1
|
Zhong H, Wang S, Huang Y, Cui X, Ding X, Zhu L, Yuan M, Fu Y. Endomembrane trafficking driven by microtubule growth regulates stomatal movement in Arabidopsis. Nat Commun 2024; 15:7967. [PMID: 39261498 PMCID: PMC11391047 DOI: 10.1038/s41467-024-52338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Microtubule-based vesicle trafficking usually relies upon kinesin and dynein motors and few reports describe microtubule polymerisation driving directional vesicle trafficking. Here we show that Arabidopsis END BINDING1b (EB1b), a microtubule plus-end binding protein, directly interacts with SYP121, a SNARE protein that mediates the trafficking of the K+ channel KAT1 and its distribution to the plasma membrane (PM) in Arabidopsis guard cells. Knockout of AtEB1b and its homologous proteins results in a modest but significant change in the distribution of KAT1 and SYP121 in guard cells and consequently delays light-induced stomatal opening. Live-cell imaging reveals that a portion of SYP121-associated endomembrane compartments co-localise with AtEB1b at the growing ends of microtubules, trafficking along with the growth of microtubules for targeting to the PM. Our study reveals a mechanism of vesicle trafficking driven by microtubule growth, which is involved in the redistribution of PM proteins to modulate guard cell movement.
Collapse
Affiliation(s)
- Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaohui Huang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ming Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Ding L, Fox AR, Chaumont F. Multifaceted role and regulation of aquaporins for efficient stomatal movements. PLANT, CELL & ENVIRONMENT 2024; 47:3330-3343. [PMID: 38742465 DOI: 10.1111/pce.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Stomata are micropores on the leaf epidermis that allow carbon dioxide (CO2) uptake for photosynthesis at the expense of water loss through transpiration. Stomata coordinate the plant gas exchange of carbon and water with the atmosphere through their opening and closing dynamics. In the context of global climate change, it is essential to better understand the mechanism of stomatal movements under different environmental stimuli. Aquaporins (AQPs) are considered important regulators of stomatal movements by contributing to membrane diffusion of water, CO2 and hydrogen peroxide. This review compiles the most recent findings and discusses future directions to update our knowledge of the role of AQPs in stomatal movements. After highlighting the role of subsidiary cells (SCs), which contribute to the high water use efficiency of grass stomata, we explore the expression of AQP genes in guard cells and SCs. We then focus on the cellular regulation of AQP activity at the protein level in stomata. After introducing their post-translational modifications, we detail their trafficking as well as their physical interaction with various partners that regulate AQP subcellular dynamics towards and within specific regions of the cell membranes, such as microdomains and membrane contact sites.
Collapse
Affiliation(s)
- Lei Ding
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ana Romina Fox
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Ding X, Wang S, Cui X, Zhong H, Zou H, Zhao P, Guo Z, Chen H, Li C, Zhu L, Li J, Fu Y. LKS4-mediated SYP121 phosphorylation participates in light-induced stomatal opening in Arabidopsis. Curr Biol 2024; 34:3102-3115.e6. [PMID: 38944035 DOI: 10.1016/j.cub.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/29/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024]
Abstract
By modulating stomatal opening and closure, plants control gas exchange, water loss, and photosynthesis in response to various environmental signals. During light-induced stomatal opening, the transport of ions and solutes across the plasma membrane (PM) of the surrounding guard cells results in an increase in turgor pressure, leading to cell swelling. Simultaneously, vesicles for exocytosis are delivered via membrane trafficking to compensate for the enlarged cell surface area and maintain an appropriate ion-channel density in the PM. In eukaryotic cells, soluble N-ethylmaleimide-sensitive factor adaptor protein receptors (SNAREs) mediate membrane fusion between vesicles and target compartments by pairing the cognate glutamine (Q)- and arginine (R)-SNAREs to form a core SNARE complex. Syntaxin of plants 121 (SYP121) is a known Q-SNARE involved in stomatal movement, which not only facilitates the recycling of K+ channels to the PM but also binds to the channels to regulate their activity. In this study, we found that the expression of a receptor-like cytoplasmic kinase, low-K+ sensitive 4/schengen 1 (LKS4/SGN1), was induced by light; it directly interacted with SYP121 and phosphorylated T270 within the SNARE motif. Further investigation revealed that LKS4-dependent phosphorylation of SYP121 facilitated the interaction between SYP121 and R-SNARE vesicle-associated membrane protein 722 (VAMP722), promoting the assembly of the SNARE complex. Our findings demonstrate that the phosphorylation of SNARE proteins is an important strategy adopted by plants to regulate the SNARE complex assembly as well as membrane fusion. Additionally, we discovered the function of LKS4/SGN1 in light-induced stomatal opening via the phosphorylation of SYP121.
Collapse
Affiliation(s)
- Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongyu Zou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pan Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zonglin Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haoyang Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Changjiang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Rovira A, Veciana N, Basté-Miquel A, Quevedo M, Locascio A, Yenush L, Toledo-Ortiz G, Leivar P, Monte E. PIF transcriptional regulators are required for rhythmic stomatal movements. Nat Commun 2024; 15:4540. [PMID: 38811542 PMCID: PMC11137129 DOI: 10.1038/s41467-024-48669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Stomata govern the gaseous exchange between the leaf and the external atmosphere, and their function is essential for photosynthesis and the global carbon and oxygen cycles. Rhythmic stomata movements in daily dark/light cycles prevent water loss at night and allow CO2 uptake during the day. How the actors involved are transcriptionally regulated and how this might contribute to rhythmicity is largely unknown. Here, we show that morning stomata opening depends on the previous night period. The transcription factors PHYTOCHROME-INTERACTING FACTORS (PIFs) accumulate at the end of the night and directly induce the guard cell-specific K+ channel KAT1. Remarkably, PIFs and KAT1 are required for blue light-induced stomata opening. Together, our data establish a molecular framework for daily rhythmic stomatal movements under well-watered conditions, whereby PIFs are required for accumulation of KAT1 at night, which upon activation by blue light in the morning leads to the K+ intake driving stomata opening.
Collapse
Affiliation(s)
- Arnau Rovira
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Aina Basté-Miquel
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Martí Quevedo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
- Department of biomedical science, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, Alfara del Patriarca (Valencia), Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Gabriela Toledo-Ortiz
- James Hutton Institute, Cell and Molecular Sciences, Errol Road Invergowrie, Dundee, UK
| | - Pablo Leivar
- Laboratory of Biochemistry, Institut Químic de Sarrià (IQS), Universitat Ramon Llull, Barcelona, Spain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
5
|
Baena G, Xia L, Waghmare S, Yu Z, Guo Y, Blatt MR, Zhang B, Karnik R. Arabidopsis SNARE SYP132 impacts on PIP2;1 trafficking and function in salinity stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1036-1053. [PMID: 38289468 DOI: 10.1111/tpj.16649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
In plants so-called plasma membrane intrinsic proteins (PIPs) are major water channels governing plant water status. Membrane trafficking contributes to functional regulation of major PIPs and is crucial for abiotic stress resilience. Arabidopsis PIP2;1 is rapidly internalised from the plasma membrane in response to high salinity to regulate osmotic water transport, but knowledge of the underlying mechanisms is fragmentary. Here we show that PIP2;1 occurs in complex with SYNTAXIN OF PLANTS 132 (SYP132) together with the plasma membrane H+-ATPase AHA1 as evidenced through in vivo and in vitro analysis. SYP132 is a multifaceted vesicle trafficking protein, known to interact with AHA1 and promote endocytosis to impact growth and pathogen defence. Tracking native proteins in immunoblot analysis, we found that salinity stress enhances SYP132 interactions with PIP2;1 and PIP2;2 isoforms to promote redistribution of the water channels away from the plasma membrane. Concurrently, AHA1 binding within the SYP132-complex was significantly reduced under salinity stress and increased the density of AHA1 proteins at the plasma membrane in leaf tissue. Manipulating SYP132 function in Arabidopsis thaliana enhanced resilience to salinity stress and analysis in heterologous systems suggested that the SNARE influences PIP2;1 osmotic water permeability. We propose therefore that SYP132 coordinates AHA1 and PIP2;1 abundance at the plasma membrane and influences leaf hydraulics to regulate plant responses to abiotic stress signals.
Collapse
Affiliation(s)
- Guillermo Baena
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Lingfeng Xia
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Sakharam Waghmare
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - ZhiYi Yu
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Yue Guo
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Michael R Blatt
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Ben Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rucha Karnik
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
6
|
González-García A, Kanli M, Wisowski N, Montoliu-Silvestre E, Locascio A, Sifres A, Gómez M, Ramos J, Porcel R, Andrés-Colás N, Mulet JM, Yenush L. Maternal Embryo Effect Arrest 31 (MEE31) is a moonlighting protein involved in GDP-D-mannose biosynthesis and KAT1 potassium channel regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111897. [PMID: 37852415 DOI: 10.1016/j.plantsci.2023.111897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Due to anthropogenic global warming, droughts are expected to increase and water availability to decrease in the coming decades. For this reason, research is increasingly focused on developing plant varieties and crop cultivars with reduced water consumption. Transpiration occurs through stomatal pores, resulting in water loss. Potassium plays a significant role in stomatal regulation. KAT1 is an inward-rectifying potassium channel that contributes to stomatal opening. Using a yeast high-throughput screening of an Arabidopsis cDNA library, MEE31 was found to physically interact with KAT1. MEE31 was initially identified in a screen for mutants with delayed embryonic development. The gene encodes a conserved phosphomannose isomerase (PMI). We report here that MEE31 interacts with and increases KAT1 activity in yeast and this interaction was also confirmed in plants. In addition, MEE31 complements the function of the yeast homologue, whereas the truncated version recovered in the screening does not, thus uncoupling the enzymatic activity from KAT1 regulation. We show that MEE31 overexpression leads to increased stomatal opening in Arabidopsis transgenic lines. Our data suggest that MEE31 is a moonlighting protein involved in both GDP-D-mannose biosynthesis and KAT1 regulation.
Collapse
Affiliation(s)
- Adrián González-García
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Maria Kanli
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Natalia Wisowski
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Eva Montoliu-Silvestre
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Alicia Sifres
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Marcos Gómez
- Departamento de Química Agrícola, Edafología y Microbiología, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - José Ramos
- Departamento de Química Agrícola, Edafología y Microbiología, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
7
|
Rodriguez Gallo MC, Li Q, Talasila M, Uhrig RG. Quantitative Time-Course Analysis of Osmotic and Salt Stress in Arabidopsis thaliana Using Short Gradient Multi-CV FAIMSpro BoxCar DIA. Mol Cell Proteomics 2023; 22:100638. [PMID: 37704098 PMCID: PMC10663867 DOI: 10.1016/j.mcpro.2023.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
A major limitation when undertaking quantitative proteomic time-course experimentation is the tradeoff between depth-of-analysis and speed-of-analysis. In high complexity and high dynamic range sample types, such as plant extracts, balance between resolution and time is especially apparent. To address this, we evaluate multiple compensation voltage (CV) high field asymmetric waveform ion mobility spectrometry (FAIMSpro) settings using the latest label-free single-shot Orbitrap-based DIA acquisition workflows for their ability to deeply quantify the Arabidopsis thaliana seedling proteome. Using a BoxCarDIA acquisition workflow with a -30 -50 -70 CV FAIMSpro setting, we were able to consistently quantify >5000 Arabidopsis seedling proteins over a 21-min gradient, facilitating the analysis of ∼42 samples per day. Utilizing this acquisition approach, we then quantified proteome-level changes occurring in Arabidopsis seedling shoots and roots over 24 h of salt and osmotic stress, to identify early and late stress response proteins and reveal stress response overlaps. Here, we successfully quantify >6400 shoot and >8500 root protein groups, respectively, quantifying nearly ∼9700 unique protein groups in total across the study. Collectively, we pioneer a short gradient, multi-CV FAIMSpro BoxCarDIA acquisition workflow that represents an exciting new analysis approach for undertaking quantitative proteomic time-course experimentation in plants.
Collapse
Affiliation(s)
- M C Rodriguez Gallo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Q Li
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - M Talasila
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Mulet JM, Porcel R, Yenush L. Modulation of potassium transport to increase abiotic stress tolerance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5989-6005. [PMID: 37611215 DOI: 10.1093/jxb/erad333] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Potassium is the major cation responsible for the maintenance of the ionic environment in plant cells. Stable potassium homeostasis is indispensable for virtually all cellular functions, and, concomitantly, viability. Plants must cope with environmental changes such as salt or drought that can alter ionic homeostasis. Potassium fluxes are required to regulate the essential process of transpiration, so a constraint on potassium transport may also affect the plant's response to heat, cold, or oxidative stress. Sequencing data and functional analyses have defined the potassium channels and transporters present in the genomes of different species, so we know most of the proteins directly participating in potassium homeostasis. The still unanswered questions are how these proteins are regulated and the nature of potential cross-talk with other signaling pathways controlling growth, development, and stress responses. As we gain knowledge regarding the molecular mechanisms underlying regulation of potassium homeostasis in plants, we can take advantage of this information to increase the efficiency of potassium transport and generate plants with enhanced tolerance to abiotic stress through genetic engineering or new breeding techniques. Here, we review current knowledge of how modifying genes related to potassium homeostasis in plants affect abiotic stress tolerance at the whole plant level.
Collapse
Affiliation(s)
- Jose M Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
9
|
Zeng Y, Liang Z, Liu Z, Li B, Cui Y, Gao C, Shen J, Wang X, Zhao Q, Zhuang X, Erdmann PS, Wong KB, Jiang L. Recent advances in plant endomembrane research and new microscopical techniques. THE NEW PHYTOLOGIST 2023; 240:41-60. [PMID: 37507353 DOI: 10.1111/nph.19134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Philipp S Erdmann
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, I-20157, Italy
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The CUHK Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
10
|
Wang Q, Li S, Li F, Tian X, Li Z. Identification of Shaker Potassium Channel Family Members in Gossypium hirsutum L. and Characterization of GhKAT1aD. Life (Basel) 2023; 13:1461. [PMID: 37511836 PMCID: PMC10381577 DOI: 10.3390/life13071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 07/30/2023] Open
Abstract
K+ channels of the Shaker family have been shown to play crucial roles in K+ uptake and transport. Cotton (Gossypium hirsutum) is an important cash crop. In this study, the 24 Shaker family genes were identified in cotton. Phylogenetic analysis suggests that they were assigned to five clusters. Additionally, their chromosomal location, conserved motifs and gene structure were analyzed. The promoter of cotton Shaker K+ channel genes comprises drought-, low-temperature-, phytohormone-response elements, etc. As indicated by qRT-PCR (quantitative real-time PCR), cotton Shaker K+ channel genes responded to low K+ and NaCl, and especially dehydration stress, at the transcript level. Moreover, one of the Shaker K+ channel genes, GhKAT1aD, was characterized. This gene is localized in the plasma membrane and is predicted to contain six transmembrane segments. It restored the growth of the yeast mutant strain defective in K+ uptake, and silencing GhKAT1a via VIGS (virus-induced gene silencing) resulted in more severe symptoms of K+ deficiency in cotton leaves as well as a lower net K+ uptake rate. The results of this study showed the overall picture of the cotton Shaker K+ channel family regarding bioinformatics as well as the function of one of its members, which provide clues for future investigations of cotton K+ transport and molecular insights for breeding K+-efficient cotton varieties.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Shuying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Fangjun Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
11
|
Khalilova LA, Lobreva OV, Nedelyaeva OI, Karpichev IV, Balnokin YV. Involvement of the Membrane Nanodomain Protein, AtFlot1, in Vesicular Transport of Plasma Membrane H +-ATPase in Arabidopsis thaliana under Salt Stress. Int J Mol Sci 2023; 24:ijms24021251. [PMID: 36674767 PMCID: PMC9861627 DOI: 10.3390/ijms24021251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to elucidate whether the membrane nanodomain protein AtFlot1 is involved in vesicular transport pathways and regulation of the P-type H+-ATPase content in plasma membrane of A. thaliana under salt stress. Transmission electron microscopy revealed changes in the endosomal system of A. thaliana root cells due to knockout mutation SALK_205125C (Atflot1ko). Immunoblotting of the plasma membrane-enriched fractions isolated from plant organs with an antibody to the H+-ATPase demonstrated changes in the H+-ATPase content in plasma membrane in response to the Atflot1ko mutation and salt shock. Expression levels of the main H+-ATPase isoforms, PMA1 and PMA2, as well as endocytosis activity of root cells determined by endocytic probe FM4-64 uptake assay, were unchanged in the Atflot1ko mutant. We have shown that AtFlot1 participates in regulation of the H+-ATPase content in the plasma membrane. We hypothesized that AtFlot1 is involved in both exocytosis and endocytosis, and, thus, contributes to the maintenance of cell ion homeostasis under salt stress. The lack of a pronounced Atflot1ko phenotype under salt stress conditions may be due to the assumed ability of Atflot1ko to switch vesicular transport to alternative pathways. Functional redundancy of AtFlot proteins may play a role in the functioning of these alternative pathways.
Collapse
|
12
|
Horaruang W, Klejchová M, Carroll W, Silva-Alvim FAL, Waghmare S, Papanatsiou M, Amtmann A, Hills A, Alvim JC, Blatt MR, Zhang B. Engineering a K + channel 'sensory antenna' enhances stomatal kinetics, water use efficiency and photosynthesis. NATURE PLANTS 2022; 8:1262-1274. [PMID: 36266492 DOI: 10.1038/s41477-022-01255-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Stomata of plant leaves open to enable CO2 entry for photosynthesis and close to reduce water loss via transpiration. Compared with photosynthesis, stomata respond slowly to fluctuating light, reducing assimilation and water use efficiency. Efficiency gains are possible without a cost to photosynthesis if stomatal kinetics can be accelerated. Here we show that clustering of the GORK channel, which mediates K+ efflux for stomatal closure in the model plant Arabidopsis, arises from binding between the channel voltage sensors, creating an extended 'sensory antenna' for channel gating. Mutants altered in clustering affect channel gating to facilitate K+ flux, accelerate stomatal movements and reduce water use without a loss in biomass. Our findings identify the mechanism coupling channel clustering with gating, and they demonstrate the potential for engineering of ion channels native to the guard cell to enhance stomatal kinetics and improve water use efficiency without a cost in carbon fixation.
Collapse
Affiliation(s)
- Wijitra Horaruang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
- Faculty of Science and Arts, Burapha University, Chanthaburi Campus, Chanthaburi, Thailand
| | - Martina Klejchová
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - William Carroll
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | | | - Sakharam Waghmare
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Maria Papanatsiou
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Anna Amtmann
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK.
| | - Ben Zhang
- School of Life Sciences, Shanxi University, Taiyuan City, China
| |
Collapse
|
13
|
Baena G, Xia L, Waghmare S, Karnik R. SNARE SYP132 mediates divergent traffic of plasma membrane H+-ATPase AHA1 and antimicrobial PR1 during bacterial pathogenesis. PLANT PHYSIOLOGY 2022; 189:1639-1661. [PMID: 35348763 PMCID: PMC9237740 DOI: 10.1093/plphys/kiac149] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 05/15/2023]
Abstract
The vesicle trafficking SYNTAXIN OF PLANTS132 (SYP132) drives hormone-regulated endocytic traffic to suppress the density and function of plasma membrane (PM) H+-ATPases. In response to bacterial pathogens, it also promotes secretory traffic of antimicrobial pathogenesis-related (PR) proteins. These seemingly opposite actions of SYP132 raise questions about the mechanistic connections between the two, likely independent, membrane trafficking pathways intersecting plant growth and immunity. To study SYP132 and associated trafficking of PM H+-ATPase 1 (AHA1) and PATHOGENESIS-RELATED PROTEIN1 (PR1) during pathogenesis, we used the virulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) bacteria for infection of Arabidopsis (Arabidopsis thaliana) plants. SYP132 overexpression suppressed bacterial infection in plants through the stomatal route. However, bacterial infection was enhanced when bacteria were infiltrated into leaf tissue to bypass stomatal defenses. Tracking time-dependent changes in native AHA1 and SYP132 abundance, cellular distribution, and function, we discovered that bacterial pathogen infection triggers AHA1 and SYP132 internalization from the plasma membrane. AHA1 bound to SYP132 through its regulatory SNARE Habc domain, and these interactions affected PM H+-ATPase traffic. Remarkably, using the Arabidopsis aha1 mutant, we discovered that AHA1 is essential for moderating SYP132 abundance and associated secretion of PR1 at the plasma membrane for pathogen defense. Thus, we show that during pathogenesis SYP132 coordinates AHA1 with opposing effects on the traffic of AHA1 and PR1.
Collapse
Affiliation(s)
- Guillermo Baena
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Lingfeng Xia
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Sakharam Waghmare
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Rucha Karnik
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
14
|
Zhang B, Guo Y, Wang H, Wang X, Lv M, Yang P, Zhang L. Identification and Characterization of Shaker K + Channel Gene Family in Foxtail Millet ( Setaria italica) and Their Role in Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:907635. [PMID: 35755660 PMCID: PMC9218596 DOI: 10.3389/fpls.2022.907635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Potassium (K+) is one of the indispensable elements in plant growth and development. The Shaker K+ channel protein family is involved in plant K+ uptake and distribution. Foxtail millet (Setaria italica), as an important crop, has strong tolerance and adaptability to abiotic stresses. However, no systematic study focused on the Shaker K+ channel family in foxtail millet. Here, ten Shaker K+ channel genes in foxtail millet were identified and divided into five groups through phylogenetic analysis. Gene structures, chromosome locations, cis-acting regulatory elements in promoter, and post-translation modification sites of Shaker K+ channels were analyzed. In silico analysis of transcript level demonstrated that the expression of Shaker K+ channel genes was tissue or developmental stage specific. The transcription levels of Shaker K+ channel genes in foxtail millet under different abiotic stresses (cold, heat, NaCl, and PEG) and phytohormones (6-BA, BR, MJ, IAA, NAA, GA3, SA, and ABA) treatments at 0, 12, and 24 h were detected by qRT-PCR. The results showed that SiAKT1, SiKAT3, SiGORK, and SiSKOR were worth further research due to their significant responses after most treatments. The yeast complementation assay verified the inward K+ transport activities of detectable Shaker K+ channels. Finally, we found interactions between SiKAT2 and SiSNARE proteins. Compared to research in Arabidopsis, our results showed a difference in SYP121 related Shaker K+ channel regulation mechanism in foxtail millet. Our results indicate that Shaker K+ channels play important roles in foxtail millet and provide theoretical support for further exploring the K+ absorption mechanism of foxtail millet under abiotic stress.
Collapse
Affiliation(s)
- Ben Zhang
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Yue Guo
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Hui Wang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Xiaoxia Wang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Mengtao Lv
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Pu Yang
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Lizhen Zhang
- School of Life Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
15
|
Wang Y, Karnik R, Garcia-Mata C, Hu H. Editorial: Transport and Membrane Traffic in Stomatal Biology. FRONTIERS IN PLANT SCIENCE 2022; 13:898128. [PMID: 35712596 PMCID: PMC9197599 DOI: 10.3389/fpls.2022.898128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Yizhou Wang
- College of Agriculture and Biotechnology, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Carlos Garcia-Mata
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Li M, Wang L, Liu Y, Lin Y, Zhang Y, Long Y, Luo C, Zhang Y, Chen Q, Chen P, Wang Y, Wang X, Tang H, Luo Y. Characterization and regulation mechanism analysis of ubiquitin-conjugating family genes in strawberry reveals a potential role in fruit ripening. BMC PLANT BIOLOGY 2022; 22:39. [PMID: 35045827 PMCID: PMC8767729 DOI: 10.1186/s12870-021-03421-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND E2 ubiquitin-conjugating (UBC) enzymes are an integral component of the ubiquitin proteasome system that play an important role in plant development, growth, and external stress responses. Several UBC genes have been identified in various plants. However, no studies exploring the functions of UBC genes in regulating fruit of strawberry have been reported. In the present study, a systematic analysis of the entire UBC family members were conducted in the genome of strawberry (Fragaria ×ananassa) based on bioinformatics method, and the gene functioning in strawberry ripening was explored. RESULTS A total of 191 UBC genes were identified in the genome of cultivated strawberry. These genes were unevenly distributed across the 28 chromosomes from the 4 subgenomes of cultivated strawberry, ranging from 3 to 11 genes per chromosome. Moreover, the expansion of FaUBC genes in strawberry was mainly driven by WGD. All the FaUBC genes were clarified into 13 groups and most of them were included in the group VI. The gene structure analysis showed that the number of exons varied from 1 to 23, and the structure of genes had few differences within the same groups but a distinction in different groups. Identification of the cis-acting elements of the promoter revealed multiple regulatory elements that responded to plant growth and development, phytohormone responsive, and abiotic and biotic stress. Data from functional annotation indicated that FaUBC genes play a role in a variety of biological processes. The RNA-seq data showed that FaUBC genes displayed different expression pattern during the fruit ripening process and clarified into 6 clusters. In particular, cluster 3 exhibiting a sudden expression increase in the turning red stage were speculated to be involved in fruit ripening. Hence, two FaUBC genes (FaUBC76 and FaUBC78) were selected for gene function analysis by transient over-expression method. The results indicated that FaUBC76 has a positive effect on the fruit development and ripening in strawberry by up-regulating accumulation of anthocyanins. Moreover, expression of some maturity-related genes were also significantly increased, further supporting a role for FaUBC76 in the regulation of fruit ripening or softening. On the contrary, the overexpression of FaUBC78 significantly increased the firmness of strawberry fruit, indicating that FaUBC78 had a positive role in inhibiting the decrease of strawberry fruit firmness. CONCLUSION Our study not only provide comprehensive information on system evolution and function on UBC genes, but also give a new insight into explore the roles of FaUBC genes in the regulation of strawberry ripening.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liangxin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiting Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Long
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuanying Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pinwen Chen
- Departmental and Municipal Co-construction of Crops Genetic Improvement of Hill Land Key Laboratory of Sichuan, Nanchong, 637000, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
17
|
Lefoulon C. The bare necessities of plant K+ channel regulation. PLANT PHYSIOLOGY 2021; 187:2092-2109. [PMID: 34618033 PMCID: PMC8644596 DOI: 10.1093/plphys/kiab266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 05/29/2023]
Abstract
Potassium (K+) channels serve a wide range of functions in plants from mineral nutrition and osmotic balance to turgor generation for cell expansion and guard cell aperture control. Plant K+ channels are members of the superfamily of voltage-dependent K+ channels, or Kv channels, that include the Shaker channels first identified in fruit flies (Drosophila melanogaster). Kv channels have been studied in depth over the past half century and are the best-known of the voltage-dependent channels in plants. Like the Kv channels of animals, the plant Kv channels are regulated over timescales of milliseconds by conformational mechanisms that are commonly referred to as gating. Many aspects of gating are now well established, but these channels still hold some secrets, especially when it comes to the control of gating. How this control is achieved is especially important, as it holds substantial prospects for solutions to plant breeding with improved growth and water use efficiencies. Resolution of the structure for the KAT1 K+ channel, the first channel from plants to be crystallized, shows that many previous assumptions about how the channels function need now to be revisited. Here, I strip the plant Kv channels bare to understand how they work, how they are gated by voltage and, in some cases, by K+ itself, and how the gating of these channels can be regulated by the binding with other protein partners. Each of these features of plant Kv channels has important implications for plant physiology.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, Scotland
| |
Collapse
|
18
|
Boher P, Soler M, Fernández-Piñán S, Torrent X, Müller SY, Kelly KA, Serra O, Figueras M. Silencing of StRIK in potato suggests a role in periderm related to RNA processing and stress. BMC PLANT BIOLOGY 2021; 21:409. [PMID: 34493224 PMCID: PMC8424952 DOI: 10.1186/s12870-021-03141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The periderm is a protective barrier crucial for land plant survival, but little is known about genetic factors involved in its development and regulation. Using a transcriptomic approach in the cork oak (Q. suber) periderm, we previously identified an RS2-INTERACTING KH PROTEIN (RIK) homologue of unknown function containing a K homology (KH)-domain RNA-binding protein, as a regulatory candidate gene in the periderm. RESULTS To gain insight into the function of RIK in the periderm, potato (S. tuberosum) tuber periderm was used as a model: the full-length coding sequence of RIK, hereafter referred to as StRIK, was isolated, the transcript profile analyzed and gene silencing in potato performed to analyze the silencing effects on periderm anatomy and transcriptome. The StRIK transcript accumulated in all vegetative tissues studied, including periderm and other suberized tissues such as root and also in wounded tissues. Downregulation of StRIK in potato by RNA interference (StRIK-RNAi) did not show any obvious effects on tuber periderm anatomy but, unlike Wild type, transgenic plants flowered. Global transcript profiling of the StRIK-RNAi periderm did show altered expression of genes associated with RNA metabolism, stress and signaling, mirroring the biological processes found enriched within the in silico co-expression network of the Arabidopsis orthologue. CONCLUSIONS The ubiquitous expression of StRIK transcript, the flower associated phenotype and the differential expression of StRIK-RNAi periderm point out to a general regulatory role of StRIK in diverse plant developmental processes. The transcriptome analysis suggests that StRIK might play roles in RNA maturation and stress response in the periderm.
Collapse
Affiliation(s)
- Pau Boher
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Marçal Soler
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Sandra Fernández-Piñán
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Xènia Torrent
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Sebastian Y. Müller
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA UK
| | - Krystyna A. Kelly
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA UK
| | - Olga Serra
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| |
Collapse
|
19
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
Affiliation(s)
- Dev T Britto
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
20
|
Malabarba J, Meents AK, Reichelt M, Scholz SS, Peiter E, Rachowka J, Konopka-Postupolska D, Wilkins KA, Davies JM, Oelmüller R, Mithöfer A. ANNEXIN1 mediates calcium-dependent systemic defense in Arabidopsis plants upon herbivory and wounding. THE NEW PHYTOLOGIST 2021; 231:243-254. [PMID: 33586181 DOI: 10.1111/nph.17277] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 02/05/2021] [Indexed: 05/21/2023]
Abstract
Cellular calcium (Ca) transients are endogenous signals involved in local and systemic signaling and defense activation upon environmental stress, including wounding and herbivory. Still, not all Ca2+ channels contributing to the signaling have been identified, nor are their modes of action fully known. Plant annexins are proteins capable of binding to anionic phospholipids and can exhibit Ca channel-like activity. Arabidopsis ANNEXIN1 (ANN1) is suggested to contribute to Ca transport. Here, we report that wounding and simulated-herbivory-induced cytosolic free Ca elevation was impaired in systemic leaves in ann1 loss-of-function plants. We provide evidence for a role of ANN1 in local and systemic defense of plants attacked by herbivorous Spodoptera littoralis larvae. Bioassays identified ANN1 as a positive defense regulator. Spodoptera littoralis feeding on ann1 gained significantly more weight than larvae feeding on wild-type, whereas those feeding on ANN1-overexpressing lines gained less weight. Herbivory and wounding both induced defense-related responses on treated leaves, such as jasmonate accumulation and defense gene expression. These responses remained local and were strongly reduced in systemic leaves in ann1 plants. Our results indicate that ANN1 plays an important role in activation of systemic rather than local defense in plants attacked by herbivorous insects.
Collapse
Affiliation(s)
- Jaiana Malabarba
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Postgraduate Program in Cell and Molecular Biology, Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | - Anja K Meents
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sandra S Scholz
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Julia Rachowka
- Plant Protein Phosphorylation Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Dorota Konopka-Postupolska
- Plant Protein Phosphorylation Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, CB24 6DG, UK
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, CB24 6DG, UK
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
21
|
Abstract
Our knowledge of plant ion channels was significantly enhanced by the first application of the patch-clamp technique to isolated guard cell protoplasts over 35 years ago. Since then, research has demonstrated the importance of ion channels in the control of gas exchange in guard cells, their role in nutrient uptake in roots, and the participation of calcium-permeable cation channels in the regulation of cell signaling affected by the intracellular concentrations of this second messenger. In recent years, through the employment of reverse genetics, mutant proteins, and heterologous expression systems, research on ion channels has identified mechanisms that modify their activity through protein-protein interactions or that result in activation and/or deactivation of ion channels through posttranslational modifications. Additional and confirmatory information on ion channel functioning has been derived from the crystallization and molecular modeling of plant proteins that, together with functional analyses, have helped to increase our knowledge of the functioning of these important membrane proteins that may eventually help to improve crop yield. Here, an update on the advances obtained in plant ion channel function during the last few years is presented.
Collapse
Affiliation(s)
- Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México;
| |
Collapse
|
22
|
Klejchova M, Silva-Alvim FAL, Blatt MR, Alvim JC. Membrane voltage as a dynamic platform for spatiotemporal signaling, physiological, and developmental regulation. PLANT PHYSIOLOGY 2021; 185:1523-1541. [PMID: 33598675 PMCID: PMC8133626 DOI: 10.1093/plphys/kiab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 05/10/2023]
Abstract
Membrane voltage arises from the transport of ions through ion-translocating ATPases, ion-coupled transport of solutes, and ion channels, and is an integral part of the bioenergetic "currency" of the membrane. The dynamics of membrane voltage-so-called action, systemic, and variation potentials-have also led to a recognition of their contributions to signal transduction, both within cells and across tissues. Here, we review the origins of our understanding of membrane voltage and its place as a central element in regulating transport and signal transmission. We stress the importance of understanding voltage as a common intermediate that acts both as a driving force for transport-an electrical "substrate"-and as a product of charge flux across the membrane, thereby interconnecting all charge-carrying transport across the membrane. The voltage interconnection is vital to signaling via second messengers that rely on ion flux, including cytosolic free Ca2+, H+, and the synthesis of reactive oxygen species generated by integral membrane, respiratory burst oxidases. These characteristics inform on the ways in which long-distance voltage signals and voltage oscillations give rise to unique gene expression patterns and influence physiological, developmental, and adaptive responses such as systemic acquired resistance to pathogens and to insect herbivory.
Collapse
Affiliation(s)
- Martina Klejchova
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fernanda A L Silva-Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
- Author for communication:
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
23
|
Sun X, Cai X, Yin K, Gu L, Shen Y, Hu B, Wang Y, Chen Y, Zhu Y, Jia B, Sun M. Wild soybean SNARE proteins BET1s mediate the subcellular localization of the cytoplasmic receptor-like kinases CRCK1s to modulate salt stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:771-785. [PMID: 33160290 DOI: 10.1111/tpj.15072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 05/27/2023]
Abstract
Plants have evolved numerous receptor-like kinases (RLKs) that modulate environmental stress responses. However, little is known regarding soybean (Glycine max) RLKs. We have previously identified that Glycine soja Ca2+ /CAM-binding RLK (GsCBRLK) is involved in salt tolerance. Here, we report that soluble NSF attachment protein receptor proteins BET1s mediate subcellular localization of calmodulin-binding receptor-like cytoplasmic kinases CRCK1s to modulate salt stress responses. Direct interaction between GsCBRLK and GsBET11a was initially identified via yeast two-hybrid and bimolecular fluorescence complementation assays. Further analysis demonstrated conserved interaction between BET1s and CRCK1s. GsCBRLK interacted with all BET1 proteins in wild soybean (Glycine soja) and Arabidopsis, and GsBET11a strongly associated with GsCRCK1a-1d, but slightly with AtCRCK1. In addition, GsBET11a interacted with GsCBRLK via its C-terminal transmembrane domain (TMD), where the entire TMD, not the sequence, was critical for the interaction. Moreover, the N-terminal variable domain (VD) of GsCBRLK was responsible for interacting with GsBET11a, and the intensity of interaction between GsCBRLK/AtCRCK1 and GsBET11a was dependent on VD. Furthermore, GsBET11a was able to mediate the GsCBRLK subcellular localization via direct interaction with VD. Additionally, knockout of AtBET11 or AtBET12 individually did not alter GsCBRLK localization, while GsBET11a expression caused partial internalization of GsCBRLK from the plasma membrane (PM). We further suggest the necessity of GsCBRLK VD for its PM localization via N-terminal truncation assays. Finally, GsBET11a was shown to confer enhanced salt stress tolerance when overexpressed in Arabidopsis and soybean. These results revealed the conserved and direct interaction between BET1s and CRCK1s, and suggested their involvement in salt stress responses.
Collapse
Affiliation(s)
- Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Kuide Yin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liwei Gu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bingshuang Hu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yue Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
24
|
Rajagopal D, Mathew MK. Role of Arabidopsis RAB5 GEF vps9a in maintaining potassium levels under sodium chloride stress. PLANT DIRECT 2020; 4:e00273. [PMID: 33103044 PMCID: PMC7576885 DOI: 10.1002/pld3.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 05/07/2023]
Abstract
Salt stress is one of the major factors impacting crop productivity worldwide. Through a variety of effector and signaling pathways, plants achieve survival under salinity stress by maintaining high cytosolic potassium/sodium ion (K+/Na+) ratios, preventing Na+ cytotoxicity, and retaining osmotic balance. Ras-related protein 5 (Rab5) members are involved in the trafficking of endosomes to the vacuole or plasma membrane (PM). The vacuolar protein sorting- associated protein 9 (vps9a) encodes the single guanine nucleotide exchange factor (GEF) that activates all three known Rab5 proteins in Arabidopsis thaliana. Previous work from our group has reported the critical function of vps9a for the operation of salt-induced endocytic pathway, as well as the expansion of endomembrane compartments under saline stress conditions. Here we show an additional role of vps9a in plant response to salt stress via maintenance of K+ status of the cell rather than Na+ homeostasis. Our results show that roots from vps9a-2 mutant, subjected to 100 mM NaCl, display alterations in transcript levels of genes involved in the K+ homeostasis pathway. Concurrent with the observed sensitivity of vps9a-2 mutant under NaCl stress, exposure to low K+ environments resulted in growth retardation, and reduced rate of endocytosis. Furthermore, vps9a-2 mutant displays reduced expression of auxin reporter, Direct Repeat-5 (DR5), and alterations in polarity and abundance of auxin efflux carrier PIN- FORMED2 (PIN2). Imposition of NaCl stress was found to be restrictive to the elongation capacity of cells in the root elongation zone of vps9a-2 mutant. Together our results indicate that alterations in K+ homeostasis and associated cellular changes causing increased cell wall pH, contribute to diminished root growth and compromised survival of vps9a-2 mutant under salt stress conditions.
Collapse
Affiliation(s)
- Divya Rajagopal
- National Centre for Biological SciencesTIFRBangaloreKarnatakaIndia
| | - M. K. Mathew
- National Centre for Biological SciencesTIFRBangaloreKarnatakaIndia
| |
Collapse
|
25
|
Wang Q, Huang Y, Ren Z, Zhang X, Ren J, Su J, Zhang C, Tian J, Yu Y, Gao GF, Li L, Kong Z. Transfer cells mediate nitrate uptake to control root nodule symbiosis. NATURE PLANTS 2020; 6:800-808. [PMID: 32514144 DOI: 10.1038/s41477-020-0683-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/29/2020] [Indexed: 05/25/2023]
Abstract
Root nodule symbiosis enables nitrogen fixation in legumes and, therefore, improves crop production for sustainable agriculture1,2. Environmental nitrate levels affect nodulation and nitrogen fixation, but the mechanisms by which legume plants modulate nitrate uptake to regulate nodule symbiosis remain unclear1. Here, we identify a member of the Medicago truncatula nitrate peptide family (NPF), NPF7.6, which is expressed specifically in the nodule vasculature. NPF7.6 localizes to the plasma membrane of nodule transfer cells (NTCs), where it functions as a high-affinity nitrate transporter. Transfer cells show characteristic wall ingrowths that enhance the capacity for membrane transport at the apoplasmic-symplasmic interface between the vasculature and surrounding tissues3. Importantly, knockout of NPF7.6 using CRISPR-Cas9 resulted in developmental defects of the nodule vasculature, with excessive expansion of NTC plasma membranes. npf7.6 nodules showed severely compromised nitrate responsiveness caused by an attenuated ability to transport nitrate. Moreover, npf7.6 nodules exhibited disturbed nitric oxide homeostasis and a notable decrease in nitrogenase activity. Our findings indicate that NPF7.6 has been co-opted into a regulatory role in nodulation, functioning in nitrate uptake through NTCs to fine-tune nodule symbiosis in response to fluctuating environmental nitrate status. These observations will inform efforts to optimize nitrogen fixation in legume crops.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yige Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhijie Ren
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Ren
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Su
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Mapping proteome-wide targets of protein kinases in plant stress responses. Proc Natl Acad Sci U S A 2020; 117:3270-3280. [PMID: 31992638 DOI: 10.1073/pnas.1919901117] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein kinases are major regulatory components in almost all cellular processes in eukaryotic cells. By adding phosphate groups, protein kinases regulate the activity, localization, protein-protein interactions, and other features of their target proteins. It is known that protein kinases are central components in plant responses to environmental stresses such as drought, high salinity, cold, and pathogen attack. However, only a few targets of these protein kinases have been identified. Moreover, how these protein kinases regulate downstream biological processes and mediate stress responses is still largely unknown. In this study, we introduce a strategy based on isotope-labeled in vitro phosphorylation reactions using in vivo phosphorylated peptides as substrate pools and apply this strategy to identify putative substrates of nine protein kinases that function in plant abiotic and biotic stress responses. As a result, we identified more than 5,000 putative target sites of osmotic stress-activated SnRK2.4 and SnRK2.6, abscisic acid-activated protein kinases SnRK2.6 and casein kinase 1-like 2 (CKL2), elicitor-activated protein kinase CDPK11 and MPK6, cold-activated protein kinase MPK6, H2O2-activated protein kinase OXI1 and MPK6, and salt-induced protein kinase SOS1 and MPK6, as well as the low-potassium-activated protein kinase CIPK23. These results provide comprehensive information on the role of these protein kinases in the control of cellular activities and could be a valuable resource for further studies on the mechanisms underlying plant responses to environmental stresses.
Collapse
|
27
|
Aliniaeifard S, Shomali A, Seifikalhor M, Lastochkina O. Calcium Signaling in Plants Under Drought. SALT AND DROUGHT STRESS TOLERANCE IN PLANTS 2020:259-298. [DOI: 10.1007/978-3-030-40277-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
|
28
|
The Complex Fine-Tuning of K⁺ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20030715. [PMID: 30736441 PMCID: PMC6387338 DOI: 10.3390/ijms20030715] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
As the main cation in plant cells, potassium plays an essential role in adaptive responses, especially through its involvement in osmotic pressure and membrane potential adjustments. K+ homeostasis must, therefore, be finely controlled. As a result of different abiotic stresses, especially those resulting from global warming, K⁺ fluxes and plant distribution of this ion are disturbed. The hormone abscisic acid (ABA) is a key player in responses to these climate stresses. It triggers signaling cascades that ultimately lead to modulation of the activities of K⁺ channels and transporters. After a brief overview of transcriptional changes induced by abiotic stresses, this review deals with the post-translational molecular mechanisms in different plant organs, in Arabidopsis and species of agronomical interest, triggering changes in K⁺ uptake from the soil, K⁺ transport and accumulation throughout the plant, and stomatal regulation. These modifications involve phosphorylation/dephosphorylation mechanisms, modifications of targeting, and interactions with regulatory partner proteins. Interestingly, many signaling pathways are common to K⁺ and Cl-/NO3- counter-ion transport systems. These cross-talks are also addressed.
Collapse
|
29
|
Flowers TJ, Glenn EP, Volkov V. Could vesicular transport of Na+ and Cl- be a feature of salt tolerance in halophytes? ANNALS OF BOTANY 2019; 123:1-18. [PMID: 30247507 PMCID: PMC6344095 DOI: 10.1093/aob/mcy164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/10/2018] [Indexed: 05/18/2023]
Abstract
Background Halophytes tolerate external salt concentrations of 200 mm and more, accumulating salt concentrations of 500 mm and more in their shoots; some, recretohalophytes, excrete salt through glands on their leaves. Ions are accumulated in central vacuoles, but the pathway taken by these ions from the outside of the roots to the vacuoles inside the cells is poorly understood. Do the ions cross membranes through ion channels and transporters or move in vesicles, or both? Vesicular transport from the plasma membrane to the vacuole would explain how halophytes avoid the toxicity of high salt concentrations on metabolism. There is also a role for vesicles in the export of ions via salt glands. Scope and Methods We have collected data on the fluxes of sodium and chloride ions in halophytes, based on the weight of the transporting organs and on the membrane area across which the flux occurs; the latter range from 17 nmol m-2 s-1 to 4.2 μmol m-2 s-1 and values up to 1 μmol m-2 s-1 need to be consistent with whatever transport system is in operation. We have summarized the sizes and rates of turnover of vesicles in plants, where clathrin-independent vesicles are 100 nm or more in diameter and can merge with the plasma membrane at rates of 100 s-1. We gathered evidence for vesicular transport of ions in halophytes and evaluated whether vesicular transport could account for the observable fluxes. Conclusions There is strong evidence in favour of vesicular transport in plants and circumstantial evidence in favour of the movement of ions in vesicles. Estimated rates of vesicle turnover could account for ion transport at the lower reported fluxes (around 20 nmol m-2 s-1), but the higher fluxes may require vesicles of the order of 1 μm or more in diameter. The very high fluxes reported in some salt glands might be an artefact of the way they were measured.
Collapse
Affiliation(s)
- Timothy J Flowers
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
| | - Edward P Glenn
- Environmental Research Laboratory of the University of Arizona, 1601 East, Airport Drive, Tucson, AZ, USA
| | - Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan University, London N7, UK
- Department of Plant Sciences, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
30
|
Li LH, Lv MM, Li X, Ye TZ, He X, Rong SH, Dong YL, Guan Y, Gao XL, Zhu JQ, Xu ZJ. The Rice OsDUF810 Family: OsDUF810.7 May be Involved in the Tolerance to Salt and Drought. Mol Biol 2018. [DOI: 10.1134/s002689331804012x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Pokotylo I, Kravets V, Martinec J, Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog Lipid Res 2018; 71:43-53. [PMID: 29842906 DOI: 10.1016/j.plipres.2018.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.
Collapse
Affiliation(s)
- Igor Pokotylo
- Université Paris-Est, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric Ruelland
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine; CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France.
| |
Collapse
|
32
|
Nguyen HH, Lee MH, Song K, Ahn G, Lee J, Hwang I. The A/ENTH Domain-Containing Protein AtECA4 Is an Adaptor Protein Involved in Cargo Recycling from the trans-Golgi Network/Early Endosome to the Plasma Membrane. MOLECULAR PLANT 2018; 11:568-583. [PMID: 29317286 DOI: 10.1016/j.molp.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/03/2017] [Accepted: 01/03/2018] [Indexed: 05/05/2023]
Abstract
Endocytosis and subsequent trafficking pathways are crucial for regulating the activity of plasma membrane-localized proteins. Depending on cellular and physiological conditions, the internalized cargoes are sorted at (and transported from) the trans-Golgi network/early endosome (TGN/EE) to the vacuole for degradation or recycled back to the plasma membrane. How this occurs at the molecular level remains largely elusive. Here, we provide evidence that the ENTH domain-containing protein AtECA4 plays a crucial role in recycling cargoes from the TGN/EE to the plasma membrane in Arabidopsis thaliana. AtECA4:sGFP primarily localized to the TGN/EE and plasma membrane (at low levels). Upon NaCl or mannitol treatment, AtECA4:sGFP accumulated at the TGN/EE at an early time point but was released from the TGN/EE to the cytosol at later time points. The ateca4 mutant showed higher resistance to osmotic stress and more sensitive to exogenous abscisic acid (ABA) than the wild type, as well as increased expression of ABA-inducible genes RD29A and RD29B. Consistently, ABCG25, a plasma membrane-localized ABA exporter, accumulated at the prevacuolar compartment in ateca4, indicating a defect in recycling to the plasma membrane. However, the role of AtECA4 in cargo recycling is not specific to ABCG25, as it also functions in the recycling of BRI1. These results suggest that AtECA4 plays a crucial role in the recycling of endocytosed cargoes from the TGN/EE to the plasma membrane.
Collapse
Affiliation(s)
- Hong Hanh Nguyen
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Myoung Hui Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kyungyoung Song
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Gyeongik Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jihyeong Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
33
|
Li L, Lv M, Zhao L, Ye T, Xu J, Cai L, Xie C, Gao X, Huang Z, Zhu J, Xu Z. Molecular characterization and function analysis of the rice OsDUF829 family. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1437357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Lihua Li
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Miaomiao Lv
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Lu Zhao
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Taozhi Ye
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Jinghong Xu
- Academy of Agricultural and Forestry Sciences, Crop Research Institute, Chengdu, PR China
| | - Liangjun Cai
- Academy of Agricultural and Forestry Sciences, Crop Research Institute, Chengdu, PR China
| | - Chen Xie
- Department of Biology, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, PR China
| | - Xiaoling Gao
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Zhengjian Huang
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Jianqing Zhu
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Zhengjun Xu
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| |
Collapse
|
34
|
Li L, Ye T, Guan Y, Lv M, Xie C, Xu J, Gao X, Zhu J, Cai L, Xu Z. Genome-wide identification and analyses of the rice OsDUF936 family. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1413421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Lihua Li
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Rice Institute of Sichuan Agricultural University, Ministry of Education, Chengdu, P. R. China
| | - Taozhi Ye
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Rice Institute of Sichuan Agricultural University, Ministry of Education, Chengdu, P. R. China
| | - Ying Guan
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Rice Institute of Sichuan Agricultural University, Ministry of Education, Chengdu, P. R. China
| | - Miaomiao Lv
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Rice Institute of Sichuan Agricultural University, Ministry of Education, Chengdu, P. R. China
| | - Chen Xie
- Department of Biology, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, P. R. China
| | - Jinghong Xu
- Crop Research Institute, Academy of Agricultural and Forestry Sciences, Chengdu, P. R. China
| | - Xiaoling Gao
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Rice Institute of Sichuan Agricultural University, Ministry of Education, Chengdu, P. R. China
| | - Jianqing Zhu
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Rice Institute of Sichuan Agricultural University, Ministry of Education, Chengdu, P. R. China
| | - Liangjun Cai
- Crop Research Institute, Academy of Agricultural and Forestry Sciences, Chengdu, P. R. China
| | - Zhengjun Xu
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Rice Institute of Sichuan Agricultural University, Ministry of Education, Chengdu, P. R. China
| |
Collapse
|
35
|
Himschoot E, Pleskot R, Van Damme D, Vanneste S. The ins and outs of Ca 2+ in plant endomembrane trafficking. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:131-137. [PMID: 28965016 DOI: 10.1016/j.pbi.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Trafficking of proteins and lipids within the plant endomembrane system is essential to support cellular functions and is subject to rigorous regulation. Despite this seemingly strict regulation, endomembrane trafficking needs to be dynamically adjusted to ever-changing internal and environmental stimuli, while maintaining cellular integrity. Although often overlooked, the versatile second messenger Ca2+ is intimately connected to several endomembrane-associated processes. Here, we discuss the impact of electrostatic interactions between Ca2+ and anionic phospholipids on endomembrane trafficking, and illustrate the direct role of Ca2+ sensing proteins in regulating endomembrane trafficking and membrane integrity preservation. Moreover, we discuss how Ca2+ can control protein sorting within the plant endomembrane system. We thus highlight Ca2+ signaling as a versatile mechanism by which numerous signals are integrated into plant endomembrane trafficking dynamics.
Collapse
Affiliation(s)
- Ellie Himschoot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Roman Pleskot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic
| | - Daniël Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
36
|
Cucu B, Degreif D, Bertl A, Thiel G. Vesicle fusion and fission in plants and yeast. Cell Calcium 2017; 67:40-45. [DOI: 10.1016/j.ceca.2017.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/08/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
|
37
|
Yu F, Xie Q. Non-26S Proteasome Endomembrane Trafficking Pathways in ABA Signaling. TRENDS IN PLANT SCIENCE 2017; 22:976-985. [PMID: 28919033 DOI: 10.1016/j.tplants.2017.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 05/26/2023]
Abstract
The phytohormone abscisic acid (ABA) is a vital endogenous messenger that regulates diverse physiological processes in plants. The regulation of ABA signaling has been well studied at both the transcriptional and translational levels. Post-translational modification of key regulators in ABA signaling by the 26S ubiquitin proteasome pathway is well known. Recently, increasing evidence demonstrates that atypical turnover of key regulators by the endocytic trafficking pathway and autophagy also play vital roles in ABA perception, signaling, and action. We summarize and synthesize here recent findings in the field of ABA signaling.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Number 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Number 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
38
|
Yu M, Liu H, Dong Z, Xiao J, Su B, Fan L, Komis G, Šamaj J, Lin J, Li R. The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:73-84. [PMID: 28582732 DOI: 10.1016/j.jplph.2017.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 05/14/2023]
Abstract
Membrane microdomains play vital roles in the process of bacterial infection. The membrane microdomain-associated protein Flot1 acts in an endocytic pathway and is required for seedling development, however, whether Flot1 is a part of host defense mechanisms remains unknown. During an analysis of callose deposition, we found that Flot1 amiRNAi mutants exhibited defects in response to flg22. Using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), structured illumination microscopy (SIM) and fluorescence cross spectroscopy (FCS), we determined that the dynamic behavior of GFP-Flot1 in Arabidopsis thaliana cotyledon epidermal cells changed significantly in plants treated with the elicitor flg22. Moreover, we found that Flot1 was constitutively recycled via an endocytic pathway and that flg22 could promote endocytosis. Importantly, targeting of Flot1 to the late endosome/vacuole for degradation increased in response to flg22 treatment; immunoblot analysis showed that when triggered by flg22, GFP-Flot1 was gradually degraded in a time-dependent manner. Taken together, these findings support the hypothesis that the changing of dynamics and oligomeric states can promote the endocytosis and degradation of Flot1 under flg22 treatment in plant cells.
Collapse
Affiliation(s)
- Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haijiao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ziyi Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Bodan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lusheng Fan
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - George Komis
- Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, 78301, Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, 78301, Olomouc, Czech Republic
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
39
|
Isner JC, Xu Z, Costa JM, Monnet F, Batstone T, Ou X, Deeks MJ, Genty B, Jiang K, Hetherington AM. Actin filament reorganisation controlled by the SCAR/WAVE complex mediates stomatal response to darkness. THE NEW PHYTOLOGIST 2017; 215:1059-1067. [PMID: 28636198 PMCID: PMC5519931 DOI: 10.1111/nph.14655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/25/2017] [Indexed: 05/20/2023]
Abstract
Stomata respond to darkness by closing to prevent excessive water loss during the night. Although the reorganisation of actin filaments during stomatal closure is documented, the underlying mechanisms responsible for dark-induced cytoskeletal arrangement remain largely unknown. We used genetic, physiological and cell biological approaches to show that reorganisation of the actin cytoskeleton is required for dark-induced stomatal closure. The opal5 mutant does not close in response to darkness but exhibits wild-type (WT) behaviour when exposed to abscisic acid (ABA) or CaCl2 . The mutation was mapped to At5g18410, encoding the PIR/SRA1/KLK subunit of the ArabidopsisSCAR/WAVE complex. Stomata of an independent allele of the PIR gene (Atpir-1) showed reduced sensitivity to darkness and F1 progenies of the cross between opal5 and Atpir-1 displayed distorted leaf trichomes, suggesting that the two mutants are allelic. Darkness induced changes in the extent of actin filament bundling in WT. These were abolished in opal5. Disruption of filamentous actin using latrunculin B or cytochalasin D restored wild-type stomatal sensitivity to darkness in opal5. Our findings suggest that the stomatal response to darkness is mediated by reorganisation of guard cell actin filaments, a process that is finely tuned by the conserved SCAR/WAVE-Arp2/3 actin regulatory module.
Collapse
Affiliation(s)
- Jean-Charles Isner
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Zaoxu Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Joaquim Miguel Costa
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique UMR 7265, Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance, 13108, France
| | - Fabien Monnet
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique UMR 7265, Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance, 13108, France
| | - Thomas Batstone
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Xiaobin Ou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Michael J Deeks
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Bernard Genty
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique UMR 7265, Université Aix-Marseille, Biologie Végétale et Microbiologie Environnementales, Saint-Paul-lez-Durance, 13108, France
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
40
|
Inoue SI, Iwashita N, Takahashi Y, Gotoh E, Okuma E, Hayashi M, Tabata R, Takemiya A, Murata Y, Doi M, Kinoshita T, Shimazaki KI. Brassinosteroid Involvement in Arabidopsis thaliana Stomatal Opening. PLANT & CELL PHYSIOLOGY 2017; 58:1048-1058. [PMID: 28407091 DOI: 10.1093/pcp/pcx049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/02/2017] [Indexed: 05/21/2023]
Abstract
Stomata within the plant epidermis regulate CO2 uptake for photosynthesis and water loss through transpiration. Stomatal opening in Arabidopsis thaliana is determined by various factors, including blue light as a signal and multiple phytohormones. Plasma membrane transporters, including H+-ATPase, K+ channels and anion channels in guard cells, mediate these processes, and the activities and expression levels of these components determine stomatal aperture. However, the regulatory mechanisms involved in these processes are not fully understood. In this study, we used infrared thermography to isolate a mutant defective in stomatal opening in response to light. The causative mutation was identified as an allele of the brassinosteroid (BR) biosynthetic mutant dwarf5. Guard cells from this mutant exhibited normal H+-ATPase activity in response to blue light, but showed reduced K+ accumulation and inward-rectifying K+ (K+in) channel activity as a consequence of decreased expression of major K+in channel genes. Consistent with these results, another BR biosynthetic mutant, det2-1, and a BR receptor mutant, bri1-6, exhibited reduced blue light-dependent stomatal opening. Furthermore, application of BR to the hydroponic culture medium completely restored stomatal opening in dwarf5 and det2-1 but not in bri1-6. However, application of BR to the epidermis of dwarf5 did not restore stomatal response. From these results, we conclude that endogenous BR acts in a long-term manner and is required in guard cells with the ability to open stomata in response to light, probably through regulation of K+in channel activity.
Collapse
Affiliation(s)
- Shin-Ichiro Inoue
- Department of Biology, Faculty of Science, Kyushu University,Motooka, Fukuoka, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Nozomi Iwashita
- Department of Biology, Faculty of Science, Kyushu University,Motooka, Fukuoka, Japan
| | - Yohei Takahashi
- Department of Biology, Faculty of Science, Kyushu University,Motooka, Fukuoka, Japan
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA
| | - Eiji Gotoh
- Department of Biology, Faculty of Science, Kyushu University,Motooka, Fukuoka, Japan
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Eiji Okuma
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Maki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Ryohei Tabata
- Department of Biology, Faculty of Science, Kyushu University,Motooka, Fukuoka, Japan
| | - Atsushi Takemiya
- Department of Biology, Faculty of Science, Kyushu University,Motooka, Fukuoka, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Michio Doi
- Faculty of Arts and Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Ken-Ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University,Motooka, Fukuoka, Japan
| |
Collapse
|
41
|
Takahashi S, Monda K, Higaki T, Hashimoto-Sugimoto M, Negi J, Hasezawa S, Iba K. Differential Effects of Phosphatidylinositol 4-Kinase (PI4K) and 3-Kinase (PI3K) Inhibitors on Stomatal Responses to Environmental Signals. FRONTIERS IN PLANT SCIENCE 2017; 8:677. [PMID: 28507556 PMCID: PMC5410623 DOI: 10.3389/fpls.2017.00677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/12/2017] [Indexed: 06/01/2023]
Abstract
Specific cellular components including products of phosphatidylinositol (PI) metabolism play an important role as signaling molecules in stomatal responses to environmental signals. In this study, pharmacological inhibitors of a set of cellular components, including PI4-kinase (PI4K) and PI3K, were used to investigate stomatal closure in response to CO2, darkness, and abscisic acid (ABA). Treatment with PAO, a specific inhibitor of PI4K, specifically inhibited the stomatal response to CO2 compared with that to darkness and ABA. In contrast, treatment with LY294002, a PI3K-specific inhibitor, specifically inhibited the stomatal response to darkness compared with that to CO2 and ABA. The specific inhibitory effects of PAO and LY294002 were also observed as changes in the spatial density of dot-like structures labeled by green fluorescent protein-tagged PATROL1, a protein that controls stomatal aperture possibly via regulation of H+-ATPase amount in guard cell plasma membranes. Our results suggest an important role for PI4K and PI3K in the CO2 and darkness signal transduction pathways, respectively, that mediate PATROL1 dynamics.
Collapse
Affiliation(s)
- Sho Takahashi
- Department of Biology, Faculty of Science, Kyushu UniversityFukuoka, Japan
| | - Keina Monda
- Department of Biology, Faculty of Science, Kyushu UniversityFukuoka, Japan
| | - Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of TokyoChiba, Japan
| | | | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu UniversityFukuoka, Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of TokyoChiba, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu UniversityFukuoka, Japan
| |
Collapse
|
42
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
43
|
van de Meene AML, Doblin MS, Bacic A. The plant secretory pathway seen through the lens of the cell wall. PROTOPLASMA 2017; 254:75-94. [PMID: 26993347 DOI: 10.1007/s00709-016-0952-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 05/18/2023]
Abstract
Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.
Collapse
Affiliation(s)
- A M L van de Meene
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - M S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
44
|
Karnik R, Waghmare S, Zhang B, Larson E, Lefoulon C, Gonzalez W, Blatt MR. Commandeering Channel Voltage Sensors for Secretion, Cell Turgor, and Volume Control. TRENDS IN PLANT SCIENCE 2017; 22:81-95. [PMID: 27818003 PMCID: PMC5224186 DOI: 10.1016/j.tplants.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
Control of cell volume and osmolarity is central to cellular homeostasis in all eukaryotes. It lies at the heart of the century-old problem of how plants regulate turgor, mineral and water transport. Plants use strongly electrogenic H+-ATPases, and the substantial membrane voltages they foster, to drive solute accumulation and generate turgor pressure for cell expansion. Vesicle traffic adds membrane surface and contributes to wall remodelling as the cell grows. Although a balance between vesicle traffic and ion transport is essential for cell turgor and volume control, the mechanisms coordinating these processes have remained obscure. Recent discoveries have now uncovered interactions between conserved subsets of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that drive the final steps in secretory vesicle traffic and ion channels that mediate in inorganic solute uptake. These findings establish the core of molecular links, previously unanticipated, that coordinate cellular homeostasis and cell expansion.
Collapse
Affiliation(s)
- Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sakharam Waghmare
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ben Zhang
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Emily Larson
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wendy Gonzalez
- Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
45
|
Kleist TJ, Luan S. Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment. PLANT, CELL & ENVIRONMENT 2016; 39:467-481. [PMID: 26139029 DOI: 10.1111/pce.12599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Despite substantial variation and irregularities in their environment, plants must conform to spatiotemporal demands on the molecular composition of their cytosol. Cell membranes are the major interface between organisms and their environment and the basis for controlling the contents and intracellular organization of the cell. Membrane transport proteins (MTPs) govern the flow of molecules across membranes, and their activities are closely monitored and regulated by cell signalling networks. By continuously adjusting MTP activities, plants can mitigate the effects of environmental perturbations, but effective implementation of this strategy is reliant on precise coordination among transport systems that reside in distinct cell types and membranes. Here, we examine the role of calcium signalling in the coordination of membrane transport, with an emphasis on potassium transport. Potassium is an exceptionally abundant and mobile ion in plants, and plant potassium transport has been intensively studied for decades. Classic and recent studies have underscored the importance of calcium in plant environmental responses and membrane transport regulation. In reviewing recent advances in our understanding of the coding and decoding of calcium signals, we highlight established and emerging roles of calcium signalling in coordinating membrane transport among multiple subcellular locations and distinct transport systems in plants, drawing examples from the CBL-CIPK signalling network. By synthesizing classical studies and recent findings, we aim to provide timely insights on the role of calcium signalling networks in the modulation of membrane transport and its importance in plant environmental responses.
Collapse
Affiliation(s)
- Thomas J Kleist
- University of California, Berkeley, Department of Plant & Microbial Biology, Berkeley, CA, 94720, USA
| | - Sheng Luan
- University of California, Berkeley, Department of Plant & Microbial Biology, Berkeley, CA, 94720, USA
| |
Collapse
|
46
|
Shabala S, Bose J, Fuglsang AT, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1015-31. [PMID: 26507891 DOI: 10.1093/jxb/erv465] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic stresses such as salinity, drought, and flooding severely limit food and fibre production and result in penalties of in excess of US$100 billion per annum to the agricultural sector. Improved abiotic stress tolerance to these environmental constraints via traditional or molecular breeding practices requires a good understanding of the physiological and molecular mechanisms behind roots sensing of hostile soils, as well as downstream signalling cascades to effectors mediating plant adaptive responses to the environment. In this review, we discuss some common mechanisms conferring plant tolerance to these three major abiotic stresses. Central to our discussion are: (i) the essentiality of membrane potential maintenance and ATP production/availability and its use for metabolic versus adaptive responses; (ii) reactive oxygen species and Ca(2+) 'signatures' mediating stress signalling; and (iii) cytosolic K(+) as the common denominator of plant adaptive responses. We discuss in detail how key plasma membrane and tonoplast transporters are regulated by various signalling molecules and processes observed in plants under stress conditions (e.g. changes in membrane potential; cytosolic pH and Ca(2+); reactive oxygen species; polyamines; abscisic acid) and how these stress-induced changes are related to expression and activity of specific ion transporters. The reported results are then discussed in the context of strategies for breeding crops with improved abiotic stress tolerance. We also discuss a classical trade-off between tolerance and yield, and possible avenues for resolving this dilemma.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Jayakumar Bose
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Igor Pottosin
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, México
| |
Collapse
|
47
|
Xia Z, Huo Y, Wei Y, Chen Q, Xu Z, Zhang W. The Arabidopsis LYST INTERACTING PROTEIN 5 Acts in Regulating Abscisic Acid Signaling and Drought Response. FRONTIERS IN PLANT SCIENCE 2016; 7:758. [PMID: 27313589 PMCID: PMC4887465 DOI: 10.3389/fpls.2016.00758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/17/2016] [Indexed: 05/19/2023]
Abstract
Multivesicular bodies (MVBs) are unique endosomes containing vesicles in the lumens and play essential roles in many eukaryotic cellular processes. The Arabidopsis LYST INTERACTING PROTEIN 5 (LIP5), a positive regulator of MVB biogenesis, has critical roles in biotic and abiotic stress responses. However, whether the abscisic acid (ABA) signaling is involved in LIP5-mediated stress response is largely unknown. Here, we report that LIP5 functions in regulating ABA signaling and drought response in Arabidopsis. Analyses of a LIP5 promoter-β-glucuronidase (GUS) construct revealed substantial GUS activity in whole seedlings. The expression of LIP5 was induced by ABA and drought, and overexpression of LIP5 led to ABA hypersensitivity, enhanced stomatal closure, reduced water loss, and, therefore, increased drought tolerance. On the contrary, LIP5 knockdown mutants showed ABA-insensitive phenotypes and reduced drought tolerance; suggesting that LIP5 acts in regulating ABA response. Further analysis using a fluorescent dye revealed that ABA and water stress induced cell endocytosis or vesicle trafficking in a largely LIP5-dependent manner. Furthermore, expression of several drought- or ABA-inducible marker genes was significantly down-regulated in the lip5 mutant seedlings. Collectively, our data suggest that LIP5 positively regulates drought tolerance through ABA-mediated cell signaling.
Collapse
Affiliation(s)
- Zongliang Xia
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
- *Correspondence: Zongliang Xia,
| | - Yongjin Huo
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Yangyang Wei
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTCZhengzhou, China
| | - Ziwei Xu
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Wei Zhang
- China National Tobacco Quality Supervision and Test CentreZhengzhou, China
| |
Collapse
|
48
|
Ye W, Murata Y. Microbe Associated Molecular Pattern Signaling in Guard Cells. FRONTIERS IN PLANT SCIENCE 2016; 7:583. [PMID: 27200056 PMCID: PMC4855242 DOI: 10.3389/fpls.2016.00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/15/2016] [Indexed: 05/04/2023]
Abstract
Stomata, formed by pairs of guard cells in the epidermis of terrestrial plants, regulate gas exchange, thus playing a critical role in plant growth and stress responses. As natural openings, stomata are exploited by microbes as an entry route. Recent studies reveal that plants close stomata upon guard cell perception of molecular signatures from microbes, microbe associated molecular patterns (MAMPs), to prevent microbe invasion. The perception of MAMPs induces signal transduction including recruitment of second messengers, such as Ca(2+) and H2O2, phosphorylation events, and change of transporter activity, leading to stomatal movement. In the present review, we summarize recent findings in signaling underlying MAMP-induced stomatal movement by comparing with other signalings.
Collapse
|
49
|
Nieves-Cordones M, Martínez V, Benito B, Rubio F. Comparison between Arabidopsis and Rice for Main Pathways of K(+) and Na(+) Uptake by Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:992. [PMID: 27458473 PMCID: PMC4932104 DOI: 10.3389/fpls.2016.00992] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/22/2016] [Indexed: 05/22/2023]
Abstract
K(+) is an essential macronutrient for plants. It is acquired by specific uptake systems located in roots. Although the concentrations of K(+) in the soil solution are widely variable, K(+) nutrition is secured by uptake systems that exhibit different affinities for K(+). Two main systems have been described for root K(+) uptake in several species: the high-affinity HAK5-like transporter and the inward-rectifier AKT1-like channel. Other unidentified systems may be also involved in root K(+) uptake, although they only seem to operate when K(+) is not limiting. The use of knock-out lines has allowed demonstrating their role in root K(+) uptake in Arabidopsis and rice. Plant adaptation to the different K(+) supplies relies on the finely tuned regulation of these systems. Low K(+)-induced transcriptional up-regulation of the genes encoding HAK5-like transporters occurs through a signal cascade that includes changes in the membrane potential of root cells and increases in ethylene and reactive oxygen species concentrations. Activation of AKT1 channels occurs through phosphorylation by the CIPK23/CBL1 complex. Recently, activation of the Arabidopsis HAK5 by the same complex has been reported, pointing to CIPK23/CBL as a central regulator of the plant's adaptation to low K(+). Na(+) is not an essential plant nutrient but it may be beneficial for some plants. At low concentrations, Na(+) improves growth, especially under K(+) deficiency. Thus, high-affinity Na(+) uptake systems have been described that belong to the HKT and HAK families of transporters. At high concentrations, typical of saline environments, Na(+) accumulates in plant tissues at high concentrations, producing alterations that include toxicity, water deficit and K(+) deficiency. Data concerning pathways for Na(+) uptake into roots under saline conditions are still scarce, although several possibilities have been proposed. The apoplast is a significant pathway for Na(+) uptake in rice grown under salinity conditions, but in other plant species different mechanisms involving non-selective cation channels or transporters are under discussion.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2Montpellier, France
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
- *Correspondence: Francisco Rubio,
| |
Collapse
|
50
|
Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proc Natl Acad Sci U S A 2015; 113:E396-405. [PMID: 26719420 DOI: 10.1073/pnas.1512779113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.
Collapse
|