, behaves as a dependence receptor (DR) by triggering cell apoptosis in the absence of its ligand Ephrin-B3. DRs act as conditional tumor suppressors, engaging cell death based on ligand availability; this mechanism is bypassed by overexpression of DRs ligands in some aggressive cancers. The pair EphA4/Ephrin-B3 favors survival of neuronal progenitors of the brain subventricular zone, an area where glioblastoma multiform (GBM) are thought to originate. Here, we report that Ephrin-B3 is highly expressed in human biopsies and that it inhibits EphA4 pro-apoptotic activity in tumor cells. Angiogenesis is directly correlated with GBM aggressiveness and we demonstrate that Ephrin-B3 also supports the survival of endothelial cells in vitro and in vivo. Lastly, silencing of Ephrin-B3 decreases tumor vascularization and growth in a xenograft mice model. Interference with EphA4/Ephrin-B3 interaction could then be envisaged as a relevant strategy to slow GBM growth by enhancing EphA4-induced cell death.
Collapse
Affiliation(s)
- Amélie Royet
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.,Netris Pharma, 69008 Lyon, France
| | - Laura Broutier
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Marie-May Coissieux
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Céline Malleval
- Lyon Neurosciences Research Center, Neuro-Oncology and Neuro-Inflammation laboratory, INSERM UMR1028, CNRS UMR5292, Université de Lyon, 69372 Lyon Cedex 08, France
| | - Nicolas Gadot
- Research Pathology, Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| | - Denis Maillet
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Lise Gratadou-Hupon
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.,Netris Pharma, 69008 Lyon, France
| | - Agnès Bernet
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.,Netris Pharma, 69008 Lyon, France
| | | | - Isabelle Treilleux
- Research Pathology, Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| | - Jérôme Honnorat
- Lyon Neurosciences Research Center, Neuro-Oncology and Neuro-Inflammation laboratory, INSERM UMR1028, CNRS UMR5292, Université de Lyon, 69372 Lyon Cedex 08, France
| | - Daniel Liebl
- University of Miami Miller School of Medicine, The Miami Project to Cure Paralysis, Miami, Fl 33136, USA
| | - Laurent Pelletier
- Grenoble Institut des Neurosciences, Nanomedicine and Brain Laboratory, INSERM U 836, BP 170, F38042 Grenoble Cedex 9, France
| | - François Berger
- Grenoble Institut des Neurosciences, Nanomedicine and Brain Laboratory, INSERM U 836, BP 170, F38042 Grenoble Cedex 9, France
| | - David Meyronet
- Centre de Pathologie et de Neuropathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Marie Castets
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.,Netris Pharma, 69008 Lyon, France.,Research Pathology, Department of Translational Research and Innovation, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
36
|
Ventrella R, Kaplan N, Getsios S. Asymmetry at cell-cell interfaces direct cell sorting, boundary formation, and tissue morphogenesis. Exp Cell Res 2017; 358:58-64. [PMID: 28322822 PMCID: PMC5544567 DOI: 10.1016/j.yexcr.2017.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Abstract
During development, cells of seemingly homogenous character sort themselves out into distinct compartments in order to generate cell types with specialized features that support tissue morphogenesis and function. This process is often driven by receptors at the cell membrane that probe the extracellular microenvironment for specific ligands and alter downstream signaling pathways impacting transcription, cytoskeletal organization, and cell adhesion to regulate cell sorting and subsequent boundary formation. This review will focus on two of these receptor families, Eph and Notch, both of which are intrinsically non-adhesive and are activated by a unique set of ligands that are asymmetrically distributed from their receptor on neighboring cells. Understanding the requirement of asymmetric ligand-receptor signaling at the membrane under homeostatic conditions gives insight into how misregulation of these pathways contributes to boundary disruption in diseases like cancer.
Collapse
Affiliation(s)
- Rosa Ventrella
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Spiro Getsios
- Department of Dermatology, Northwestern University, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Canty L, Zarour E, Kashkooli L, François P, Fagotto F. Sorting at embryonic boundaries requires high heterotypic interfacial tension. Nat Commun 2017; 8:157. [PMID: 28761157 PMCID: PMC5537356 DOI: 10.1038/s41467-017-00146-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 06/02/2017] [Indexed: 11/22/2022] Open
Abstract
The establishment of sharp boundaries is essential for segregation of embryonic tissues during development, but the underlying mechanism of cell sorting has remained unclear. Opposing hypotheses have been proposed, either based on global tissue adhesive or contractile properties or on local signalling through cell contact cues. Here we use ectoderm-mesoderm separation in Xenopus to directly evaluate the role of these various parameters. We find that ephrin-Eph-based repulsion is very effective at inducing and maintaining separation, whereas differences in adhesion or contractility have surprisingly little impact. Computer simulations support and generalise our experimental results, showing that a high heterotypic interfacial tension between tissues is key to their segregation. We propose a unifying model, in which conditions of sorting previously considered as driven by differential adhesion/tension should be viewed as suboptimal cases of heterotypic interfacial tension.The mechanisms that cause different cells to segregate into distinct tissues are unclear. Here the authors show in Xenopus that formation of a boundary between two tissues is driven by local tension along the interface rather than by global differences in adhesion or cortical contractility.
Collapse
Affiliation(s)
- Laura Canty
- Dept. of Biology, McGill University, Montreal, QC, Canada, H3A1B1
| | - Eleyine Zarour
- Dept. of Biology, McGill University, Montreal, QC, Canada, H3A1B1
| | - Leily Kashkooli
- Dept. of Biology, McGill University, Montreal, QC, Canada, H3A1B1
- CRBM, CNRS, Montpellier, 34293, France
| | - Paul François
- Dept. of Biology, McGill University, Montreal, QC, Canada, H3A1B1
- Dept. of Physics, McGill University, Montreal, QC, Canada, H3A2T8
| | - François Fagotto
- Dept. of Biology, McGill University, Montreal, QC, Canada, H3A1B1.
- CRBM, CNRS, Montpellier, 34293, France.
- Dept. of Biology, University of Montpellier, Montpellier, 34095, France.
| |
Collapse
|
38
|
Wang Q, Holmes WR, Sosnik J, Schilling T, Nie Q. Cell Sorting and Noise-Induced Cell Plasticity Coordinate to Sharpen Boundaries between Gene Expression Domains. PLoS Comput Biol 2017; 13:e1005307. [PMID: 28135279 PMCID: PMC5279720 DOI: 10.1371/journal.pcbi.1005307] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
A fundamental question in biology is how sharp boundaries of gene expression form precisely in spite of biological variation/noise. Numerous mechanisms position gene expression domains across fields of cells (e.g. morphogens), but how these domains are refined remains unclear. In some cases, domain boundaries sharpen through differential adhesion-mediated cell sorting. However, boundaries can also sharpen through cellular plasticity, with cell fate changes driven by up- or down-regulation of gene expression. In this context, we have argued that noise in gene expression can help cells transition to the correct fate. Here we investigate the efficacy of cell sorting, gene expression plasticity, and their combination in boundary sharpening using multi-scale, stochastic models. We focus on the formation of hindbrain segments (rhombomeres) in the developing zebrafish as an example, but the mechanisms investigated apply broadly to many tissues. Our results indicate that neither sorting nor plasticity is sufficient on its own to sharpen transition regions between different rhombomeres. Rather the two have complementary strengths and weaknesses, which synergize when combined to sharpen gene expression boundaries. In many developing systems, chemical gradients control the formation of segmental domains of gene expression, specifying distinct domains that go on to form different tissues and structures, in a concentration-dependent manner. These gradients are noisy however, raising the question of how sharply delineated boundaries between distinct segments form. It is crucial that developing systems be able to cope with stochasticity and generate well-defined boundaries between different segmented domains. Previous work suggests that cell sorting and cellular plasticity help sharpen boundaries between segments. However, it remains unclear how effective each of these mechanisms is and what their role in sharpening may be. Motivated by recent experimental observations, we construct a hybrid stochastic model to investigate these questions. We find that neither mechanism is sufficient on its own to sharpen boundaries between different segments. Rather, results indicate each has its own strengths and weaknesses, and that they work together synergistically to promote the development of precise, well defined segment boundaries. Formation of segmented rhombomeres in the zebrafish hindbrain, which later form different components of the central nervous system, is a motivating case for this study.
Collapse
Affiliation(s)
- Qixuan Wang
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, United States of America
- Department of Mathematics, University of California Irvine, Irvine, CA, United States of America
| | - William R. Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States of America
| | - Julian Sosnik
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, United States of America
| | - Thomas Schilling
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, United States of America
| | - Qing Nie
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, United States of America
- Department of Mathematics, University of California Irvine, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|
39
|
Perens EA, Garavito-Aguilar ZV, Guio-Vega GP, Peña KT, Schindler YL, Yelon D. Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm. eLife 2016; 5:19941. [PMID: 27805568 PMCID: PMC5132343 DOI: 10.7554/elife.19941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 12/29/2022] Open
Abstract
Proper organogenesis depends upon defining the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that set the boundaries of the IM are poorly understood. Here, we show that the bHLH transcription factor Hand2 limits the size of the embryonic kidney by restricting IM dimensions. The IM is expanded in zebrafish hand2 mutants and is diminished when hand2 is overexpressed. Within the posterior mesoderm, hand2 is expressed laterally adjacent to the IM. Venous progenitors arise between these two territories, and hand2 promotes venous development while inhibiting IM formation at this interface. Furthermore, hand2 and the co-expressed zinc-finger transcription factor osr1 have functionally antagonistic influences on kidney development. Together, our data suggest that hand2 functions in opposition to osr1 to balance the formation of kidney and vein progenitors by regulating cell fate decisions at the lateral boundary of the IM. DOI:http://dx.doi.org/10.7554/eLife.19941.001 The human body is made up of many different types of cells, yet they are all descended from one single fertilized egg cell. The process by which cells specialize into different types is complex and has many stages. At each step of the process, the selection of cell types that a cell can eventually become is increasingly restricted. The entire system is controlled by switching different genes on and off in different groups of cells. Balancing the activity of these genes ensures that enough cells of each type are made in order to build a complete and healthy body. Upsetting this balance can result in organs that are too large, too small or even missing altogether. The cells that form the kidneys and bladder originate within a tissue called the intermediate mesoderm. Controlling the size of this tissue is an important part of building working kidneys. Perens et al. studied how genes control the size of the intermediate mesoderm of zebrafish embryos, which is very similar to the intermediate mesoderm of humans. The experiments revealed that a gene called hand2, which is switched on in cells next to the intermediate mesoderm, restricts the size of this tissue in order to determine the proper size of the kidney. Switching off the hand2 gene resulted in zebrafish with abnormally large kidneys. Loss of hand2 also led to the loss of a different type of cell that forms veins. These findings suggest that cells with an active hand2 gene are unable to become intermediate mesoderm cells and instead go on to become part of the veins. These experiments also demonstrated that a gene called osr1 works in opposition to hand2 to determine the right number of cells that are needed to build the kidneys. Further work will reveal how hand2 prevents cells from joining the intermediate mesoderm and how its role is balanced by the activity of osr1. Understanding how the kidneys form could eventually help to diagnose or treat several genetic diseases and may make it possible to grow replacement kidneys from unspecialized cells. DOI:http://dx.doi.org/10.7554/eLife.19941.002
Collapse
Affiliation(s)
- Elliot A Perens
- Division of Biological Sciences, University of California, San Diego, San Diego, United States.,Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego, United States
| | - Zayra V Garavito-Aguilar
- Division of Biological Sciences, University of California, San Diego, San Diego, United States.,Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Gina P Guio-Vega
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Karen T Peña
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Yocheved L Schindler
- Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, San Diego, United States
| |
Collapse
|
40
|
Zhang J, Jiang Z, Liu X, Meng A. Eph/ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer. Development 2016; 143:2603-15. [PMID: 27287807 PMCID: PMC4958335 DOI: 10.1242/dev.132969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/26/2016] [Indexed: 02/01/2023]
Abstract
The Kupffer's vesicle (KV) is the so-called left-right organizer in teleost fishes. KV is formed from dorsal forerunner cells (DFCs) and generates asymmetrical signals for breaking symmetry of embryos. It is unclear how DFCs or KV cells are prevented from intermingling with adjacent cells. In this study, we show that the Eph receptor gene ephb4b is highly expressed in DFCs whereas ephrin ligand genes, including efnb2b, are expressed in cells next to the DFC cluster during zebrafish gastrulation. ephb4b knockdown or mutation and efnb2b knockdown cause dispersal of DFCs, a smaller KV and randomization of laterality organs. DFCs often dynamically form lamellipodium-like, bleb-like and filopodium-like membrane protrusions at the interface, which attempt to invade but are bounced back by adjacent non-DFC cells during gastrulation. Upon inhibition of Eph/ephrin signaling, however, the repulsion between DFCs and non-DFC cells is weakened or lost, allowing DFCs to migrate away. Ephb4b/Efnb2b signaling by activating RhoA activity mediates contact and repulsion between DFCs and neighboring cells during gastrulation, preventing intermingling of different cell populations. Therefore, our data uncover an important role of Eph/ephrin signaling in maintaining DFC cluster boundary and KV boundary for normal left-right asymmetrical development. Summary: During formation of the Kupffer's vesicle (KV) – the left-right organizer in zebrafish – Eph/ephrin signaling prevents KV cells from intermingling with adjacent cells.
Collapse
Affiliation(s)
- Junfeng Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xingfeng Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Abstract
Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo.
Collapse
Affiliation(s)
- M D White
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - S Bissiere
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Y D Alvarez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - N Plachta
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
42
|
Abstract
Morphogens were originally defined as secreted signaling molecules that diffuse from local sources to form concentration gradients, which specify multiple cell fates. More recently morphogen gradients have been shown to incorporate a range of mechanisms including short-range signal activation, transcriptional/translational feedback, and temporal windows of target gene induction. Many critical cell-cell signals implicated in both embryonic development and disease, such as Wnt, fibroblast growth factor (Fgf), hedgehog (Hh), transforming growth factor beta (TGFb), and retinoic acid (RA), are thought to act as morphogens, but key information on signal propagation and ligand distribution has been lacking for most. The zebrafish provides unique advantages for genetics and imaging to address gradients during early embryonic stages when morphogens help establish major body axes. This has been particularly informative for RA, where RA response elements (RAREs) driving fluorescent reporters as well as Fluorescence Resonance Energy Transfer (FRET) reporters of receptor binding have provided evidence for gradients, as well as regulatory mechanisms that attenuate noise and enhance gradient robustness in vivo. Here we summarize available tools in zebrafish and discuss their utility for studying dynamic regulation of RA morphogen gradients, through combined experimental and computational approaches.
Collapse
Affiliation(s)
| | - J Sosnik
- University of California, Irvine, CA, United States
| | - Q Nie
- University of California, Irvine, CA, United States
| |
Collapse
|
43
|
Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 2016; 17:240-56. [PMID: 26790531 DOI: 10.1038/nrm.2015.16] [Citation(s) in RCA: 438] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eph receptor Tyr kinases and their membrane-tethered ligands, the ephrins, elicit short-distance cell-cell signalling and thus regulate many developmental processes at the interface between pattern formation and morphogenesis, including cell sorting and positioning, and the formation of segmented structures and ordered neural maps. Their roles extend into adulthood, when ephrin-Eph signalling regulates neuronal plasticity, homeostatic events and disease processes. Recently, new insights have been gained into the mechanisms of ephrin-Eph signalling in different cell types, and into the physiological importance of ephrin-Eph in different organs and in disease, raising questions for future research directions.
Collapse
|
44
|
Abstract
The subdivision of tissues into sharply demarcated regions with distinct and homogenous identity is an essential aspect of embryonic development. Along the anteroposterior axis of the vertebrate nervous system, this involves signaling which induces spatially restricted expression of transcription factors that specify regional identity. The spatial expression of such transcription factors is initially imprecise, with overlapping expression of genes that specify distinct identities, and a ragged border at the interface of adjacent regions. This pattern becomes sharpened by establishment of mutually exclusive expression of transcription factors, and by cell segregation that underlies formation of a straight border. In this review, we discuss studies of the vertebrate hindbrain which have revealed how discrete regional identity is established, the roles of Eph-ephrin signaling in cell segregation and border sharpening, and how cell identity and cell segregation are coupled.
Collapse
|
45
|
Jan Bergmann T, Brambilla Pisoni G, Molinari M. Quality control mechanisms of protein biogenesis: proteostasis dies hard. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.4.456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
Terriente J, Pujades C. Cell segregation in the vertebrate hindbrain: a matter of boundaries. Cell Mol Life Sci 2015; 72:3721-30. [PMID: 26089248 PMCID: PMC11113478 DOI: 10.1007/s00018-015-1953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/06/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023]
Abstract
Segregating cells into compartments during embryonic development is essential for growth and pattern formation. In the developing hindbrain, boundaries separate molecularly, physically and neuroanatomically distinct segments called rhombomeres. After rhombomeric cells have acquired their identity, interhombomeric boundaries restrict cell intermingling between adjacent rhombomeres and act as signaling centers to pattern the surrounding tissue. Several works have stressed the relevance of Eph/ephrin signaling in rhombomeric cell sorting. Recent data have unveiled the role of this pathway in the assembly of actomyosin cables as an important mechanism for keeping cells from different rhombomeres segregated. In this Review, we will provide a short summary of recent evidences gathered in different systems suggesting that physical actomyosin barriers can be a general mechanism for tissue separation. We will discuss current evidences supporting a model where cell-cell signaling pathways, such as Eph/ephrin, govern compartmental cell sorting through modulation of the actomyosin cytoskeleton and cell adhesive properties to prevent cell intermingling.
Collapse
Affiliation(s)
- Javier Terriente
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Dr Aiguader 88, 08003, Barcelona, Spain.
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Dr Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
47
|
Abstract
There is increasing evidence that in addition to having major roles in morphogenesis, in some tissues Eph receptor and ephrin signaling regulates the differentiation of cells. In one mode of deployment, cell contact dependent Eph-ephrin activation induces a distinct fate of cells at the interface of their expression domains, for example in early ascidian embryos and in the vertebrate hindbrain. In another mode, overlapping Eph receptor and ephrin expression underlies activation within a cell population, which promotes or inhibits cell differentiation in bone remodelling, neural progenitors and keratinocytes. Eph-ephrin activation also contributes to formation of the appropriate number of progenitor cells by increasing or decreasing cell proliferation. These multiple roles of Eph receptor and ephrin signaling may enable a coupling between morphogenesis and the differentiation and proliferation of cells.
Collapse
Key Words
- Eph receptor
- Eph receptor, Erythropoietin-producing hepatocellular carcinoma cell receptor
- FGF, Fibroblast growth factor
- IGF-1, Insulin-like growth factor-1
- JNK, c-Jun N-terminal kinase
- MAPK, Mitogen activated protein kinase
- NFAT, Nuclear factor of activated T-cells
- RGS3, Regulator of G-protein signaling 3
- STAT3, Signal transducer and activator of transcription 3
- TAZ, Tafazzin
- TCR, T cell receptor
- TEC, Thymic epithelial cell
- TGF, Transforming growth factor
- ZHX2, Zinc fingers and homeoboxes 2
- ascidian development
- bone
- cell proliferation
- differentiation
- ephrin
- ephrin, Eph receptor interacting protein
- hindbrain
- keratinocytes
- neural progenitors
- p120GAP, GTPase activating protein
- thymocytes
Collapse
Affiliation(s)
- David G Wilkinson
- a Division of Developmental Neurobiology; MRC National Institute for Medical Research ; London , UK
| |
Collapse
|
48
|
Kashef J, Franz CM. Quantitative methods for analyzing cell–cell adhesion in development. Dev Biol 2015; 401:165-74. [DOI: 10.1016/j.ydbio.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 11/26/2022]
|
49
|
Labalette C, Wassef MA, Desmarquet-Trin Dinh C, Bouchoucha YX, Le Men J, Charnay P, Gilardi-Hebenstreit P. Molecular dissection of segment formation in the developing hindbrain. Development 2015; 142:185-95. [PMID: 25516974 DOI: 10.1242/dev.109652] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although many components of the genetic pathways that provide positional information during embryogenesis have been identified, it remains unclear how these signals are integrated to specify discrete tissue territories. Here, we investigate the molecular mechanisms underlying the formation of one of the hindbrain segments, rhombomere (r) 3, specified by the expression of the gene krox20. Dissecting krox20 transcriptional regulation has identified several input pathways: Hox paralogous 1 (PG1) factors, which both directly activate krox20 and indirectly repress it via Nlz factors, and the molecular components of an Fgf-dependent effector pathway. These different inputs are channelled through a single initiator enhancer element to shape krox20 initial transcriptional response: Hox PG1 and Nlz factors define the anterior-posterior extent of the enhancer's domain of activity, whereas Fgf signalling modulates the magnitude of activity in a spatially uniform manner. Final positioning of r3 boundaries requires interpretation of this initial pattern by a krox20 positive-feedback loop, orchestrated by another enhancer. Overall, this study shows how positional information provided by different patterning mechanisms is integrated through a gene regulatory network involving two cis-acting elements operating on the same gene, thus offering a comprehensive view of the delimitation of a territory.
Collapse
Affiliation(s)
- Charlotte Labalette
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| | - Michel Adam Wassef
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Carole Desmarquet-Trin Dinh
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| | - Yassine Xavier Bouchoucha
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Johan Le Men
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Patrick Charnay
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| | - Pascale Gilardi-Hebenstreit
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| |
Collapse
|
50
|
Javaherian S, D'Arcangelo E, Slater B, Zulueta-Coarasa T, Fernandez-Gonzalez R, McGuigan AP. An in vitro model of tissue boundary formation for dissecting the contribution of different boundary forming mechanisms. Integr Biol (Camb) 2015; 7:298-312. [DOI: 10.1039/c4ib00272e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Separation of phenotypically distinct cell populations is necessary to ensure proper organization and function of tissues and organs therefore understanding fundamental mechanisms that drive this cell segregation is important. In this work, authors present an in vivo model system that accurately recapitulates important aspects of cell segregation in vivo and allows dissection of cell behaviours driving cell segregation.
Collapse
Affiliation(s)
- Sahar Javaherian
- University of Toronto
- Department of Chemical Engineering and Applied Chemistry
- Toronto
- Canada
| | - Elisa D'Arcangelo
- Institute of Biomaterials and Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Benjamin Slater
- University of Toronto
- Department of Chemical Engineering and Applied Chemistry
- Toronto
- Canada
| | | | | | - Alison P. McGuigan
- University of Toronto
- Department of Chemical Engineering and Applied Chemistry
- Toronto
- Canada
- Institute of Biomaterials and Biomedical Engineering
| |
Collapse
|