1
|
Nguyen MKL, Pinkenburg C, Du JJ, Bernaus-Esqué M, Enrich C, Rentero C, Grewal T. The multiple facets of Rab proteins modulating the cellular distribution of cholesterol from the late endosomal compartment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119896. [PMID: 39788156 DOI: 10.1016/j.bbamcr.2025.119896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Cholesterol is an essential lipid that ensures the functional integrity of mammalian cells. Most cells acquire cholesterol via endocytosis of low-density lipoproteins (LDL). Upon reaching late endosomes/lysosomes (LE/Lys), incoming ligands, including LDL-derived cholesterol, are distributed to other organelles. Niemann-Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families facilitate the cellular distribution of cholesterol. NPC disease, a rare neurodegenerative disorder characterized by LE/Lys-cholesterol accumulation due to loss-of-function NPC1/2 mutations, underscores the physiological importance of LE/Lys-cholesterol distribution. Several Rab-GTPase family members, which play fundamental roles in directional membrane and lipid transport, including Rab7, 8 and 9, are critical for the delivery of cholesterol from LE/Lys to other organelles along vesicular and non-vesicular pathways. The insights gained from these regulatory circuits provide a foundation for the development of therapeutic strategies that could effectively address the cellular pathogenesis triggered by NPC1 deficiency and other lysosomal storage disorders.
Collapse
Affiliation(s)
- Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Céline Pinkenburg
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan James Du
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Marc Bernaus-Esqué
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Joshi K, York HM, Wright CS, Biswas RR, Arumugam S, Iyer-Biswas S. Emergent Spatiotemporal Organization in Stochastic Intracellular Transport Dynamics. Annu Rev Biophys 2024; 53:193-220. [PMID: 38346244 DOI: 10.1146/annurev-biophys-030422-044448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The interior of a living cell is an active, fluctuating, and crowded environment, yet it maintains a high level of coherent organization. This dichotomy is readily apparent in the intracellular transport system of the cell. Membrane-bound compartments called endosomes play a key role in carrying cargo, in conjunction with myriad components including cargo adaptor proteins, membrane sculptors, motor proteins, and the cytoskeleton. These components coordinate to effectively navigate the crowded cell interior and transport cargo to specific intracellular locations, even though the underlying protein interactions and enzymatic reactions exhibit stochastic behavior. A major challenge is to measure, analyze, and understand how, despite the inherent stochasticity of the constituent processes, the collective outcomes show an emergent spatiotemporal order that is precise and robust. This review focuses on this intriguing dichotomy, providing insights into the known mechanisms of noise suppression and noise utilization in intracellular transport processes, and also identifies opportunities for future inquiry.
Collapse
Affiliation(s)
- Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
| | - Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
| | - Charles S Wright
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
| | - Rudro R Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
| | - Senthil Arumugam
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
- Single Molecule Science, University of New South Wales, Sydney, New South Wales, Australia
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Melbourne, Victoria, Australia
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
3
|
Saleem HN, Ignatyeva N, Stuut C, Jakobs S, Habeck M, Ebert A. 3D Computational Modeling of Defective Early Endosome Distribution in Human iPSC-Based Cardiomyopathy Models. Cells 2024; 13:923. [PMID: 38891055 PMCID: PMC11171759 DOI: 10.3390/cells13110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical modelling approaches can assist in elucidating the organization of the endosome trafficking system. Here, we introduce a new computational modelling approach for assessment of endosome distributions. We employed a model of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with inherited mutations causing dilated cardiomyopathy (DCM). In this model, vesicle distribution is defective due to impaired CME-dependent signaling, resulting in plasma membrane-localized early endosomes. We recapitulated this in iPSC-CMs carrying two different mutations, TPM1-L185F and TnT-R141W (MUT), using 3D confocal imaging as well as super-resolution STED microscopy. We computed scaled distance distributions of EEA1-positive vesicles based on a spherical approximation of the cell. Employing this approach, 3D spherical modelling identified a bi-modal segregation of early endosome populations in MUT iPSC-CMs, compared to WT controls. Moreover, spherical modelling confirmed reversion of the bi-modal vesicle localization in RhoA II-treated MUT iPSC-CMs. This reflects restored, homogeneous distribution of early endosomes within MUT iPSC-CMs following rescue of CME-dependent signaling via RhoA II-dependent RhoA activation. Overall, our approach enables assessment of early endosome distribution in cell-based disease models. This new method may provide further insight into the dynamics of endosome networks in different physiological scenarios.
Collapse
Affiliation(s)
- Hafiza Nosheen Saleem
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| | - Nadezda Ignatyeva
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| | - Christiaan Stuut
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
- Clinic of Neurology, High Resolution Microscopy, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Stefan Jakobs
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
- Clinic of Neurology, High Resolution Microscopy, University Medical Center Goettingen, 37075 Goettingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, 37075 Goettingen, Germany
| | - Michael Habeck
- Microscopic Image Analysis, 39065 Jena University Hospital, Kollegiengasse 10, 07743 Jena, Germany
| | - Antje Ebert
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
4
|
Bianucci T, Zechner C. A local polynomial moment approximation for compartmentalized biochemical systems. Math Biosci 2024; 367:109110. [PMID: 38035996 DOI: 10.1016/j.mbs.2023.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Compartmentalized biochemical reactions are a ubiquitous building block of biological systems. The interplay between chemical and compartmental dynamics can drive rich and complex dynamical behaviors that are difficult to analyze mathematically - especially in the presence of stochasticity. We have recently proposed an effective moment equation approach to study the statistical properties of compartmentalized biochemical systems. So far, however, this approach is limited to polynomial rate laws and moreover, it relies on suitable moment closure approximations, which can be difficult to find in practice. In this work we propose a systematic method to derive closed moment dynamics for compartmentalized biochemical systems. We show that for the considered class of systems, the moment equations involve expectations over functions that factorize into two parts, one depending on the molecular content of the compartments and one depending on the compartment number distribution. Our method exploits this structure and approximates each function with suitable polynomial expansions, leading to a closed system of moment equations. We demonstrate the method using three systems inspired by cell populations and organelle networks and study its accuracy across different dynamical regimes.
Collapse
Affiliation(s)
- Tommaso Bianucci
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Christoph Zechner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307, Dresden, Germany.
| |
Collapse
|
5
|
Waigh TA, Korabel N. Heterogeneous anomalous transport in cellular and molecular biology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:126601. [PMID: 37863075 DOI: 10.1088/1361-6633/ad058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
It is well established that a wide variety of phenomena in cellular and molecular biology involve anomalous transport e.g. the statistics for the motility of cells and molecules are fractional and do not conform to the archetypes of simple diffusion or ballistic transport. Recent research demonstrates that anomalous transport is in many cases heterogeneous in both time and space. Thus single anomalous exponents and single generalised diffusion coefficients are unable to satisfactorily describe many crucial phenomena in cellular and molecular biology. We consider advances in the field ofheterogeneous anomalous transport(HAT) highlighting: experimental techniques (single molecule methods, microscopy, image analysis, fluorescence correlation spectroscopy, inelastic neutron scattering, and nuclear magnetic resonance), theoretical tools for data analysis (robust statistical methods such as first passage probabilities, survival analysis, different varieties of mean square displacements, etc), analytic theory and generative theoretical models based on simulations. Special emphasis is made on high throughput analysis techniques based on machine learning and neural networks. Furthermore, we consider anomalous transport in the context of microrheology and the heterogeneous viscoelasticity of complex fluids. HAT in the wavefronts of reaction-diffusion systems is also considered since it plays an important role in morphogenesis and signalling. In addition, we present specific examples from cellular biology including embryonic cells, leucocytes, cancer cells, bacterial cells, bacterial biofilms, and eukaryotic microorganisms. Case studies from molecular biology include DNA, membranes, endosomal transport, endoplasmic reticula, mucins, globular proteins, and amyloids.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nickolay Korabel
- Department of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
6
|
Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? NANO TODAY 2022; 47:101665. [PMID: 37034382 PMCID: PMC10081506 DOI: 10.1016/j.nantod.2022.101665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Joseph M. Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| |
Collapse
|
7
|
Profiling target engagement and cellular uptake of cRGD-decorated clinical-stage core-crosslinked polymeric micelles. Drug Deliv Transl Res 2022; 13:1195-1211. [PMID: 35816231 PMCID: PMC10102119 DOI: 10.1007/s13346-022-01204-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
Polymeric micelles are increasingly explored for tumor-targeted drug delivery. CriPec® technology enables the generation of core-crosslinked polymeric micelles (CCPMs) based on thermosensitive (mPEG-b-pHPMAmLacn) block copolymers, with high drug loading capacity, tailorable size, and controlled drug release kinetics. In this study, we decorated clinical-stage CCPM with the αvβ3 integrin-targeted cyclic arginine-glycine-aspartic acid (cRGD) peptide, which is one of the most well-known active targeting ligands evaluated preclinically and clinically. Using a panel of cell lines with different expression levels of the αvβ3 integrin receptor and exploring both static and dynamic incubation conditions, we studied the benefit of decorating CCPM with different densities of cRGD. We show that incubation time and temperature, as well as the expression levels of αvβ3 integrin by target cells, positively influence cRGD-CCPM uptake, as demonstated by immunofluorescence staining and fluorescence microscopy. We demonstrate that even very low decoration densities (i.e., 1 mol % cRGD) result in increased engagement and uptake by target cells as compared to peptide-free control CCPM, and that high cRGD decoration densities do not result in a proportional increase in internalization. In this context, it should be kept in mind that a more extensive presence of targeting ligands on the surface of nanomedicines may affect their pharmacokinetic and biodistribution profile. Thus, we suggest a relatively low cRGD decoration density as most suitable for in vivo application.
Collapse
|
8
|
Eghdami A, Paulose J, Fusco D. Branching structure of genealogies in spatially growing populations and its implications for population genetics inference. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:294008. [PMID: 35510713 DOI: 10.1088/1361-648x/ac6cd9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Spatial models where growth is limited to the population edge have been instrumental to understanding the population dynamics and the clone size distribution in growing cellular populations, such as microbial colonies and avascular tumours. A complete characterization of the coalescence process generated by spatial growth is still lacking, limiting our ability to apply classic population genetics inference to spatially growing populations. Here, we start filling this gap by investigating the statistical properties of the cell lineages generated by the two dimensional Eden model, leveraging their physical analogy with directed polymers. Our analysis provides quantitative estimates for population measurements that can easily be assessed via sequencing, such as the average number of segregating sites and the clone size distribution of a subsample of the population. Our results not only reveal remarkable features of the genealogies generated during growth, but also highlight new properties that can be misinterpreted as signs of selection if non-spatial models are inappropriately applied.
Collapse
Affiliation(s)
- Armin Eghdami
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Jayson Paulose
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, OR 97401, United States of America
| | - Diana Fusco
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| |
Collapse
|
9
|
Alexandrov DV, Korabel N, Currell F, Fedotov S. Dynamics of intracellular clusters of nanoparticles. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00118-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Nanoparticles play a crucial role in nanodiagnostics, radiation therapy of cancer, and they are now widely used to effectively deliver drugs to specific sites, targeting whole organs and down to single cells, in a controlled manner. Therapeutic efficiency of nanoparticles greatly depends on their clustering distribution inside cells. Our purpose is to find the cluster density using Smoluchowski’s coagulation equation with injections.
Results
We obtain an exact cluster density of nanoparticles as the steady-state solution of Smoluchowski’s equation describing clustering due to the fusion of endosomes. We also analyze the unsteady cluster distribution and compare it with the experimental data for time evolution of gold nanoparticle clusters in living cells.
Conclusions
We show the steady cluster density is in good agreement with experimental data on gold nanoparticle distribution inside endosomes. We find that for clusters containing between 1 and 20 nanoparticles, the exact cluster density provides a better description of the existing experimental data than the well-known approximate asymptotic power-law distribution $$x^{-3/2}$$
x
-
3
/
2
Collapse
|
10
|
Lee K, Jung I, Odom TW. Delivery Order of Nanoconstructs Affects Intracellular Trafficking by Endosomes. J Am Chem Soc 2022; 144:5274-5279. [PMID: 35302362 DOI: 10.1021/jacs.2c02276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reports how the endosomal pathways of nanoparticle (NP) constructs with different surface curvatures are affected by their order of delivery. Sequential incubation of cytosine-phosphate-guanine (CpG)-conjugated spiky and spherical gold NPs with macrophages resulted in different nanoconstruct ratios at the interior edges of endosomes. Application of spiky NPs after spherical NPs accelerated the formation of late-stage endosomes and resulted in larger endosomes, and the spherical NPs were enclosed by the spiky NPs. In contrast, the reverse incubation order produced an asymmetric distribution of the two nanoconstruct shapes in smaller endosomes. Macrophages with a higher proportion of the enclosed spherical NPs as well as a larger ratio of spiky to spherical NPs at the endosomal edge showed enhanced toll-like receptor 9 activation and secretion of proinflammatory cytokines and chemokines. Our results indicate that the subcellular trafficking of targeting nanoconstructs by vesicles is affected by both the delivery order and the endosomal distribution. Our study also establishes a new approach for nanoscale monitoring of intracellular therapeutics delivery with conventional electron microscopy.
Collapse
Affiliation(s)
- Kwahun Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Insub Jung
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Korabel N, Han D, Taloni A, Pagnini G, Fedotov S, Allan V, Waigh TA. Local Analysis of Heterogeneous Intracellular Transport: Slow and Fast Moving Endosomes. ENTROPY (BASEL, SWITZERLAND) 2021; 23:958. [PMID: 34441098 PMCID: PMC8394768 DOI: 10.3390/e23080958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 01/14/2023]
Abstract
Trajectories of endosomes inside living eukaryotic cells are highly heterogeneous in space and time and diffuse anomalously due to a combination of viscoelasticity, caging, aggregation and active transport. Some of the trajectories display switching between persistent and anti-persistent motion, while others jiggle around in one position for the whole measurement time. By splitting the ensemble of endosome trajectories into slow moving subdiffusive and fast moving superdiffusive endosomes, we analyzed them separately. The mean squared displacements and velocity auto-correlation functions confirm the effectiveness of the splitting methods. Applying the local analysis, we show that both ensembles are characterized by a spectrum of local anomalous exponents and local generalized diffusion coefficients. Slow and fast endosomes have exponential distributions of local anomalous exponents and power law distributions of generalized diffusion coefficients. This suggests that heterogeneous fractional Brownian motion is an appropriate model for both fast and slow moving endosomes. This article is part of a Special Issue entitled: "Recent Advances In Single-Particle Tracking: Experiment and Analysis" edited by Janusz Szwabiński and Aleksander Weron.
Collapse
Affiliation(s)
- Nickolay Korabel
- Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK; (D.H.); (S.F.)
| | - Daniel Han
- Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK; (D.H.); (S.F.)
- School of Biological Sciences, The University of Manchester, Manchester M13 9PT, UK;
- Biological Physics, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Alessandro Taloni
- CNR—Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via dei Taurini 19, 00185 Roma, Italy;
| | - Gianni Pagnini
- BCAM—Basque Center for Applied Mathematics, Mazarredo 14, 48009 Bilbao, Spain;
- Ikerbasque—Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sergei Fedotov
- Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK; (D.H.); (S.F.)
| | - Viki Allan
- School of Biological Sciences, The University of Manchester, Manchester M13 9PT, UK;
| | - Thomas Andrew Waigh
- Biological Physics, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
12
|
Zhang Y, Zhu J, Xu H, Yi Q, Yan L, Ye L, Zhang X, Xie M, Tan B. Time-Dependent Internalization of S100B by Mesenchymal Stem Cells via the Pathways of Clathrin- and Lipid Raft-Mediated Endocytosis. Front Cell Dev Biol 2021; 9:674995. [PMID: 34381770 PMCID: PMC8351554 DOI: 10.3389/fcell.2021.674995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are promising tools for cancer therapy, but there is a risk of malignant transformation in their clinical application. Our previous work revealed that the paracrine protein S100B in the glioma microenvironment induces malignant transformation of MSCs and upregulates intracellular S100B, which could affect cell homeostasis by interfering with p53. The purpose of this study was to investigate whether extracellular S100B can be internalized by MSCs and the specific endocytic pathway involved in S100B internalization. By using real-time confocal microscopy and structured illumination microscopy (SIM), we visualized the uptake of fluorescently labeled S100B protein (S100B-Alexa488) and monitored the intracellular trafficking of internalized vesicles. The results showed that S100B-Alexa488 was efficiently internalized into MSCs in a time-dependent manner and transported through endolysosomal pathways. After that, we used chemical inhibitors and RNA interference approaches to investigate possible mechanisms involved in S100B-Alexa488 uptake. The internalization of S100B-Alexa488 was inhibited by pitstop-2 or dyngo-4a treatment or RNA-mediated silencing of clathrin or dynamin, and the lipid raft-mediated endocytosis inhibitors nystatin and MβCD. In conclusion, our findings show that clathrin and lipid rafts contribute to the internalization of S100B-Alexa488, which provides promising interventions for the safe application of MSCs in glioma therapy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hao Xu
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Clinical Laboratory, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yi
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liang Yan
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liang Ye
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xinyuan Zhang
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Min Xie
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
13
|
Castro M, Lythe G, Smit J, Molina-París C. Fusion and fission events regulate endosome maturation and viral escape. Sci Rep 2021; 11:7845. [PMID: 33846408 PMCID: PMC8041880 DOI: 10.1038/s41598-021-86877-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
Endosomes are intracellular vesicles that mediate the communication of the cell with its extracellular environment. They are an essential part of the cell’s machinery regulating intracellular trafficking via the endocytic pathway. Many viruses, which in order to replicate require a host cell, attach themselves to the cellular membrane; an event which usually initiates uptake of a viral particle through the endocytic pathway. In this way viruses hijack endosomes for their journey towards intracellular sites of replication and avoid degradation without host detection by escaping the endosomal compartment. Recent experimental techniques have defined the role of endosomal maturation in the ability of enveloped viruses to release their genetic material into the cytoplasm. Endosome maturation depends on a family of small hydrolase enzymes (or GTPases) called Rab proteins, arranged on the cytoplasmic surface of its membrane. Here, we model endosomes as intracellular compartments described by two variables (its levels of active Rab5 and Rab7 proteins) and which can undergo coagulation (or fusion) and fragmentation (or fission). The key element in our approach is the “per-cell endosomal distribution” and its dynamical (Boltzmann) equation. The Boltzmann equation allows us to derive the dynamics of the total number of endosomes in a cell, as well as the mean and the standard deviation of its active Rab5 and Rab7 levels. We compare our mathematical results with experiments of Dengue viral escape from endosomes. The relationship between endosomal active Rab levels and pH suggests a mechanism that can account for the observed variability in viral escape times, which in turn regulate the viability of a viral intracellular infection.
Collapse
Affiliation(s)
- Mario Castro
- Grupo Interdisciplinar de Sistemas Complejos (GISC) and Instituto de Investigación Tecnológica (IIT), Universidad Pontificia Comillas, Madrid, Spain.
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK
| | - Jolanda Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, UK. .,Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
14
|
Dawson J, Lee PS, van Rienen U, Appali R. A General Theoretical Framework to Study the Influence of Electrical Fields on Mesenchymal Stem Cells. Front Bioeng Biotechnol 2020; 8:557447. [PMID: 33195123 PMCID: PMC7606877 DOI: 10.3389/fbioe.2020.557447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell dynamics involve cell proliferation and cell differentiation into cells of distinct functional type, such as osteoblasts, adipocytes, or chondrocytes. Electrically active implants influence these dynamics for the regeneration of the cells in damaged tissues. How applied electric field influences processes of individual stem cells is a problem mostly unaddressed. The mathematical approaches to study stem cell dynamics have focused on the stem cell population as a whole, without resolving individual cells and intracellular processes. In this paper, we present a theoretical framework to describe the dynamics of a population of stem cells, taking into account the processes of the individual cells. We study the influence of the applied electric field on the cellular processes. We test our mean-field theory with the experiments from the literature, involving in vitro electrical stimulation of stem cells. We show that a simple model can quantitatively describe the experimentally observed time-course behavior of the total number of cells and the total alkaline phosphate activity in a population of mesenchymal stem cells. Our results show that the stem cell differentiation rate is dependent on the applied electrical field, confirming published experimental findings. Moreover, our analysis supports the cell density-dependent proliferation rate. Since the experimental results are averaged over many cells, our theoretical framework presents a robust and sensitive method for determining the effect of applied electric fields at the scale of the individual cell. These results indicate that the electric field stimulation may be effective in promoting bone regeneration by accelerating osteogenic differentiation.
Collapse
Affiliation(s)
- Jonathan Dawson
- Department of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Poh Soo Lee
- Max Bergmann Center for Biomaterials, Institute for Materials Science, Technical University of Dresden, Dresden, Germany
| | - Ursula van Rienen
- Department of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.,Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Revathi Appali
- Department of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
15
|
Abstract
Many biochemical processes in living systems take place in compartmentalized environments, where individual compartments can interact with each other and undergo dynamic remodeling. Studying such processes through mathematical models poses formidable challenges because the underlying dynamics involve a large number of states, which evolve stochastically with time. Here we propose a mathematical framework to study stochastic biochemical networks in compartmentalized environments. We develop a generic population model, which tracks individual compartments and their molecular composition. We then show how the time evolution of this system can be studied effectively through a small number of differential equations, which track the statistics of the population. Our approach is versatile and renders an important class of biological systems computationally accessible. Compartmentalization of biochemical processes underlies all biological systems, from the organelle to the tissue scale. Theoretical models to study the interplay between noisy reaction dynamics and compartmentalization are sparse, and typically very challenging to analyze computationally. Recent studies have made progress toward addressing this problem in the context of specific biological systems, but a general and sufficiently effective approach remains lacking. In this work, we propose a mathematical framework based on counting processes that allows us to study dynamic compartment populations with arbitrary interactions and internal biochemistry. We derive an efficient description of the dynamics in terms of differential equations which capture the statistics of the population. We demonstrate the relevance of our approach by analyzing models inspired by different biological processes, including subcellular compartmentalization and tissue homeostasis.
Collapse
|
16
|
Franke C, Repnik U, Segeletz S, Brouilly N, Kalaidzidis Y, Verbavatz JM, Zerial M. Correlative single-molecule localization microscopy and electron tomography reveals endosome nanoscale domains. Traffic 2020; 20:601-617. [PMID: 31206952 PMCID: PMC6771687 DOI: 10.1111/tra.12671] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
Abstract
Many cellular organelles, including endosomes, show compartmentalization into distinct functional domains, which, however, cannot be resolved by diffraction‐limited light microscopy. Single molecule localization microscopy (SMLM) offers nanoscale resolution but data interpretation is often inconclusive when the ultrastructural context is missing. Correlative light electron microscopy (CLEM) combining SMLM with electron microscopy (EM) enables correlation of functional subdomains of organelles in relation to their underlying ultrastructure at nanometer resolution. However, the specific demands for EM sample preparation and the requirements for fluorescent single‐molecule photo‐switching are opposed. Here, we developed a novel superCLEM workflow that combines triple‐color SMLM (dSTORM & PALM) and electron tomography using semi‐thin Tokuyasu thawed cryosections. We applied the superCLEM approach to directly visualize nanoscale compartmentalization of endosomes in HeLa cells. Internalized, fluorescently labeled Transferrin and EGF were resolved into morphologically distinct domains within the same endosome. We found that the small GTPase Rab5 is organized in nanodomains on the globular part of early endosomes. The simultaneous visualization of several proteins in functionally distinct endosomal sub‐compartments demonstrates the potential of superCLEM to link the ultrastructure of organelles with their molecular organization at nanoscale resolution.
Collapse
Affiliation(s)
- Christian Franke
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Urska Repnik
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sandra Segeletz
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nicolas Brouilly
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Instutut de Biologie du Developpement de Marseille-Luminy, Aix-Marseille Universite, Marseille, France
| | - Yannis Kalaidzidis
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Jean-Marc Verbavatz
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Institut Jacques Monod, CNRS, Université Paris-Diderot, Paris, France
| | - Marino Zerial
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
17
|
Tubbesing K, Ward J, Abini-Agbomson R, Malhotra A, Rudkouskaya A, Warren J, Lamar J, Martino N, Adam AP, Barroso M. Complex Rab4-Mediated Regulation of Endosomal Size and EGFR Activation. Mol Cancer Res 2020; 18:757-773. [PMID: 32019812 PMCID: PMC7526990 DOI: 10.1158/1541-7786.mcr-19-0052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/24/2019] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
Early sorting endosomes are responsible for the trafficking and function of transferrin receptor (TfR) and EGFR. These receptors play important roles in iron uptake and signaling and are critical for breast cancer development. However, the role of morphology, receptor composition, and signaling of early endosomes in breast cancer remains poorly understood. A novel population of enlarged early endosomes was identified in breast cancer cells and tumor xenografts but not in noncancerous MCF10A cells. Quantitative analysis of endosomal morphology, cargo sorting, EGFR activation, and Rab GTPase regulation was performed using super-resolution and confocal microscopy followed by 3D rendering. MDA-MB-231 breast cancer cells have fewer, but larger EEA1-positive early endosomes compared with MCF10A cells. Live-cell imaging indicated dysregulated cargo sorting, because EGF and Tf traffic together via enlarged endosomes in MDA-MB-231, but not in MCF10A. Large EEA1-positive MDA-MB-231 endosomes exhibited prolonged and increased EGF-induced activation of EGFR upon phosphorylation at tyrosine-1068 (EGFR-p1068). Rab4A overexpression in MCF10A cells produced EEA1-positive enlarged endosomes that displayed prolonged and amplified EGF-induced EGFR-p1068 activation. Knockdown of Rab4A lead to increased endosomal size in MCF10A, but not in MDA-MB-231 cells. Nevertheless, Rab4A knockdown resulted in enhanced EGF-induced activation of EGFR-p1068 in MDA-MB-231 as well as downstream signaling in MCF10A cells. Altogether, this extensive characterization of early endosomes in breast cancer cells has identified a Rab4-modulated enlarged early endosomal compartment as the site of prolonged and increased EGFR activation. IMPLICATIONS: Enlarged early endosomes play a Rab4-modulated role in regulation of EGFR activation in breast cancer cells.
Collapse
Affiliation(s)
- Kate Tubbesing
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Jamie Ward
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Raymond Abini-Agbomson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Aditi Malhotra
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Janine Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - John Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
- Department of Ophthalmology, Albany Medical College, Albany, New York
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York.
| |
Collapse
|
18
|
Barbachano-Guerrero A, Endy TP, King CA. Dengue virus non-structural protein 1 activates the p38 MAPK pathway to decrease barrier integrity in primary human endothelial cells. J Gen Virol 2020; 101:484-496. [PMID: 32141809 DOI: 10.1099/jgv.0.001401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) causes an estimated 390 million infections worldwide annually, with severe forms of disease marked by vascular leakage. Endothelial cells (EC) are directly responsible for vascular homeostasis and are highly responsive to circulating mediators but are not commonly infected. DENV encodes seven non-structural (NS) proteins; with only one of those, NS1, secreted from infected cells and accumulating in the blood of patients. NS1 has been implicated in the pathogenesis of vascular permeability, but the mechanism is not completely understood. Here we used primary endothelial cells and an array of in vitro approaches to study the effect of NS1 in disease-relevant human ECs. Confocal microscopy demonstrated rapid NS1 internalization by ECs into endosomes with accumulation over time. Transcriptomic and pathway analysis showed significant changes in functions associated with EC homeostasis and vascular permeability. Functional significance of this activation was assessed by trans-endothelial electrical resistance and showed that NS1 induced rapid and transient loss in EC barrier function within 3 h post-treatment. To understand the molecular mechanism by which NS1 induced EC activation, we evaluated the stress-sensing p38 MAPK pathway known to be directly involved in EC permeability and inflammation. WB analysis of NS1-stimulated ECs showed clear activation of p38 MAPK and downstream effectors MAPKAPK-2 and HSP27 with chemical inhibition of the p38 MAP kinase pathway restoring barrier function. Our results suggest that DENV NS1 may be involved in the pathogenesis of severe dengue by activating the p38 MAPK in ECs, promoting increased permeability that characterizes severe disease.
Collapse
Affiliation(s)
| | - Timothy P Endy
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| | - Christine A King
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse NY, USA
| |
Collapse
|
19
|
Huizar F, Soundarrajan D, Paravitorghabeh R, Zartman J. Interplay between morphogen-directed positional information systems and physiological signaling. Dev Dyn 2020; 249:328-341. [PMID: 31794137 PMCID: PMC7328709 DOI: 10.1002/dvdy.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
The development of an organism from an undifferentiated single cell into a spatially complex structure requires spatial patterning of cell fates across tissues. Positional information, proposed by Lewis Wolpert in 1969, has led to the characterization of many components involved in regulating morphogen signaling activity. However, how morphogen gradients are established, maintained, and interpreted by cells still is not fully understood. Quantitative and systems-based approaches are increasingly needed to define general biological design rules that govern positional information systems in developing organisms. This short review highlights a selective set of studies that have investigated the roles of physiological signaling in modulating and mediating morphogen-based pattern formation. Similarities between neural transmission and morphogen-based pattern formation mechanisms suggest underlying shared principles of active cell-based communication. Within larger tissues, neural networks provide directed information, via physiological signaling, that supplements positional information through diffusion. Further, mounting evidence demonstrates that physiological signaling plays a role in ensuring robustness of morphogen-based signaling. We conclude by highlighting several outstanding questions regarding the role of physiological signaling in morphogen-based pattern formation. Elucidating how physiological signaling impacts positional information is critical for understanding the close coupling of developmental and cellular processes in the context of development, disease, and regeneration.
Collapse
Affiliation(s)
- Francisco Huizar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
- Bioengineering Graduate Program, University of Notre Dame, South Bend, Indiana
| | - Dharsan Soundarrajan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
| | - Ramezan Paravitorghabeh
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, South Bend, Indiana
- Bioengineering Graduate Program, University of Notre Dame, South Bend, Indiana
| |
Collapse
|
20
|
Varini K, Lécorché P, Sonnette R, Gassiot F, Broc B, Godard M, David M, Faucon A, Abouzid K, Ferracci G, Temsamani J, Khrestchatisky M, Jacquot G. Target engagement and intracellular delivery of mono- and bivalent LDL receptor-binding peptide-cargo conjugates: Implications for the rational design of new targeted drug therapies. J Control Release 2019; 314:141-161. [PMID: 31644939 DOI: 10.1016/j.jconrel.2019.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Targeted delivery to specific tissues and subcellular compartments is of paramount importance to optimize therapeutic or diagnostic interventions while minimizing side-effects. Using recently identified LDL receptor (LDLR) -targeting small synthetic peptide-vectors conjugated to model cargos of different nature and size, we investigated in LDLR-expressing cells the impact of vector-cargo molecular engineering and coupling valency, as well as the cellular exposure duration on their target engagement and intracellular trafficking and delivery profiles. All vector-cargo conjugates evaluated were found to be delivered to late compartments together with the natural ligand LDL, although to varying extents and with different kinetics. Partial recycling together with the LDLR was also consistently observed. Under continuous cellular exposure, the extent of intracellular vector-cargo delivery primarily relies on their endosomal unloading potential. In this condition, the highest intracellular delivery potential was observed with a monovalent conjugate displaying a rather high LDLR dissociation rate. On the contrary, under transient cellular exposure followed by chase, low dissociation-rate bivalent conjugates revealed a higher intracellular delivery potential than the monovalent conjugate. This was shown to rely on their ability to undergo multiple endocytosis-recycling rounds, with limited release in the ligand-free medium. The absence of reciprocal competition with the natural ligand LDL on their respective intracellular trafficking was also demonstrated, which is essential in terms of potential safety liabilities. These results demonstrate that not only molecular engineering of new therapeutic conjugates of interest, but also the cellular exposure mode used during in vitro evaluations are critical to anticipate and optimize their delivery potential.
Collapse
Affiliation(s)
- K Varini
- VECT-HORUS SAS, Marseille, France; Aix-Marseille Univ., CNRS, INP, Inst. Neurophysiopathol., Marseille, France
| | | | | | | | - B Broc
- VECT-HORUS SAS, Marseille, France
| | - M Godard
- VECT-HORUS SAS, Marseille, France
| | - M David
- VECT-HORUS SAS, Marseille, France
| | - A Faucon
- VECT-HORUS SAS, Marseille, France
| | | | - G Ferracci
- Aix-Marseille Univ., CNRS, INP, Inst. Neurophysiopathol., Marseille, France
| | | | - M Khrestchatisky
- Aix-Marseille Univ., CNRS, INP, Inst. Neurophysiopathol., Marseille, France
| | | |
Collapse
|
21
|
Rulands S, Lescroart F, Chabab S, Hindley CJ, Prior N, Sznurkowska MK, Huch M, Philpott A, Blanpain C, Simons BD. Universality of clone dynamics during tissue development. NATURE PHYSICS 2018; 14:469-474. [PMID: 29736183 PMCID: PMC5935228 DOI: 10.1038/s41567-018-0055-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/23/2018] [Indexed: 05/12/2023]
Abstract
The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease (1, 2). But what can be learned from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.
Collapse
Affiliation(s)
- Steffen Rulands
- Cavendish Laboratory, Department of Physics, JJ Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden Germany
- Center for Systems Biology Dresden, Pfotenhauer Str. 108, 01307 Dresden, Germany
| | - Fabienne Lescroart
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels B-1070, Belgium
| | - Samira Chabab
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels B-1070, Belgium
| | - Christopher J Hindley
- Cavendish Laboratory, Department of Physics, JJ Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Nicole Prior
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Magdalena K Sznurkowska
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Meritxell Huch
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Anna Philpott
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Cedric Blanpain
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels B-1070, Belgium
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, JJ Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
22
|
Vagne Q, Sens P. Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles. Biophys J 2018; 114:947-957. [PMID: 29490254 PMCID: PMC5984994 DOI: 10.1016/j.bpj.2017.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022] Open
Abstract
The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on the maturation of the organelle's composition by enzymatic reactions or exchange with the cytoplasm. The relative importance of each mechanism in controlling organelle dynamics remains controversial, in particular for transport through the Golgi apparatus. Using a stochastic model, we identify two classes of dynamical behavior that can lead to full maturation of membrane-bound compartments. In the first class, maturation corresponds to the stochastic escape from a steady state in which export is dominated by vesicular exchange, and is very unlikely for large compartments. In the second class, it occurs in a quasi-deterministic fashion and is almost size independent. Whether a system belongs to the first or second class is largely controlled by homotypic fusion.
Collapse
Affiliation(s)
- Quentin Vagne
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris, France.
| |
Collapse
|
23
|
Adler M, Mayo A, Zhou X, Franklin RA, Jacox JB, Medzhitov R, Alon U. Endocytosis as a stabilizing mechanism for tissue homeostasis. Proc Natl Acad Sci U S A 2018; 115:E1926-E1935. [PMID: 29429964 PMCID: PMC5828590 DOI: 10.1073/pnas.1714377115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells in tissues communicate by secreted growth factors (GF) and other signals. An important function of cell circuits is tissue homeostasis: maintaining proper balance between the amounts of different cell types. Homeostasis requires negative feedback on the GFs, to avoid a runaway situation in which cells stimulate each other and grow without control. Feedback can be obtained in at least two ways: endocytosis in which a cell removes its cognate GF by internalization and cross-inhibition in which a GF down-regulates the production of another GF. Here we ask whether there are design principles for cell circuits to achieve tissue homeostasis. We develop an analytically solvable framework for circuits with multiple cell types and find that feedback by endocytosis is far more robust to parameter variation and has faster responses than cross-inhibition. Endocytosis, which is found ubiquitously across tissues, can even provide homeostasis to three and four communicating cell types. These design principles form a conceptual basis for how tissues maintain a healthy balance of cell types and how balance may be disrupted in diseases such as degeneration and fibrosis.
Collapse
Affiliation(s)
- Miri Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Xu Zhou
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Ruth A Franklin
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Jeremy B Jacox
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510;
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel;
| |
Collapse
|
24
|
Vagne Q, Sens P. Stochastic Model of Vesicular Sorting in Cellular Organelles. PHYSICAL REVIEW LETTERS 2018; 120:058102. [PMID: 29481197 DOI: 10.1103/physrevlett.120.058102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 06/08/2023]
Abstract
The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intracellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations, considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values lead to fast sorting but result in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well-defined sorted compartments but sorting is exponentially slow. Our results suggest an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components and highlight the importance of stochastic effects for the steady-state organization of intracellular compartments.
Collapse
Affiliation(s)
- Quentin Vagne
- Institut Curie, PSL Research University, CNRS, UMR 168, 26 rue d'Ulm, F-75005 Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS, UMR 168, 26 rue d'Ulm, F-75005 Paris, France
| |
Collapse
|
25
|
Viral highway to nucleus exposed by image correlation analyses. Sci Rep 2018; 8:1152. [PMID: 29348472 PMCID: PMC5773500 DOI: 10.1038/s41598-018-19582-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/04/2018] [Indexed: 01/26/2023] Open
Abstract
Parvoviral genome translocation from the plasma membrane into the nucleus is a coordinated multistep process mediated by capsid proteins. We used fast confocal microscopy line scan imaging combined with image correlation methods including auto-, pair- and cross-correlation, and number and brightness analysis, to study the parvovirus entry pathway at the single-particle level in living cells. Our results show that the endosome-associated movement of virus particles fluctuates from fast to slow. Fast transit of single cytoplasmic capsids to the nuclear envelope is followed by slow movement of capsids and fast diffusion of capsid fragments in the nucleoplasm. The unique combination of image analyses allowed us to follow the fate of intracellular single virus particles and their interactions with importin β revealing previously unknown dynamics of the entry pathway.
Collapse
|
26
|
Villaseñor R, Collin L. High-resolution Confocal Imaging of the Blood-brain Barrier: Imaging, 3D Reconstruction, and Quantification of Transcytosis. J Vis Exp 2017. [PMID: 29286366 PMCID: PMC5755420 DOI: 10.3791/56407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The blood-brain barrier (BBB) is a dynamic multicellular interface that regulates the transport of molecules between the circulation and the brain. Transcytosis across the BBB regulates the delivery of hormones, metabolites, and therapeutic antibodies to the brain parenchyma. Here, we present a protocol that combines immunofluorescence of free-floating sections with laser scanning confocal microscopy and image analysis to visualize subcellular organelles within endothelial cells at the BBB. Combining this data-set with 3D image analysis software allows for the semi-automated segmentation and quantification of capillary volume and surface area, as well as the number and intensity of intracellular organelles at the BBB. The detection of mouse endogenous immunoglobulin (IgG) within intracellular vesicles and their quantification at the BBB is used to illustrate the method. This protocol can potentially be applied to the investigation of the mechanisms controlling BBB transcytosis of different molecules in vivo.
Collapse
Affiliation(s)
- Roberto Villaseñor
- Roche Pharma Research and Early Development (pRED), Neuroimmunology, Roche Innovation Center Basel
| | - Ludovic Collin
- Roche Pharma Research and Early Development (pRED), Neuroimmunology, Roche Innovation Center Basel;
| |
Collapse
|
27
|
Protoparvovirus Knocking at the Nuclear Door. Viruses 2017; 9:v9100286. [PMID: 28974036 PMCID: PMC5691637 DOI: 10.3390/v9100286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
Protoparvoviruses target the nucleus due to their dependence on the cellular reproduction machinery during the replication and expression of their single-stranded DNA genome. In recent years, our understanding of the multistep process of the capsid nuclear import has improved, and led to the discovery of unique viral nuclear entry strategies. Preceded by endosomal transport, endosomal escape and microtubule-mediated movement to the vicinity of the nuclear envelope, the protoparvoviruses interact with the nuclear pore complexes. The capsids are transported actively across the nuclear pore complexes using nuclear import receptors. The nuclear import is sometimes accompanied by structural changes in the nuclear envelope, and is completed by intranuclear disassembly of capsids and chromatinization of the viral genome. This review discusses the nuclear import strategies of protoparvoviruses and describes its dynamics comprising active and passive movement, and directed and diffusive motion of capsids in the molecularly crowded environment of the cell.
Collapse
|
28
|
An Overview of data science uses in bioimage informatics. Methods 2017; 115:110-118. [DOI: 10.1016/j.ymeth.2016.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/09/2016] [Accepted: 12/30/2016] [Indexed: 01/17/2023] Open
|
29
|
Verma K, Datta S. The Monomeric GTPase Rab35 Regulates Phagocytic Cup Formation and Phagosomal Maturation in Entamoeba histolytica. J Biol Chem 2017; 292:4960-4975. [PMID: 28126902 DOI: 10.1074/jbc.m117.775007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
One of the hallmarks of amoebic colitis is the detection of Entamoeba histolytica (Eh) trophozoites with ingested erythrocytes. Therefore, erythrophagocytosis is traditionally considered as one of the most important criteria to identify the pathogenic behavior of the amoebic trophozoites. Phagocytosis is an essential process for the proliferation and virulence of this parasite. Phagocytic cargo, upon internalization, follows a defined trafficking route to amoebic lysosomal degradation machinery. Here, we demonstrated the role of EhRab35 in the early and late phases of erythrophagocytosis by the amoeba. EhRab35 showed large vacuolar as well as punctate vesicular localization. The spatiotemporal dynamics of vacuolar EhRab35 and its exchange with soluble cytosolic pool were monitored by fluorescence recovery after photobleaching experiments. Using extensive microscopy and biochemical methods, we demonstrated that upon incubation with RBCs EhRab35 is recruited to the site of phagocytic cups as well as to the nascent phagosomes that harbor Gal/GalNAc lectin and actin. Overexpression of a dominant negative mutant of EhRab35 reduced phagocytic cup formation and thereby reduced RBC internalization, suggesting a potential role of the Rab GTPase in the cup formation. Furthermore, we also performed a phagosomal maturation assay and observed that the activated form of EhRab35 significantly increased the rate of RBC degradation. Interestingly, this mutant also significantly enhanced the number of acidic compartments in the trophozoites. Taken together, our results suggest that EhRab35 is involved in the initial stage of phagocytosis as well as in the phagolysosomal biogenesis in E. histolytica and thus contributes to the pathogenicity of the parasite.
Collapse
Affiliation(s)
- Kuldeep Verma
- From the Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462030, India
| | - Sunando Datta
- From the Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462030, India
| |
Collapse
|
30
|
Ba Q, Yang G. Intracellular organelle networks: Understanding their organization and communication through systems-level modeling and analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-016-1436-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Wang SH, Lee CW, Tseng FG, Liang KK, Wei PK. Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis. JOURNAL OF BIOPHOTONICS 2016; 9:738-749. [PMID: 29943945 DOI: 10.1002/jbio.201500182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 06/08/2023]
Abstract
The evolution of gold nanoparticle (Au NP) clusters in living cells are studied by using sectional dark-field optical microscopy and chromatic analysis approach. During endocytosis, Au NP clusters undergo fantastic color changes, from green to yellow-orange due to the plasmonic coupling effect. Analysis of brightness/hue values of the dark-field images helps estimate the numbers of Au NPs in the clusters. The Au NP clusters were further categorized into four groups within the endocytosis. As the results, the late endosomes had increased number of large Au NP clusters with time, while clustered numbers in secondary and tertiary groups were first increased and then decreased due to the fusion and fission of the endocytic vesicles. The time constants and cluster numbers for different groups are fitted by using an integrated rate equation, and show a positive correlation with the size of the Au NP cluster. The efficiency of Au NP uptake is only about 50% for normal cells, while 75% for cancer cells. Compared to normal cells, cancer cells show a larger number in uptake, while faster rate in removal. The propose method helps the kinetic study of endocytosed nanoparticles in physiological conditions.
Collapse
Affiliation(s)
- Sheng-Hann Wang
- Department of Engineering and System Science, National Tsing-Hua University, , No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, R.O.C
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, Taiwan, 11529, R.O.C
| | - Chia-Wei Lee
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, Taiwan, 11529, R.O.C
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing-Hua University, , No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, R.O.C
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, Taiwan, 11529, R.O.C
| | - Kuo-Kan Liang
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, Taiwan, 11529, R.O.C
- Department of Biochemical Science and Technology, National Taiwan University, 1st Sec. 4 Roosevelt Road, Daan, Taipei, 10641, R.O.C
| | - Pei-Kuen Wei
- Department of Engineering and System Science, National Tsing-Hua University, , No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, R.O.C
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, Taiwan, 11221, R.O.C
| |
Collapse
|
32
|
Villaseñor R, Ozmen L, Messaddeq N, Grüninger F, Loetscher H, Keller A, Betsholtz C, Freskgård PO, Collin L. Trafficking of Endogenous Immunoglobulins by Endothelial Cells at the Blood-Brain Barrier. Sci Rep 2016; 6:25658. [PMID: 27149947 PMCID: PMC4858719 DOI: 10.1038/srep25658] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/21/2016] [Indexed: 01/13/2023] Open
Abstract
The Blood-Brain Barrier (BBB) restricts access of large molecules to the brain. The low endocytic activity of brain endothelial cells (BECs) is believed to limit delivery of immunoglobulins (IgG) to the brain parenchyma. Here, we report that endogenous mouse IgG are localized within intracellular vesicles at steady state in BECs in vivo. Using high-resolution quantitative microscopy, we found a fraction of endocytosed IgG in lysosomes. We observed that loss of pericytes (key components of the BBB) in pdgf-bret/ret mice affects the intracellular distribution of endogenous mouse IgG in BECs. In these mice, endogenous IgG was not detected within lysosomes but instead accumulate at the basement membrane and brain parenchyma. Such IgG accumulation could be due to reduced lysosomal clearance and increased sorting to the abluminal membrane of BECs. Our results suggest that, in addition to low uptake from circulation, IgG lysosomal degradation may be a downstream mechanism by which BECs further restrict IgG access to the brain.
Collapse
Affiliation(s)
- Roberto Villaseñor
- Roche Pharma Research and Early Development (pRED), Neurodegeneration and Regeneration, Roche Innovation Center Basel, Switzerland
| | - Laurence Ozmen
- Roche Pharma Research and Early Development (pRED), Neurodegeneration and Regeneration, Roche Innovation Center Basel, Switzerland
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut Clinique de la Souris (ICS), Centre National de la Recherche Scientifique (CNRS)/Institut National de la Santé et de la Recherche Médicale INSERM/UdS, Collège de France, BP 10142, Strasbourg, France
| | - Fiona Grüninger
- Roche Pharma Research and Early Development (pRED), Neurodegeneration and Regeneration, Roche Innovation Center Basel, Switzerland
| | - Hansruedi Loetscher
- Roche Pharma Research and Early Development (pRED), Neurodegeneration and Regeneration, Roche Innovation Center Basel, Switzerland
| | - Annika Keller
- Division of Neurosurgery, University Hospital Zürich, Zürich University, Frauenklinikstrasse 10, CH-8091 Zürich, Switzerland
| | - Christer Betsholtz
- Vascular Biology Program, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Per-Ola Freskgård
- Roche Pharma Research and Early Development (pRED), Neurodegeneration and Regeneration, Roche Innovation Center Basel, Switzerland
| | - Ludovic Collin
- Roche Pharma Research and Early Development (pRED), Neurodegeneration and Regeneration, Roche Innovation Center Basel, Switzerland
| |
Collapse
|
33
|
Yu J, Zhang Y, Sun W, Wang C, Ranson D, Ye Y, Weng Y, Gu Z. Internalized compartments encapsulated nanogels for targeted drug delivery. NANOSCALE 2016; 8:9178-84. [PMID: 27074960 PMCID: PMC5001168 DOI: 10.1039/c5nr08895j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.
Collapse
Affiliation(s)
- Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuqi Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Davis Ranson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuyan Weng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, 215006, China.
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA. and Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA and Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Bergeron JJM, Di Guglielmo GM, Dahan S, Dominguez M, Posner BI. Spatial and Temporal Regulation of Receptor Tyrosine Kinase Activation and Intracellular Signal Transduction. Annu Rev Biochem 2016; 85:573-97. [PMID: 27023845 DOI: 10.1146/annurev-biochem-060815-014659] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidermal growth factor (EGF) and insulin receptor tyrosine kinases (RTKs) exemplify how receptor location is coupled to signal transduction. Extracellular binding of ligands to these RTKs triggers their concentration into vesicles that bud off from the cell surface to generate intracellular signaling endosomes. On the exposed cytosolic surface of these endosomes, RTK autophosphorylation selects the downstream signaling proteins and lipids to effect growth factor and polypeptide hormone action. This selection is followed by the recruitment of protein tyrosine phosphatases that inactivate the RTKs and deliver them by membrane fusion and fission to late endosomes. Coincidentally, proteinases inside the endosome cleave the EGF and insulin ligands. Subsequent inward budding of the endosomal membrane generates multivesicular endosomes. Fusion with lysosomes then results in RTK degradation and downregulation. Through the spatial positioning of RTKs in target cells for EGF and insulin action, the temporal extent of signaling, attenuation, and downregulation is regulated.
Collapse
Affiliation(s)
- John J M Bergeron
- Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada H4A 3J1; , , ,
| | - Gianni M Di Guglielmo
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada N6A 5C1;
| | - Sophie Dahan
- Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada H4A 3J1; , , ,
| | - Michel Dominguez
- Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada H4A 3J1; , , ,
| | - Barry I Posner
- Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada H4A 3J1; , , ,
| |
Collapse
|
35
|
Villaseñor R, Kalaidzidis Y, Zerial M. Signal processing by the endosomal system. Curr Opin Cell Biol 2016; 39:53-60. [PMID: 26921695 DOI: 10.1016/j.ceb.2016.02.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 02/08/2023]
Abstract
Cells need to decode chemical or physical signals from their environment in order to make decisions on their fate. In the case of signalling receptors, ligand binding triggers a cascade of chemical reactions but also the internalization of the activated receptors in the endocytic pathway. Here, we highlight recent studies revealing a new role of the endosomal network in signal processing. The diversity of entry pathways and endosomal compartments is exploited to regulate the kinetics of receptor trafficking, and interactions with specific signalling adaptors and effectors. By governing the spatio-temporal distribution of signalling molecules, the endosomal system functions analogously to a digital-analogue computer that regulates the specificity and robustness of the signalling response.
Collapse
Affiliation(s)
- Roberto Villaseñor
- Roche Innovation Center Basel, Grenzacherstrasse, CH-4070 Basel, Switzerland.
| | - Yannis Kalaidzidis
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
| | - Marino Zerial
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
| |
Collapse
|
36
|
Kalaidzidis I, Miaczynska M, Brewińska-Olchowik M, Hupalowska A, Ferguson C, Parton RG, Kalaidzidis Y, Zerial M. APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. J Cell Biol 2016; 211:123-44. [PMID: 26459602 PMCID: PMC4602042 DOI: 10.1083/jcb.201311117] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway.
Collapse
Affiliation(s)
- Inna Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Marta Miaczynska
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Marta Brewińska-Olchowik
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Anna Hupalowska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Charles Ferguson
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland St. Lucia, Brisbane, Australia 4072
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland St. Lucia, Brisbane, Australia 4072
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
37
|
Vledouts A, Vandenberghe N, Villermaux E. Fragmentation as an aggregation process. Proc Math Phys Eng Sci 2015. [DOI: 10.1098/rspa.2015.0678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
When severely impacted, a cohesive object deforms and eventually breaks into fragments. Cohesion forces keeping the material together and momentum driving the fragmentation couple through a complicated process involving crack propagation on a deforming substrate, so that a comprehensive scenario for the build-up of the full fragment size distribution of broken objects is still lacking. We use necklaces of cohesive particles (magnetized spheres) as an experimental model of a one-dimensional material, which we expand radially in an impulsive way. Exploring in real time the intermediate state where the particles are no longer in contact, but still in interaction as they separate, we demonstrate that the final fragments result from the self-assembly of individual particles and that their size distribution converges to a stable self-similar distribution whose parameters, interpreted from first principles, depend on the expansion and cohesion strengths.
Collapse
Affiliation(s)
- A. Vledouts
- Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, Marseille 13384, France
| | - N. Vandenberghe
- Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, Marseille 13384, France
| | - E. Villermaux
- Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, Marseille 13384, France
- Institut Universitaire de France, Paris 75005, France
| |
Collapse
|
38
|
Verma K, Saito-Nakano Y, Nozaki T, Datta S. Insights into endosomal maturation of human holo-transferrin in the enteric parasite Entamoeba histolytica: essential roles of Rab7A and Rab5 in biogenesis of giant early endocytic vacuoles. Cell Microbiol 2015; 17:1779-96. [PMID: 26096601 DOI: 10.1111/cmi.12470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
Abstract
The pathogenic amoeba Entamoeba histolytica is one of the causative agents of health hazards in tropical countries. It causes amoebic dysentery, colitis and liver abscesses in human. Iron is one of the essential nutritional resources for survival and chronic infection caused by the amoeba. The parasite has developed multiple ways to import, sequester and utilize iron from various iron-binding proteins from its host. In spite of its central role in pathogenesis, the mechanism of iron uptake by the parasite is largely unknown. Here, we carried out a systematic study to understand the role of some of the amoebic homologues of mammalian endocytic Rab GTPases (Rab5 and Rab21, Rab7A and Rab7B) in intracellular transport of human holo-transferrin by the parasite. Flow cytometry and quantitative microscopic image analysis revealed that Rab5 and Rab7A are required for the biogenesis of amoebic giant endocytic vacuoles (GEVs) and regulate the early phase of intracellular trafficking of transferrin. Rab7B is involved in the late phase, leading to the degradation of transferrin in the amoebic lysosome-like compartments. Using time-lapse fluorescence imaging in fixed trophozoites, we determined the kinetics of the vesicular transport of transferrin through Rab5-, Rab7A- and Rab7B-positive compartments. The involvement of Rab7A in the early phase of endocytosis by the parasite marks a significant divergence from its host in terms of spatiotemporal regulation by the Rab GTPases.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Gas Rahat ITI building, Bhopal, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Gas Rahat ITI building, Bhopal, India
| |
Collapse
|
39
|
Lade SJ, Coelho M, Tolić IM, Gross T. Fusion leads to effective segregation of damage during cell division: An analytical treatment. J Theor Biol 2015; 378:47-55. [PMID: 25934351 DOI: 10.1016/j.jtbi.2015.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/13/2015] [Accepted: 04/19/2015] [Indexed: 11/17/2022]
Abstract
High levels of cellular damage are associated with impairment of cellular function and cell death. Partitioning the damage into a fraction of cells in the population improves population fitness and survival. We have previously shown that protein aggregates, resulting from misfolded, damaged proteins, fuse with each other leading to damage partitioning during cell division. Here, using an analytical treatment of aggregate fusion in dividing cells we present analytical expressions for two measures of damage partition: aggregate mass partition asymmetry between two dividing cells and standard deviation of total aggregate mass across the population. The scaling laws obtained demonstrate how damage partition may generally depend on characteristics of the cellular processes, facilitating better understanding of damage segregation in biological cells.
Collapse
Affiliation(s)
- Steven J Lade
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany.
| | - Miguel Coelho
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany; Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Thilo Gross
- Department of Engineering Mathematics, University of Bristol, BS8 1UB Bristol, UK
| |
Collapse
|
40
|
Chara O, Brusch L. Mathematical modelling of fluid transport and its regulation at multiple scales. Biosystems 2015; 130:1-10. [DOI: 10.1016/j.biosystems.2015.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 12/20/2022]
|
41
|
Hondow N, Brown MR, Starborg T, Monteith AG, Brydson R, Summers HD, Rees P, Brown A. Quantifying the cellular uptake of semiconductor quantum dot nanoparticles by analytical electron microscopy. J Microsc 2015; 261:167-76. [PMID: 25762522 DOI: 10.1111/jmi.12239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/03/2015] [Indexed: 01/09/2023]
Abstract
Semiconductor quantum dot nanoparticles are in demand as optical biomarkers yet the cellular uptake process is not fully understood; quantification of numbers and the fate of internalized particles are still to be achieved. We have focussed on the characterization of cellular uptake of quantum dots using a combination of analytical electron microscopies because of the spatial resolution available to examine uptake at the nanoparticle level, using both imaging to locate particles and spectroscopy to confirm identity. In this study, commercially available quantum dots, CdSe/ZnS core/shell particles coated in peptides to target cellular uptake by endocytosis, have been investigated in terms of the agglomeration state in typical cell culture media, the traverse of particle agglomerates across U-2 OS cell membranes during endocytosis, the merging of endosomal vesicles during incubation of cells and in the correlation of imaging flow cytometry and transmission electron microscopy to measure the final nanoparticle dose internalized by the U-2 OS cells. We show that a combination of analytical transmission electron microscopy and serial block face scanning electron microscopy can provide a comprehensive description of the internalization of an initial exposure dose of nanoparticles by an endocytically active cell population and how the internalized, membrane bound nanoparticle load is processed by the cells. We present a stochastic model of an endosome merging process and show that this provides a data-driven modelling framework for the prediction of cellular uptake of engineered nanoparticles in general.
Collapse
Affiliation(s)
- Nicole Hondow
- Institute for Materials Research, School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - M Rowan Brown
- Centre for Nanohealth, College of Engineering, Swansea University, Singleton Park, Swansea, UK
| | - Tobias Starborg
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
| | | | - Rik Brydson
- Institute for Materials Research, School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Huw D Summers
- Centre for Nanohealth, College of Engineering, Swansea University, Singleton Park, Swansea, UK
| | - Paul Rees
- Centre for Nanohealth, College of Engineering, Swansea University, Singleton Park, Swansea, UK
| | - Andy Brown
- Institute for Materials Research, School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
42
|
Villaseñor R, Nonaka H, Del Conte-Zerial P, Kalaidzidis Y, Zerial M. Regulation of EGFR signal transduction by analogue-to-digital conversion in endosomes. eLife 2015; 4:e06156. [PMID: 25650738 PMCID: PMC4384751 DOI: 10.7554/elife.06156] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022] Open
Abstract
An outstanding question is how receptor tyrosine kinases (RTKs) determine different cell-fate decisions despite sharing the same signalling cascades. Here, we uncovered an unexpected mechanism of RTK trafficking in this process. By quantitative high-resolution FRET microscopy, we found that phosphorylated epidermal growth factor receptor (p-EGFR) is not randomly distributed but packaged at constant mean amounts in endosomes. Cells respond to higher EGF concentrations by increasing the number of endosomes but keeping the mean p-EGFR content per endosome almost constant. By mathematical modelling, we found that this mechanism confers both robustness and regulation to signalling output. Different growth factors caused specific changes in endosome number and size in various cell systems and changing the distribution of p-EGFR between endosomes was sufficient to reprogram cell-fate decision upon EGF stimulation. We propose that the packaging of p-RTKs in endosomes is a general mechanism to ensure the fidelity and specificity of the signalling response.
Collapse
Affiliation(s)
- Roberto Villaseñor
- Max Planck Institute of Molecular Cell
Biology and Genetics, Dresden, Germany
| | - Hidenori Nonaka
- Max Planck Institute of Molecular Cell
Biology and Genetics, Dresden, Germany
| | | | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell
Biology and Genetics, Dresden, Germany
- Faculty of
Bioengineering and Bioinformatics, Moscow State
University, Moscow, Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell
Biology and Genetics, Dresden, Germany
| |
Collapse
|
43
|
Flores-Rodriguez N, Kenwright DA, Chung PH, Harrison AW, Stefani F, Waigh TA, Allan VJ, Woodman PG. ESCRT-0 marks an APPL1-independent transit route for EGFR between the cell surface and the EEA1-positive early endosome. J Cell Sci 2015; 128:755-67. [PMID: 25588841 PMCID: PMC4327388 DOI: 10.1242/jcs.161786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endosomal sorting complexes required for transport (ESCRT)-0 sorts ubiquitylated EGFR within the early endosome so that the receptor can be incorporated into intralumenal vesicles. An important question is whether ESCRT-0 acts solely upon EGFR that has already entered the vacuolar early endosome (characterised by the presence of EEA1) or engages EGFR within earlier compartments. Here, we employ a suite of software to determine the localisation of ESCRT-0 at subpixel resolution and to perform particle-based colocalisation analysis with other endocytic markers. We demonstrate that although some of the ESCRT-0 subunit Hrs (also known as HGS) colocalises with the vacuolar early endosome marker EEA1, most localises to a population of peripheral EEA1-negative endosomes that act as intermediates in transporting EGFR from the cell surface to more central early endosomes. The peripheral Hrs-labelled endosomes are distinct from APPL1-containing endosomes, but co-label with the novel endocytic adaptor SNX15. In contrast to ESCRT-0, ESCRT-I is recruited to EGF-containing endosomes at later times as they move to more a central position, whereas ESCRT-III is also recruited more gradually. RNA silencing experiments show that both ESCRT-0 and ESCRT-I are important for the transit of EGF to EEA1 endosomes.
Collapse
Affiliation(s)
- Neftali Flores-Rodriguez
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - David A Kenwright
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Pei-Hua Chung
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Andrew W Harrison
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Flavia Stefani
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Thomas A Waigh
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PT, UK Photon Science Institute, University of Manchester, Manchester M13 9PT, UK
| | - Victoria J Allan
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK Photon Science Institute, University of Manchester, Manchester M13 9PT, UK
| | - Philip G Woodman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
44
|
Wang SH, Lee CW, Shen KC, Tseng FG, Wei PK. Dose dependent distribution and aggregation of gold nanoparticles within human lung adeno-carcinoma cells. RSC Adv 2015. [DOI: 10.1039/c5ra18801f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, we discuss the distribution, aggregation and cytotoxicity of different treatment doses, 0.01, 0.05, 0.1, 0.2 and 0.5 nM, of PAH coated gold nanoparticles (Au NPs) with a human lung adeno-carcinoma cell line – A549 cells.
Collapse
Affiliation(s)
- Sheng-Hann Wang
- Department of Engineering and System Science
- National Tsing-Hua University
- Hsinchu
- Republic of China
- Research Center for Applied Sciences
| | - Chia-Wei Lee
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Kun-Ching Shen
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science
- National Tsing-Hua University
- Hsinchu
- Republic of China
- Research Center for Applied Sciences
| | - Pei-Kuen Wei
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
- Institute of Biophotonics
| |
Collapse
|
45
|
Perini ED, Schaefer R, Stöter M, Kalaidzidis Y, Zerial M. Mammalian CORVET Is Required for Fusion and Conversion of Distinct Early Endosome Subpopulations. Traffic 2014; 15:1366-89. [DOI: 10.1111/tra.12232] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Enrico D. Perini
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Ramona Schaefer
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Martin Stöter
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
- Faculty of Bioengineering and Bioinformatics; Moscow State University; 119991 Moscow Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics; Pfotenhauerstrasse 108 01307 Dresden Germany
| |
Collapse
|
46
|
Endosome maturation, transport and functions. Semin Cell Dev Biol 2014; 31:2-10. [DOI: 10.1016/j.semcdb.2014.03.034] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022]
|
47
|
Gonzalez-Gaitan M, Jülicher F. The role of endocytosis during morphogenetic signaling. Cold Spring Harb Perspect Biol 2014; 6:a016881. [PMID: 24984777 PMCID: PMC4067986 DOI: 10.1101/cshperspect.a016881] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Morphogens are signaling molecules that are secreted by a localized source and spread in a target tissue where they are involved in the regulation of growth and patterning. Both the activity of morphogenetic signaling and the kinetics of ligand spreading in a tissue depend on endocytosis and intracellular trafficking. Here, we review quantitative approaches to study how large-scale morphogen profiles and signals emerge in a tissue from cellular trafficking processes and endocytic pathways. Starting from the kinetics of endosomal networks, we discuss the role of cellular trafficking and receptor dynamics in the formation of morphogen gradients. These morphogen gradients scale during growth, which implies that overall tissue size influences cellular trafficking kinetics. Finally, we discuss how such morphogen profiles can be used to control tissue growth. We emphasize the role of theory in efforts to bridge between scales.
Collapse
Affiliation(s)
| | - Frank Jülicher
- Max-Planck Institute for the Physics of Complex Systems, 01069 Dresden, Germany
| |
Collapse
|
48
|
Granger E, McNee G, Allan V, Woodman P. The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol 2014; 31:20-9. [PMID: 24727350 PMCID: PMC4071412 DOI: 10.1016/j.semcdb.2014.04.011] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/28/2022]
Abstract
The endocytic pathway is essential for processes that define how cells interact with their environment, including receptor signalling, cell adhesion and migration, pathogen entry, membrane protein turnover and nutrient uptake. The spatial organisation of endocytic trafficking requires motor proteins that tether membranes or transport them along the actin and microtubule cytoskeletons. Microtubules, actin filaments and motor proteins also provide force to deform and assist in the scission of membranes, thereby facilitating endosomal sorting and the generation of transport intermediates.
Collapse
Affiliation(s)
- Elizabeth Granger
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Gavin McNee
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Victoria Allan
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | - Philip Woodman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
49
|
Polo S, Di Fiore PP, Sigismund S. Keeping EGFR signaling in check: ubiquitin is the guardian. Cell Cycle 2014; 13:681-2. [PMID: 24526125 PMCID: PMC3979896 DOI: 10.4161/cc.27855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare; Milan, Italy; Dipartimento di Scienze della Salute; Università degli Studi di Milano; Milan, Italy
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare; Milan, Italy; Dipartimento di Scienze della Salute; Università degli Studi di Milano; Milan, Italy; Department of Experimental Oncology; Istituto Europeo di Oncologia; Milan, Italy
| | - Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare; Milan, Italy
| |
Collapse
|
50
|
Abstract
In many animals, regenerative processes can replace lost body parts. Organ and tissue regeneration consequently also hold great medical promise. The regulation of regenerative processes is achieved through concerted actions of multiple organizational levels of the organism, from diffusing molecules and cellular gene expression patterns up to tissue mechanics. Our intuition is usually not adapted well to this degree of complexity and the quantitative aspects of the regulation of regenerative processes remain poorly understood. One way out of this dilemma lies in the combination of experimentation and mathematical modeling within an iterative process of model development/refinement, model predictions for novel experimental conditions, quantitative experiments testing these predictions, and subsequent model refinement. This interdisciplinary approach has already provided key insights into smaller scale processes during embryonic development and a so-far limited number of more complex regeneration processes. This review discusses selected theoretical and interdisciplinary studies and is structured along the three phases of regeneration: (1) initiation of a regeneration response, (2) tissue patterning during regenerate growth, (3) arresting the regeneration response. Moreover, we highlight the opportunities provided by extensions of mathematical models from developmental processes toward the study of related regenerative processes.
Collapse
Affiliation(s)
- Osvaldo Chara
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany
| | - Elly M Tanaka
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Lutz Brusch
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|