1
|
Powell J, Steinschaden T, Horowitz R, Song Y. Calcium channels caught in peripheral glia's tug-of-war on axon regeneration in Drosophila. Neural Regen Res 2025; 20:475-476. [PMID: 38819054 PMCID: PMC11317943 DOI: 10.4103/nrr.nrr-d-23-02049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 06/01/2024] Open
Affiliation(s)
- Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tobias Steinschaden
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rose Horowitz
- The Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Tomé D, Almeida RD. The injured axon: intrinsic mechanisms driving axonal regeneration. Trends Neurosci 2024; 47:875-891. [PMID: 39438216 DOI: 10.1016/j.tins.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Injury to the central nervous system (CNS) often results in permanent neurological impairments because axons fail to regenerate and re-establish lost synaptic contacts. By contrast, peripheral neurons can activate a pro-regenerative program and regenerate following a nerve lesion. This relies on an intricate intracellular communication system between the severed axon and the cell body. Locally activated signaling molecules are retrogradely transported to the soma to promote the epigenetic and transcriptional changes required for the injured neuron to regain growth competence. These signaling events rely heavily on intra-axonal translation and mitochondrial trafficking into the severed axon. Here, we discuss the interplay between these mechanisms and the main intrinsic barriers to axonal regeneration. We also examine the potential of manipulating these processes for driving CNS repair.
Collapse
Affiliation(s)
- Diogo Tomé
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Ramiro D Almeida
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
4
|
Duarte VN, Lam VT, Rimicci DS, Thompson-Peer KL. Calcium plays an essential role in early-stage dendrite injury detection and regeneration. Prog Neurobiol 2024; 239:102635. [PMID: 38825174 PMCID: PMC11305834 DOI: 10.1016/j.pneurobio.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Dendrites are injured in a variety of clinical conditions such as traumatic brain and spinal cord injuries and stroke. How neurons detect injury directly to their dendrites to initiate a pro-regenerative response has not yet been thoroughly investigated. Calcium plays a critical role in the early stages of axonal injury detection and is also indispensable for regeneration of the severed axon. Here, we report cell and neurite type-specific differences in laser injury-induced elevations of intracellular calcium levels. Using a human KCNJ2 transgene, we demonstrate that hyperpolarizing neurons only at the time of injury dampens dendrite regeneration, suggesting that inhibition of injury-induced membrane depolarization (and thus early calcium influx) plays a role in detecting and responding to dendrite injury. In exploring potential downstream calcium-regulated effectors, we identify L-type voltage-gated calcium channels, inositol triphosphate signaling, and protein kinase D activity as drivers of dendrite regeneration. In conclusion, we demonstrate that dendrite injury-induced calcium elevations play a key role in the regenerative response of dendrites and begin to delineate the molecular mechanisms governing dendrite repair.
Collapse
Affiliation(s)
- Vinicius N Duarte
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Vicky T Lam
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Dario S Rimicci
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Katherine L Thompson-Peer
- Dept of Developmental and Cell Biology, University of California, Irvine, United States; Center for the Neurobiology of Learning and Memory, Irvine, CA, United States; Sue and Bill Gross Stem Cell Research Center, Irvine, CA, United States; Reeve-Irvine Research Center, Irvine, CA, United States.
| |
Collapse
|
5
|
Wu L, Gao H, Han Q, Guan W, Sun S, Zheng T, Liu Y, Wang X, Huang R, Li G. Piezoelectric materials for neuroregeneration: a review. Biomater Sci 2023; 11:7296-7310. [PMID: 37812084 DOI: 10.1039/d3bm01111a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The purpose of nerve regeneration via tissue engineering strategies is to create a microenvironment that mimics natural nerve growth for achieving functional recovery. Biomaterial scaffolds offer a promising option for the clinical treatment of large nerve gaps due to the rapid advancement of materials science and regenerative medicine. The design of biomimetic scaffolds should take into account the inherent properties of the nerve and its growth environment, such as stiffness, topography, adhesion, conductivity, and chemical functionality. Various advanced techniques have been employed to develop suitable scaffolds for nerve repair. Since neuronal cells have electrical activity, the transmission of bioelectrical signals is crucial for the functional recovery of nerves. Therefore, an ideal peripheral nerve scaffold should have electrical activity properties similar to those of natural nerves, in addition to a delicate structure. Piezoelectric materials can convert stress changes into electrical signals that can activate different intracellular signaling pathways critical for cell activity and function, which makes them potentially useful for nerve tissue regeneration. However, a comprehensive review of piezoelectric materials for neuroregeneration is still lacking. Thus, this review systematically summarizes the development of piezoelectric materials and their application in the field of nerve regeneration. First, the electrical signals and natural piezoelectricity phenomenon in various organisms are briefly introduced. Second, the most commonly used piezoelectric materials in neural tissue engineering, including biocompatible piezoelectric polymers, inorganic piezoelectric materials, and natural piezoelectric materials, are classified and discussed. Finally, the challenges and future research directions of piezoelectric materials for application in nerve regeneration are proposed.
Collapse
Affiliation(s)
- Linliang Wu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
- The People's Hospital of Rugao, Affiliated Hospital of Nantong University, 226599, Nantong, P. R. China
| | - Hongxia Gao
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Qi Han
- Department of Science and Technology, Affiliated Hospital of Nantong University, 226001, Nantong, P. R. China
| | - Wenchao Guan
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Shaolan Sun
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Tiantian Zheng
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Yaqiong Liu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Xiaolu Wang
- Suzhou SIMATECH Co. Ltd, 215168, Suzhou, P.R. China
| | - Ran Huang
- Zhejiang Cathaya International Co., Ltd, 310006, Hangzhou, P.R. China
| | - Guicai Li
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Hough RA, McClellan AD. Spinal cord injury significantly alters the properties of reticulospinal neurons: delayed repolarization mediated by potassium channels. J Neurophysiol 2023; 130:1265-1281. [PMID: 37820016 PMCID: PMC10994645 DOI: 10.1152/jn.00251.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
After rostral spinal cord injury (SCI) of lampreys, the descending axons of injured (axotomized) reticulospinal (RS) neurons regenerate and locomotor function gradually recovers. Our previous studies indicated that relative to uninjured lamprey RS neurons, injured RS neurons display several dramatic changes in their biophysical properties, called the "injury phenotype." In the present study, at the onset of applied depolarizing current pulses for membrane potentials below as well as above threshold for action potentials (APs), injured RS neurons displayed a transient depolarization consisting of an initial depolarizing component followed by a delayed repolarizing component. In contrast, for uninjured neurons the transient depolarization was mostly only evident at suprathreshold voltages when APs were blocked. For injured RS neurons, the delayed repolarizing component resisted depolarization to threshold and made these neurons less excitable than uninjured RS neurons. After block of voltage-gated sodium and calcium channels for injured RS neurons, the transient depolarization was still present. After a further block of voltage-gated potassium channels, the delayed repolarizing component was abolished or significantly reduced, with little or no effect on the initial depolarizing component. Voltage-clamp experiments indicated that the delayed repolarizing component was due to a noninactivating outward-rectifying potassium channel whose conductance (gK) was significantly larger for injured RS neurons compared to that for uninjured neurons. Thus, SCI results in an increase in gK and other changes in the biophysical properties of injured lamprey RS neurons that lead to a reduction in excitability, which is proposed to create an intracellular environment that supports axonal regeneration.NEW & NOTEWORTHY After spinal cord injury (SCI), lamprey reticulospinal (RS) neurons responded to subthreshold depolarizing current pulses with a transient depolarization, which included an initial depolarization that was due to passive channels followed by a delayed repolarization that was mediated by voltage-gated potassium channels. The conductance of these channels (gK) was significantly increased for RS neurons after SCI and contributed to a reduction in excitability, which is expected to provide supportive conditions for subsequent axonal regeneration.
Collapse
Affiliation(s)
- Ryan A Hough
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Andrew D McClellan
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
7
|
Trombley S, Powell J, Guttipatti P, Matamoros A, Lin X, O'Harrow T, Steinschaden T, Miles L, Wang Q, Wang S, Qiu J, Li Q, Li F, Song Y. Glia instruct axon regeneration via a ternary modulation of neuronal calcium channels in Drosophila. Nat Commun 2023; 14:6490. [PMID: 37838791 PMCID: PMC10576831 DOI: 10.1038/s41467-023-42306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
A neuron's regenerative capacity is governed by its intrinsic and extrinsic environment. Both peripheral and central neurons exhibit cell-type-dependent axon regeneration, but the underlying mechanism is unclear. Glia provide a milieu essential for regeneration. However, the routes of glia-neuron signaling remain underexplored. Here, we show that regeneration specificity is determined by the axotomy-induced Ca2+ transients only in the fly regenerative neurons, which is mediated by L-type calcium channels, constituting the core intrinsic machinery. Peripheral glia regulate axon regeneration via a three-layered and balanced modulation. Glia-derived tumor necrosis factor acts through its neuronal receptor to maintain calcium channel expression after injury. Glia sustain calcium channel opening by enhancing membrane hyperpolarization via the inwardly-rectifying potassium channel (Irk1). Glia also release adenosine which signals through neuronal adenosine receptor (AdoR) to activate HCN channels (Ih) and dampen Ca2+ transients. Together, we identify a multifaceted glia-neuron coupling which can be hijacked to promote neural repair.
Collapse
Affiliation(s)
- Shannon Trombley
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pavithran Guttipatti
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Andrew Matamoros
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaohui Lin
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China
| | - Tristan O'Harrow
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tobias Steinschaden
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Leann Miles
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuchao Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jingyun Qiu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qingyang Li
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China
| | - Feng Li
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China.
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Ruan Y, Cheng J, Dai J, Ma Z, Luo S, Yan R, Wang L, Zhou J, Yu B, Tong X, Shen H, Zhou L, Yuan TF, Han Q. Chronic stress hinders sensory axon regeneration via impairing mitochondrial cristae and OXPHOS. SCIENCE ADVANCES 2023; 9:eadh0183. [PMID: 37801508 PMCID: PMC10558127 DOI: 10.1126/sciadv.adh0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Spinal cord injury (SCI) often leads to physical limitations, persistent pain, and major lifestyle shifts, enhancing the likelihood of prolonged psychological stress and associated disorders such as anxiety and depression. The mechanisms linking stress with regeneration remain elusive, despite understanding the detrimental impact of chronic stress on SCI recovery. In this study, we investigated the effect of chronic stress on primary sensory axon regeneration using a preconditioning lesions mouse model. Our data revealed that chronic stress-induced mitochondrial cristae loss and a decrease in oxidative phosphorylation (OXPHOS) within primary sensory neurons, impeding central axon regrowth. Corticosterone, a stress hormone, emerged as a pivotal player in this process, affecting satellite glial cells by reducing Kir4.1 expression. This led to increased neuronal hyperactivity and reactive oxygen species levels, which, in turn, deformed mitochondrial cristae and impaired OXPHOS, crucial for axonal regeneration. Our study underscores the need to manage psychological stress in patients with SCI for effective sensory-motor rehabilitation.
Collapse
Affiliation(s)
- Yu Ruan
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jin Cheng
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jiafeng Dai
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhengwen Ma
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shiyu Luo
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Run Yan
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Lizhao Wang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jinrui Zhou
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226001, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoping Tong
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Libing Zhou
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Ti-Fei Yuan
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qi Han
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
9
|
Santiago C, Sharma N, Africawala N, Siegrist J, Handler A, Tasnim A, Anjum R, Turecek J, Lehnert BP, Renauld S, Nolan-Tamariz M, Iskols M, Magee AR, Paradis S, Ginty DD. Activity-dependent development of the body's touch receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559109. [PMID: 37790437 PMCID: PMC10542488 DOI: 10.1101/2023.09.23.559109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end organ structures and altered somatosensory neuron central targeting. Single cell RNA sequencing of Piezo2 conditional mutants revealed changes in gene expression in the sensory neurons activated by light mechanical forces, whereas other neuronal classes were less affected. To further test the role of activity in mechanosensory end organ development, we genetically deleted the voltage-gated sodium channel Nav1.6 (Scn8a) in somatosensory neurons throughout development and found that Scn8a mutants also have disrupted somatosensory neuron morphologies and altered electrophysiological responses to mechanical stimuli. Together, these findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of the mechanosensory end organs that underlie our sense of gentle touch.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikhil Sharma
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Nusrat Africawala
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julianna Siegrist
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Brendan P. Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Nolan-Tamariz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra R. Magee
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lead Contact
| |
Collapse
|
10
|
Grooms NW, Fitzgerald MQ, Zuckerman B, Ureña SE, Weinberger LS, Chung SH. Expression of thioredoxin-1 in the ASJ neuron corresponds with and enhances intrinsic regenerative capacity under lesion conditioning in C. elegans. FEBS Lett 2023; 597:1880-1893. [PMID: 37300530 PMCID: PMC10526644 DOI: 10.1002/1873-3468.14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
A conditioning lesion of the peripheral sensory axon triggers robust central axon regeneration in mammals. We trigger conditioned regeneration in the Caenorhabditis elegans ASJ neuron by laser surgery or genetic disruption of sensory pathways. Conditioning upregulates thioredoxin-1 (trx-1) expression, as indicated by trx-1 promoter-driven expression of green fluorescent protein and fluorescence in situ hybridization (FISH), suggesting trx-1 levels and associated fluorescence indicate regenerative capacity. The redox activity of trx-1 functionally enhances conditioned regeneration, but both redox-dependent and -independent activity inhibit non-conditioned regeneration. Six strains isolated in a forward genetic screen for reduced fluorescence, which suggests diminished regenerative potential, also show reduced axon outgrowth. We demonstrate an association between trx-1 expression and the conditioned state that we leverage to rapidly assess regenerative capacity.
Collapse
Affiliation(s)
- Noa W.F. Grooms
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Michael Q. Fitzgerald
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Binyamin Zuckerman
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Samuel E. Ureña
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Leor S. Weinberger
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Samuel H. Chung
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| |
Collapse
|
11
|
Lopez JA, Yamamoto A, Vecchi JT, Hagen J, Lee K, Sonka M, Hansen MR, Lee A. Caldendrin represses neurite regeneration and growth in dorsal root ganglion neurons. Sci Rep 2023; 13:2608. [PMID: 36788334 PMCID: PMC9929226 DOI: 10.1038/s41598-023-29622-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Caldendrin is a Ca2+ binding protein that interacts with multiple effectors, such as the Cav1 L-type Ca2+ channel, which play a prominent role in regulating the outgrowth of dendrites and axons (i.e., neurites) during development and in response to injury. Here, we investigated the role of caldendrin in Cav1-dependent pathways that impinge upon neurite growth in dorsal root ganglion neurons (DRGNs). By immunofluorescence, caldendrin was localized in medium- and large- diameter DRGNs. Compared to DRGNs cultured from WT mice, DRGNs of caldendrin knockout (KO) mice exhibited enhanced neurite regeneration and outgrowth. Strong depolarization, which normally represses neurite growth through activation of Cav1 channels, had no effect on neurite growth in DRGN cultures from female caldendrin KO mice. Remarkably, DRGNs from caldendrin KO males were no different from those of WT males in terms of depolarization-dependent neurite growth repression. We conclude that caldendrin opposes neurite regeneration and growth, and this involves coupling of Cav1 channels to growth-inhibitory pathways in DRGNs of females but not males.
Collapse
Affiliation(s)
- Josue A Lopez
- Department of Neuroscience, University of Texas-Austin, 100 E. 24th St., Austin, TX, 78712, USA
| | - Annamarie Yamamoto
- Department of Neuroscience, University of Texas-Austin, 100 E. 24th St., Austin, TX, 78712, USA
| | - Joseph T Vecchi
- Department of Molecular Physiology and Biophysics and Otolaryngology Head-Neck Surgery, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Jussara Hagen
- Department of Molecular Physiology and Biophysics and Otolaryngology Head-Neck Surgery, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Kyungmoo Lee
- Electrical and Computer Engineering, Iowa Institute for Biomedical Imaging, University of Iowa, 51 Newton Rd. Iowa City, Iowa, 52242, USA
| | - Milan Sonka
- Electrical and Computer Engineering, Iowa Institute for Biomedical Imaging, University of Iowa, 51 Newton Rd. Iowa City, Iowa, 52242, USA
| | - Marlan R Hansen
- Department of Molecular Physiology and Biophysics and Otolaryngology Head-Neck Surgery, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, 100 E. 24th St., Austin, TX, 78712, USA.
| |
Collapse
|
12
|
Su Y, Zeng L, Deng R, Ye B, Tang S, Xiong Z, Sun T, Ding Q, Su W, Jing X, Gao Q, Wang X, Qiu Z, Chen K, Quan D, Guo X. Endogenous Electric Field-Coupled PD@BP Biomimetic Periosteum Promotes Bone Regeneration through Sensory Nerve via Fanconi Anemia Signaling Pathway. Adv Healthc Mater 2023; 12:e2203027. [PMID: 36652677 DOI: 10.1002/adhm.202203027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Indexed: 01/20/2023]
Abstract
To treat bone defects, repairing the nerve-rich periosteum is critical for repairing the local electric field. In this study, an endogenous electric field is coupled with 2D black phosphorus electroactive periosteum to explore its role in promoting bone regeneration through nerves. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to characterize the electrically active biomimetic periosteum. Here, the in vitro effects exerted by the electrically active periosteum on the transformation of Schwann cells into the repair phenotype, axon initial segment (AIS) and dense core vesicle (DCV) of sensory neurons, and bone marrow mesenchymal stem cells are assessed using SEM, immunofluorescence, RNA-sequencing, and calcium ion probes. The electrically active periosteum stimulates Schwann cells into a neuroprotective phenotype via the Fanconi anemia pathway, enhances the AIS effect of sensory neurons, regulates DCV transport, and releases neurotransmitters, promoting the osteogenic transformation of bone marrow mesenchymal stem cells. Microcomputed tomography and other in vivo techniques are used to study the effects of the electrically active periosteum on bone regeneration. The results show that the electrically active periosteum promotes nerve-induced osteogenic repair, providing a potential clinical strategy for bone regeneration.
Collapse
Affiliation(s)
- Yanlin Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Rongli Deng
- PCFM Lab, School of Chemistry and School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
| | - Bing Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Shuo Tang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 510127, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qiuyue Ding
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weijie Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qing Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100000, China
| | - Zhiye Qiu
- Allgens Medical Technology Co., Ltd., Beijing, 100000, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daping Quan
- PCFM Lab, School of Chemistry and School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
13
|
Restoring After Central Nervous System Injuries: Neural Mechanisms and Translational Applications of Motor Recovery. Neurosci Bull 2022; 38:1569-1587. [DOI: 10.1007/s12264-022-00959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractCentral nervous system (CNS) injuries, including stroke, traumatic brain injury, and spinal cord injury, are leading causes of long-term disability. It is estimated that more than half of the survivors of severe unilateral injury are unable to use the denervated limb. Previous studies have focused on neuroprotective interventions in the affected hemisphere to limit brain lesions and neurorepair measures to promote recovery. However, the ability to increase plasticity in the injured brain is restricted and difficult to improve. Therefore, over several decades, researchers have been prompted to enhance the compensation by the unaffected hemisphere. Animal experiments have revealed that regrowth of ipsilateral descending fibers from the unaffected hemisphere to denervated motor neurons plays a significant role in the restoration of motor function. In addition, several clinical treatments have been designed to restore ipsilateral motor control, including brain stimulation, nerve transfer surgery, and brain–computer interface systems. Here, we comprehensively review the neural mechanisms as well as translational applications of ipsilateral motor control upon rehabilitation after CNS injuries.
Collapse
|
14
|
Mesquida-Veny F, Martínez-Torres S, Del Río JA, Hervera A. Genetic control of neuronal activity enhances axonal growth only on permissive substrates. Mol Med 2022; 28:97. [PMID: 35978278 PMCID: PMC9387030 DOI: 10.1186/s10020-022-00524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background Neural tissue has limited regenerative ability. To cope with that, in recent years a diverse set of novel tools has been used to tailor neurostimulation therapies and promote functional regeneration after axonal injuries. Method In this report, we explore cell-specific methods to modulate neuronal activity, including opto- and chemogenetics to assess the effect of specific neuronal stimulation in the promotion of axonal regeneration after injury. Results Opto- and chemogenetic stimulations of neuronal activity elicited increased in vitro neurite outgrowth in both sensory and cortical neurons, as well as in vivo regeneration in the sciatic nerve, but not after spinal cord injury. Mechanistically, inhibitory substrates such as chondroitin sulfate proteoglycans block the activity induced increase in axonal growth. Conclusions We found that genetic modulations of neuronal activity on both dorsal root ganglia and corticospinal motor neurons increase their axonal growth capacity but only on permissive environments. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00524-2.
Collapse
Affiliation(s)
- Francina Mesquida-Veny
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Sara Martínez-Torres
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain. .,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain. .,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Jacobi A, Tran NM, Yan W, Benhar I, Tian F, Schaffer R, He Z, Sanes JR. Overlapping transcriptional programs promote survival and axonal regeneration of injured retinal ganglion cells. Neuron 2022; 110:2625-2645.e7. [PMID: 35767994 PMCID: PMC9391321 DOI: 10.1016/j.neuron.2022.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022]
Abstract
Injured neurons in the adult mammalian central nervous system often die and seldom regenerate axons. To uncover transcriptional pathways that could ameliorate these disappointing responses, we analyzed three interventions that increase survival and regeneration of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC) injury, albeit not to a clinically useful extent. We assessed gene expression in each of 46 RGC types by single-cell transcriptomics following ONC and treatment. We also compared RGCs that regenerated with those that survived but did not regenerate. Each intervention enhanced survival of most RGC types, but type-independent axon regeneration required manipulation of multiple pathways. Distinct computational methods converged on separate sets of genes selectively expressed by RGCs likely to be dying, surviving, or regenerating. Overexpression of genes associated with the regeneration program enhanced both survival and axon regeneration in vivo, indicating that mechanistic analysis can be used to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Anne Jacobi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Nicholas M Tran
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Wenjun Yan
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Inbal Benhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Feng Tian
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rebecca Schaffer
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
Chen Y, Su Y, Wang F. The Piezo1 ion channel in glaucoma: a new perspective on mechanical stress. Hum Cell 2022; 35:1307-1322. [PMID: 35767143 DOI: 10.1007/s13577-022-00738-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Glaucomatous optic nerve damage caused by pathological intraocular pressure elevation is irreversible, and its course is often difficult to control. This group of eye diseases is closely related to biomechanics, and the correlation between glaucoma pathogenesis and mechanical stimulation has been studied in recent decades. The nonselective cation channel Piezo1, the most important known mechanical stress sensor, is a transmembrane protein widely expressed in various cell types. Piezo1 has been detected throughout the eye, and the close relationship between Piezo1 and glaucoma is being confirmed. Pathological changes in glaucoma occur in both the anterior and posterior segments of the eye, and it is of great interest for researchers to determine whether Piezo1 plays a role in these changes and how it functions. The elucidation of the mechanisms of Piezo1 action in nonocular tissues and the reported roles of similar mechanically activated ion channels in glaucoma will provide an appropriate basis for further investigation. From a new perspective, this review provides a detailed description of the current progress in elucidating the role of Piezo1 in glaucoma, including relevant questions and assumptions, the remaining challenging research directions and mechanism-related therapeutic potential.
Collapse
Affiliation(s)
- Yidan Chen
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China
| | - Ying Su
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Yiman Road, Harbin, 150007, China.
| | - Feng Wang
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China.
| |
Collapse
|
17
|
Hilton BJ, Husch A, Schaffran B, Lin TC, Burnside ER, Dupraz S, Schelski M, Kim J, Müller JA, Schoch S, Imig C, Brose N, Bradke F. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron 2022; 110:51-69.e7. [PMID: 34706221 PMCID: PMC8730507 DOI: 10.1016/j.neuron.2021.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Axons in the adult mammalian central nervous system fail to regenerate after spinal cord injury. Neurons lose their capacity to regenerate during development, but the intracellular processes underlying this loss are unclear. We found that critical components of the presynaptic active zone prevent axon regeneration in adult mice. Transcriptomic analysis combined with live-cell imaging revealed that adult primary sensory neurons downregulate molecular constituents of the synapse as they acquire the ability to rapidly grow their axons. Pharmacogenetic reduction of neuronal excitability stimulated axon regeneration after adult spinal cord injury. Genetic gain- and loss-of-function experiments uncovered that essential synaptic vesicle priming proteins of the presynaptic active zone, but not clostridial-toxin-sensitive VAMP-family SNARE proteins, inhibit axon regeneration. Systemic administration of Baclofen reduced voltage-dependent Ca2+ influx in primary sensory neurons and promoted their regeneration after spinal cord injury. These findings indicate that functional presynaptic active zones constitute a major barrier to axon regeneration.
Collapse
Affiliation(s)
- Brett J Hilton
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Andreas Husch
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Barbara Schaffran
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Tien-Chen Lin
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Emily R Burnside
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Sebastian Dupraz
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Max Schelski
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Jisoo Kim
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Susanne Schoch
- Institute of Neuropathology, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Frank Bradke
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|
18
|
Mateus JC, Lopes C, Aroso M, Costa AR, Gerós A, Meneses J, Faria P, Neto E, Lamghari M, Sousa MM, Aguiar P. Bidirectional flow of action potentials in axons drives activity dynamics in neuronal cultures. J Neural Eng 2021; 18. [PMID: 34891149 DOI: 10.1088/1741-2552/ac41db] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Objective. Recent technological advances are revealing the complex physiology of the axon and challenging long-standing assumptions. Namely, while most action potential (AP) initiation occurs at the axon initial segment in central nervous system neurons, initiation in distal parts of the axon has been reported to occur in both physiological and pathological conditions. The functional role of these ectopic APs, if exists, is still not clear, nor its impact on network activity dynamics.Approach. Using an electrophysiology platform specifically designed for assessing axonal conduction we show here for the first time regular and effective bidirectional axonal conduction in hippocampal and dorsal root ganglia cultures. We investigate and characterize this bidirectional propagation both in physiological conditions and after distal axotomy.Main results.A significant fraction of APs are not coming from the canonical synapse-dendrite-soma signal flow, but instead from signals originating at the distal axon. Importantly, antidromic APs may carry information and can have a functional impact on the neuron, as they consistently depolarize the soma. Thus, plasticity or gene transduction mechanisms triggered by soma depolarization can also be affected by these antidromic APs. Conduction velocity is asymmetrical, with antidromic conduction being slower than orthodromic.Significance.Altogether these findings have important implications for the study of neuronal functionin vitro, reshaping our understanding on how information flows in neuronal cultures.
Collapse
Affiliation(s)
- J C Mateus
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Cdf Lopes
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M Aroso
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - A R Costa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - A Gerós
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP-Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - J Meneses
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development-Instituto Politécnico de Leiria, Marinha Grande, Portugal.,IBEB-Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - P Faria
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development-Instituto Politécnico de Leiria, Marinha Grande, Portugal
| | - E Neto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - P Aguiar
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Spinal Cord Injury Significantly Alters the Properties of Reticulospinal Neurons: I. Biophysical Properties, Firing Patterns, Excitability, and Synaptic Inputs. Cells 2021; 10:cells10081921. [PMID: 34440690 PMCID: PMC8392545 DOI: 10.3390/cells10081921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Following spinal cord injury (SCI) for larval lampreys, descending axons of reticulospinal (RS) neurons regenerate, and locomotor function gradually recovers. In the present study, the electrophysiological properties of uninjured (left)-injured (right) pairs of large, identified RS neurons were compared following rostral, right spinal cord hemi-transections (HTs). First, changes in firing patterns of injured RS neurons began in as little as 2-3 days following injury, these changes were maximal at ~2-3 weeks (wks), and by 12-16 wks normal firing patterns were restored for the majority of neurons. Second, at ~2-3 wks following spinal cord HTs, injured RS neurons displayed several significant changes in properties compared to uninjured neurons: (a) more hyperpolarized VREST; (b) longer membrane time constant and larger membrane capacitance; (c) increased voltage and current thresholds for action potentials (APs); (d) larger amplitudes and durations for APs; (e) higher slope for the repolarizing phase of APs; (f) virtual absence of some afterpotential components, including the slow afterhyperpolarization (sAHP); (g) altered, injury-type firing patterns; and (h) reduced average and peak firing (spiking) frequencies during applied depolarizing currents. These altered properties, referred to as the "injury phenotype", reduced excitability and spiking frequencies of injured RS neurons compared to uninjured neurons. Third, artificially injecting a current to add a sAHP waveform following APs for injured neurons or removing the sAHP following APs for uninjured neurons did not convert these neurons to normal firing patterns or injury-type firing patterns, respectively. Fourth, trigeminal sensory-evoked synaptic responses recorded from uninjured and injured pairs of RS neurons were not significantly different. Following SCI, injured lamprey RS neurons displayed several dramatic changes in their biophysical properties that are expected to reduce calcium influx and provide supportive intracellular conditions for axonal regeneration.
Collapse
|
20
|
Abstract
The damage or loss of retinal ganglion cells (RGCs) and their axons accounts for the visual functional defects observed after traumatic injury, in degenerative diseases such as glaucoma, or in compressive optic neuropathies such as from optic glioma. By using optic nerve crush injury models, recent studies have revealed the cellular and molecular logic behind the regenerative failure of injured RGC axons in adult mammals and suggested several strategies with translational potential. This review summarizes these findings and discusses challenges for developing clinically applicable neural repair strategies.
Collapse
Affiliation(s)
- Philip R Williams
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94303, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
21
|
Wang SM, Goguadze N, Kimura Y, Yasui Y, Pan B, Wang TY, Nakamura Y, Lin YT, Hogan QH, Wilson KL, Su TP, Wu HE. Genomic Action of Sigma-1 Receptor Chaperone Relates to Neuropathic Pain. Mol Neurobiol 2021; 58:2523-2541. [PMID: 33459966 PMCID: PMC8128747 DOI: 10.1007/s12035-020-02276-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Sigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER) chaperones implicated in neuropathic pain. Here we examine if the Sig-1R may relate to neuropathic pain at the level of dorsal root ganglia (DRG). We focus on the neuronal excitability of DRG in a "spare nerve injury" (SNI) model of neuropathic pain in rats and find that Sig-1Rs likely contribute to the genesis of DRG neuronal excitability by decreasing the protein level of voltage-gated Cav2.2 as a translational inhibitor of mRNA. Specifically, during SNI, Sig-1Rs translocate from ER to the nuclear envelope via a trafficking protein Sec61β. At the nucleus, the Sig-1R interacts with cFos and binds to the promoter of 4E-BP1, leading to an upregulation of 4E-BP1 that binds and prevents eIF4E from initiating the mRNA translation for Cav2.2. Interestingly, in Sig-1R knockout HEK cells, Cav2.2 is upregulated. In accordance with those findings, we find that intra-DRG injection of Sig-1R agonist (+)pentazocine increases frequency of action potentials via regulation of voltage-gated Ca2+ channels. Conversely, intra-DRG injection of Sig-1R antagonist BD1047 attenuates neuropathic pain. Hence, we discover that the Sig-1R chaperone causes neuropathic pain indirectly as a translational inhibitor.
Collapse
MESH Headings
- Animals
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Endoplasmic Reticulum/metabolism
- Eukaryotic Initiation Factor-4E/metabolism
- Ganglia, Spinal/metabolism
- Gene Expression Regulation
- Genome
- HEK293 Cells
- Humans
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Nerve Tissue/injuries
- Nerve Tissue/pathology
- Neuralgia/genetics
- Nuclear Envelope/metabolism
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis
- Proto-Oncogene Proteins c-fos/metabolism
- RNA Caps/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, sigma/agonists
- Receptors, sigma/genetics
- Receptors, sigma/metabolism
- SEC Translocation Channels/metabolism
- Transcription, Genetic
- Sigma-1 Receptor
- Rats
Collapse
Affiliation(s)
- Shao-Ming Wang
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Nino Goguadze
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Yuriko Kimura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Tzu-Yun Wang
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Yoki Nakamura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
- Department of Pharmacology, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Yu-Ting Lin
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| | - Hsiang-En Wu
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Suite 3512, 333 Cassell Drive, Baltimore, MD, 21224, USA
| |
Collapse
|
22
|
Ewan EE, Avraham O, Carlin D, Gonçalves TM, Zhao G, Cavalli V. Ascending dorsal column sensory neurons respond to spinal cord injury and downregulate genes related to lipid metabolism. Sci Rep 2021; 11:374. [PMID: 33431991 PMCID: PMC7801468 DOI: 10.1038/s41598-020-79624-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Regeneration failure after spinal cord injury (SCI) results in part from the lack of a pro-regenerative response in injured neurons, but the response to SCI has not been examined specifically in injured sensory neurons. Using RNA sequencing of dorsal root ganglion, we determined that thoracic SCI elicits a transcriptional response distinct from sciatic nerve injury (SNI). Both SNI and SCI induced upregulation of ATF3 and Jun, yet this response failed to promote growth in sensory neurons after SCI. RNA sequencing of purified sensory neurons one and three days after injury revealed that unlike SNI, the SCI response is not sustained. Both SCI and SNI elicited the expression of ATF3 target genes, with very little overlap between conditions. Pathway analysis of differentially expressed ATF3 target genes revealed that fatty acid biosynthesis and terpenoid backbone synthesis were downregulated after SCI but not SNI. Pharmacologic inhibition of fatty acid synthase, the enzyme generating palmitic acid, decreased axon growth and regeneration in vitro. These results support the notion that decreased expression of lipid metabolism-related genes after SCI, including fatty acid synthase, may restrict axon regenerative capacity after SCI.
Collapse
Affiliation(s)
- Eric E Ewan
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Dan Carlin
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Tassia Mangetti Gonçalves
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
23
|
Jara JS, Agger S, Hollis ER. Functional Electrical Stimulation and the Modulation of the Axon Regeneration Program. Front Cell Dev Biol 2020; 8:736. [PMID: 33015031 PMCID: PMC7462022 DOI: 10.3389/fcell.2020.00736] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023] Open
Abstract
Neural injury in mammals often leads to persistent functional deficits as spontaneous repair in the peripheral nervous system (PNS) is often incomplete, while endogenous repair mechanisms in the central nervous system (CNS) are negligible. Peripheral axotomy elicits growth-associated gene programs in sensory and motor neurons that can support reinnervation of peripheral targets given sufficient levels of debris clearance and proximity to nerve targets. In contrast, while damaged CNS circuitry can undergo a limited amount of sprouting and reorganization, this innate plasticity does not re-establish the original connectivity. The utility of novel CNS circuitry will depend on effective connectivity and appropriate training to strengthen these circuits. One method of enhancing novel circuit connectivity is through the use of electrical stimulation, which supports axon growth in both central and peripheral neurons. This review will focus on the effects of CNS and PNS electrical stimulation in activating axon growth-associated gene programs and supporting the recovery of motor and sensory circuits. Electrical stimulation-mediated neuroplasticity represents a therapeutically viable approach to support neural repair and recovery. Development of appropriate clinical strategies employing electrical stimulation will depend upon determining the underlying mechanisms of activity-dependent axon regeneration and the heterogeneity of neuronal subtype responses to stimulation.
Collapse
Affiliation(s)
| | - Sydney Agger
- Burke Neurological Institute, White Plains, NY, United States
| | - Edmund R Hollis
- Burke Neurological Institute, White Plains, NY, United States.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
24
|
Rigoni M, Negro S. Signals Orchestrating Peripheral Nerve Repair. Cells 2020; 9:E1768. [PMID: 32722089 PMCID: PMC7464993 DOI: 10.3390/cells9081768] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The peripheral nervous system has retained through evolution the capacity to repair and regenerate after assault from a variety of physical, chemical, or biological pathogens. Regeneration relies on the intrinsic abilities of peripheral neurons and on a permissive environment, and it is driven by an intense interplay among neurons, the glia, muscles, the basal lamina, and the immune system. Indeed, extrinsic signals from the milieu of the injury site superimpose on genetic and epigenetic mechanisms to modulate cell intrinsic programs. Here, we will review the main intrinsic and extrinsic mechanisms allowing severed peripheral axons to re-grow, and discuss some alarm mediators and pro-regenerative molecules and pathways involved in the process, highlighting the role of Schwann cells as central hubs coordinating multiple signals. A particular focus will be provided on regeneration at the neuromuscular junction, an ideal model system whose manipulation can contribute to the identification of crucial mediators of nerve re-growth. A brief overview on regeneration at sensory terminals is also included.
Collapse
Affiliation(s)
- Michela Rigoni
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
- Myology Center (Cir-Myo), University of Padua, 35129 Padua, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
| |
Collapse
|
25
|
Scherschel K, Hedenus K, Jungen C, Lemoine MD, Rübsamen N, Veldkamp MW, Klatt N, Lindner D, Westermann D, Casini S, Kuklik P, Eickholt C, Klöcker N, Shivkumar K, Christ T, Zeller T, Willems S, Meyer C. Cardiac glial cells release neurotrophic S100B upon catheter-based treatment of atrial fibrillation. Sci Transl Med 2020; 11:11/493/eaav7770. [PMID: 31118294 DOI: 10.1126/scitranslmed.aav7770] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Atrial fibrillation (AF), the most common sustained heart rhythm disorder worldwide, is linked to dysfunction of the intrinsic cardiac autonomic nervous system (ICNS). The role of ICNS damage occurring during catheter-based treatment of AF, which is the therapy of choice for many patients, remains controversial. We show here that the neuronal injury marker S100B is expressed in cardiac glia throughout the ICNS and is released specifically upon catheter ablation of AF. Patients with higher S100B release were more likely to be AF free during follow-up. Subsequent in vitro studies revealed that murine intracardiac neurons react to S100B with diminished action potential firing and increased neurite growth. This suggests that release of S100B from cardiac glia upon catheter-based treatment of AF is a hallmark of acute neural damage that contributes to nerve sprouting and can be used to assess ICNS damage.
Collapse
Affiliation(s)
- Katharina Scherschel
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Katja Hedenus
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christiane Jungen
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Marc D Lemoine
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicole Rübsamen
- Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marieke W Veldkamp
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, 1105 AZ, Amsterdam, Netherlands
| | - Niklas Klatt
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Diana Lindner
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dirk Westermann
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simona Casini
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, 1105 AZ, Amsterdam, Netherlands
| | - Pawel Kuklik
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christian Eickholt
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Torsten Christ
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Zeller
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephan Willems
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christian Meyer
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| |
Collapse
|
26
|
Convertino D, Fabbri F, Mishra N, Mainardi M, Cappello V, Testa G, Capsoni S, Albertazzi L, Luin S, Marchetti L, Coletti C. Graphene Promotes Axon Elongation through Local Stall of Nerve Growth Factor Signaling Endosomes. NANO LETTERS 2020; 20:3633-3641. [PMID: 32208704 DOI: 10.1021/acs.nanolett.0c00571] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Several works reported increased differentiation of neuronal cells grown on graphene; however, the molecular mechanism driving axon elongation on this material has remained elusive. Here, we study the axonal transport of nerve growth factor (NGF), the neurotrophin supporting development of peripheral neurons, as a key player in the time course of axonal elongation of dorsal root ganglion neurons on graphene. We find that graphene drastically reduces the number of retrogradely transported NGF vesicles in favor of a stalled population in the first 2 days of culture, in which the boost of axon elongation is observed. This correlates with a mutual charge redistribution, observed via Raman spectroscopy and electrophysiological recordings. Furthermore, ultrastructural analysis indicates a reduced microtubule distance and an elongated axonal topology. Thus, both electrophysiological and structural effects can account for graphene action on neuron development. Unraveling the molecular players underneath this interplay may open new avenues for axon regeneration applications.
Collapse
Affiliation(s)
- Domenica Convertino
- NEST, Scuola Normale Superiore, 56127 Pisa, Italy
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Filippo Fabbri
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Neeraj Mishra
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Marco Mainardi
- BIO@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Valentina Cappello
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Giovanna Testa
- BIO@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Simona Capsoni
- BIO@SNS Laboratory, Scuola Normale Superiore, 56126 Pisa, Italy
- Section of Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, via Borsari 46, 44121 Ferrara, Italy
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri Reixac 15-21, 08024 Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Stefano Luin
- NEST, Scuola Normale Superiore, 56127 Pisa, Italy
- NEST Istituto Nanoscienze, CNR and Scuola Normale Superiore, 56126 Pisa, Italy
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
- Department of Pharmacy, University of Pisa, 56127 Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| |
Collapse
|
27
|
Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem. EMBO Mol Med 2020; 12:e11505. [PMID: 32090481 PMCID: PMC7059014 DOI: 10.15252/emmm.201911505] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
The recent years saw the advent of promising preclinical strategies that combat the devastating effects of a spinal cord injury (SCI) that are progressing towards clinical trials. However, individually, these treatments produce only modest levels of recovery in animal models of SCI that could hamper their implementation into therapeutic strategies in spinal cord injured humans. Combinational strategies have demonstrated greater beneficial outcomes than their individual components alone by addressing multiple aspects of SCI pathology. Clinical trial designs in the future will eventually also need to align with this notion. The scenario will become increasingly complex as this happens and conversations between basic researchers and clinicians are required to ensure accurate study designs and functional readouts.
Collapse
Affiliation(s)
- Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
28
|
Circ-Spidr enhances axon regeneration after peripheral nerve injury. Cell Death Dis 2019; 10:787. [PMID: 31624232 PMCID: PMC6797756 DOI: 10.1038/s41419-019-2027-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that circular RNAs (circRNAs) are abundant and play critical roles in the nervous system. However, their functions in axon regeneration after neuronal injury are unclear. Due to its robust regeneration capacity, peripheral nervous system is ideal for seeking the regulatory circRNAs in axon regeneration. In the present work, we obtained an expression profile of circRNAs in dorsal root ganglions (DRGs) after rat sciatic nerve crush injury by RNA sequencing (RNA-Seq) and found the expression level of circ-Spidr was obviously increased using quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, circ-Spidr was proved to be a circular RNA enriched in the cytoplasm of DRG neurons. Through in vitro and in vivo experiments, we determined that down-regulation of circ-Spidr could suppress axon regeneration of DRG neurons after sciatic nerve injury partially through modulating PI3K-Akt signaling pathway. Together, our results reveal a crucial role for circRNAs in regulating axon regeneration after neuronal injury which may further serve as a potential therapeutic avenue for neuronal injury repair.
Collapse
|
29
|
Plumbly W, Brandon N, Deeb TZ, Hall J, Harwood AJ. L-type voltage-gated calcium channel regulation of in vitro human cortical neuronal networks. Sci Rep 2019; 9:13810. [PMID: 31554851 PMCID: PMC6761148 DOI: 10.1038/s41598-019-50226-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/02/2019] [Indexed: 11/09/2022] Open
Abstract
The combination of in vitro multi-electrode arrays (MEAs) and the neuronal differentiation of stem cells offers the capability to study human neuronal networks from patient or engineered human cell lines. Here, we use MEA-based assays to probe synaptic function and network interactions of hiPSC-derived neurons. Neuronal network behaviour first emerges at approximately 30 days of culture and is driven by glutamate neurotransmission. Over a further 30 days, inhibitory GABAergic signalling shapes network behaviour into a synchronous regular pattern of burst firing activity and low activity periods. Gene mutations in L-type voltage gated calcium channel subunit genes are strongly implicated as genetic risk factors for the development of schizophrenia and bipolar disorder. We find that, although basal neuronal firing rate is unaffected, there is a dose-dependent effect of L-type voltage gated calcium channel inhibitors on synchronous firing patterns of our hiPSC-derived neural networks. This demonstrates that MEA assays have sufficient sensitivity to detect changes in patterns of neuronal interaction that may arise from hypo-function of psychiatric risk genes. Our study highlights the utility of in vitro MEA based platforms for the study of hiPSC neural network activity and their potential use in novel compound screening.
Collapse
Affiliation(s)
- William Plumbly
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Nick Brandon
- Neuroscience, IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Adrian J Harwood
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
30
|
Abstract
Permanent disabilities following CNS injuries result from the failure of injured axons to regenerate and rebuild functional connections with their original targets. By contrast, injury to peripheral nerves is followed by robust regeneration, which can lead to recovery of sensory and motor functions. This regenerative response requires the induction of widespread transcriptional and epigenetic changes in injured neurons. Considerable progress has been made in recent years in understanding how peripheral axon injury elicits these widespread changes through the coordinated actions of transcription factors, epigenetic modifiers and, to a lesser extent, microRNAs. Although many questions remain about the interplay between these mechanisms, these new findings provide important insights into the pivotal role of coordinated gene expression and chromatin remodelling in the neuronal response to injury.
Collapse
Affiliation(s)
- Marcus Mahar
- Department of Neuroscience, Hope Center for Neurological Disorders and Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Valeria Cavalli
- Department of Neuroscience, Hope Center for Neurological Disorders and Center of Regenerative Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
31
|
Shin JE, Ha H, Kim YK, Cho Y, DiAntonio A. DLK regulates a distinctive transcriptional regeneration program after peripheral nerve injury. Neurobiol Dis 2019; 127:178-192. [PMID: 30735704 PMCID: PMC6588443 DOI: 10.1016/j.nbd.2019.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/03/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Following damage to a peripheral nerve, injury signaling pathways converge in the cell body to generate transcriptional changes that support axon regeneration. Here, we demonstrate that dual leucine zipper kinase (DLK), a central regulator of injury responses including axon regeneration and neuronal apoptosis, is required for the induction of the pro-regenerative transcriptional program in response to peripheral nerve injury. Using a sensory neuron-conditional DLK knockout mouse model, we show a time course for the dependency of gene expression changes on the DLK pathway after sciatic nerve injury. Gene ontology analysis reveals that DLK-dependent gene sets are enriched for specific functional annotations such as ion transport and immune response. A series of comparative analyses shows that the DLK-dependent transcriptional program is distinct from that promoted by the importin-dependent retrograde signaling pathway, while it is partially shared between PNS and CNS injury responses. We suggest that DLK-dependency might provide a selective filter for regeneration-associated genes among the injury-responsive transcriptome.
Collapse
Affiliation(s)
- Jung Eun Shin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hongseok Ha
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea; Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea
| | - Yoon Ki Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea; Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea
| | - Yongcheol Cho
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Zhang Y, Williams PR, Jacobi A, Wang C, Goel A, Hirano AA, Brecha NC, Kerschensteiner D, He Z. Elevating Growth Factor Responsiveness and Axon Regeneration by Modulating Presynaptic Inputs. Neuron 2019; 103:39-51.e5. [PMID: 31122676 DOI: 10.1016/j.neuron.2019.04.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/01/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022]
Abstract
Despite robust effects on immature neurons, growth factors minimally promote axon regeneration in the adult central nervous system (CNS). Attempting to improve growth-factor responsiveness in mature neurons by dedifferentiation, we overexpressed Lin28 in the retina. Lin28-treated retinas responded to insulin-like growth factor-1 (IGF1) by initiating retinal ganglion cell (RGC) axon regeneration after axotomy. Surprisingly, this effect was cell non-autonomous. Lin28 expression was required only in amacrine cells, inhibitory neurons that innervate RGCs. Ultimately, we found that optic-nerve crush pathologically upregulated activity in amacrine cells, which reduced RGC electrical activity and suppressed growth-factor signaling. Silencing amacrine cells or pharmacologically blocking inhibitory neurotransmission also induced IGF1 competence. Remarkably, RGCs regenerating across these manipulations localized IGF1 receptor to their primary cilia, which maintained their signaling competence and regenerative ability. Thus, our results reveal a circuit-based mechanism that regulates CNS axon regeneration and implicate primary cilia as a regenerative signaling hub.
Collapse
Affiliation(s)
- Yiling Zhang
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Philip R Williams
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Anurag Goel
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; United States Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; United States Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Song Y, Li D, Farrelly O, Miles L, Li F, Kim SE, Lo TY, Wang F, Li T, Thompson-Peer KL, Gong J, Murthy SE, Coste B, Yakubovich N, Patapoutian A, Xiang Y, Rompolas P, Jan LY, Jan YN. The Mechanosensitive Ion Channel Piezo Inhibits Axon Regeneration. Neuron 2019; 102:373-389.e6. [PMID: 30819546 PMCID: PMC6487666 DOI: 10.1016/j.neuron.2019.01.050] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 11/27/2018] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
Abstract
Neurons exhibit a limited ability of repair. Given that mechanical forces affect neuronal outgrowth, it is important to investigate whether mechanosensitive ion channels may regulate axon regeneration. Here, we show that DmPiezo, a Ca2+-permeable non-selective cation channel, functions as an intrinsic inhibitor for axon regeneration in Drosophila. DmPiezo activation during axon regeneration induces local Ca2+ transients at the growth cone, leading to activation of nitric oxide synthase and the downstream cGMP kinase Foraging or PKG to restrict axon regrowth. Loss of DmPiezo enhances axon regeneration of sensory neurons in the peripheral and CNS. Conditional knockout of its mammalian homolog Piezo1 in vivo accelerates regeneration, while its pharmacological activation in vitro modestly reduces regeneration, suggesting the role of Piezo in inhibiting regeneration may be evolutionarily conserved. These findings provide a precedent for the involvement of mechanosensitive channels in axon regeneration and add a potential target for modulating nervous system repair.
Collapse
Affiliation(s)
- Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Dan Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Olivia Farrelly
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Feng Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sung Eun Kim
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tsz Y. Lo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Fei Wang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tun Li
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine L. Thompson-Peer
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiaxin Gong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Swetha E. Murthy
- Department of Neuroscience, The Scripps Research Institute, Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Bertrand Coste
- Department of Neuroscience, The Scripps Research Institute, Howard Hughes Medical Institute, La Jolla, CA 92037, USA,Present address: Aix Marseille Université, CNRS, LNC-UMR 7291, 13344 Marseille, France
| | - Nikita Yakubovich
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ardem Patapoutian
- Department of Neuroscience, The Scripps Research Institute, Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Panteleimon Rompolas
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily Yeh Jan
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
34
|
Abstract
Traumatic brain and spinal cord injuries cause permanent disability. Although progress has been made in understanding the cellular and molecular mechanisms underlying the pathophysiological changes that affect both structure and function after injury to the brain or spinal cord, there are currently no cures for either condition. This may change with the development and application of multi-layer omics, new sophisticated bioinformatics tools, and cutting-edge imaging techniques. Already, these technical advances, when combined, are revealing an unprecedented number of novel cellular and molecular targets that could be manipulated alone or in combination to repair the injured central nervous system with precision. In this review, we highlight recent advances in applying these new technologies to the study of axon regeneration and rebuilding of injured neural circuitry. We then discuss the challenges ahead to translate results produced by these technologies into clinical application to help improve the lives of individuals who have a brain or spinal cord injury.
Collapse
Affiliation(s)
- Andrea Tedeschi
- Department of Neuroscience and Discovery Themes Initiative, College of Medicine, Ohio State University, Columbus, Ohio, 43210, USA
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Institute for Behavioral Medicine Research, Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
35
|
McGregor CE, English AW. The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met. Front Cell Neurosci 2019; 12:522. [PMID: 30687012 PMCID: PMC6336700 DOI: 10.3389/fncel.2018.00522] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 11/29/2022] Open
Abstract
Despite the ability of peripheral nerves to spontaneously regenerate after injury, recovery is generally very poor. The neurotrophins have emerged as an important modulator of axon regeneration, particularly brain derived neurotrophic factor (BDNF). BDNF regulation and signaling, as well as its role in activity-dependent treatments including electrical stimulation, exercise, and optogenetic stimulation are discussed here. The importance of a single nucleotide polymorphism in the BDNF gene, Val66Met, which is present in 30% of the human population and may hinder the efficacy of these treatments in enhancing regeneration after injury is considered. Preliminary data are presented on the effectiveness of one such activity-dependent treatment, electrical stimulation, in enhancing axon regeneration in mice expressing the met allele of the Val66Met polymorphism.
Collapse
Affiliation(s)
- Claire Emma McGregor
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
36
|
Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol 2018; 173:102-121. [PMID: 30579784 DOI: 10.1016/j.pneurobio.2018.12.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/19/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
Neuroinflammation has positive and negative effects. This review focuses on the roles of macrophage in the PNS. Transection of PNS axons leads to degeneration and clearance of the distal nerve and to changes in the region of the axotomized cell bodies. In both locations, resident and infiltrating macrophages are found. Macrophages enter these areas in response to expression of the chemokine CCL2 acting on the macrophage receptor CCR2. In the distal nerve, macrophages and other phagocytes are involved in clearance of axonal debris, which removes molecules that inhibit nerve regeneration. In the cell body region, macrophage trigger the conditioning lesion response, a process in which neurons increase their regeneration after a prior lesion. In mice in which the genes for CCL2 or CCR2 are deleted, neither macrophage infiltration nor the conditioning lesion response occurs in dorsal root ganglia (DRG). Macrophages exist in different phenotypes depending on their environment. These phenotypes have different effects on axonal clearance and neurite outgrowth. The mechanism by which macrophages affect neuronal cell bodies is still under study. Overexpression of CCL2 in DRG in uninjured animals leads to macrophage accumulation in the ganglia and to an increase in the growth potential of DRG neurons. This increased growth requires activation of neuronal STAT3. In contrast, in acute demyelinating neuropathies, macrophages are involved in stripping myelin from peripheral axons. The molecular mechanisms that trigger macrophage action after trauma and in autoimmune disease are receiving increased attention and should lead to avenues to promote regeneration and protect axonal integrity.
Collapse
Affiliation(s)
- Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA.
| | - Franklin D Echevarria
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA
| |
Collapse
|
37
|
Curcio M, Bradke F. Axon Regeneration in the Central Nervous System: Facing the Challenges from the Inside. Annu Rev Cell Dev Biol 2018; 34:495-521. [DOI: 10.1146/annurev-cellbio-100617-062508] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After an injury in the adult mammalian central nervous system (CNS), lesioned axons fail to regenerate. This failure to regenerate contrasts with axons’ remarkable potential to grow during embryonic development and after an injury in the peripheral nervous system (PNS). Several intracellular mechanisms—including cytoskeletal dynamics, axonal transport and trafficking, signaling and transcription of regenerative programs, and epigenetic modifications—control axon regeneration. In this review, we describe how manipulation of intrinsic mechanisms elicits a regenerative response in different organisms and how strategies are implemented to form the basis of a future regenerative treatment after CNS injury.
Collapse
Affiliation(s)
- Michele Curcio
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany;,
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany;,
| |
Collapse
|
38
|
Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem Rev 2018; 118:6766-6843. [DOI: 10.1021/acs.chemrev.6b00275] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toktam Nezakati
- Google Inc.., Mountain View, California 94043, United States
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Aaron Tan
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Alexander M. Seifalian
- NanoRegMed Ltd. (Nanotechnology and Regenerative Medicine Commercialization Centre), The London Innovation BioScience Centre, London NW1 0NH, United Kingdom
| |
Collapse
|
39
|
Nascimento AI, Mar FM, Sousa MM. The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function. Prog Neurobiol 2018; 168:86-103. [PMID: 29729299 DOI: 10.1016/j.pneurobio.2018.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022]
Abstract
Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type.
Collapse
Affiliation(s)
- Ana Isabel Nascimento
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fernando Milhazes Mar
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|
40
|
Yang T, Choi JE, Soh D, Tobin K, Joiner ML, Hansen M, Lee A. CaBP1 regulates Ca v1 L-type Ca 2+ channels and their coupling to neurite growth and gene transcription in mouse spiral ganglion neurons. Mol Cell Neurosci 2018; 88:342-352. [PMID: 29548764 DOI: 10.1016/j.mcn.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022] Open
Abstract
CaBP1 is a Ca2+ binding protein that is widely expressed in neurons in the brain, retina, and cochlea. In heterologous expression systems, CaBP1 interacts with and regulates voltage-gated Cav Ca2+ channels but whether this is the case in neurons is unknown. Here, we investigated the cellular functions of CaBP1 in cochlear spiral ganglion neurons (SGNs), which express high levels of CaBP1. Consistent with the role of CaBP1 as a suppressor of Ca2+-dependent inactivation (CDI) of Cav1 (L-type) channels, Cav1 currents underwent greater CDI in SGNs from mice lacking CaBP1 (C-KO) than in wild-type (WT) SGNs. The coupling of Cav1 channels to downstream signaling pathways was also disrupted in C-KO SGNs. Activity-dependent repression of neurite growth was significantly blunted and unresponsive to Cav1 antagonists in C-KO SGNs in contrast to WT SGNs. Moreover, Cav1-mediated Ca2+ signals and phosphorylation of cAMP-response element binding protein were reduced in C-KO SGNs compared to WT SGNs. Our findings establish a role for CaBP1 as an essential regulator of Cav1 channels in SGNs and their coupling to downstream pathways controlling activity-dependent transcription and neurite growth.
Collapse
Affiliation(s)
- Tian Yang
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Ji-Eun Choi
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Soh
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin Tobin
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Mei-Ling Joiner
- Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Marlan Hansen
- Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Amy Lee
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Neurology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
41
|
Vibert L, Daulny A, Jarriault S. Wound healing, cellular regeneration and plasticity: the elegans way. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 62:491-505. [PMID: 29938761 PMCID: PMC6161810 DOI: 10.1387/ijdb.180123sj] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regeneration and wound healing are complex processes that allow organs and tissues to regain their integrity and functionality after injury. Wound healing, a key property of epithelia, involves tissue closure that in some cases leads to scar formation. Regeneration, a process rather limited in mammals, is the capacity to regrow (parts of) an organ or a tissue, after damage or amputation. What are the properties of organs and the features of tissue permitting functional regrowth and repair? What are the cellular and molecular mechanisms underlying these processes? These questions are crucial both in fundamental and applied contexts, with important medical implications. The mechanisms and cells underlying tissue repair have thus been the focus of intense investigation. The last decades have seen rapid progress in the domain and new models emerging. Here, we review the fundamental advances and the perspectives that the use of C. elegans as a model have brought to the mechanisms of wound healing and cellular plasticity, axon regeneration and transdifferentiation in vivo.
Collapse
Affiliation(s)
- Laura Vibert
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Anne Daulny
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Sophie Jarriault
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
42
|
Suh JKF, Hyung S. Primary Motor Neuron Culture to Promote Cellular Viability and Myelination. Methods Mol Biol 2018; 1727:403-411. [PMID: 29222800 DOI: 10.1007/978-1-4939-7571-6_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A culture system that can recapitulate myelination in vitro will not only help us to better understand the mechanism of myelination and demyelination but also identify possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC co-culture system, MNs survive over 3 weeks and extend long axons. Both viability and axon growth of MNs in the co-culture are markedly enhanced as compared to those of MN monocultures. Co-labeling of myelin basic proteins and neuronal cell microtubules reveals that SCs form myelin sheaths by wrapping around the axons of MNs.
Collapse
Affiliation(s)
| | - Sujin Hyung
- Multiscale Mechanical Design Laboratory, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
43
|
Goganau I, Sandner B, Weidner N, Fouad K, Blesch A. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury. Exp Neurol 2017; 300:247-258. [PMID: 29183676 DOI: 10.1016/j.expneurol.2017.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Abstract
Activity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI.
Collapse
Affiliation(s)
- Ioana Goganau
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Beatrice Sandner
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry and Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, 3-87 Corbett Hall, Edmonton, Alberta T6G 2G4, Canada
| | - Armin Blesch
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany; Stark Neurosciences Research Institute, Indiana University School of Medicine, Dept. of Neurological Surgery and Goodman Campbell Brain and Spine, 320 West 15th St., Indianapolis, IN 46202, USA.
| |
Collapse
|
44
|
Abstract
In this issue of Neuron, Tedeschi et al. (2016) describe the voltage-gated calcium channel subunit alpha2delta2 as a developmental switch from axon elongation to synapse formation and transmission that doubles as a suppressor of axon regeneration, providing a molecular clue for the synaptic stabilization hypothesis of CNS regeneration failure.
Collapse
Affiliation(s)
- Jessica M Meves
- Neurosciences Graduate Program and Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, CA 92093, USA
| | - Binhai Zheng
- Neurosciences Graduate Program and Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, MC 0691, La Jolla, CA 92093, USA.
| |
Collapse
|
45
|
Hilton BJ, Bradke F. Can injured adult CNS axons regenerate by recapitulating development? Development 2017; 144:3417-3429. [PMID: 28974639 DOI: 10.1242/dev.148312] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS.
Collapse
Affiliation(s)
- Brett J Hilton
- Laboratory for Axon Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| |
Collapse
|
46
|
Norsworthy MW, Bei F, Kawaguchi R, Wang Q, Tran NM, Li Y, Brommer B, Zhang Y, Wang C, Sanes JR, Coppola G, He Z. Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others. Neuron 2017. [PMID: 28641110 DOI: 10.1016/j.neuron.2017.05.035] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a "youthful" growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types.
Collapse
Affiliation(s)
- Michael W Norsworthy
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Fengfeng Bei
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Qing Wang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Nicholas M Tran
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Yi Li
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Benedikt Brommer
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yiming Zhang
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA; Department of Neurology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA.
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Abstract
Although much is known about the regenerative capacity of retinal ganglion cells, very significant barriers remain in our ability to restore visual function following traumatic injury or disease-induced degeneration. Here we summarize our current understanding of the factors regulating axon guidance and target engagement in regenerating axons, and review the state of the field of neural regeneration, focusing on the visual system and highlighting studies using other model systems that can inform analysis of visual system regeneration. This overview is motivated by a Society for Neuroscience Satellite meeting, "Reconnecting Neurons in the Visual System," held in October 2015 sponsored by the National Eye Institute as part of their "Audacious Goals Initiative" and co-organized by Carol Mason (Columbia University) and Michael Crair (Yale University). The collective wisdom of the conference participants pointed to important gaps in our knowledge and barriers to progress in promoting the restoration of visual system function. This article is thus a summary of our existing understanding of visual system regeneration and provides a blueprint for future progress in the field.
Collapse
|
48
|
Sakamoto K, Kadomatsu K. Mechanisms of axon regeneration: The significance of proteoglycans. Biochim Biophys Acta Gen Subj 2017; 1861:2435-2441. [PMID: 28596106 DOI: 10.1016/j.bbagen.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Therapeutics specific to neural injury have long been anticipated but remain unavailable. Axons in the central nervous system do not readily regenerate after injury, leading to dysfunction of the nervous system. This failure of regeneration is due to both the low intrinsic capacity of axons for regeneration and the various inhibitors emerging upon injury. After many years of concerted efforts, however, these hurdles to axon regeneration have been partially overcome. SCOPE OF REVIEW This review summarizes the mechanisms regulating axon regeneration. We highlight proteoglycans, particularly because it has become increasingly clear that these proteins serve as critical regulators for axon regeneration. MAJOR CONCLUSIONS Studies on proteoglycans have revealed that glycans not only assist in the modulation of protein functions but also act as main players-e.g., as functional ligands mediating intracellular signaling through specific receptors on the cell surface. By regulating clustering of the receptors, glycans in the proteoglycan moiety, i.e., glycosaminoglycans, promote or inhibit axon regeneration. In addition, proteoglycans are involved in various types of neural plasticity, ranging from synaptic plasticity to experience-dependent plasticity. GENERAL SIGNIFICANCE Although studies on proteins have progressively facilitated our understanding of the nervous system, glycans constitute a new frontier for further research and development in this field. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
49
|
Active Nerve Regeneration with Failed Target Reinnervation Drives Persistent Neuropathic Pain. eNeuro 2017; 4:eN-NWR-0008-17. [PMID: 28197545 PMCID: PMC5290455 DOI: 10.1523/eneuro.0008-17.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/29/2022] Open
Abstract
Peripheral nerves can regenerate and, when injured, may cause neuropathic pain. We propose that the active regeneration process plays a pivotal role in the maintenance of neuropathic pain. In one commonly used rodent neuropathic pain model, pronounced pain behaviors follow ligation and cutting of the L5 spinal nerve. We found that the injured nerve regenerates into the sciatic nerve and functionally reinnervates target tissues: the regenerated nerve conducts electrical signals, mechanical responses, and tracers between the leg/hindpaw and axotomized sensory ganglion. The regenerating nerve is the primary source of abnormal spontaneous activity detected in vivo. Disrupting the regeneration inhibited pain. First, semaphorin 3A, an inhibitory axonal guidance molecule, reduced functional regeneration, spontaneous activity, and pain behaviors when applied to the injury site in vivo. Second, knockdown of the upregulated growth-associated protein 43 (GAP43) with siRNA injected into the axotomized sensory ganglion reduced pain behaviors. We next examined the spared nerve injury model, in which pain behaviors are essentially permanent. The regeneration resulted in tangled GAP43-positive neuromas at the nerve injury site without target reinnervation. Perfusing the nerve stump with semaphorin 3A, but not removing the tangled fibers, prevented or reversed pain behaviors. This effect far outlasted the semaphorin 3A perfusion. Hence, in this model the long-lasting chronic pain may reflect the anatomical inability of regenerating nerves to successfully reinnervate target tissues, resulting in an ongoing futile regeneration process. We propose that specifically targeting the regeneration process may provide effective long-lasting pain relief in patients when functional reinnervation becomes impossible.
Collapse
|
50
|
Alecu I, Tedeschi A, Behler N, Wunderling K, Lamberz C, Lauterbach MAR, Gaebler A, Ernst D, Van Veldhoven PP, Al-Amoudi A, Latz E, Othman A, Kuerschner L, Hornemann T, Bradke F, Thiele C, Penno A. Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. J Lipid Res 2016; 58:42-59. [PMID: 27881717 DOI: 10.1194/jlr.m068676] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
1-Deoxysphingolipids (deoxySLs) are atypical sphingolipids that are elevated in the plasma of patients with type 2 diabetes and hereditary sensory and autonomic neuropathy type 1 (HSAN1). Clinically, diabetic neuropathy and HSAN1 are very similar, suggesting the involvement of deoxySLs in the pathology of both diseases. However, very little is known about the biology of these lipids and the underlying pathomechanism. We synthesized an alkyne analog of 1-deoxysphinganine (doxSA), the metabolic precursor of all deoxySLs, to trace the metabolism and localization of deoxySLs. Our results indicate that the metabolism of these lipids is restricted to only some lipid species and that they are not converted to canonical sphingolipids or fatty acids. Furthermore, exogenously added alkyne-doxSA [(2S,3R)-2-aminooctadec-17-yn-3-ol] localized to mitochondria, causing mitochondrial fragmentation and dysfunction. The induced mitochondrial toxicity was also shown for natural doxSA, but not for sphinganine, and was rescued by inhibition of ceramide synthase activity. Our findings therefore indicate that mitochondrial enrichment of an N-acylated doxSA metabolite may contribute to the neurotoxicity seen in diabetic neuropathy and HSAN1. Hence, we provide a potential explanation for the characteristic vulnerability of peripheral nerves to elevated levels of deoxySLs.
Collapse
Affiliation(s)
- Irina Alecu
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Andrea Tedeschi
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Natascha Behler
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Klaus Wunderling
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christian Lamberz
- Cyro-Electron Microscopy and Tomography, German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Anne Gaebler
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Daniela Ernst
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland
| | - Paul P Van Veldhoven
- Laboratory for Lipid Biochemistry and Protein Interactions, Campus Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ashraf Al-Amoudi
- Cyro-Electron Microscopy and Tomography, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Alaa Othman
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Lars Kuerschner
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Frank Bradke
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Anke Penno
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|