1
|
van Stalborch AMD, Clark AG, Sonnenberg A, Margadant C. Imaging and quantitative analysis of integrin-dependent cell-matrix adhesions. STAR Protoc 2023; 4:102473. [PMID: 37616164 PMCID: PMC10469561 DOI: 10.1016/j.xpro.2023.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 08/25/2023] Open
Abstract
Integrin-dependent cell-extracellular matrix adhesion is essential for wound healing, embryonic development, immunity, and tissue organization. Here, we present a protocol for the imaging and quantitative analysis of integrin-dependent cell-matrix adhesions. We describe steps for cell culture; virus preparation; lentiviral transduction; imaging with widefield, confocal, and total internal reflection fluorescence microscopy; and using a script for their quantitative analysis. We then detail procedures for analyzing adhesion dynamics by live-cell imaging and fluorescence recovery after photobleaching (FRAP). For complete details on the use and execution of this protocol, please refer to Margadant et al. (2012),1 van der Bijl et al. (2020),2 Amado-Azevedo et al. (2021).3.
Collapse
Affiliation(s)
| | - Andrew G Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany; Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Arnoud Sonnenberg
- The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| | - Coert Margadant
- Institute of Biology, Leiden University, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
2
|
Webb ER, Dodd GL, Noskova M, Bullock E, Muir M, Frame MC, Serrels A, Brunton VG. Kindlin-1 regulates IL-6 secretion and modulates the immune environment in breast cancer models. eLife 2023; 12:e85739. [PMID: 36883731 PMCID: PMC10023156 DOI: 10.7554/elife.85739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/08/2023] [Indexed: 03/09/2023] Open
Abstract
The adhesion protein Kindlin-1 is over-expressed in breast cancer where it is associated with metastasis-free survival; however, the mechanisms involved are poorly understood. Here, we report that Kindlin-1 promotes anti-tumor immune evasion in mouse models of breast cancer. Deletion of Kindlin-1 in Met-1 mammary tumor cells led to tumor regression following injection into immunocompetent hosts. This was associated with a reduction in tumor infiltrating Tregs. Similar changes in T cell populations were seen following depletion of Kindlin-1 in the polyomavirus middle T antigen (PyV MT)-driven mouse model of spontaneous mammary tumorigenesis. There was a significant increase in IL-6 secretion from Met-1 cells when Kindlin-1 was depleted and conditioned media from Kindlin-1-depleted cells led to a decrease in the ability of Tregs to suppress the proliferation of CD8+ T cells, which was dependent on IL-6. In addition, deletion of tumor-derived IL-6 in the Kindlin-1-depleted tumors reversed the reduction of tumor-infiltrating Tregs. Overall, these data identify a novel function for Kindlin-1 in regulation of anti-tumor immunity, and that Kindlin-1 dependent cytokine secretion can impact the tumor immune environment.
Collapse
Affiliation(s)
- Emily R Webb
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Georgia L Dodd
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Michaela Noskova
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Esme Bullock
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Alan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
3
|
Abstract
The endothelium is a dynamic, semipermeable layer lining all blood vessels, regulating blood vessel formation and barrier function. Proper composition and function of the endothelial barrier are required for fluid homeostasis, and clinical conditions characterized by barrier disruption are associated with severe morbidity and high mortality rates. Endothelial barrier properties are regulated by cell-cell junctions and intracellular signaling pathways governing the cytoskeleton, but recent insights indicate an increasingly important role for integrin-mediated cell-matrix adhesion and signaling in endothelial barrier regulation. Here, we discuss diseases characterized by endothelial barrier disruption, and provide an overview of the composition of endothelial cell-matrix adhesion complexes and associated signaling pathways, their crosstalk with cell-cell junctions, and with other receptors. We further present recent insights into the role of cell-matrix adhesions in the developing and mature/adult endothelium of various vascular beds, and discuss how the dynamic regulation and turnover of cell-matrix adhesions regulates endothelial barrier function in (patho)physiological conditions like angiogenesis, inflammation and in response to hemodynamic stress. Finally, as clinical conditions associated with vascular leak still lack direct treatment, we focus on how understanding of endothelial cell-matrix adhesion may provide novel targets for treatment, and discuss current translational challenges and future perspectives.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Pulmonology, Amsterdam University Medical Center, the Netherlands (J.A.)
| | - Coert Margadant
- Department of Medical Oncology, Amsterdam University Medical Center, the NetherlandsInstitute of Biology, Leiden University, the Netherlands (C.M.)
| |
Collapse
|
4
|
Margadant C. Cell Migration in Three Dimensions. Methods Mol Biol 2023; 2608:1-14. [PMID: 36653698 DOI: 10.1007/978-1-0716-2887-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell migration plays an essential role in many pathophysiological processes, including embryonic development, wound healing, immunity, and cancer invasion, and is therefore a widely studied phenomenon in many different fields from basic cell biology to regenerative medicine. During the past decades, a multitude of increasingly complex methods have been developed to study cell migration. Here we compile a series of current state-of-the-art methods and protocols to investigate cell migration in a variety of model systems ranging from cells, organoids, tissue explants, and microfluidic systems to Drosophila, zebrafish, and mice. Together they cover processes as diverse as nuclear deformation, energy consumption, endocytic trafficking, and matrix degradation, as well as tumor vascularization and cancer cell invasion, sprouting angiogenesis, and leukocyte extravasation. Furthermore, methods to study developmental processes such as neural tube closure, germ layer specification, and branching morphogenesis are included, as well as scripts for the automated analysis of several aspects of cell migration. Together, this book constitutes a unique collection of methods of prime importance to those interested in the analysis of cell migration.
Collapse
Affiliation(s)
- Coert Margadant
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Parihar K, Nukpezah J, Iwamoto DV, Janmey PA, Radhakrishnan R. Data driven and biophysical insights into the regulation of trafficking vesicles by extracellular matrix stiffness. iScience 2022; 25:104721. [PMID: 35865140 PMCID: PMC9293776 DOI: 10.1016/j.isci.2022.104721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Biomechanical signals from remodeled extracellular matrix (ECM) promote tumor progression. Here, we show that cell-matrix and cell-cell communication may be inherently linked and tuned through mechanisms of mechanosensitive biogenesis of trafficking vesicles. Pan-cancer analysis of cancer cells' mechanical properties (focusing primarily on cell stiffness) on substrates of varied stiffness and composition elucidated a heterogeneous cellular response to mechanical stimuli. Through machine learning, we identified a fingerprint of cytoskeleton-related proteins that accurately characterize cell stiffness in different ECM conditions. Expression of their respective genes correlates with patient prognosis across different tumor types. The levels of selected cytoskeleton proteins indicated that cortical tension mirrors the increase (or decrease) in cell stiffness with a change in ECM stiffness. A mechanistic biophysical model shows that the tendency for curvature generation by curvature-inducing proteins has an ultrasensitive dependence on cortical tension. This study thus highlights the effect of ECM stiffness, mediated by cortical tension, in modulating vesicle biogenesis.
Collapse
Affiliation(s)
- Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Nukpezah
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel V. Iwamoto
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A. Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Solubilization and Purification of α 5β 1 Integrin from Rat Liver for Reconstitution into Nanodiscs. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2507:1-18. [PMID: 35773574 DOI: 10.1007/978-1-0716-2368-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transmembrane proteins (or integral membrane proteins) are synthesized in the endoplasmic reticulum where most of them are core glycosylated prior to folding and in some cases assembly into quaternary structures. Correctly glycosylated, folded, and assembled transmembrane proteins are then shuttled to the Golgi apparatus for additional posttranslational modifications such as complex-type glycosylations, sulfation or proteolytic clipping. At the plasma membrane, the glycosylated extracellular domains are key to communicate with the cellular environment for a variety of functions, such as binding to the extracellular matrix for cell adhesion and migration, to neighboring cells for cell-cell interaction, or to extracellular components for nutrient uptake and cell signaling. Intracellular domains are essential to mediate signaling cascades, or to connect to cytosolic adaptors for internalization and intracellular compartmentalization. Despite its importance for the understanding of molecular mechanisms of transmembrane protein function, the determination of their structures has remained a challenging task. In recent years, their reconstitution in lipid nanodiscs in combination with high resolution cryo-electron microscopy has provided novel avenues to render this process more accessible. Here, we describe detailed protocols for the solubilization of heavily glycosylated α5β1 integrin from rat livers, its purification and reconstitution into nanodiscs. At the plasma membrane of many cells, including tumor metastases, this essential heterodimeric transmembrane protein mediates the communication between extracellular matrix and cytosolic cytoskeleton in processes of cell adhesion and migration. We expect that the protocols that are described here will provide new opportunities for the determination of the full structure of α5β1 integrin, as well as for the understanding of how interacting partners can regulate function and activity of this transmembrane protein.
Collapse
|
7
|
Ayama-Canden S, Tondo R, Piñeros L, Ninane N, Demazy C, Dieu M, Fattaccioli A, Tabarrant T, Lucas S, Bonifazi D, Michiels C. IGDQ motogenic peptide gradient induces directional cell migration through integrin (αv)β3 activation in MDA-MB-231 metastatic breast cancer cells. Neoplasia 2022; 31:100816. [PMID: 35763908 PMCID: PMC9241093 DOI: 10.1016/j.neo.2022.100816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
In the context of breast cancer metastasis study, we have shown in an in vitro model of cell migration that IGDQ-exposing (IsoLeu-Gly-Asp-Glutamine type I Fibronectin motif) monolayers (SAMs) on gold sustain the adhesion of breast cancer MDA-MB-231 cells by triggering Focal Adhesion Kinase and integrin activation. Such tunable scaffolds are used to mimic the tumor extracellular environment, inducing and controlling cell migration. The observed migratory behavior induced by the IGDQ-bearing peptide gradient along the surface allows to separate cell subpopulations with a "stationary" or "migratory" phenotype. In this work, we knocked down the integrins α5(β1) and (αv)β since they are already known to be implicated in cell migration. To this aim, a whole proteomic analysis was performed in beta 3 integrin (ITGB3) or alpha 5 integrin (ITGA5) knock-down MDA-MB-231 cells, in order to highlight the pathways implied in the integrin-dependent cell migration. Our results showed that i) ITGB3 depletion influenced ITGA5 mRNA expression, ii) ITGB3 and ITGA5 were both necessary for IGDQ-mediated directional single cell migration and iii) integrin (αv)β3 was activated by IGDQ fibronectin type I motif. Finally, the proteomic analysis suggested that co-regulation of recycling transport of ITGB3 by ITGA5 is potentially necessary for directional IGDQ-mediated cell migration.
Collapse
Affiliation(s)
- Sophie Ayama-Canden
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Rodolfo Tondo
- School of Chemistry, Cardiff University, Park Place, Main Building, CF10 3AT, Cardiff, Wales, United Kingdom
| | - Liliana Piñeros
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Noëlle Ninane
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Catherine Demazy
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Marc Dieu
- MaSUN, Mass Spectrometry Facility, University of Namur, 61, rue de Bruxelles, 5000 Namur, Belgium
| | - Antoine Fattaccioli
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Tijani Tabarrant
- LARN - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Stéphane Lucas
- LARN - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
| | - Davide Bonifazi
- School of Chemistry, Cardiff University, Park Place, Main Building, CF10 3AT, Cardiff, Wales, United Kingdom; Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Carine Michiels
- URBC - NARILIS, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium.
| |
Collapse
|
8
|
Zuidema A, Atherton P, Kreft M, Hoekman L, Bleijerveld OB, Nagaraj N, Chen N, Fässler R, Sonnenberg A. PEAK1 Y635 phosphorylation regulates cell migration through association with Tensin3 and integrins. J Biophys Biochem Cytol 2022; 221:213273. [PMID: 35687021 PMCID: PMC9194829 DOI: 10.1083/jcb.202108027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/22/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023] Open
Abstract
Integrins mediate cell adhesion by connecting the extracellular matrix to the intracellular cytoskeleton and orchestrate signal transduction in response to chemical and mechanical stimuli by interacting with many cytoplasmic proteins. We used BioID to interrogate the interactomes of β1 and β3 integrins in epithelial cells and identified PEAK1 as an interactor of the RGD-binding integrins α5β1, αVβ3, and αVβ5 in focal adhesions. We demonstrate that the interaction between integrins and PEAK1 occurs indirectly through Tensin3, requiring both the membrane-proximal NPxY motif on the integrin β tail and binding of the SH2 domain of Tensin3 to phosphorylated Tyr-635 on PEAK1. Phosphorylation of Tyr-635 is mediated by Src and regulates cell migration. Additionally, we found that Shc1 localizes in focal adhesions in a PEAK1 phosphorylated Tyr-1188-dependent fashion. Besides binding Shc1, PEAK1 also associates with a protein cluster that mediates late EGFR/Shc1 signaling. We propose a model in which PEAK1 binds Tensin3 and Shc1 to converge integrin and growth factor receptor signal transduction.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Atherton
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Onno B. Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nagarjuna Nagaraj
- Mass Spectrometry Core Facility at the Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Nanpeng Chen
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max-Planck Institute of Biochemistry, Planegg, Germany
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Correspondence to Arnoud Sonnenberg:
| |
Collapse
|
9
|
Lachowski D, Matellan C, Gopal S, Cortes E, Robinson BK, Saiani A, Miller AF, Stevens MM, del Río Hernández AE. Substrate Stiffness-Driven Membrane Tension Modulates Vesicular Trafficking via Caveolin-1. ACS NANO 2022; 16:4322-4337. [PMID: 35255206 PMCID: PMC9007531 DOI: 10.1021/acsnano.1c10534] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Liver fibrosis, a condition characterized by extensive deposition and cross-linking of extracellular matrix (ECM) proteins, is idiosyncratic in cases of chronic liver injury. The dysregulation of ECM remodeling by hepatic stellate cells (HSCs), the main mediators of fibrosis, results in an elevated ECM stiffness that drives the development of chronic liver disease such as cirrhosis and hepatocellular carcinoma. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is a key element in the regulation of ECM remodeling, which modulates the degradation and turnover of ECM components. We have previously reported that a rigid, fibrotic-like substrate can impact TIMP-1 expression at the protein level in HSCs without altering its mRNA expression. While HSCs are known to be highly susceptible to mechanical stimuli, the mechanisms through which mechanical cues regulate TIMP-1 at the post-translational level remain unclear. Here, we show a mechanism of regulation of plasma membrane tension by matrix stiffness. We found that this effect is orchestrated by the β1 integrin/RhoA axis and results in elevated exocytosis and secretion of TIMP-1 in a caveolin-1- and dynamin-2-dependent manner. We then show that TIMP-1 and caveolin-1 expression increases in cirrhosis and hepatocellular carcinoma. These conditions are associated with fibrosis, and this effect can be recapitulated in 3D fibrosis models consisting of hepatic stellate cells encapsulated in a self-assembling polypeptide hydrogel. This work positions stiffness-dependent membrane tension as a key regulator of enzyme secretion and function and a potential target for therapeutic strategies that aim at modulating ECM remodeling in chronic liver disease.
Collapse
Affiliation(s)
- Dariusz Lachowski
- Cellular
and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Manchester
BIOGEL, Mereside, Alderley Park, Alderley Edge, Cheshire SK10 4TG, United Kingdom
| | - Carlos Matellan
- Cellular
and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sahana Gopal
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ernesto Cortes
- Cellular
and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Benjamin K. Robinson
- Cellular
and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alberto Saiani
- Department
of Materials and Manchester Institute of Biotechnology, Faculty of
Science and Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Manchester
BIOGEL, Mereside, Alderley Park, Alderley Edge, Cheshire SK10 4TG, United Kingdom
| | - Aline F. Miller
- Department
of Chemical Engineering and Manchester Institute of Biotechnology,
Faculty of Science and Engineering, The
University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Manchester
BIOGEL, Mereside, Alderley Park, Alderley Edge, Cheshire SK10 4TG, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Armando E. del Río Hernández
- Cellular
and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
10
|
Zhang B, Fan M, Fan J, Luo Y, Wang J, Wang Y, Liu B, Sun Y, Zhao Q, Hiscox JA, Nan Y, Zhou EM. Avian Hepatitis E Virus ORF2 Protein Interacts with Rap1b to Induce Cytoskeleton Rearrangement That Facilitates Virus Internalization. Microbiol Spectr 2022; 10:e0226521. [PMID: 35138149 PMCID: PMC8826821 DOI: 10.1128/spectrum.02265-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 12/31/2022] Open
Abstract
Avian hepatitis E virus (HEV) causes liver diseases and multiple extrahepatic disorders in chickens. However, the mechanisms involved in avian HEV entry remain elusive. Herein, we identified the RAS-related protein 1b (Rap1b) as a potential HEV-ORF2 protein interacting candidate. Experimental infection of chickens and cells with an avian HEV isolate from China (CaHEV) led to upregulated expression and activation of Rap1b both in vivo and in vitro. By using CaHEV capsid as mimic of virion to treat cell in vitro, it appears that the interaction between the viral capsid and Rap1b promoted cell membrane recruitment of the downstream effector Rap1-interacting molecule (RIAM). In turn, RIAM further enhanced Talin-1 membrane recruitment and retention, which led to the activation of integrin α5/β1, as well as integrin-associated membrane protein kinases, including focal adhesion kinase (FAK). Meanwhile, FAK activation triggered activation of downstream signaling molecules, such as Ras-related C3 botulinum toxin substrate 1 RAC1 cell division cycle 42 (CDC42), p21-activated kinase 1 (PAK1), and LIM domain kinase 1 (LIMK1). Finally, F-actin rearrangement induced by Cofilin led to the formation of lamellipodia, filopodia, and stress fibers, contributes to plasma membrane remodeling, and might enhance CaHEV virion internalization. In conclusion, our data suggested that Rap1b activation was triggered during CaHEV infection and appeared to require interaction between CaHEV-ORF2 and Rap1b, thereby further inducing membrane recruitment of Talin-1. Membrane-bound Talin-1 then activates key Integrin-FAK-Cofilin cascades involved in modulation of actin kinetics, and finally leads to F-actin rearrangement and membrane remodeling to potentially facilitate internalization of CaHEV virions into permissive cells. IMPORTANCE Rap1b is a multifunctional protein that is responsible for cell adhesion, growth, and differentiation. The inactive form of Rap1b is phosphorylated and distributed in the cytoplasm, while active Rap1b is prenylated and loaded with GTP to the cell membrane. In this study, the activation of Rap1b was induced during the early stage of avian HEV infection under the regulation of PKA and SmgGDS. Continuously activated Rap1b recruited its effector RIAM to the membrane, thereby inducing the membrane recruitment of Talin-1 that led to the activation of membrane α5/β1 integrins. The triggering of the signaling pathway-associated Integrin α5/β1-FAK-CDC42&RAC1-PAK1-LIMK1-Cofilin culminated in F-actin polymerization and membrane remodeling that might promote avian HEV virion internalization. These findings suggested a novel mechanism that is potentially utilized by avian HEV to invade susceptible cells.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengnan Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuhang Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yajing Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Caliva MJ, Yang WS, Young-Robbins S, Zhou M, Yoon H, Matter ML, Grimes ML, Conrads T, Ramos JW. Proteomics analysis identifies PEA-15 as an endosomal phosphoprotein that regulates α5β1 integrin endocytosis. Sci Rep 2021; 11:19830. [PMID: 34615962 PMCID: PMC8494857 DOI: 10.1038/s41598-021-99348-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Endosomal trafficking of cell surface receptors is essential to their function. Integrins are transmembrane receptors that integrate adhesion to the extracellular matrix with engagement of the cytoskeleton. Ligated integrins mediate diverse signals that regulate matrix assembly, cell survival, cell morphology, and cell motility. Endosomal trafficking of integrins modulates these signals and contributes to cell motility and is required for cancer cell invasion. The phosphoprotein PEA-15 modulates integrin activation and ERK MAP Kinase signaling. To elucidate novel PEA-15 functions we utilized an unbiased proteomics approach. We identified several binding partners for PEA-15 in the endosome including clathrin and AP-2 as well as integrin β1 and other focal adhesion complex proteins. We confirmed these interactions using proximity ligation analysis, immunofluorescence imaging, pull-down and co-immunoprecipitation. We further found that PEA-15 is enriched in endosomes and was required for efficient endosomal internalization of α5β1 integrin and cellular migration. Importantly, PEA-15 promotion of migration was dependent on PEA-15 phosphorylation at serines 104 and 116. These data support a novel endosomal role for PEA-15 in control of endosomal trafficking of integrins through an association with the β1 integrin and clathrin complexes, and thereby regulation of cell motility.
Collapse
Affiliation(s)
- Maisel J Caliva
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Won Seok Yang
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Shirley Young-Robbins
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Ming Zhou
- Women's Health Integrated Research Center at Inova, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Falls Church, VA, 22003, USA
| | - Hana Yoon
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Michelle L Matter
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Mark L Grimes
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Thomas Conrads
- Women's Health Integrated Research Center at Inova, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Falls Church, VA, 22003, USA
| | - Joe William Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| |
Collapse
|
12
|
Peterson RJ, Koval M. Above the Matrix: Functional Roles for Apically Localized Integrins. Front Cell Dev Biol 2021; 9:699407. [PMID: 34485286 PMCID: PMC8414885 DOI: 10.3389/fcell.2021.699407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Integrins are transmembrane proteins that are most typically thought of as integrating adhesion to the extracellular matrix with intracellular signaling and cell regulation. Traditionally, integrins are found at basolateral and lateral cell surfaces where they facilitate binding to the ECM and intercellular adhesion through cytosolic binding partners that regulate organization of actin microfilaments. However, evidence is accumulating that integrins also are apically localized, either endogenously or due to an exogenous stimulus. Apically localized integrins have been shown to regulate several processes by interacting with proteins such as connexins, tight junction proteins, and polarity complex proteins. Integrins can also act as receptors to mediate endocytosis. Here we review these newly appreciated roles for integrins localized to the apical cell surface.
Collapse
Affiliation(s)
- Raven J Peterson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
13
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
14
|
Amado-Azevedo J, van Stalborch AMD, Valent ET, Nawaz K, van Bezu J, Eringa EC, Hoevenaars FPM, De Cuyper IM, Hordijk PL, van Hinsbergh VWM, van Nieuw Amerongen GP, Aman J, Margadant C. Depletion of Arg/Abl2 improves endothelial cell adhesion and prevents vascular leak during inflammation. Angiogenesis 2021; 24:677-693. [PMID: 33770321 PMCID: PMC7996118 DOI: 10.1007/s10456-021-09781-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
Endothelial barrier disruption and vascular leak importantly contribute to organ dysfunction and mortality during inflammatory conditions like sepsis and acute respiratory distress syndrome. We identified the kinase Arg/Abl2 as a mediator of endothelial barrier disruption, but the role of Arg in endothelial monolayer regulation and its relevance in vivo remain poorly understood. Here we show that depletion of Arg in endothelial cells results in the activation of both RhoA and Rac1, increased cell spreading and elongation, redistribution of integrin-dependent cell-matrix adhesions to the cell periphery, and improved adhesion to the extracellular matrix. We further show that Arg is activated in the endothelium during inflammation, both in murine lungs exposed to barrier-disruptive agents, and in pulmonary microvessels of septic patients. Importantly, Arg-depleted endothelial cells were less sensitive to barrier-disruptive agents. Despite the formation of F-actin stress fibers and myosin light chain phosphorylation, Arg depletion diminished adherens junction disruption and intercellular gap formation, by reducing the disassembly of cell-matrix adhesions and cell retraction. In vivo, genetic deletion of Arg diminished vascular leak in the skin and lungs, in the presence of a normal immune response. Together, our data indicate that Arg is a central and non-redundant regulator of endothelial barrier integrity, which contributes to cell retraction and gap formation by increasing the dynamics of adherens junctions and cell-matrix adhesions in a Rho GTPase-dependent fashion. Therapeutic inhibition of Arg may provide a suitable strategy for the treatment of a variety of clinical conditions characterized by vascular leak.
Collapse
Affiliation(s)
- Joana Amado-Azevedo
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Erik T Valent
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kalim Nawaz
- Sanquin Research, Amsterdam, The Netherlands
| | - Jan van Bezu
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Femke P M Hoevenaars
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Peter L Hordijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Victor W M van Hinsbergh
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Geerten P van Nieuw Amerongen
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jurjan Aman
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands. .,Department of Pulmonology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Coert Margadant
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Liu J, Liu Z, Chen K, Chen W, Fang X, Li M, Zhou X, Ding N, Lei H, Guo C, Qian T, Wang Y, Liu L, Chen Y, Zhao H, Sun Y, Deng Y, Wu C. Kindlin-2 promotes rear focal adhesion disassembly and directional persistence during cell migration. J Cell Sci 2021; 134:jcs244616. [PMID: 33277381 DOI: 10.1242/jcs.244616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/22/2020] [Indexed: 01/13/2023] Open
Abstract
Cell migration involves front-to-rear asymmetric focal adhesion (FA) dynamics, which facilitates trailing edge detachment and directional persistence. Here, we show that kindlin-2 is crucial for FA sliding and disassembly in migrating cells. Loss of kindlin-2 markedly reduced FA number and selectively impaired rear FA sliding and disassembly, resulting in defective rear retraction and reduced directional persistence during cell migration. Kindlin-2-deficient cells failed to develop serum-induced actomyosin-dependent tension at FAs. At the molecular level, kindlin-2 directly interacted with myosin light chain kinase (MYLK, hereafter referred to as MLCK), which was enhanced in response to serum stimulation. Serum deprivation inhibited rear FA disassembly, which was released in response to serum stimulation. Overexpression of the MLCK-binding kindlin-2 F0F1 fragment (amino acid residues 1-167), which inhibits the interaction of endogenous kindlin-2 with MLCK, phenocopied kindlin-2 deficiency-induced migration defects. Inhibition of MLCK, like loss of kindlin-2, also impaired trailing-edge detachment, rear FA disassembly and directional persistence. These results suggest a role of kindlin-2 in promoting actomyosin contractility at FAs, leading to increased rear FA sliding and disassembly, and directional persistence during cell migration.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongzhen Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keng Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiyuan Fang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Li
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuening Zhou
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Ding
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan Lei
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tao Qian
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yilin Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nan Kai University, Tianjin, 300071, China
| | - Yonglong Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ying Sun
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
16
|
Abstract
The last two decades of research into integrin trafficking has revealed fascinating insight into the function of integrin receptors, particularly in the context of cell invasion and migration in cancer. Deregulation in the trafficking pathways of integrin receptors contributes to a variety of pathological conditions including cancer, and in fact, altered endocytic trafficking of these receptors has been shown to drive transformation and tumor progression. Being able to experimentally measure integrin internalization, recycling and cell surface levels are vital for determining the role integrins play in health and disease. Surface-labeling based endocytic trafficking assays provide a way to experimentally measure changes in the rate of internalization of cell surface proteins, and the recycling of internalized proteins back to the cell surface, with high accuracy. This chapter will focus on quantitative approaches based on cell surface biotinylation and capture ELISA to measure endocytosis, recycling, and cell surface levels of integrin receptors.
Collapse
|
17
|
Godbout E, Son DO, Hume S, Boo S, Sarrazy V, Clément S, Kapus A, Wehrle-Haller B, Bruckner-Tuderman L, Has C, Hinz B. Kindlin-2 Mediates Mechanical Activation of Cardiac Myofibroblasts. Cells 2020; 9:cells9122702. [PMID: 33348602 PMCID: PMC7766948 DOI: 10.3390/cells9122702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
We identify the focal adhesion protein kindlin-2 as player in a novel mechanotransduction pathway that controls profibrotic cardiac fibroblast to myofibroblast activation. Kindlin-2 is co-upregulated with the myofibroblast marker α-smooth muscle actin (α-SMA) in fibrotic rat hearts and in human cardiac fibroblasts exposed to fibrosis-stiff culture substrates and pro-fibrotic TGF-β1. Stressing fibroblasts using ferromagnetic microbeads, stretchable silicone membranes, and cell contraction agonists all result in kindlin-2 translocation to the nucleus. Overexpression of full-length kindlin-2 but not of kindlin-2 missing a putative nuclear localization sequence (∆NLS kindlin-2) results in increased α-SMA promoter activity. Downregulating kindlin-2 with siRNA leads to decreased myofibroblast contraction and reduced α-SMA expression, which is dependent on CC(A/T)-rich GG(CArG) box elements in the α-SMA promoter. Lost myofibroblast features under kindlin-2 knockdown are rescued with wild-type but not ∆NLS kindlin-2, indicating that myofibroblast control by kindlin-2 requires its nuclear translocation. Because kindlin-2 can act as a mechanotransducer regulating the transcription of α-SMA, it is a potential target to interfere with myofibroblast activation in tissue fibrosis.
Collapse
Affiliation(s)
- Elena Godbout
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Dong Ok Son
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Stephanie Hume
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Vincent Sarrazy
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
| | - Sophie Clément
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, 1211 Geneva 4, Switzerland;
| | - Andras Kapus
- Keenan Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, 1211 Geneva 4, Switzerland;
| | - Leena Bruckner-Tuderman
- Medical Center and Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (L.B.-T.); (C.H.)
| | - Cristina Has
- Medical Center and Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (L.B.-T.); (C.H.)
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (E.G.); (D.O.S.); (S.H.); (S.B.); (V.S.)
- Correspondence: ; Tel.: +1-416-978-8728
| |
Collapse
|
18
|
Integrins Control Vesicular Trafficking; New Tricks for Old Dogs. Trends Biochem Sci 2020; 46:124-137. [PMID: 33020011 PMCID: PMC7531435 DOI: 10.1016/j.tibs.2020.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Integrins are transmembrane receptors that transduce biochemical and mechanical signals across the plasma membrane and promote cell adhesion and migration. In addition, integrin adhesion complexes are functionally and structurally linked to components of the intracellular trafficking machinery and accumulating data now reveal that they are key regulators of endocytosis and exocytosis in a variety of cell types. Here, we highlight recent insights into integrin control of intracellular trafficking in processes such as degranulation, mechanotransduction, cell–cell communication, antibody production, virus entry, Toll-like receptor signaling, autophagy, and phagocytosis, as well as the release and uptake of extracellular vesicles. We discuss the underlying molecular mechanisms and the implications for a range of pathophysiological contexts, including hemostasis, immunity, tissue repair, cancer, and viral infection. Integrin adhesion complexes control polarized targeting of the intracellular trafficking machinery via microtubules. Integrin adhesions are exocytic hubs for a variety of vesicles, including lytic and dense granules, lysosome-related organelles, and biosynthetic vesicles. Integrin-dependent adhesion and signaling is required for degranulation of platelets and leukocytes and controls hemostasis and immunity. Specialized adhesion complexes containing integrin αvβ5 and clathrin are sites of frustrated endocytosis and hubs for mechanotransduction. Integrin control of endocytosis regulates Toll-like receptor signaling and autophagy in immune cells. Integrins control intercellular communication and viral transfer through extracellular vesicles.
Collapse
|
19
|
Reciprocal integrin/integrin antagonism through kindlin-2 and Rho GTPases regulates cell cohesion and collective migration. Matrix Biol 2020; 93:60-78. [PMID: 32450218 DOI: 10.1016/j.matbio.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Collective cell behaviour during embryogenesis and tissue repair requires the coordination of intercellular junctions, cytoskeleton-dependent shape changes controlled by Rho GTPases, and integrin-dependent cell-matrix adhesion. Many different integrins are simultaneously expressed during wound healing, embryonic development, and sprouting angiogenesis, suggesting that there is extensive integrin/integrin cross-talk to regulate cell behaviour. Here, we show that fibronectin-binding β1 and β3 integrins do not act synergistically, but rather antagonize each other during collective cell processes in neuro-epithelial cells, placental trophoblasts, and endothelial cells. Reciprocal β1/β3 antagonism controls RhoA activity in a kindlin-2-dependent manner, balancing cell spreading, contractility, and intercellular adhesion. In this way, reciprocal β1/β3 antagonism controls cell cohesion and cellular plasticity to switch between extreme and opposing states, including epithelial versus mesenchymal-like phenotypes and collective versus individual cell migration. We propose that integrin/integrin antagonism is a universal mechanism to effectuate social cellular interactions, important for tissue morphogenesis, endothelial barrier function, trophoblast invasion, and sprouting angiogenesis.
Collapse
|
20
|
Aboelfotoh AO, Foda EM, Elghandour AM, Teama NM, Abouzein RA, Mohamed GA. Talin-1; other than a potential marker for hepatocellular carcinoma diagnosis. Arab J Gastroenterol 2020; 21:80-84. [PMID: 32439236 DOI: 10.1016/j.ajg.2020.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND STUDY AIMS Hepatocellular carcinoma (HCC) is a major cause of cancer mortality worldwide. Talin-1 was previously proposed as a potential novel biomarker for HCC diagnosis but with limited and inconsistent data. We aimed to study the possible role of talin-1 in diagnosis and prognostic stratification of patients with hepatocellular carcinoma. PATIENTS AND METHODS Ninety-six patients were recruited and classified into three groups; 1) cirrhosis group: 40 patients with liver cirrhosis, 2) HCC group: 40 patients with HCC, 3) control group: 16 healthy volunteers with matched age and sex. Serum talin-1 level was detected using enzyme-linked immunosorbent assay (ELISA). RESULTS The highest levels of talin-1 were observed among the HCC group followed by cirrhosis then control groups (p = 0.000). In the HCC group, a significant correlation was found between talin-1 and each of multifocal HCC (p = 0.013), portal vein invasion (p = 0.022) and presence of ascites (p = 0.001), while no significant correlation was detected with tumour foci size (p = 0.605). For HCC detection, talin-1 had AUC = 0.858, 100% sensitivity and 65% specificity, while AFP had AUC = 1.000, 100% sensitivity and specificity. CONCLUSION Talin-1 is a potential marker for diagnosis and prognostic assessment of HCC. Further studies are needed to investigate the ultimate diagnostic and prognostic utility of serum talin-1.
Collapse
Affiliation(s)
- Aly O Aboelfotoh
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Ramses St, Abbassia, Cairo 11591, Egypt
| | - Enas M Foda
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Ramses St, Abbassia, Cairo 11591, Egypt
| | - Ahmed M Elghandour
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Ramses St, Abbassia, Cairo 11591, Egypt
| | - Nahla M Teama
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Ramses St, Abbassia, Cairo 11591, Egypt
| | - Reham A Abouzein
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Ramses St, Abbassia, Cairo 11591, Egypt
| | - Ghada A Mohamed
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Ramses St, Abbassia, Cairo 11591, Egypt.
| |
Collapse
|
21
|
Samassa F, Ferrari ML, Husson J, Mikhailova A, Porat Z, Sidaner F, Brunner K, Teo TH, Frigimelica E, Tinevez JY, Sansonetti PJ, Thoulouze MI, Phalipon A. Shigella impairs human T lymphocyte responsiveness by hijacking actin cytoskeleton dynamics and T cell receptor vesicular trafficking. Cell Microbiol 2020; 22:e13166. [PMID: 31957253 PMCID: PMC7187243 DOI: 10.1111/cmi.13166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Strategies employed by pathogenic enteric bacteria, such as Shigella, to subvert the host adaptive immunity are not well defined. Impairment of T lymphocyte chemotaxis by blockage of polarised edge formation has been reported upon Shigella infection. However, the functional impact of Shigella on T lymphocytes remains to be determined. Here, we show that Shigella modulates CD4+ T cell F‐actin dynamics and increases cell cortical stiffness. The scanning ability of T lymphocytes when encountering antigen‐presenting cells (APC) is subsequently impaired resulting in decreased cell–cell contacts (or conjugates) between the two cell types, as compared with non‐infected T cells. In addition, the few conjugates established between the invaded T cells and APCs display no polarised delivery and accumulation of the T cell receptor to the contact zone characterising canonical immunological synapses. This is most likely due to the targeting of intracellular vesicular trafficking by the bacterial type III secretion system (T3SS) effectors IpaJ and VirA. The collective impact of these cellular reshapings by Shigella eventually results in T cell activation dampening. Altogether, these results highlight the combined action of T3SS effectors leading to T cell defects upon Shigella infection.
Collapse
Affiliation(s)
- Fatoumata Samassa
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | - Mariana L Ferrari
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyX), Ecole polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
| | | | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facility, Weizmann Institute of Sciences, Rehovot, Israel
| | | | - Katja Brunner
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | - Teck-Hui Teo
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| | | | | | - Philippe J Sansonetti
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France.,Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | | | - Armelle Phalipon
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, INSERM U1202, Paris, France
| |
Collapse
|
22
|
Soto-Ribeiro M, Kastberger B, Bachmann M, Azizi L, Fouad K, Jacquier MC, Boettiger D, Bouvard D, Bastmeyer M, Hytönen VP, Wehrle-Haller B. β1D integrin splice variant stabilizes integrin dynamics and reduces integrin signaling by limiting paxillin recruitment. J Cell Sci 2019; 132:jcs.224493. [PMID: 30890648 DOI: 10.1242/jcs.224493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
Heterodimeric integrin receptors control cell adhesion, migration and extracellular matrix assembly. While the α integrin subunit determines extracellular ligand specificity, the β integrin chain binds to an acidic residue of the ligand, and cytoplasmic adapter protein families such as talins, kindlins and paxillin, to form mechanosensing cell matrix adhesions. Alternative splicing of the β1 integrin cytoplasmic tail creates ubiquitously expressed β1A, and the heart and skeletal muscle-specific β1D form. To study the physiological difference between these forms, we developed fluorescent β1 integrins and analyzed their dynamics, localization, and cytoplasmic adapter recruitment and effects on cell proliferation. On fibronectin, GFP-tagged β1A integrin showed dynamic exchange in peripheral focal adhesions, and long, central fibrillar adhesions. In contrast, GFP-β1D integrins exchanged slowly, forming immobile and short central adhesions. While adhesion recruitment of GFP-β1A integrin was sensitive to C-terminal tail mutagenesis, GFP-β1D integrin was recruited independently of the distal NPXY motif. In addition, a P786A mutation in the proximal, talin-binding NPXY783 motif switched β1D to a highly dynamic integrin. In contrast, the inverse A786P mutation in β1A integrin interfered with paxillin recruitment and proliferation. Thus, differential β1 integrin splicing controls integrin-dependent adhesion signaling, to adapt to the specific physiological needs of differentiated muscle cells.
Collapse
Affiliation(s)
- Martinho Soto-Ribeiro
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Birgit Kastberger
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.,Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Kenza Fouad
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Marie-Claude Jacquier
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - David Boettiger
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Daniel Bouvard
- Université Grenoble Alpes, Institute for Advanced Bioscience, INSERM U823, F-38042 Grenoble, France
| | - Martin Bastmeyer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
23
|
Rivera-Serrano EE, González-López O, Das A, Lemon SM. Cellular entry and uncoating of naked and quasi-enveloped human hepatoviruses. eLife 2019; 8:43983. [PMID: 30801249 PMCID: PMC6422491 DOI: 10.7554/elife.43983] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/22/2019] [Indexed: 01/07/2023] Open
Abstract
Many ‘non-enveloped’ viruses, including hepatitis A virus (HAV), are released non-lytically from infected cells as infectious, quasi-enveloped virions cloaked in host membranes. Quasi-enveloped HAV (eHAV) mediates stealthy cell-to-cell spread within the liver, whereas stable naked virions shed in feces are optimized for environmental transmission. eHAV lacks virus-encoded surface proteins, and how it enters cells is unknown. We show both virion types enter by clathrin- and dynamin-dependent endocytosis, facilitated by integrin β1, and traffic through early and late endosomes. Uncoating of naked virions occurs in late endosomes, whereas eHAV undergoes ALIX-dependent trafficking to lysosomes where the quasi-envelope is enzymatically degraded and uncoating ensues coincident with breaching of endolysosomal membranes. Neither virion requires PLA2G16, a phospholipase essential for entry of other picornaviruses. Thus naked and quasi-enveloped virions enter via similar endocytic pathways, but uncoat in different compartments and release their genomes to the cytosol in a manner mechanistically distinct from other Picornaviridae. The Hepatitis A virus is a common cause of liver disease in humans. It is unable to multiply on its own so it needs to enter the cells of its host and hijack them to make new virus particles. Infected human cells produce two different types of Hepatitis A particles. The first, known as ‘naked’ virus particles, consist of molecules of ribonucleic acid (or RNA for short) that are surrounded by a protein shell. Naked virus particles are shed in the feces of infected individuals and are very stable, allowing the virus to spread in the environment to find new hosts. At the same time, a second type of particle, known as the ‘quasi-enveloped’ virus, circulates in the blood of the infected individual. In a quasi-enveloped particle, the RNA and protein shell are completely enclosed within a membrane that is released from the host cell. This membrane protects the protein shell from human immune responses, enabling quasi-enveloped virus particles to spread in a stealthy fashion within the liver. It was not clear how these two different types of virus particle are both able to enter cells despite their surface being so different. To address this question, Rivera-Serrano et al. used a microscopy approach to observe Hepatitis A particles infecting human liver cells. The experiments showed that both types of virus particle actually use similar routes. First, the external membrane of the cell folded around the particles, creating a vesicle that trapped the viruses and brought them within the cell. Inside these vesicles, the naked virus particles soon fell apart, and their RNA was released directly into the interior of the cell. However, the vesicles that carried quasi-enveloped virus travelled further into the cell and eventually delivered their contents to a specialized compartment, the lysosome, where the virus membrane was degraded. This caused the quasi-enveloped viruses to fall apart and release their RNA into the cell more slowly than the naked particles. Several viruses, such as the one that causes polio, also have quasi-enveloped forms. Studying how these particles are able to infect human cells while hiding behind membranes borrowed from the host may help us target these viruses better.
Collapse
Affiliation(s)
- Efraín E Rivera-Serrano
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Anshuman Das
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Stanley M Lemon
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
24
|
Abstract
Integrin activation is essential for creating functional transmembrane receptors capable of inducing downstream cellular effects such as cell migration, cell spreading, neurite outgrowth and axon regeneration. Integrins are bidirectional signalling molecules that mediate their effects by 'inside-out' and 'outside-in' signalling. This review will provide a detailed overview of integrin activation focusing on intracellular activation in neurons and discussing direct implications in the regulation of neurite outgrowth and axon regeneration.
Collapse
Affiliation(s)
- Menghon Cheah
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK.
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| | - Melissa R Andrews
- Department of Biological Sciences, University of Southampton, Life Sciences Bldg 85, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
25
|
Diggins NL, Kang H, Weaver A, Webb DJ. α5β1 integrin trafficking and Rac activation are regulated by APPL1 in a Rab5-dependent manner to inhibit cell migration. J Cell Sci 2018; 131:jcs.207019. [PMID: 29361527 DOI: 10.1242/jcs.207019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023] Open
Abstract
Cell migration is a tightly coordinated process that requires the spatiotemporal regulation of many molecular components. Because adaptor proteins can serve as integrators of cellular events, they are being increasingly studied as regulators of cell migration. The adaptor protein containing a pleckstrin-homology (PH) domain, phosphotyrosine binding (PTB) domain, and leucine zipper motif 1 (APPL1) is a 709 amino acid endosomal protein that plays a role in cell proliferation and survival as well as endosomal trafficking and signaling. However, its function in regulating cell migration is poorly understood. Here, we show that APPL1 hinders cell migration by modulating both trafficking and signaling events controlled by Rab5 in cancer cells. APPL1 decreases internalization and increases recycling of α5β1 integrin, leading to higher levels of α5β1 integrin at the cell surface that hinder adhesion dynamics. Furthermore, APPL1 decreases the activity of the GTPase Rac and its effector PAK, which in turn regulate cell migration. Thus, we demonstrate a novel role for the interaction between APPL1 and Rab5 in governing crosstalk between signaling and trafficking pathways on endosomes to affect cancer cell migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nicole L Diggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alissa Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
26
|
Cook JH, Ueno N, Lodoen MB. Toxoplasma gondii disrupts β1 integrin signaling and focal adhesion formation during monocyte hypermotility. J Biol Chem 2018; 293:3374-3385. [PMID: 29295815 PMCID: PMC5836128 DOI: 10.1074/jbc.m117.793281] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/14/2017] [Indexed: 01/13/2023] Open
Abstract
The motility of blood monocytes is orchestrated by the activity of cell-surface integrins, which translate extracellular signals into cytoskeletal changes to mediate adhesion and migration. Toxoplasma gondii is an intracellular parasite that infects migratory cells and enhances their motility, but the mechanisms underlying T. gondii-induced hypermotility are incompletely understood. We investigated the molecular basis for the hypermotility of primary human peripheral blood monocytes and THP-1 cells infected with T. gondii Compared with uninfected monocytes, T. gondii infection of monocytes reduced cell spreading and the number of activated β1 integrin clusters in contact with fibronectin during settling, an effect not observed in monocytes treated with lipopolysaccharide (LPS) or Escherichia coli Furthermore, T. gondii infection disrupted the phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 (Tyr-397) and Tyr-925 and of the related protein proline-rich tyrosine kinase (Pyk2) at Tyr-402. The localization of paxillin, FAK, and vinculin to focal adhesions and the colocalization of these proteins with activated β1 integrins were also impaired in T. gondii-infected monocytes. Using time-lapse confocal microscopy of THP-1 cells expressing enhanced GFP (eGFP)-FAK during settling on fibronectin, we found that T. gondii-induced monocyte hypermotility was characterized by a reduced number of enhanced GFP-FAK-containing clusters over time compared with uninfected cells. This study demonstrates an integrin conformation-independent regulation of the β1 integrin adhesion pathway, providing further insight into the molecular mechanism of T. gondii-induced monocyte hypermotility.
Collapse
Affiliation(s)
- Joshua H Cook
- From the Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92697
| | - Norikiyo Ueno
- From the Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92697
| | - Melissa B Lodoen
- From the Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, California, 92697
| |
Collapse
|
27
|
Jonker CTH, Galmes R, Veenendaal T, Ten Brink C, van der Welle REN, Liv N, de Rooij J, Peden AA, van der Sluijs P, Margadant C, Klumperman J. Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. Nat Commun 2018; 9:792. [PMID: 29476049 PMCID: PMC5824891 DOI: 10.1038/s41467-018-03226-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/30/2018] [Indexed: 01/09/2023] Open
Abstract
Recycling endosomes maintain plasma membrane homeostasis and are important for cell polarity, migration, and cytokinesis. Yet, the molecular machineries that drive endocytic recycling remain largely unclear. The CORVET complex is a multi-subunit tether required for fusion between early endosomes. Here we show that the CORVET-specific subunits Vps3 and Vps8 also regulate vesicular transport from early to recycling endosomes. Vps3 and Vps8 localise to Rab4-positive recycling vesicles and co-localise with the CHEVI complex on Rab11-positive recycling endosomes. Depletion of Vps3 or Vps8 does not affect transferrin recycling, but delays the delivery of internalised integrins to recycling endosomes and their subsequent return to the plasma membrane. Consequently, Vps3/8 depletion results in defects in integrin-dependent cell adhesion and spreading, focal adhesion formation, and cell migration. These data reveal a role for Vps3 and Vps8 in a specialised recycling pathway important for integrin trafficking.
Collapse
Affiliation(s)
- C T H Jonker
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Department of Ophthalmology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - R Galmes
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - T Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - C Ten Brink
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - R E N van der Welle
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - N Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - J de Rooij
- Section Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht Universty, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - A A Peden
- Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - P van der Sluijs
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH Utrecht, The Netherlands
| | - C Margadant
- Department of Molecular Cell Biology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - J Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and β1 integrin. Sci Rep 2017; 7:15008. [PMID: 29118431 PMCID: PMC5678369 DOI: 10.1038/s41598-017-14932-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/18/2017] [Indexed: 01/06/2023] Open
Abstract
Focal adhesion (FA) assembly, mediated by integrin activation, responds to matrix stiffness; however, the underlying mechanisms are unclear. Here, we showed that β1 integrin and caveolin-1 (Cav1) levels were decreased with declining matrix stiffness. Soft matrix selectively downregulated β1 integrin by endocytosis and subsequent lysosomal degradation. Disruption of lipid rafts with methyl-β-cyclodextrin or nystatin, or knockdown of Cav1 by siRNA decreased cell spreading, FA assembly, and β1 integrin protein levels in cells cultured on stiff matrix. Overexpression of Cav1, particularly the phospho-mimetic mutant Cav1-Y14D, averted soft matrix-induced decreases in β1 integrin protein levels, cell spreading, and FA assembly in NMuMG cells. Interestingly, overexpression of an auto-clustering β1 integrin hindered soft matrix-induced reduction of Cav1 and cell spreading, which suggests a reciprocal regulation between β1 integrin and Cav1. Finally, co-expression of this auto-clustering β1 integrin and Cav1-Y14D synergistically enhanced cell spreading, and FA assembly in HEK293T cells cultured on either stiff ( > G Pa) or soft (0.2 kPa) matrices. Collectively, these results suggest that matrix stiffness governs the expression of β1 integrin and Cav1, which reciprocally control each other, and subsequently determine FA assembly and turnover.
Collapse
|
29
|
Talin-1 interaction network promotes hepatocellular carcinoma progression. Oncotarget 2017; 8:13003-13014. [PMID: 28099903 PMCID: PMC5355072 DOI: 10.18632/oncotarget.14674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022] Open
Abstract
Talin-1 is a known oncogene-associated protein. In this study, we set out to determine its role and mechanisms in hepatocellular carcinoma (HCC) progression. We found Talin-1 to be highly expressed in HCC cells relative to non-cancer liver epithelial cells and to promote tumor growth and metastasis. We used Whole Human Genome Oligo Microarray analysis with HCC cells and HCC cells in which Talin-1 was knocked down using shRNA to identify transcripts regulated by Talin-1. Of the 40,000 tested genes, 3099 were differentially expressed after Talin-1 knockdown; expression of 1924 genes was increased, while expression of 2175 was decreased. Gene ontology (GO) profiling indicated that Talin-1 promotes many HCC progression-related activities, including ion transport and membrane depolarization, cell growth, and cell adhesion. We also characterized the network of gene transcripts regulated by Talin-1 and their role in promoting HCC progression. Our findings confirm the role of Talin-1 in carcinogenesis and provided a set of novel therapeutic targets for the treatment of HCC.
Collapse
|
30
|
Zhang Z, Mu Y, Veevers J, Peter AK, Manso AM, Bradford WH, Dalton ND, Peterson KL, Knowlton KU, Ross RS, Zhou X, Chen J. Postnatal Loss of Kindlin-2 Leads to Progressive Heart Failure. Circ Heart Fail 2017; 9:CIRCHEARTFAILURE.116.003129. [PMID: 27502369 DOI: 10.1161/circheartfailure.116.003129] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND The striated muscle costamere, a multiprotein complex at the boundary between the sarcomere and the sarcolemma, plays an integral role in maintaining striated muscle structure and function. Multiple costamere-associated proteins, such as integrins and integrin-interacting proteins, have been identified and shown to play an increasingly important role in the pathogenesis of human cardiomyopathy. Kindlin-2 is an adaptor protein that binds to the integrin β cytoplasmic tail to promote integrin activation. Genetic deficiency of Kindlin-2 results in embryonic lethality, and knockdown of the Kindlin-2 homolog in Caenorhabditis elegans and Danio rerio suggests that it has an essential role in integrin function and normal muscle structure and function. The precise role of Kindlin-2 in the mammalian cardiac myocyte remains to be determined. METHODS AND RESULTS The current studies were designed to investigate the role of Kindlin-2 in the mammalian heart. We generated a series of cardiac myocyte-specific Kindlin-2 knockout mice with excision of the Kindlin-2 gene in either developing or adult cardiac myocytes. We found that mice lacking Kindlin-2 in the early developing heart are embryonic lethal. We demonstrate that deletion of Kindlin-2 at late gestation or in adult cardiac myocytes resulted in heart failure and premature death, which were associated with enlargement of the heart and extensive fibrosis. In addition, integrin β1D protein expression was significantly downregulated in the adult heart. CONCLUSIONS Kindlin-2 is required to maintain integrin β1D protein stability. Postnatal loss of Kindlin-2 from cardiac myocytes leads to progressive heart failure, showing the importance of costameric proteins like Kindlin-2 for homeostasis of normal heart function.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Yongxin Mu
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Jennifer Veevers
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Angela K Peter
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Ana Maria Manso
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - William H Bradford
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Nancy D Dalton
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Kirk L Peterson
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Kirk U Knowlton
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Robert S Ross
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Xinmin Zhou
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Ju Chen
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.).
| |
Collapse
|
31
|
Wei X, Sun Y, Wu Y, Zhu J, Gao B, Yan H, Zhao Z, Zhou J, Jing Z. Downregulation of Talin-1 expression associates with increased proliferation and migration of vascular smooth muscle cells in aortic dissection. BMC Cardiovasc Disord 2017. [PMID: 28637452 PMCID: PMC5480185 DOI: 10.1186/s12872-017-0588-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background This study aimed to assessed whether Talin-1 is involved in the pathogenesis of aortic dissection via regulating vascular smooth muscle cell (VSMC) biological function. Methods Human aortic samples were obtained from organ donors who died from nonvascular diseases as normal controls and from patients undergoing surgical repair of thoracic aortic dissection. The expression level and distribution of Talin-1 were detected using westernblot analysis and immunohistochemistry in each sample. We inhibited the expression of Talin-1 via RNA interference in VSMCs. VSMC proliferation was detected by Cell-counting Kit-8 analyses. Scratch test and flow cytometry were used to identify the migration and apoptosis ability. Antibody microarray analysis and qRT-PCR were used to detect some protein and mRNA changes which were induced by Talin-1 downregulation. Results Talin-1 was significantly downregulated in the media of aortic dissection samples compared with controls (P < 0.05). Talin-1 knockdown significantly induced VSMC proliferation and migration in vitro. Proteins which involved in cell cycle can be regulated by downregulating Talin-1. Down regulation of Talin-1 can significanly increased the expression of anaphase-promoting complex subunit 2 (APC2) and decreased p19 alternative reading frame (p19ARF), Cullin-3, and beta actin’s expression. Conclusions Talin-1 induces VSMCs proliferation and migration. It downregulated in aortic dissection, which might play a potential role in the development of aortic dissection.
Collapse
Affiliation(s)
- Xiaolong Wei
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yudong Sun
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yani Wu
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jiang Zhu
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Bin Gao
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Han Yan
- Company 8, Cadet brigade, Second Military Medical University, Shanghai, China
| | - Zhiqing Zhao
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zaiping Jing
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
32
|
A Key Regulator of Cell Adhesion: Identification and Characterization of Important N-Glycosylation Sites on Integrin α5 for Cell Migration. Mol Cell Biol 2017; 37:MCB.00558-16. [PMID: 28167607 DOI: 10.1128/mcb.00558-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2017] [Indexed: 11/20/2022] Open
Abstract
The N-glycosylation of integrin α5β1 is thought to control many fundamental aspects of cell behavior, including cell adhesion and migration. However, the mechanism of how N-glycans function remains largely obscure. Here, we used a loss-of-function approach. Wild-type (WT) integrin α5 and N-glycosylation mutant S3-5 (sites 3 to 5) integrin α5, which contains fewer N-glycans, were stably reconstituted in α5 knockout cancer cells. We found that the migration ability of S3-5 cells was decreased in comparison with that of the WT. Interestingly, the levels of phosphorylated focal adhesion kinase and actin stress fiber formation were greatly enhanced in the S3-5 mutant. In a mechanistic manner, the internalization of active but not total integrin α5β1 was inhibited in S3-5 cells, which is a process that is related to the enhanced expression of active integrin α5β1 on the cell surface. Importantly, restoration of N-glycosylation on the β-propeller domain of α5 reinstated the cell migration ability, active α5β1 expression, and internalization. Moreover, these N-glycans are critical for α5-syndecan-4 complex formation. These findings indicate that N-glycosylation on the β-propeller domain functions as a molecular switch to control the dynamics of α5β1 on the cell surface that in turn is required for optimum adhesion for cell migration.
Collapse
|
33
|
Bharadwaj M, Strohmeyer N, Colo GP, Helenius J, Beerenwinkel N, Schiller HB, Fässler R, Müller DJ. αV-class integrins exert dual roles on α5β1 integrins to strengthen adhesion to fibronectin. Nat Commun 2017; 8:14348. [PMID: 28128308 PMCID: PMC5290147 DOI: 10.1038/ncomms14348] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022] Open
Abstract
Upon binding to the extracellular matrix protein, fibronectin, αV-class and α5β1 integrins trigger the recruitment of large protein assemblies and strengthen cell adhesion. Both integrin classes have been functionally specified, however their specific roles in immediate phases of cell attachment remain uncharacterized. Here, we quantify the adhesion of αV-class and/or α5β1 integrins expressing fibroblasts initiating attachment to fibronectin (≤120 s) by single-cell force spectroscopy. Our data reveals that αV-class integrins outcompete α5β1 integrins. Once engaged, αV-class integrins signal to α5β1 integrins to establish additional adhesion sites to fibronectin, away from those formed by αV-class integrins. This crosstalk, which strengthens cell adhesion, induces α5β1 integrin clustering by RhoA/ROCK/myosin-II and Arp2/3-mediated signalling, whereas overall cell adhesion depends on formins. The dual role of both fibronectin-binding integrin classes commencing with an initial competition followed by a cooperative crosstalk appears to be a basic cellular mechanism in assembling focal adhesions to the extracellular matrix.
Collapse
Affiliation(s)
- Mitasha Bharadwaj
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - Nico Strohmeyer
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - Georgina P Colo
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | - Jonne Helenius
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| | - Herbert B Schiller
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany.,Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Oberschleißheim 85764, Germany
| | - Reinhard Fässler
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | - Daniel J Müller
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
| |
Collapse
|
34
|
Abstract
Engagement of the T cell antigen receptor (TCR) by specific ligand bound to the major histocompatibility complex is the primary event that leads to the assembly of the immune synapse (IS). Central to this process is TCR clustering at the T cell-APC contact, which is achieved with the contribution of an endosomal pool that is delivered to the IS by polarized recycling. As the TCR recycling process has not been fully elucidated, we developed methods suitable to quantitate recycling to the plasma membrane of TCR/CD3 complexes that have been engaged at the cell surface and track their traffic through the intracellular vesicular compartments toward the IS.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Life Sciences, University of Siena, Via A. Moro, 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Via A. Moro, 2, Siena, 53100, Italy
| |
Collapse
|
35
|
Walser M, Umbricht CA, Fröhli E, Nanni P, Hajnal A. β-Integrin de-phosphorylation by the Density-Enhanced Phosphatase DEP-1 attenuates EGFR signaling in C. elegans. PLoS Genet 2017; 13:e1006592. [PMID: 28135265 PMCID: PMC5305270 DOI: 10.1371/journal.pgen.1006592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/13/2017] [Accepted: 01/20/2017] [Indexed: 11/19/2022] Open
Abstract
Density-Enhanced Phosphatase-1 (DEP-1) de-phosphorylates various growth factor receptors and adhesion proteins to regulate cell proliferation, adhesion and migration. Moreover, dep-1/scc1 mutations have been detected in various types of human cancers, indicating a broad tumor suppressor activity. During C. elegans development, DEP-1 mediates binary cell fate decisions by negatively regulating EGFR signaling. Using a substrate-trapping DEP-1 mutant in a proteomics approach, we have identified the C. elegans β-integrin subunit PAT-3 as a specific DEP-1 substrate. DEP-1 selectively de-phosphorylates tyrosine 792 in the membrane-proximal NPXY motif to promote integrin activation via talin recruitment. The non-phosphorylatable β-integrin mutant pat-3(Y792F) partially suppresses the hyperactive EGFR signaling phenotype caused by loss of dep-1 function. Thus, DEP-1 attenuates EGFR signaling in part by de-phosphorylating Y792 in the β-integrin cytoplasmic tail, besides the direct de-phosphorylation of the EGFR. Furthermore, in vivo FRAP analysis indicates that the αβ-integrin/talin complex attenuates EGFR signaling by restricting receptor mobility on the basolateral plasma membrane. We propose that DEP-1 regulates EGFR signaling via two parallel mechanisms, by direct receptor de-phosphorylation and by restricting receptor mobility through αβ-integrin activation.
Collapse
Affiliation(s)
- Michael Walser
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
- Molecular Life Science Zürich PhD program, Zürich, Switzerland
| | - Christoph Alois Umbricht
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
| | - Erika Fröhli
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Winterthurerstr. 190, Zürich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
| |
Collapse
|
36
|
Smith AJ, Wen YA, Stevens PD, Liu J, Wang C, Gao T. PHLPP negatively regulates cell motility through inhibition of Akt activity and integrin expression in pancreatic cancer cells. Oncotarget 2016; 7:7801-15. [PMID: 26760962 PMCID: PMC4884955 DOI: 10.18632/oncotarget.6848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/01/2016] [Indexed: 12/16/2022] Open
Abstract
Pancreatic adenocarcinoma is currently the fourth leading cause for cancer-related mortality. Malignant progression of pancreatic cancer depends not only on rapid proliferation of tumor cells but also on increased cell motility. In this study, we showed that increased PHLPP expression significantly reduced the rate of migration in pancreatic ductal adenocarcinoma (PDAC) cells whereas knockdown of PHLPP had the opposite effect. In addition, cell motility at the individual cell level was negatively regulated by PHLPP as determined using time-lapse imaging. Interestingly, the expression of β1 and β4 integrin proteins were decreased in PHLPP overexpressing cells and increased in PHLPP knockdown cells whereas the mRNA levels of integrin were not altered by changes in PHLPP expression. In determining the molecular mechanism underlying PHLPP-mediated regulation of integrin expression, we found that inhibition of lysosome activity rescued integrin expression in PHLPP overexpressing cells, thus suggesting that PHLPP negatively controls cell motility by inhibiting Akt activity to promote lysosome-dependent degradation of integrins. Functionally, the increased cell migration observed in PHLPP knockdown cells was effectively blocked by the neutralizing antibodies against β1 or β4 integrin. Taken together, our study identified a tumor suppressor role of PHLPP in suppressing cell motility by negatively regulating integrin expression in pancreatic cancer cells.
Collapse
Affiliation(s)
- Alena J Smith
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Yang-An Wen
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Payton D Stevens
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jingpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
37
|
Demircioglu F, Hodivala-Dilke K. αvβ3 Integrin and tumour blood vessels-learning from the past to shape the future. Curr Opin Cell Biol 2016; 42:121-127. [PMID: 27474973 DOI: 10.1016/j.ceb.2016.07.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/05/2016] [Accepted: 07/09/2016] [Indexed: 12/14/2022]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, is thought to enhance tumour growth and these blood vessels can act as conduits of tumour cell metastasis. Integrins, the family of cell surface extracellular matrix receptors, can promote endothelial cell migration and survival, both essential features of angiogenesis, and were thus considered good targets for anti-angiogenic therapy. This sparked the development of agents to block integrin function as new cancer therapies. Here, we review the current status of αvβ3-integrin in tumour angiogenesis. Learning from what we now know about integrin conformational changes and endocytosis, we discuss the possible future of targeting blood vessel αvβ3-integrin in the control of cancer.
Collapse
Affiliation(s)
- Fevzi Demircioglu
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1 M 6BQ, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1 M 6BQ, United Kingdom.
| |
Collapse
|
38
|
Abstract
Integrins are a family of heterodimeric receptors that bind to components of the extracellular matrix and influence cellular processes as varied as proliferation and migration. These effects are achieved by tight spatiotemporal control over intracellular signalling pathways, including those that mediate cytoskeletal reorganisation. The ability of integrins to bind to ligands is governed by integrin conformation, or activity, and this is widely acknowledged to be an important route to the regulation of integrin function. Over the last 15 years, however, the pathways that regulate endocytosis and recycling of integrins have emerged as major players in controlling integrin action, and studying integrin trafficking has revealed fresh insight into the function of this fascinating class of extracellular matrix receptors, in particular in the context of cell migration and invasion. Here, we review our current understanding of the contribution of integrin trafficking to cell motility.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK.
| |
Collapse
|
39
|
Hou S, Hang Q, Isaji T, Lu J, Fukuda T, Gu1 J. Importance of membrane‐proximal
N
‐glycosylation on integrin α1 in its activation and complex formation. FASEB J 2016; 30:4120-4131. [DOI: 10.1096/fj.201600665r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/15/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Sicong Hou
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Miyagi Japan
| | - Qinglei Hang
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Miyagi Japan
| | - Tomoya Isaji
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Miyagi Japan
| | - Jishun Lu
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Miyagi Japan
| | - Tomohiko Fukuda
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Miyagi Japan
| | - Jianguo Gu1
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and Glycobiology Tohoku Medical and Pharmaceutical University Miyagi Japan
| |
Collapse
|
40
|
Blagojević Zagorac G, Mahmutefendić H, Maćešić S, Karleuša L, Lučin P. Quantitative Analysis of Endocytic Recycling of Membrane Proteins by Monoclonal Antibody-Based Recycling Assays. J Cell Physiol 2016; 232:463-476. [DOI: 10.1002/jcp.25503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022]
Affiliation(s)
| | - Hana Mahmutefendić
- Department of Physiology and Immunology; University of Rijeka Faculty of Medicine; Rijeka Croatia
| | - Senka Maćešić
- Department of Mathematics, Physics, Foreign Languages and Kinesiology; University of Rijeka Faculty of Engineering; Rijeka Croatia
| | - Ljerka Karleuša
- Department of Physiology and Immunology; University of Rijeka Faculty of Medicine; Rijeka Croatia
| | - Pero Lučin
- Department of Physiology and Immunology; University of Rijeka Faculty of Medicine; Rijeka Croatia
| |
Collapse
|
41
|
Maier K, He Y, Esser PR, Thriene K, Sarca D, Kohlhase J, Dengjel J, Martin L, Has C. Single Amino Acid Deletion in Kindlin-1 Results in Partial Protein Degradation Which Can Be Rescued by Chaperone Treatment. J Invest Dermatol 2016; 136:920-929. [DOI: 10.1016/j.jid.2015.12.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/30/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
|
42
|
Theodosiou M, Widmaier M, Böttcher RT, Rognoni E, Veelders M, Bharadwaj M, Lambacher A, Austen K, Müller DJ, Zent R, Fässler R. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. eLife 2016; 5:e10130. [PMID: 26821125 PMCID: PMC4749545 DOI: 10.7554/elife.10130] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/19/2015] [Indexed: 12/28/2022] Open
Abstract
Integrins require an activation step prior to ligand binding and signaling. How talin and kindlin contribute to these events in non-hematopoietic cells is poorly understood. Here we report that fibroblasts lacking either talin or kindlin failed to activate β1 integrins, adhere to fibronectin (FN) or maintain their integrins in a high affinity conformation induced by Mn(2+). Despite compromised integrin activation and adhesion, Mn(2+) enabled talin- but not kindlin-deficient cells to initiate spreading on FN. This isotropic spreading was induced by the ability of kindlin to directly bind paxillin, which in turn bound focal adhesion kinase (FAK) resulting in FAK activation and the formation of lamellipodia. Our findings show that talin and kindlin cooperatively activate integrins leading to FN binding and adhesion, and that kindlin subsequently assembles an essential signaling node at newly formed adhesion sites in a talin-independent manner.
Collapse
Affiliation(s)
- Marina Theodosiou
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Moritz Widmaier
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Emanuel Rognoni
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maik Veelders
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mitasha Bharadwaj
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Armin Lambacher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Katharina Austen
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, United States
- Department of Medicine, Veterans Affairs Medical Center, Nashville, United States
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
43
|
Distinct effects of β1 integrin on cell proliferation and cellular signaling in MDA-MB-231 breast cancer cells. Sci Rep 2016; 6:18430. [PMID: 26728650 PMCID: PMC4700444 DOI: 10.1038/srep18430] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
An aberrant expression of integrin β1 has been implicated in breast cancer progression. Here, we compared the cell behaviors of wild-type (WT), β1 gene deleted (KO), and β1 gene restored (Res) MDA-MB-231 cells. Surprisingly, the expression of β1 exhibited opposite effects on cell proliferation. These effects were dependent on cell densities, and they showed an up-regulation of cell proliferation when cells were cultured under sparse conditions, and a down-regulation of cell growth under dense conditions. By comparison with WT cells, the phosphorylation levels of ERK in KO cells were consistently suppressed under sparse culture conditions, but consistently up-regulated under dense culture conditions. The phosphorylation levels of EGFR were increased in the KO cells. By contrast, the phosphorylation levels of AKT were decreased in the KO cells. The abilities for both colony and tumor formation were significantly suppressed in the KO cells, suggesting that β1 plays an important role in cell survival signaling for tumorigenesis. These aberrant phenotypes in the KO cells were rescued in the Res cells. Taken together, these results clearly showed the distinct roles of β1 in cancer cells: the inhibition of cell growth and the promotion of cell survival, which may shed light on cancer therapies.
Collapse
|
44
|
Peak BMP Responses in the Drosophila Embryo Are Dependent on the Activation of Integrin Signaling. Cell Rep 2015; 12:1584-93. [PMID: 26321638 PMCID: PMC4571823 DOI: 10.1016/j.celrep.2015.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/19/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023] Open
Abstract
Within a 3D tissue, cells need to integrate signals from growth factors, such as BMPs, and the extracellular matrix (ECM) to coordinate growth and differentiation. Here, we use the Drosophila embryo as a model to investigate how BMP responses are influenced by a cell’s local ECM environment. We show that integrins, which are ECM receptors, are absolutely required for peak BMP signaling. This stimulatory effect of integrins requires their intracellular signaling function, which is activated by the ECM protein collagen IV. Mechanistically, integrins interact with the BMP receptor and stimulate phosphorylation of the downstream Mad transcription factor. The BMP-pathway-enhancing function of integrins is independent of focal adhesion kinase, but it requires conserved NPXY motifs in the β-integrin cytoplasmic tail. Furthermore, we show that an α-integrin subunit is a BMP target gene, identifying positive feedback between integrin signaling and BMP pathway activity that may contribute to robust cell fate decisions. Drosophila embryos lacking integrin function have disrupted BMP responses Collagen IV activates integrin signaling to enhance levels of the pMad transducer Integrins bind BMP receptors and promote pMad levels after BMP receptor activation BMP activates expression of an α-integrin, representing a positive feedback loop
Collapse
|
45
|
Abstract
Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking.
Collapse
|
46
|
Patrussi L, Capitani N, Martini V, Pizzi M, Trimarco V, Frezzato F, Marino F, Semenzato G, Trentin L, Baldari CT. Enhanced Chemokine Receptor Recycling and Impaired S1P1 Expression Promote Leukemic Cell Infiltration of Lymph Nodes in Chronic Lymphocytic Leukemia. Cancer Res 2015; 75:4153-63. [PMID: 26282174 DOI: 10.1158/0008-5472.can-15-0986] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/19/2015] [Indexed: 11/16/2022]
Abstract
Lymphocyte trafficking is orchestrated by chemokine and sphingosine 1-phosphate (S1P) receptors that enable homing and egress from secondary lymphoid organs (SLO). These receptors undergo rapid internalization and plasma membrane recycling to calibrate cellular responses to local chemoattractants. Circulating chronic lymphocytic leukemia (CLL) cells display an abnormal increase in the surface levels of the homing receptors CCR7 and CXCR4 concomitant with low S1P receptor 1 (S1P1) expression. In this study, we investigated the role of receptor recycling on CXCR4/CCR7 surface levels in CLL cells and addressed the impact of quantitative alterations of these receptors and S1P1 on the ability of leukemic cells to accumulate in SLOs. We show that recycling accounts, to a major extent, for the high levels of surface CXCR4/CCR7 on CLL cells. In addition, increased expression of these receptors, together with S1P1 deficiency, is detectable not only in circulating leukemic cells, but also in SLOs of CLL patients with lymphoadenopathy. We further provide evidence that ibrutinib, a Btk inhibitor that promotes mobilization of leukemic cells from SLOs, normalizes the imbalance between CXCR4/CCR7 and S1P1. Taken together, our results highlight the relevance of chemokine and S1P receptor recycling in CLL pathogenesis and clinical outcome.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Chemotaxis/physiology
- Endosomes/metabolism
- Germinal Center/metabolism
- Germinal Center/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemic Infiltration/physiopathology
- Lymph Nodes/pathology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/pathology
- Membrane Proteins/metabolism
- Neoplasm Proteins/deficiency
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, Lymphocyte Homing/metabolism
- Receptors, Lysosphingolipid/deficiency
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- Sphingosine-1-Phosphate Receptors
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy. Istituto Toscano Tumori, Siena, Italy
| | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy. Istituto Toscano Tumori, Siena, Italy
| | - Veronica Martini
- Venetian Institute of Molecular Medicine, Padua, Italy. Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Valentina Trimarco
- Venetian Institute of Molecular Medicine, Padua, Italy. Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Federica Frezzato
- Venetian Institute of Molecular Medicine, Padua, Italy. Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Filippo Marino
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Gianpietro Semenzato
- Venetian Institute of Molecular Medicine, Padua, Italy. Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Livio Trentin
- Venetian Institute of Molecular Medicine, Padua, Italy. Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Siena, Italy. Istituto Toscano Tumori, Siena, Italy.
| |
Collapse
|
47
|
Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Curr Opin Cell Biol 2015; 36:41-7. [PMID: 26189062 DOI: 10.1016/j.ceb.2015.06.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/01/2015] [Accepted: 06/30/2015] [Indexed: 11/18/2022]
Abstract
Integrins are heterodimeric transmembrane adhesion receptors that couple the actin cytoskeleton to the extracellular environment and bidirectionally relay signals across the cell membrane. These processes are critical for cell attachment, migration, differentiation, and survival, and therefore play essential roles in metazoan development, physiology, and pathology. Integrin-mediated adhesions are regulated by diverse factors, including the conformation-specific affinities of integrin receptors for their extracellular ligands, the clustering of integrins and their intracellular binding partners into discrete adhesive structures, mechanical forces exerted on the adhesion, and the intracellular trafficking of integrins themselves. Recent advances shed light onto how the interaction of specific intracellular proteins with the short cytoplasmic tails of integrins controls each of these activities.
Collapse
Affiliation(s)
- Daniel V Iwamoto
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA; Department of Cell Biology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
48
|
A Deep-Intronic FERMT1 Mutation Causes Kindler Syndrome: An Explanation for Genetically Unsolved Cases. J Invest Dermatol 2015; 135:2876-2879. [PMID: 26083552 DOI: 10.1038/jid.2015.227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Guo B, Gao J, Zhan J, Zhang H. Kindlin-2 interacts with and stabilizes EGFR and is required for EGF-induced breast cancer cell migration. Cancer Lett 2015; 361:271-81. [PMID: 25790908 DOI: 10.1016/j.canlet.2015.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 11/26/2022]
Abstract
Epidermal growth factor receptor (EGFR) mediates multiple signaling pathways that regulate cell proliferation, migration and tumor invasion. Kindlin-2 has been known as a focal adhesion molecule that binds to integrin to control cell migration and invasion. However, molecular mechanisms underlying the role of Kindlin-2 in breast cancer progression remain elusive. Here we report that Kindlin-2 interacts with EGFR and mediates EGF-induced breast cancer cell migration. We found that EGF treatment dramatically increases Kindlin-2 expression at both mRNA and protein levels in a variety of cancer cells. Inhibitors specific for EGFR or PI3K blocked Kindlin-2 induction by EGF. Importantly, Kindlin-2 interacted with EGFR kinase domain, which was independent of Kindlin-2 binding to integrin cytoplasmic domain. Intriguingly, Kindlin-2 stabilized EGFR protein by blocking its ubiquitination and degradation. Depletion of Kindlin-2 impaired EGF-induced cell migration. Our results demonstrated that Kindlin-2 participates in EGFR signaling and regulates breast cancer progression.
Collapse
Affiliation(s)
- Baohui Guo
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Jianchao Gao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China; Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
50
|
Onnis A, Finetti F, Patrussi L, Gottardo M, Cassioli C, Spanò S, Baldari CT. The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis. Cell Death Differ 2015; 22:1687-99. [PMID: 26021297 DOI: 10.1038/cdd.2015.17] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/21/2015] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence underscores the T-cell immune synapse (IS) as a site of intense vesicular trafficking, on which productive signaling and cell activation crucially depend. Although the T-cell antigen receptor (TCR) is known to exploit recycling to accumulate to the IS, the specific pathway that controls this process remains to be elucidated. Here we demonstrate that the small GTPase Rab29 is centrally implicated in TCR trafficking and IS assembly. Rab29 colocalized and interacted with Rab8, Rab11 and IFT20, a component of the intraflagellar transport system that regulates ciliogenesis and participates in TCR recycling in the non-ciliated T cell, as assessed by co-immunoprecipitation and immunofluorescence analysis. Rab29 depletion resulted in the inability of TCRs to undergo recycling to the IS, thereby compromizing IS assembly. Under these conditions, recycling TCRs accumulated in Rab11(+) endosomes that failed to polarize to the IS due to defective Rab29-dependent recruitment of the dynein microtubule motor. Remarkably, Rab29 participates in a similar pathway in ciliated cells to promote primary cilium growth and ciliary localization of Smoothened. These results provide a function for Rab29 as a regulator of receptor recycling and identify this GTPase as a shared participant in IS and primary cilium assembly.
Collapse
Affiliation(s)
- A Onnis
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - F Finetti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - L Patrussi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - M Gottardo
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - C Cassioli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - S Spanò
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - C T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|