1
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
2
|
Christen M, Zdora I, Leschnik M, Jagannathan V, Puff C, Hünerfauth E, Volk HA, Baumgärtner W, Koch TC, Schäfer W, Kleiter M, Leeb T. RALGAPA1 Deletion in Belgian Shepherd Dogs with Cerebellar Ataxia. Genes (Basel) 2023; 14:1520. [PMID: 37628572 PMCID: PMC10454311 DOI: 10.3390/genes14081520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Several genetically distinct forms of cerebellar ataxia exist in Belgian shepherd dogs. We investigated a litter in which two puppies developed cerebellar ataxia. The clinical signs stabilized at around six weeks of age, but remained visible into adulthood. Combined linkage and homozygosity mapping delineated a 5.5 Mb critical interval. The comparison of whole-genome sequence data of one affected dog to 929 control genomes revealed a private homozygous ~4.8 kb deletion in the critical interval, Chr8:14,468,376_14,473,136del4761. The deletion comprises exon 35 of the RALGAPA1 gene, XM_038544497.1:c.6080-2893_6944+1003del. It is predicted to introduce a premature stop codon into the transcript, truncating ~23% of the wild-type open reading frame of the encoded Ral GTPase-activating protein catalytic subunit α 1, XP_038400425.1:(p.Val2027Glnfs*7). Genotypes at the deletion showed the expected co-segregation with the phenotype in the family. Genotyping additional ataxic Belgian shepherd dogs revealed three additional homozygous mutant dogs from a single litter, which had been euthanized at five weeks of age due to their severe clinical phenotype. Histopathology revealed cytoplasmic accumulation of granular material within cerebellar Purkinje cells. Genotyping a cohort of almost 900 Belgian shepherd dogs showed the expected genotype-phenotype association and a carrier frequency of 5% in the population. Human patients with loss-of-function variants in RALGAPA1 develop psychomotor disability and early-onset epilepsy. The available clinical and histopathological data, together with current knowledge about RALGAPA1 variants and their functional impact in other species, suggest the RALGAPA1 deletion is the likely causative defect for the observed phenotype in the affected dogs.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (I.Z.); (C.P.); (W.B.)
- Center of Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), 30559 Hannover, Germany
| | - Michael Leschnik
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (M.L.); (M.K.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (I.Z.); (C.P.); (W.B.)
| | - Enrice Hünerfauth
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (E.H.); (H.A.V.)
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (E.H.); (H.A.V.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (I.Z.); (C.P.); (W.B.)
| | - Tessa C. Koch
- Bundeswehr School of Dog Handling, 56766 Ulmen, Germany; (T.C.K.); (W.S.)
| | - Wencke Schäfer
- Bundeswehr School of Dog Handling, 56766 Ulmen, Germany; (T.C.K.); (W.S.)
| | - Miriam Kleiter
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (M.L.); (M.K.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
| |
Collapse
|
3
|
Ral GTPases are critical regulators of spinal cord myelination and homeostasis. Cell Rep 2022; 40:111413. [PMID: 36170840 DOI: 10.1016/j.celrep.2022.111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/12/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Efficient myelination supports nerve conduction and axonal health throughout life. In the central nervous system, oligodendrocytes (OLs) carry out this demanding anabolic duty in part through biosynthetic pathways controlled by mTOR. We identify Ral GTPases as critical regulators of mouse spinal cord myelination and myelin maintenance. Ablation of Ral GTPases (RalA, RalB) in OL-lineage cells impairs timely onset and radial growth of developmental myelination, accompanied by increased endosomal/lysosomal abundance. Further examinations, including transcriptomic analyses of Ral-deficient OLs, were consistent with mTORC1-related deficits. However, deletion of the mTOR signaling-repressor Pten in Ral-deficient OL-lineage cells is unable to rescue mTORC1 activation or developmental myelination deficiencies. Induced deletion of Ral GTPases in OLs of adult mice results in late-onset myelination defects and tissue degeneration. Together, our data indicate critical roles for Ral GTPases to promote developmental spinal cord myelination, to ensure accurate mTORC1 signaling, and to protect the healthy state of myelin-axon units over time.
Collapse
|
4
|
Antitumor Effects of Ral-GTPases Downregulation in Glioblastoma. Int J Mol Sci 2022; 23:ijms23158199. [PMID: 35897776 PMCID: PMC9330696 DOI: 10.3390/ijms23158199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most common tumor in the central nervous system in adults. This neoplasia shows a high capacity of growth and spreading to the surrounding brain tissue, hindering its complete surgical resection. Therefore, the finding of new antitumor therapies for GBM treatment is a priority. We have previously described that cyclin D1-CDK4 promotes GBM dissemination through the activation of the small GTPases RalA and RalB. In this paper, we show that RalB GTPase is upregulated in primary GBM cells. We found that the downregulation of Ral GTPases, mainly RalB, prevents the proliferation of primary GBM cells and triggers a senescence-like response. Moreover, downregulation of RalA and RalB reduces the viability of GBM cells growing as tumorspheres, suggesting a possible role of these GTPases in the survival of GBM stem cells. By using mouse subcutaneous xenografts, we have corroborated the role of RalB in GBM growth in vivo. Finally, we have observed that the knockdown of RalB also inhibits cell growth in temozolomide-resistant GBM cells. Overall, our work shows that GBM cells are especially sensitive to Ral-GTPase availability. Therefore, we propose that the inactivation of Ral-GTPases may be a reliable therapeutic approach to prevent GBM progression and recurrence.
Collapse
|
5
|
Richardson DS, Spehar JM, Han DT, Chakravarthy PA, Sizemore ST. The RAL Enigma: Distinct Roles of RALA and RALB in Cancer. Cells 2022; 11:cells11101645. [PMID: 35626682 PMCID: PMC9139244 DOI: 10.3390/cells11101645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
RALA and RALB are highly homologous small G proteins belonging to the RAS superfamily. Like other small GTPases, the RALs are molecular switches that can be toggled between inactive GDP-bound and active GTP-bound states to regulate diverse and critical cellular functions such as vesicle trafficking, filopodia formation, mitochondrial fission, and cytokinesis. The RAL paralogs are activated and inactivated by a shared set of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) and utilize similar sets of downstream effectors. In addition to their important roles in normal cell biology, the RALs are known to be critical mediators of cancer cell survival, invasion, migration, and metastasis. However, despite their substantial similarities, the RALs often display striking functional disparities in cancer. RALA and RALB can have redundant, unique, or even antagonistic functions depending on cancer type. The molecular basis for these discrepancies remains an important unanswered question in the field of cancer biology. In this review we examine the functions of the RAL paralogs in normal cellular physiology and cancer biology with special consideration provided to situations where the roles of RALA and RALB are non-redundant.
Collapse
|
6
|
Abstract
Ras is the most mutated oncoprotein in cancer. Among the three oncogenic effectors of Ras - Raf, PI3 Kinase and RalGEF>Ral - signalling through RalGEF>Ral (Ras-like) is by far the least well understood. A variety of signals and binding partners have been defined for Ral, yet we know little of how Ral functions in vivo. This review focuses on previous research in Drosophila that defined a function for Ral in apoptosis and established indirect relationships among Ral, the CNH-domain MAP4 Kinase misshapen, and the JNK MAP kinase basket. Most of the described signalling components are not essential in C. elegans, facilitating subsequent analysis using developmental patterning of the C. elegans vulval precursor cells (VPCs). The functions of two paralogous CNH-domain MAP4 Kinases were defined relative to Ras>Raf, Notch and Ras>RalGEF>Ral signalling in VPCs. MIG-15, the nematode ortholog of misshapen, antagonizes both the Ral-dependent and Ras>Raf-dependent developmental outcomes. In contrast, paralogous GCK-2, the C. elegans ortholog of Drosophila happyhour, propagates the 2°-promoting signal of Ral. Manipulations via CRISPR of Ral signalling through GCK-2 coupled with genetic epistasis delineated a Ras>RalGEF>Ral>Exo84>GCK-2>MAP3KMLK-1> p38PMK-1 cascade. Thus, genetic analysis using invertebrate experimental organisms defined a cascade from Ras to p38 MAP kinase.
Collapse
Affiliation(s)
| | - David J. Reiner
- Texas A&M University, Houston, TX, USA,CONTACT David J. Reiner Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, TX
| |
Collapse
|
7
|
Hussain SS, Tran TM, Ware TB, Luse MA, Prevost CT, Ferguson AN, Kashatus JA, Hsu KL, Kashatus DF. RalA and PLD1 promote lipid droplet growth in response to nutrient withdrawal. Cell Rep 2021; 36:109451. [PMID: 34320341 PMCID: PMC8344381 DOI: 10.1016/j.celrep.2021.109451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 06/04/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) are dynamic organelles that undergo dynamic changes in response to changing cellular conditions. During nutrient depletion, LD numbers increase to protect cells against toxic fatty acids generated through autophagy and provide fuel for beta-oxidation. However, the precise mechanisms through which these changes are regulated have remained unclear. Here, we show that the small GTPase RalA acts downstream of autophagy to directly facilitate LD growth during nutrient depletion. Mechanistically, RalA performs this function through phospholipase D1 (PLD1), an enzyme that converts phosphatidylcholine (PC) to phosphatidic acid (PA) and that is recruited to lysosomes during nutrient stress in a RalA-dependent fashion. RalA inhibition prevents recruitment of the LD-associated protein perilipin 3, which is required for LD growth. Our data support a model in which RalA recruits PLD1 to lysosomes during nutrient deprivation to promote the localized production of PA and the recruitment of perilipin 3 to expanding LDs.
Collapse
Affiliation(s)
- Syed S Hussain
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Tuyet-Minh Tran
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Melissa A Luse
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Christopher T Prevost
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Ashley N Ferguson
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jennifer A Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; University of Virginia Cancer Center, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - David F Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; University of Virginia Cancer Center, University of Virginia Health System, Charlottesville, VA 22903, USA.
| |
Collapse
|
8
|
Thies KA, Cole MW, Schafer RE, Spehar JM, Richardson DS, Steck SA, Das M, Lian AW, Ray A, Shakya R, Knoblaugh SE, Timmers CD, Ostrowski MC, Chakravarti A, Sizemore GM, Sizemore ST. The small G-protein RalA promotes progression and metastasis of triple-negative breast cancer. Breast Cancer Res 2021; 23:65. [PMID: 34118960 PMCID: PMC8196523 DOI: 10.1186/s13058-021-01438-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/13/2021] [Indexed: 02/01/2023] Open
Abstract
Background Breast cancer (BC) is the most common cancer in women and the leading cause of cancer-associated mortality in women. In particular, triple-negative BC (TNBC) has the highest rate of mortality due in large part to the lack of targeted treatment options for this subtype. Thus, there is an urgent need to identify new molecular targets for TNBC treatment. RALA and RALB are small GTPases implicated in growth and metastasis of a variety of cancers, although little is known of their roles in BC. Methods The necessity of RALA and RALB for TNBC tumor growth and metastasis were evaluated in vivo using orthotopic and tail-vein models. In vitro, 2D and 3D cell culture methods were used to evaluate the contributions of RALA and RALB during TNBC cell migration, invasion, and viability. The association between TNBC patient outcome and RALA and RALB expression was examined using publicly available gene expression data and patient tissue microarrays. Finally, small molecule inhibition of RALA and RALB was evaluated as a potential treatment strategy for TNBC in cell line and patient-derived xenograft (PDX) models. Results Knockout or depletion of RALA inhibited orthotopic primary tumor growth, spontaneous metastasis, and experimental metastasis of TNBC cells in vivo. Conversely, knockout of RALB increased TNBC growth and metastasis. In vitro, RALA and RALB had antagonistic effects on TNBC migration, invasion, and viability with RALA generally supporting and RALB opposing these processes. In BC patient populations, elevated RALA but not RALB expression is significantly associated with poor outcome across all BC subtypes and specifically within TNBC patient cohorts. Immunohistochemical staining for RALA in patient cohorts confirmed the prognostic significance of RALA within the general BC population and the TNBC population specifically. BQU57, a small molecule inhibitor of RALA and RALB, decreased TNBC cell line viability, sensitized cells to paclitaxel in vitro and decreased tumor growth and metastasis in TNBC cell line and PDX models in vivo. Conclusions Together, these data demonstrate important but paradoxical roles for RALA and RALB in the pathogenesis of TNBC and advocate further investigation of RALA as a target for the precise treatment of metastatic TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01438-3.
Collapse
Affiliation(s)
- Katie A Thies
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Matthew W Cole
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Rachel E Schafer
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan M Spehar
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Dillon S Richardson
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Sarah A Steck
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Manjusri Das
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Arthur W Lian
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Alo Ray
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Reena Shakya
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Target Validation Shared Resource, The Ohio State University, Columbus, OH, 43210, USA
| | - Sue E Knoblaugh
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Cynthia D Timmers
- The Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.,Division of Hematology and Oncology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Michael C Ostrowski
- The Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Arnab Chakravarti
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Gina M Sizemore
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Steven T Sizemore
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Radiation Oncology, The Ohio State University, 646A TMRF, 420 W. 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Nászai M, Bellec K, Yu Y, Román-Fernández A, Sandilands E, Johansson J, Campbell AD, Norman JC, Sansom OJ, Bryant DM, Cordero JB. RAL GTPases mediate EGFR-driven intestinal stem cell proliferation and tumourigenesis. eLife 2021; 10:e63807. [PMID: 34096503 PMCID: PMC8216719 DOI: 10.7554/elife.63807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
RAS-like (RAL) GTPases function in Wnt signalling-dependent intestinal stem cell proliferation and regeneration. Whether RAL proteins work as canonical RAS effectors in the intestine and the mechanisms of how they contribute to tumourigenesis remain unclear. Here, we show that RAL GTPases are necessary and sufficient to activate EGFR/MAPK signalling in the intestine, via induction of EGFR internalisation. Knocking down Drosophila RalA from intestinal stem and progenitor cells leads to increased levels of plasma membrane-associated EGFR and decreased MAPK pathway activation. Importantly, in addition to influencing stem cell proliferation during damage-induced intestinal regeneration, this role of RAL GTPases impacts on EGFR-dependent tumourigenic growth in the intestine and in human mammary epithelium. However, the effect of oncogenic RAS in the intestine is independent from RAL function. Altogether, our results reveal previously unrecognised cellular and molecular contexts where RAL GTPases become essential mediators of adult tissue homeostasis and malignant transformation.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Endocytosis
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Humans
- Hyperplasia
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mammary Glands, Human/enzymology
- Mammary Glands, Human/pathology
- Mice, Inbred C57BL
- Mitogen-Activated Protein Kinases/metabolism
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/metabolism
- Receptors, Invertebrate Peptide/genetics
- Receptors, Invertebrate Peptide/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Stem Cells/pathology
- ral GTP-Binding Proteins/genetics
- ral GTP-Binding Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Máté Nászai
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Karen Bellec
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Yachuan Yu
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Alvaro Román-Fernández
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Emma Sandilands
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Joel Johansson
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | | | - Jim C Norman
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Owen J Sansom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - David M Bryant
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Julia B Cordero
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| |
Collapse
|
10
|
Apken LH, Oeckinghaus A. The RAL signaling network: Cancer and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:21-105. [PMID: 34074494 DOI: 10.1016/bs.ircmb.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RAL proteins RALA and RALB belong to the superfamily of small RAS-like GTPases (guanosine triphosphatases). RAL GTPases function as molecular switches in cells by cycling through GDP- and GTP-bound states, a process which is regulated by several guanine exchange factors (GEFs) and two heterodimeric GTPase activating proteins (GAPs). Since their discovery in the 1980s, RALA and RALB have been established to exert isoform-specific functions in central cellular processes such as exocytosis, endocytosis, actin organization and gene expression. Consequently, it is not surprising that an increasing number of physiological functions are discovered to be controlled by RAL, including neuronal plasticity, immune response, and glucose and lipid homeostasis. The critical importance of RAL GTPases for oncogenic RAS-driven cellular transformation and tumorigenesis still attracts most research interest. Here, RAL proteins are key drivers of cell migration, metastasis, anchorage-independent proliferation, and survival. This chapter provides an overview of normal and pathological functions of RAL GTPases and summarizes the current knowledge on the involvement of RAL in human disease as well as current therapeutic targeting strategies. In particular, molecular mechanisms that specifically control RAL activity and RAL effector usage in different scenarios are outlined, putting a spotlight on the complexity of the RAL GTPase signaling network and the emerging theme of RAS-independent regulation and relevance of RAL.
Collapse
Affiliation(s)
- Lisa H Apken
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
11
|
Khawaja H, Campbell A, Roberts JZ, Javadi A, O'Reilly P, McArt D, Allen WL, Majkut J, Rehm M, Bardelli A, Di Nicolantonio F, Scott CJ, Kennedy R, Vitale N, Harrison T, Sansom OJ, Longley DB, Evergren E, Van Schaeybroeck S. RALB GTPase: a critical regulator of DR5 expression and TRAIL sensitivity in KRAS mutant colorectal cancer. Cell Death Dis 2020; 11:930. [PMID: 33122623 PMCID: PMC7596570 DOI: 10.1038/s41419-020-03131-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023]
Abstract
RAS mutant (MT) metastatic colorectal cancer (mCRC) is resistant to MEK1/2 inhibition and remains a difficult-to-treat group. Therefore, there is an unmet need for novel treatment options for RASMT mCRC. RALA and RALB GTPases function downstream of RAS and have been found to be key regulators of several cell functions implicated in KRAS-driven tumorigenesis. However, their role as regulators of the apoptotic machinery remains to be elucidated. Here, we found that inhibition of RALB expression, but not RALA, resulted in Caspase-8-dependent cell death in KRASMT CRC cells, which was not further increased following MEK1/2 inhibition. Proteomic analysis and mechanistic studies revealed that RALB depletion induced a marked upregulation of the pro-apoptotic cell surface TRAIL Death Receptor 5 (DR5) (also known as TRAIL-R2), primarily through modulating DR5 protein lysosomal degradation. Moreover, DR5 knockdown or knockout attenuated siRALB-induced apoptosis, confirming the role of the extrinsic apoptotic pathway as a regulator of siRALB-induced cell death. Importantly, TRAIL treatment resulted in the association of RALB with the death-inducing signalling complex (DISC) and targeting RALB using pharmacologic inhibition or RNAi approaches triggered a potent increase in TRAIL-induced cell death in KRASMT CRC cells. Significantly, high RALB mRNA levels were found in the poor prognostic Colorectal Cancer Intrinsic Subtypes (CRIS)-B CRC subgroup. Collectively, this study provides to our knowledge the first evidence for a role for RALB in apoptotic priming and suggests that RALB inhibition may be a promising strategy to improve response to TRAIL treatment in poor prognostic RASMT CRIS-B CRC.
Collapse
Affiliation(s)
- Hajrah Khawaja
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Andrew Campbell
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Jamie Z Roberts
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Arman Javadi
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Paul O'Reilly
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Darragh McArt
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Wendy L Allen
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Joanna Majkut
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569, Stuttgart, Germany
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, TO, 10060, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, 10060, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Candiolo, TO, 10060, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, 10060, Italy
| | - Christopher J Scott
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Richard Kennedy
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Timothy Harrison
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Daniel B Longley
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Emma Evergren
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Sandra Van Schaeybroeck
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
12
|
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020; 182:200-225.e35. [PMID: 32649874 PMCID: PMC7373300 DOI: 10.1016/j.cell.2020.06.013] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
Collapse
Affiliation(s)
- Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Runyu Hong
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lijun Yao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Wendl
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Emily A Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań, 61-701, Poland; International Institute for Molecular Oncology, Poznań, 60-203, Poland
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajwanth R Veluswamy
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Ramaswamy Govindan
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
13
|
Schut CH, Farzan A, Fraser RS, Ainslie-Garcia MH, Friendship RM, Lillie BN. Identification of single-nucleotide variants associated with susceptibility to Salmonella in pigs using a genome-wide association approach. BMC Vet Res 2020; 16:138. [PMID: 32414370 PMCID: PMC7227190 DOI: 10.1186/s12917-020-02344-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Salmonella enterica serovars are a major cause of foodborne illness and have a substantial impact on global human health. In Canada, Salmonella is commonly found on swine farms and the increasing concern about drug use and antimicrobial resistance associated with Salmonella has promoted research into alternative control methods, including selecting for pig genotypes associated with resistance to Salmonella. The objective of this study was to identify single-nucleotide variants in the pig genome associated with Salmonella susceptibility using a genome-wide association approach. Repeated blood and fecal samples were collected from 809 pigs in 14 groups on farms and tonsils and lymph nodes were collected at slaughter. Sera were analyzed for Salmonella IgG antibodies by ELISA and feces and tissues were cultured for Salmonella. Pig DNA was genotyped using a custom 54 K single-nucleotide variant oligo array and logistic mixed-models used to identify SNVs associated with IgG seropositivity, shedding, and tissue colonization. RESULTS Variants in/near PTPRJ (p = 0.0000066), ST6GALNAC3 (p = 0.0000099), and DCDC2C (n = 3, p < 0.0000086) were associated with susceptibility to Salmonella, while variants near AKAP12 (n = 3, p < 0.0000358) and in RALGAPA2 (p = 0.0000760) may be associated with susceptibility. CONCLUSIONS Further study of the variants and genes identified may improve our understanding of neutrophil recruitment, intracellular killing of bacteria, and/or susceptibility to Salmonella and may help future efforts to reduce Salmonella on-farm through genetic approaches.
Collapse
Affiliation(s)
- Corinne H Schut
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Abdolvahab Farzan
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Russell S Fraser
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
- Present address: Department of Pathology and Microbiology, Atlantic Veterinary College, University of PEI, Charlottetown, Prince Edward Island, Canada
| | | | - Robert M Friendship
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
14
|
Wagner M, Skorobogatko Y, Pode-Shakked B, Powell CM, Alhaddad B, Seibt A, Barel O, Heimer G, Hoffmann C, Demmer LA, Perilla-Young Y, Remke M, Wieczorek D, Navaratnarajah T, Lichtner P, Klee D, Shamseldin HE, Al Mutairi F, Mayatepek E, Strom T, Meitinger T, Alkuraya FS, Anikster Y, Saltiel AR, Distelmaier F. Bi-allelic Variants in RALGAPA1 Cause Profound Neurodevelopmental Disability, Muscular Hypotonia, Infantile Spasms, and Feeding Abnormalities. Am J Hum Genet 2020; 106:246-255. [PMID: 32004447 DOI: 10.1016/j.ajhg.2020.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Ral (Ras-like) GTPases play an important role in the control of cell migration and have been implicated in Ras-mediated tumorigenicity. Recently, variants in RALA were also described as a cause of intellectual disability and developmental delay, indicating the relevance of this pathway to neuropediatric diseases. Here, we report the identification of bi-allelic variants in RALGAPA1 (encoding Ral GTPase activating protein catalytic alpha subunit 1) in four unrelated individuals with profound neurodevelopmental disability, muscular hypotonia, feeding abnormalities, recurrent fever episodes, and infantile spasms . Dysplasia of corpus callosum with focal thinning of the posterior part and characteristic facial features appeared to be unifying findings. RalGAPA1 was absent in the fibroblasts derived from two affected individuals suggesting a loss-of-function effect of the RALGAPA1 variants. Consequently, RalA activity was increased in these cell lines, which is in keeping with the idea that RalGAPA1 deficiency causes a constitutive activation of RalA. Additionally, levels of RalGAPB, a scaffolding subunit of the RalGAP complex, were dramatically reduced, indicating a dysfunctional RalGAP complex. Moreover, RalGAPA1 deficiency clearly increased cell-surface levels of lipid raft components in detached fibroblasts, which might indicate that anchorage-dependence of cell growth signaling is disturbed. Our findings indicate that the dysregulation of the RalA pathway has an important impact on neuronal function and brain development. In light of the partially overlapping phenotype between RALA- and RALGAPA1-associated diseases, it appears likely that dysregulation of the RalA signaling pathway leads to a distinct group of genetic syndromes that we suggest could be named RALopathies.
Collapse
|
15
|
Gao P, Liu S, Yoshida R, Shi C, Yoshimachi S, Sakata N, Goto K, Kimura T, Shirakawa R, Nakayama H, Sakata J, Kawashiri S, Kato K, Wang X, Horiuchi H. Ral GTPase Activation by Downregulation of RalGAP Enhances Oral Squamous Cell Carcinoma Progression. J Dent Res 2019; 98:1011-1019. [PMID: 31329042 DOI: 10.1177/0022034519860828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ral small GTPases, consisting of RalA and RalB, are members of the Ras family. Their activity is upregulated by RalGEFs. Since several RalGEFs are downstream effectors of Ras, Ral is activated by the oncogenic mutant Ras. Ral is negatively regulated by RalGAP complexes that consist of a catalytic α1 or α2 subunit and its common partner β subunit and similarly regulate the activity of RalA as well as RalB in vitro. Ral plays an important role in the formation and progression of pancreatic and lung cancers. However, the involvement of Ral in oral squamous cell carcinoma (OSCC) is unclear. In this study, we investigated OSCC by focusing on Ral. OSCC cell lines with high Ral activation exhibited higher motility. We showed that knockdown of RalGAPβ increased the activation level of RalA and promoted the migration and invasion of HSC-2 OSCC cells in vitro. In contrast, overexpression of wild-type RalGAPα2 in TSU OSCC cells attenuated the activation level of RalA and inhibited cell migration and invasion. Real-time quantitative polymerase chain reaction analysis of samples from patients with OSCC showed that RalGAPα2 was downregulated in oral cancer tissues as compared with normal epithelia. Among patients with OSCC, those with a lower expression of RalGAPα2 showed a worse overall survival rate. A comparison of DNA methylation and histone modifications of the RalGAPα2 gene in OSCC cell lines suggested that crosstalk among DNA methylation, histone H4Ac, and H3K27me2 was involved in the downregulation of RalGAPα2. Thus, activation of Ral GTPase by downregulation of RalGAP expression via a potential epigenetic mechanism may enhance OSCC progression.
Collapse
Affiliation(s)
- P. Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of General and Emergency Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Cancer Therapeutics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - S. Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - R. Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - C.Y. Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - S. Yoshimachi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - N. Sakata
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - K. Goto
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - T. Kimura
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
- Current affiliation: Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata, Yamagata, Japan
| | - R. Shirakawa
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - H. Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - J. Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - S. Kawashiri
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - K. Kato
- Department of Oral and Maxillofacial Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - X.Y. Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H. Horiuchi
- Department of Oral Cancer Therapeutics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
16
|
Walsh TG, Wersäll A, Poole AW. Characterisation of the Ral GTPase inhibitor RBC8 in human and mouse platelets. Cell Signal 2019; 59:34-40. [PMID: 30880223 PMCID: PMC6510928 DOI: 10.1016/j.cellsig.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 01/28/2023]
Abstract
The Ral GTPases, RalA and RalB, have been implicated in numerous cellular processes, but are most widely known for having regulatory roles in exocytosis. Recently, we demonstrated that deletion of both Ral genes in a platelet-specific mouse gene knockout caused a substantial defect in surface exposure of P-selectin, with only a relatively weak defect in platelet dense granule secretion that did not alter platelet functional responses such as aggregation or thrombus formation. We sought to investigate the function of Rals in human platelets using the recently described Ral inhibitor, RBC8. Initial studies in human platelets confirmed that RBC8 could effectively inhibit Ral GTPase activation, with an IC50 of 2.2 μM and 2.3 μM for RalA and RalB, respectively. Functional studies using RBC8 revealed significant, dose-dependent inhibition of platelet aggregation, secretion (α- and dense granule), integrin activation and thrombus formation, while α-granule release of platelet factor 4, Ca2+ signalling or phosphatidylserine exposure were unaltered. Subsequent studies in RalAB-null mouse platelets pretreated with RBC8 showed dose-dependent decreases in integrin activation and dense granule secretion, with significant inhibition of platelet aggregation and P-selectin exposure at 10 μM RBC8. This study strongly suggests therefore that although RBC8 is useful as a Ral inhibitor in platelets, it is likely also to have off-target effects in the same concentration range as for Ral inhibition. So, whilst clearly useful as a Ral inhibitor, interpretation of data needs to take this into account when assessing roles for Rals using RBC8.
Collapse
Affiliation(s)
- Tony G Walsh
- From the School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | - Andreas Wersäll
- From the School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alastair W Poole
- From the School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
17
|
Ommer A, Figlia G, Pereira JA, Datwyler AL, Gerber J, DeGeer J, Lalli G, Suter U. Ral GTPases in Schwann cells promote radial axonal sorting in the peripheral nervous system. J Cell Biol 2019; 218:2350-2369. [PMID: 31201267 PMCID: PMC6605813 DOI: 10.1083/jcb.201811150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/03/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Small GTPases of the Rho and Ras families are important regulators of Schwann cell biology. The Ras-like GTPases RalA and RalB act downstream of Ras in malignant peripheral nerve sheath tumors. However, the physiological role of Ral proteins in Schwann cell development is unknown. Using transgenic mice with ablation of one or both Ral genes, we report that Ral GTPases are crucial for axonal radial sorting. While lack of only one Ral GTPase was dispensable for early peripheral nerve development, ablation of both RalA and RalB resulted in persistent radial sorting defects, associated with hallmarks of deficits in Schwann cell process formation and maintenance. In agreement, ex vivo-cultured Ral-deficient Schwann cells were impaired in process extension and the formation of lamellipodia. Our data indicate further that RalA contributes to Schwann cell process extensions through the exocyst complex, a known effector of Ral GTPases, consistent with an exocyst-mediated function of Ral GTPases in Schwann cells.
Collapse
Affiliation(s)
- Andrea Ommer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Anna Lena Datwyler
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Joanne Gerber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonathan DeGeer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Giovanna Lalli
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Galino J, Cervellini I, Zhu N, Stöberl N, Hütte M, Fricker FR, Lee G, McDermott L, Lalli G, Bennett DLH. RalGTPases contribute to Schwann cell repair after nerve injury via regulation of process formation. J Cell Biol 2019; 218:2370-2387. [PMID: 31201266 PMCID: PMC6605803 DOI: 10.1083/jcb.201811002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 12/02/2022] Open
Abstract
RalA and RalB are involved in cell migration and membrane dynamics. This study finds that ablation of RalGTPases impairs nerve regeneration and alters Schwann cell process formation; conversely, activation of RalGTPases enhancea Schwann cell process formation, migration, and axon myelination. RalA and RalB are small GTPases that are involved in cell migration and membrane dynamics. We used transgenic mice in which one or both GTPases were genetically ablated to investigate the role of RalGTPases in the Schwann cell (SC) response to nerve injury and repair. RalGTPases were dispensable for SC function in the naive uninjured state. Ablation of both RalA and RalB (but not individually) in SCs resulted in impaired axon remyelination and target reinnervation following nerve injury, which resulted in slowed recovery of motor function. Ral GTPases were localized to the leading lamellipodia in SCs and were required for the formation and extension of both axial and radial processes of SCs. These effects were dependent on interaction with the exocyst complex and impacted on the rate of SC migration and myelination. Our results show that RalGTPases are required for efficient nerve repair by regulating SC process formation, migration, and myelination, therefore uncovering a novel role for these GTPases.
Collapse
Affiliation(s)
- Jorge Galino
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ilaria Cervellini
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ning Zhu
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nina Stöberl
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Meike Hütte
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Florence R Fricker
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Garrett Lee
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Lucy McDermott
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Giovanna Lalli
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - David L H Bennett
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
19
|
Pollock SR, Schinlever AR, Rohani A, Kashatus JA, Kashatus DF. RalA and RalB relocalization to depolarized mitochondria depends on clathrin-mediated endocytosis and facilitates TBK1 activation. PLoS One 2019; 14:e0214764. [PMID: 30995277 PMCID: PMC6469766 DOI: 10.1371/journal.pone.0214764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Healthy mitochondria use an electrochemical gradient across the inner mitochondrial membrane (IMM) to generate energy in the form of ATP. A variety of endogenous and exogenous factors can lead to transient or sustained depolarization of the IMM, including mitochondrial fission events, expression of uncoupling proteins, electron transport chain (ETC) inhibitors, or chemical uncouplers. This depolarization in turn leads to a variety of physiological responses, ranging from selective mitochondrial clearance (mitophagy) to cell death. How cells recognize and ultimately respond to depolarized mitochondria remains incompletely understood. Here we show that the small GTPases RalA and RalB both relocalize to mitochondria following depolarization in a process dependent on clathrin-mediated endocytosis (CME). Furthermore, both genetic and pharmacologic inhibition of RalA and RalB leads to an increase in the activity of the atypical IκB kinase TBK1 both basally and in response to mitochondrial depolarization. This phenotype was also observed following inhibition of Ral relocalization. Collectively, these data suggest a model in which RalA and RalB inhibit TBK1 and that relocalization of Ral to depolarized mitochondria facilitates TBK1 activation through release of this inhibition.
Collapse
Affiliation(s)
- Sarah R. Pollock
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Austin R. Schinlever
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Ali Rohani
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Jennifer A. Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - David F. Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Johansson J, Naszai M, Hodder MC, Pickering KA, Miller BW, Ridgway RA, Yu Y, Peschard P, Brachmann S, Campbell AD, Cordero JB, Sansom OJ. RAL GTPases Drive Intestinal Stem Cell Function and Regeneration through Internalization of WNT Signalosomes. Cell Stem Cell 2019; 24:592-607.e7. [PMID: 30853556 PMCID: PMC6459002 DOI: 10.1016/j.stem.2019.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 01/05/2023]
Abstract
Ral GTPases are RAS effector molecules and by implication a potential therapeutic target for RAS mutant cancer. However, very little is known about their roles in stem cells and tissue homeostasis. Using Drosophila, we identified expression of RalA in intestinal stem cells (ISCs) and progenitor cells of the fly midgut. RalA was required within ISCs for efficient regeneration downstream of Wnt signaling. Within the murine intestine, genetic deletion of either mammalian ortholog, Rala or Ralb, reduced ISC function and Lgr5 positivity, drove hypersensitivity to Wnt inhibition, and impaired tissue regeneration following damage. Ablation of both genes resulted in rapid crypt death. Mechanistically, RALA and RALB were required for efficient internalization of the Wnt receptor Frizzled-7. Together, we identify a conserved role for RAL GTPases in the promotion of optimal Wnt signaling, which defines ISC number and regenerative potential.
Collapse
Affiliation(s)
- Joel Johansson
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Mate Naszai
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | | | - Bryan W Miller
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Yachuan Yu
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | | | | | - Julia B Cordero
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
21
|
MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proc Natl Acad Sci U S A 2019; 116:4508-4517. [PMID: 30709910 DOI: 10.1073/pnas.1817494116] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oncogenic mutations in the small GTPase KRAS are frequently found in human cancers, and, currently, there are no effective targeted therapies for these tumors. Using a combinatorial siRNA approach, we analyzed a panel of KRAS mutant colorectal and pancreatic cancer cell lines for their dependency on 28 gene nodes that represent canonical RAS effector pathways and selected stress response pathways. We found that RAF node knockdown best differentiated KRAS mutant and KRAS WT cancer cells, suggesting RAF kinases are key oncoeffectors for KRAS addiction. By analyzing all 376 pairwise combination of these gene nodes, we found that cotargeting the RAF, RAC, and autophagy pathways can improve the capture of KRAS dependency better than targeting RAF alone. In particular, codepletion of the oncoeffector kinases BRAF and CRAF, together with the autophagy E1 ligase ATG7, gives the best therapeutic window between KRAS mutant cells and normal, untransformed cells. Distinct patterns of RAS effector dependency were observed across KRAS mutant cell lines, indicative of heterogeneous utilization of effector and stress response pathways in supporting KRAS addiction. Our findings revealed previously unappreciated complexity in the signaling network downstream of the KRAS oncogene and suggest rational target combinations for more effective therapeutic intervention.
Collapse
|
22
|
Hiatt SM, Neu MB, Ramaker RC, Hardigan AA, Prokop JW, Hancarova M, Prchalova D, Havlovicova M, Prchal J, Stranecky V, Yim DKC, Powis Z, Keren B, Nava C, Mignot C, Rio M, Revah-Politi A, Hemati P, Stong N, Iglesias AD, Suchy SF, Willaert R, Wentzensen IM, Wheeler PG, Brick L, Kozenko M, Hurst ACE, Wheless JW, Lacassie Y, Myers RM, Barsh GS, Sedlacek Z, Cooper GM. De novo mutations in the GTP/GDP-binding region of RALA, a RAS-like small GTPase, cause intellectual disability and developmental delay. PLoS Genet 2018; 14:e1007671. [PMID: 30500825 PMCID: PMC6291162 DOI: 10.1371/journal.pgen.1007671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/12/2018] [Accepted: 08/30/2018] [Indexed: 01/22/2023] Open
Abstract
Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies. However, among RASopathies, the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p = 4.93 x 10(-11)) than expected from the estimated random mutation rate. Further, all de novo variants described here affect residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. The affected residues are highly conserved across both RAL- and RAS-family genes, are devoid of variation in large human population datasets, and several are homologous to positions at which disease-associated variants have been observed in other GTPase genes. We directly assayed GTP hydrolysis and RALA effector-protein binding of the observed variants, and found that all but one tested variant significantly reduced both activities compared to wild-type. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.
Collapse
Affiliation(s)
- Susan M. Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Matthew B. Neu
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ryne C. Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Andrew A. Hardigan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, United States of America
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Darina Prchalova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Marketa Havlovicova
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jan Prchal
- Laboratory of NMR Spectroscopy, University of Chemistry and Technology, Prague, Czech Republic
| | - Viktor Stranecky
- Department of Pediatrics and Adolescent Medicine, Diagnostic and Research Unit for Rare Diseases, Charles University 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Dwight K. C. Yim
- Kaiser Permanente-Hawaii, Honolulu, HI, United States of America
| | - Zöe Powis
- Department of Emerging Genetic Medicine, Ambry Genetics, Aliso Viejo, CA, United States of America
| | - Boris Keren
- Department of Genetics, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Nava
- Department of Genetics, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cyril Mignot
- Department of Genetics, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
- Groupe de Recherche Clinique UPMC "Déficience Intellectuelle et Autisme", Paris, France
| | - Marlene Rio
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
- Assistance Publique-Hôpitaux de Paris, service de Génétique, Hôpital Necker-Enfants-Malades, Paris, France
| | - Anya Revah-Politi
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Parisa Hemati
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Alejandro D. Iglesias
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Medical Center, New York, NY, United States of America
| | | | | | | | - Patricia G. Wheeler
- Arnold Palmer Hospital, Division of Genetics, Orlando, FL, United States of America
| | - Lauren Brick
- Department of Genetics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Mariya Kozenko
- Department of Genetics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Anna C. E. Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - James W. Wheless
- Division of Pediatric Neurology, University of Tennessee Health Science Center, Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Memphis, TN, United States of America
- Le Bonheur Children’s Hospital, Memphis, TN, United States of America
| | - Yves Lacassie
- Division of Clinical Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- Department of Genetics, Children's Hospital, New Orleans, LA, United States of America
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Gregory S. Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Gregory M. Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| |
Collapse
|
23
|
Abstract
Our understanding of fundamental biological processes within platelets is continually evolving. A critical feature of platelet biology relates to the intricate uptake, packaging and release of bioactive cargo from storage vesicles, essential in mediating a range of classical (haemostasis/thrombosis) and non-classical (regeneration/inflammation/metastasis) roles platelets assume. Pivotal to the molecular control of these vesicle trafficking events are the small GTPases of the Ras superfamily, which function as spatially distinct, molecular switches controlling essential cellular processes. Herein, we specifically focus on members of the Rab, Arf and Ras subfamilies, which comprise over 130 members and platelet proteomic datasets suggest that more than half of these are expressed in human platelets. We provide an update of current literature relating to trafficking roles for these GTPases in platelets, particularly regarding endocytic and exocytic events, but also vesicle biogenesis and provide speculative argument for roles that other related GTPases and regulatory proteins may adopt in platelets. Advances in our understanding of small GTPase function in the anucleate platelet has been hampered by the lack of specific molecular tools, but it is anticipated that this will be greatly accelerated in the years ahead and will be crucial to the identification of novel therapeutic targets controlling different platelet processes.
Collapse
Affiliation(s)
- Tony G Walsh
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Yong Li
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Andreas Wersäll
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Alastair W Poole
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| |
Collapse
|
24
|
Waters AM, Der CJ. KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer. Cold Spring Harb Perspect Med 2018; 8:a031435. [PMID: 29229669 PMCID: PMC5995645 DOI: 10.1101/cshperspect.a031435] [Citation(s) in RCA: 522] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RAS genes (HRAS, KRAS, and NRAS) comprise the most frequently mutated oncogene family in human cancer. With the highest RAS mutation frequencies seen with the top three causes of cancer deaths in the United States (lung, colorectal, and pancreatic cancer), the development of anti-RAS therapies is a major priority for cancer research. Despite more than three decades of intense effort, no effective RAS inhibitors have yet to reach the cancer patient. With bitter lessons learned from past failures and with new ideas and strategies, there is renewed hope that undruggable RAS may finally be conquered. With the KRAS isoform mutated in 84% of all RAS-mutant cancers, we focus on KRAS. With a near 100% KRAS mutation frequency, pancreatic ductal adenocarcinoma (PDAC) is considered the most RAS-addicted of all cancers. We review the role of KRAS as a driver and therapeutic target in PDAC.
Collapse
Affiliation(s)
- Andrew M Waters
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599
| | - Channing J Der
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599
| |
Collapse
|
25
|
Tripathi K, Garg M. Mechanistic regulation of epithelial-to-mesenchymal transition through RAS signaling pathway and therapeutic implications in human cancer. J Cell Commun Signal 2018; 12:513-527. [PMID: 29330773 PMCID: PMC6039341 DOI: 10.1007/s12079-017-0441-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
RAS effector signaling instead of being simple, unidirectional and linear cascade, is actually recognized as highly complex and dynamic signaling network. RAF-MEK-ERK cascade, being at the center of complex signaling network, links to multiple scaffold proteins through feed forward and feedback mechanisms and dynamically regulate tumor initiation and progression. Three isoforms of Ras harbor mutations in a cell and tissue specific manner. Besides mutations, their epigenetic silencing also attributes them to exhibit oncogenic activities. Recent evidences support the functions of RAS oncoproteins in the acquisition of tumor cells with Epithelial-to-mesenchymal transition (EMT) features/ epithelial plasticity, enhanced metastatic potential and poor patient survival. Google Scholar electronic databases and PubMed were searched for original papers and reviews available till date to collect information on stimulation of EMT core inducers in a Ras driven cancer and their regulation in metastatic spread. Improved understanding of the mechanistic basis of regulatory interactions of microRNAs (miRs) and EMT by reprogramming the expression of targets in Ras activated cancer, may help in designing effective anticancer therapies. Apparent lack of adverse events associated with the delivery of miRs and tissue response make 'drug target miRNA' an ideal therapeutic tool to achieve progression free clinical response.
Collapse
Affiliation(s)
- Kiran Tripathi
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
26
|
Drosten M, Guerra C, Barbacid M. Genetically Engineered Mouse Models of K-Ras-Driven Lung and Pancreatic Tumors: Validation of Therapeutic Targets. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031542. [PMID: 28778964 DOI: 10.1101/cshperspect.a031542] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
K-RAS signaling has been intensely studied for over 40 years. Yet, as of today, no drugs have been approved to treat K-RAS mutant cancers. Since the turn of the century, scientists have used genetically engineered mouse (GEM) models to reproduce K-RAS mutant cancers in a laboratory setting to elucidate those molecular events responsible for the onset and progression of these tumors and to identify suitable therapies. In this review, we outline a brief description of available GEM models for two tumor types known to be driven by K-RAS mutations: lung adenocarcinoma and pancreatic ductal adenocarcinoma. In addition, we summarize a series of studies that have used these GEM tumor models to validate, either by genetic or pharmacological approaches, the therapeutic potential of a variety of targets, with the ultimate goal of translating these results to the clinical setting.
Collapse
Affiliation(s)
- Matthias Drosten
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), E-28029 Madrid, Spain
| | - Carmen Guerra
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), E-28029 Madrid, Spain
| | - Mariano Barbacid
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), E-28029 Madrid, Spain
| |
Collapse
|
27
|
Wersäll A, Williams CM, Brown E, Iannitti T, Williams N, Poole AW. Mouse Platelet Ral GTPases Control P-Selectin Surface Expression, Regulating Platelet-Leukocyte Interaction. Arterioscler Thromb Vasc Biol 2018; 38:787-800. [PMID: 29437579 DOI: 10.1161/atvbaha.117.310294] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/25/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE RalA and RalB GTPases are important regulators of cell growth, cancer metastasis, and granule secretion. The purpose of this study was to determine the role of Ral GTPases in platelets with the use of platelet-specific gene-knockout mouse models. APPROACH AND RESULTS This study shows that platelets from double knockout mice, in which both GTPases have been deleted, show markedly diminished (≈85% reduction) P-selectin translocation to the surface membrane, suggesting a critical role in α-granule secretion. Surprisingly, however, there were only minor effects on stimulated release of soluble α- and δ-granule content, with no alteration in granule count, morphology, or content. In addition, their expression was not essential for platelet aggregation or thrombus formation. However, absence of surface P-selectin caused a marked reduction (≈70%) in platelet-leukocyte interactions in blood from RalAB double knockout mice, suggesting a role for platelet Rals in platelet-mediated inflammation. CONCLUSIONS Platelet Ral GTPases primarily control P-selectin surface expression, in turn regulating platelet-leukocyte interaction. Ral GTPases could therefore be important novel targets for the selective control of platelet-mediated immune cell recruitment and inflammatory disease.
Collapse
Affiliation(s)
- Andreas Wersäll
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.).
| | - Chris M Williams
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.)
| | - Edward Brown
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.)
| | - Tommaso Iannitti
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.)
| | - Neil Williams
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.)
| | - Alastair W Poole
- From the School of Physiology, Pharmacology and Neuroscience, University of Bristol, United Kingdom (A.W., C.M.W., E.B., A.W.P.); and KWS Biotest, Portishead, Bristol, United Kingdom (T.I., N.W.)
| |
Collapse
|
28
|
Exploring the interactions of the RAS family in the human protein network and their potential implications in RAS-directed therapies. Oncotarget 2018; 7:75810-75826. [PMID: 27713118 PMCID: PMC5342780 DOI: 10.18632/oncotarget.12416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022] Open
Abstract
RAS proteins are the founding members of the RAS superfamily of GTPases. They are involved in key signaling pathways regulating essential cellular functions such as cell growth and differentiation. As a result, their deregulation by inactivating mutations often results in aberrant cell proliferation and cancer. With the exception of the relatively well-known KRAS, HRAS and NRAS proteins, little is known about how the interactions of the other RAS human paralogs affect cancer evolution and response to treatment. In this study we performed a comprehensive analysis of the relationship between the phylogeny of RAS proteins and their location in the protein interaction network. This analysis was integrated with the structural analysis of conserved positions in available 3D structures of RAS complexes. Our results show that many RAS proteins with divergent sequences are found close together in the human interactome. We found specific conserved amino acid positions in this group that map to the binding sites of RAS with many of their signaling effectors, suggesting that these pairs could share interacting partners. These results underscore the potential relevance of cross-talking in the RAS signaling network, which should be taken into account when considering the inhibitory activity of drugs targeting specific RAS oncoproteins. This study broadens our understanding of the human RAS signaling network and stresses the importance of considering its potential cross-talk in future therapies.
Collapse
|
29
|
Eckfeldt CE, Pomeroy EJ, Lee RDW, Hazen KS, Lee LA, Moriarity BS, Largaespada DA. RALB provides critical survival signals downstream of Ras in acute myeloid leukemia. Oncotarget 2018; 7:65147-65156. [PMID: 27556501 PMCID: PMC5323144 DOI: 10.18632/oncotarget.11431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations that activate RAS proto-oncogenes and their effectors are common in acute myeloid leukemia (AML); however, efforts to therapeutically target Ras or its effectors have been unsuccessful, and have been hampered by an incomplete understanding of which effectors are required for AML proliferation and survival. We investigated the role of Ras effector pathways in AML using murine and human AML models. Whereas genetic disruption of NRAS(V12) expression in an NRAS(V12) and Mll-AF9-driven murine AML induced apoptosis of leukemic cells, inhibition of phosphatidylinositol-3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) signaling did not reproduce this effect. Conversely, genetic disruption of RALB signaling induced AML cell death and phenocopied the effects of suppressing oncogenic Ras directly - uncovering a novel role for RALB signaling in AML survival. Knockdown of RALB led to decreased phosphorylation of TBK1 and reduced BCL2 expression, providing mechanistic insight into RALB survival signaling in AML. Notably, we found that patient-derived AML blasts have higher levels of RALB-TBK1 signaling compared to normal blood leukocytes, supporting a pathophysiologic role for RALB signaling for AML patients. Overall, our work provides new insight into the specific roles of Ras effector pathways in AML and has identified RALB signaling as a key survival pathway.
Collapse
Affiliation(s)
- Craig E Eckfeldt
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily J Pomeroy
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robin D W Lee
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine S Hazen
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lindsey A Lee
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
30
|
Abstract
More than a hundred proteins comprise the RAS superfamily of small GTPases. This family can be divided into RAS, RHO, RAB, RAN, ARF, and RAD subfamilies, with each shown to play distinct roles in human cells in both health and disease. The RAS subfamily has a well-established role in human cancer with the three genes, HRAS, KRAS, and NRAS being the commonly mutated in tumors. These RAS mutations, most often functionally activating, are especially common in pancreatic, lung, and colorectal cancers. Efforts to inhibit RAS and related GTPases have produced inhibitors targeting the downstream effectors of RAS signaling, including inhibitors of the RAF-mitogen-activated protein kinase/extracellular signal-related kinase (ERK)-ERK kinase pathway and the phosphoinositide-3-kinase-AKT-mTOR kinase pathway. A third effector arm of RAS signaling, mediated by RAL (RAS like) has emerged in recent years as a critical driver of RAS oncogenic signaling and has not been targeted until recently. RAL belongs to the RAS branch of the RAS superfamily and shares a high structural similarity with RAS. In human cells, there are two genes, RALA and RALB, both of which have been shown to play roles in the proliferation, survival, and metastasis of a variety of human cancers, including lung, colon, pancreatic, prostate, skin, and bladder cancers. In this review, we summarize the latest knowledge of RAL in the context of human cancer and the recent advancements in the development of cancer therapeutics targeting RAL small GTPases.
Collapse
Affiliation(s)
- Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (C.Y.); Departments of Surgery (Urology) and Pharmacology, University of Colorado, Aurora, Colorado (D.T.); and University of Colorado Comprehensive Cancer Center, Aurora, Colorado (D.T.)
| | - Dan Theodorescu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (C.Y.); Departments of Surgery (Urology) and Pharmacology, University of Colorado, Aurora, Colorado (D.T.); and University of Colorado Comprehensive Cancer Center, Aurora, Colorado (D.T.)
| |
Collapse
|
31
|
Moghadam AR, Patrad E, Tafsiri E, Peng W, Fangman B, Pluard TJ, Accurso A, Salacz M, Shah K, Ricke B, Bi D, Kimura K, Graves L, Najad MK, Dolatkhah R, Sanaat Z, Yazdi M, Tavakolinia N, Mazani M, Amani M, Ghavami S, Gartell R, Reilly C, Naima Z, Esfandyari T, Farassati F. Ral signaling pathway in health and cancer. Cancer Med 2017; 6:2998-3013. [PMID: 29047224 PMCID: PMC5727330 DOI: 10.1002/cam4.1105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
The Ral (Ras-Like) signaling pathway plays an important role in the biology of cells. A plethora of effects is regulated by this signaling pathway and its prooncogenic effectors. Our team has demonstrated the overactivation of the RalA signaling pathway in a number of human malignancies including cancers of the liver, ovary, lung, brain, and malignant peripheral nerve sheath tumors. Additionally, we have shown that the activation of RalA in cancer stem cells is higher in comparison with differentiated cancer cells. In this article, we review the role of Ral signaling in health and disease with a focus on the role of this multifunctional protein in the generation of therapies for cancer. An improved understanding of this pathway can lead to development of a novel class of anticancer therapies that functions on the basis of intervention with RalA or its downstream effectors.
Collapse
Affiliation(s)
- Adel Rezaei Moghadam
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
| | - Elham Patrad
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Elham Tafsiri
- Department of Pediatrics, Columbia Presbyterian Medical CenterNew YorkNew York
| | - Warner Peng
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Benjamin Fangman
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Timothy J Pluard
- Saint Luke's HospitalUniversity of Missouri at Kansas CityKansas CityMissouri
| | - Anthony Accurso
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Michael Salacz
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Kushal Shah
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Brandon Ricke
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Danse Bi
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Kyle Kimura
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Leland Graves
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Marzieh Khajoie Najad
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Roya Dolatkhah
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Zohreh Sanaat
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Mina Yazdi
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Naeimeh Tavakolinia
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Mohammad Mazani
- Pasteur Institute of IranTehranIran
- Ardabil University of Medical Sciences, BiochemistryArdabilIran
| | - Mojtaba Amani
- Pasteur Institute of IranTehranIran
- Ardabil University of Medical Sciences, BiochemistryArdabilIran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
| | - Robyn Gartell
- Department of Pediatrics, Columbia Presbyterian Medical CenterNew YorkNew York
| | - Colleen Reilly
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Zaid Naima
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Tuba Esfandyari
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Faris Farassati
- Research Service (151)Kansas City Veteran Affairs Medical Center & Midwest Biomedical Research Foundation4801 E Linwood BlvdKansas CityMissouri64128‐2226
| |
Collapse
|
32
|
Pomeroy EJ, Eckfeldt CE. Targeting Ras signaling in AML: RALB is a small GTPase with big potential. Small GTPases 2017; 11:39-44. [PMID: 28682649 DOI: 10.1080/21541248.2017.1339765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia (AML) is a devastating malignancy for which novel treatment approaches are desperately needed. Ras signaling is an attractive therapeutic target for AML because a large proportion of AMLs have mutations in NRAS, KRAS, or genes that activate Ras signaling, and key Ras effectors are activated in virtually all AML patient samples. This has inspired efforts to develop Ras-targeted treatment strategies for AML. Due to the inherent difficulty and disappointing efficacy of targeting Ras proteins directly, many have focused on inhibiting Ras effector pathways. Inhibiting the major oncogenic Ras effectors, the mitogen-activated protein kinase (MAPK) and/or phosphatidylinositiol-3-kinase (PI3K) pathways, has generally demonstrated modest efficacy for AML. While this may be in part related to functional redundancy between these pathways, it is now clear that other Ras effectors have key oncogenic roles. Specifically, the Ras-like (Ral) GTPases have emerged as critical mediators of Ras-driven transformation and AML cell survival. Our group recently uncovered a critical role for RALB signaling in leukemic cell survival and a potential mediator of relapse following Ras-targeted therapy in AML. Furthermore, we found that RALB signaling is hyperactivated in AML patient samples, and inhibiting RALB has potent anti-leukemic activity in preclinical AML models. While key questions remain regarding the importance of RALB signaling across the genetically diverse spectrum of AML, the specific mechanism(s) that promotes leukemic cell survival downstream of RALB, and how to pharmacologically target RALB signaling effectively - RALB has emerged as a critical Ras effector and potential therapeutic target for AML.
Collapse
Affiliation(s)
- Emily J Pomeroy
- Department of Medicine, Division of Hematology, Oncology, & Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Craig E Eckfeldt
- Department of Medicine, Division of Hematology, Oncology, & Transplantation, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
33
|
miR-331-3p and Aurora Kinase inhibitor II co-treatment suppresses prostate cancer tumorigenesis and progression. Oncotarget 2017; 8:55116-55134. [PMID: 28903407 PMCID: PMC5589646 DOI: 10.18632/oncotarget.18664] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023] Open
Abstract
RNA-based therapeutics could represent a new avenue of cancer treatment. miRNA 331-3p (miR-331-3p) is implicated in prostate cancer (PCa) as a putative tumor suppressor, but its functional activity and synergy with other anti-tumor agents is largely unknown. We found miR-331-3p expression in PCa tumors was significantly decreased compared to non-malignant matched tissue. Analysis of publicly available PCa gene expression data sets showed miR-331-3p expression negatively correlated with Gleason Score, tumor stage, lymph node involvement and PSA value, and was significantly down regulated in tumor tissue relative to normal prostate tissue. Overexpression of miR-331-3p reduced PCa cell growth, migration and colony formation, as well as xenograft tumor initiation, proliferation and survival of mice. Microarray analysis identified seven novel targets of miR-331-3p in PCa. The 3’-untranslated regions of PLCγ1 and RALA were confirmed as targets of miR-331-3p, with mutation analyses confirming RALA as a direct target. Expression of miR-331-3p or RALA siRNA in PCa cells reduced RALA expression, proliferation, migration and colony formation in vitro. RALA expression positively correlated with Gleason grade in two separate studies, as well as in a PCa tissue microarray. Co-treatment using siRALA with an Aurora Kinase inhibitor (AKi-II) decreased colony formation of PCa cells while the combination of AKi-II with miR-331-3p resulted in significant reduction of PCa cell proliferation in vitro and PCa xenograft growth in vivo. Thus, miR-331-3p directly targets the RALA pathway and the addition of the AKi-II has a synergistic effect on tumor growth inhibition, suggesting a potential role as combination therapy in PCa.
Collapse
|
34
|
Pomeroy EJ, Lee LA, Lee RDW, Schirm DK, Temiz NA, Ma J, Gruber TA, Diaz-Flores E, Moriarity BS, Downing JR, Shannon KM, Largaespada DA, Eckfeldt CE. Ras oncogene-independent activation of RALB signaling is a targetable mechanism of escape from NRAS(V12) oncogene addiction in acute myeloid leukemia. Oncogene 2016; 36:3263-3273. [PMID: 27991934 PMCID: PMC5464975 DOI: 10.1038/onc.2016.471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/17/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
Abstract
Somatic mutations that lead to constitutive activation of NRAS and KRAS proto-oncogenes are among the most common in human cancer and frequently occur in acute myeloid leukemia (AML). An inducible NRAS(V12)-driven AML mouse model has established a critical role for continued NRAS(V12) expression in leukemia maintenance. In this model genetic suppression of NRAS(V12) expression results in rapid leukemia remission, but some mice undergo spontaneous relapse with NRAS(V12)-independent (NRI) AMLs providing an opportunity to identify mechanisms that bypass the requirement for Ras oncogene activity and drive leukemia relapse. We found that relapsed NRI AMLs are devoid of NRAS(V12) expression and signaling through the major oncogenic Ras effector pathways, phosphatidylinositol-3-kinase and mitogen-activated protein kinase, but express higher levels of an alternate Ras effector, Ralb, and exhibit NRI phosphorylation of the RALB effector TBK1, implicating RALB signaling in AML relapse. Functional studies confirmed that inhibiting CDK5-mediated RALB activation with a clinically relevant experimental drug, dinaciclib, led to potent RALB-dependent antileukemic effects in human AML cell lines, induced apoptosis in patient-derived AML samples in vitro and led to a 2-log reduction in the leukemic burden in patient-derived xenograft mice. Furthermore, dinaciclib potently suppressed the clonogenic potential of relapsed NRI AMLs in vitro and prevented the development of relapsed AML in vivo. Our findings demonstrate that Ras oncogene-independent activation of RALB signaling is a therapeutically targetable mechanism of escape from NRAS oncogene addiction in AML.
Collapse
Affiliation(s)
- E J Pomeroy
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - L A Lee
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - R D W Lee
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - D K Schirm
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - N A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - J Ma
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - T A Gruber
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - E Diaz-Flores
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - B S Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, Division of Hematology and Oncology, Minneapolis, MN, USA
| | - J R Downing
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - K M Shannon
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - D A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, Division of Hematology and Oncology, Minneapolis, MN, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - C E Eckfeldt
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
35
|
Synthesis of novel Ral inhibitors: An in vitro and in vivo study. Bioorg Med Chem Lett 2016; 26:5815-5818. [PMID: 27825764 DOI: 10.1016/j.bmcl.2016.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/08/2016] [Indexed: 11/22/2022]
Abstract
Chemical synthesis was performed to produce a series of 6-amino-1,3-disubstituted-4-phenyl-1,4-dihydro pyrano[2,3-c]pyrazole-5-carbonitrile compounds (14-57) which were characterized by 1H NMR, 13C NMR and LC/MS-MS. These compounds were assessed for their effect on the in vitro anchorage independent growth of human lung cancer cell line H2122 and IC50 values calculated. Two of the more potent compounds, BQU057 40 and BQU082 57 also displayed a dose dependent effect on RalA and RalB activity in H2122 spheroids using the common RalBP1 pull-down assay. Mouse PK and tissue distribution studies on 40 and 57 were performed and demonstrated that parent drug was present in tumor 3.0h post ip (50mg/Kg) dose.
Collapse
|
36
|
Kobayashi T. Understanding the biology of urothelial cancer metastasis. Asian J Urol 2016; 3:211-222. [PMID: 29264189 PMCID: PMC5730871 DOI: 10.1016/j.ajur.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Management of unresectable urothelial cancer (UC) has been a clinical challenge for decades. While drug resistance is a key issue, precise understanding of biology of UC metastasis is another challenge for the improvement of treatment outcome of UC patients. Introduction of the cell biology concepts including epithelial-mesenchymal transition (EMT) and cancer stemness seems to explain UC metastasis. Molecular genetics based on gene expression profiling, next generation sequencing, and explosion of non-coding RNA world has opened the door to intrinsic molecular subtyping of UC. Next steps include, based on the recently accumulated understanding, the establishment of novel disease models representing UC metastasis in various experimental platforms, particularly in vivo animal systems. Indeed, novel knowledge molecular genetics has not been fully linked to the modeling of UC metastasis. Further understanding of bladder carcinogenesis is needed particularly with regard to cell of origin related to tumor characteristics including driver gene alterations, pathological differentiations, and metastatic ability. Then we will be able to establish better disease models, which will consequently lead us to further understanding of biology and eventually the development of novel therapeutic strategies for UC metastasis.
Collapse
|
37
|
RalGPS2 Is Essential for Survival and Cell Cycle Progression of Lung Cancer Cells Independently of Its Established Substrates Ral GTPases. PLoS One 2016; 11:e0154840. [PMID: 27149377 PMCID: PMC4858283 DOI: 10.1371/journal.pone.0154840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022] Open
Abstract
The human genome contains six genes coding for proteins validated in vitro as specific activators of the small GTPases “Ras-related protein Ral-A” and “Ras-related protein Ral-B”, generically named Ral-guanine nucleotide exchange factors (RalGEF). Ral proteins are important contributors to Ras oncogenic signaling, and RAS oncogenes are important in human Non-Small Cell Lung Carcinoma (NSCLC). Therefore in this work, RalGEF contribution to oncogenic and non-oncogenic features of human NSCLC cell lines, as anchorage-dependent and independent growth, cell survival, and proliferation, was investigated. Among all human RalGEF, silencing of RGL1 and RALGPS1 had no detectable effect. However, silencing of either RGL2, RGL3, RALGDS or, to a larger extent, RALGPS2 inhibited cell population growth in anchorage dependent and independent conditions (up to 90 and 80%, respectively). RALGPS2 silencing also caused an increase in the number of apoptotic cells, up to 45% of the cell population in transformed bronchial BZR cells. In H1299 and A549, two NSCLC cell lines, RALGPS2 silencing caused an arrest of cells in the G0/G1-phase of cell cycle. Furthermore, it was associated with the modulation of important cell cycle regulators: the E3 Ubiquitin Protein Ligase S-phase kinase-associated protein 2 (Skp2) was strongly down-regulated (both at mRNA and protein levels), and its targets, the cell cycle inhibitors p27 and p21, were up-regulated. These molecular effects were not mimicked by silencing RALA, RALB, or both. However, RALB silencing caused a modest inhibition of cell cycle progression, which in H1299 cells was associated with Cyclin D1 regulation. In conclusion, RALGPS2 is implicated in the control of cell cycle progression and survival in the in vitro growth of NSCLC cell lines. This function is largely independent of Ral GTPases and associated with modulation of Skp2, p27 and p21 cell cycle regulators.
Collapse
|
38
|
Kümper S, Mardakheh FK, McCarthy A, Yeo M, Stamp GW, Paul A, Worboys J, Sadok A, Jørgensen C, Guichard S, Marshall CJ. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. eLife 2016; 5:e12994. [PMID: 26765561 PMCID: PMC4798951 DOI: 10.7554/elife.12203] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility.
Collapse
Affiliation(s)
- Sandra Kümper
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Faraz K Mardakheh
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Afshan McCarthy
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Maggie Yeo
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Gordon W Stamp
- Experimental Pathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Angela Paul
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Jonathan Worboys
- Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Amine Sadok
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Claus Jørgensen
- Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Sabrina Guichard
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | | |
Collapse
|
39
|
Modeling K-Ras-driven lung adenocarcinoma in mice: preclinical validation of therapeutic targets. J Mol Med (Berl) 2015; 94:121-35. [DOI: 10.1007/s00109-015-1360-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023]
|
40
|
Zhu Z, Golay HG, Barbie DA. Targeting pathways downstream of KRAS in lung adenocarcinoma. Pharmacogenomics 2015; 15:1507-18. [PMID: 25303301 DOI: 10.2217/pgs.14.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncogenic KRAS activation is responsible for the most common genetic subtype of lung cancer. Although many of the major downstream signaling pathways that KRAS engages have been defined, these discoveries have yet to translate into effective targeted therapy. Much of the current focus has been directed at inhibiting the activation of RAF/MAPK and PI3K/AKT signaling, but clinical trials combining multiple different agents that target these pathways have failed to show significant activity. In this article, we will discuss the evidence for RAF and PI3K as key downstream RAS effectors, as well as the RAL guanine exchange factor, which is equally essential for transformation. Furthermore, we will delineate alternative pathways, including cytokine activation and autophagy, which are co-opted by oncogenic RAS signaling and also represent attractive targets for therapy. Finally, we will present strategies for combining inhibitors of these downstream KRAS signaling pathways in a rational fashion, as multitargeted therapy will be required to achieve a cure.
Collapse
Affiliation(s)
- Zehua Zhu
- Department of Medical Oncology & Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | | | | |
Collapse
|
41
|
Shirakawa R, Horiuchi H. Ral GTPases: crucial mediators of exocytosis and tumourigenesis. J Biochem 2015; 157:285-99. [DOI: 10.1093/jb/mvv029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/07/2015] [Indexed: 11/12/2022] Open
|
42
|
The RAS-RAL axis in cancer: evidence for mutation-specific selectivity in non-small cell lung cancer. Acta Pharmacol Sin 2015; 36:291-7. [PMID: 25557115 DOI: 10.1038/aps.2014.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022] Open
Abstract
Activating RAS mutations are common in human tumors. These mutations are often markers for resistance to therapy and subsequent poor prognosis. So far, targeting the RAF-MEK-ERK and PI3K-AKT signaling pathways downstream of RAS is the only promising approach in the treatment of cancer patients harboring RAS mutations. RAL GTPase, another downstream effector of RAS, is also considered as a therapeutic option for the treatment of RAS-mutant cancers. The RAL GTPase family comprises RALA and RALB, which can have either divergent or similar functions in different tumor models. Recent studies on non-small cell lung cancer (NSCLC) have showed that different RAS mutations selectively activate specific effector pathways. This observation requires broader validation in other tumor tissue types, but if true, will provide a new approach to the treatment of RAS-mutant cancer patients by targeting specific downstream RAS effectors according to the type of RAS mutation. It also suggests that RAL GTPase inhibition will be an important treatment strategy for tumors harboring RAS glycine to cysteine (G12C) or glycien to valine (G12V) mutations, which are commonly found in NSCLC and pancreatic cancer.
Collapse
|
43
|
Abstract
INTRODUCTION KRAS mutations are poor prognostic markers for patients with non-small-cell lung cancer (NSCLC). RALA and RALB GTPases lie downstream of RAS and are implicated in RAS-mediated tumorigenesis. However, their biological or prognostic role in the context of KRAS mutation in NSCLC is unclear. METHODS Using expression analysis of human tumors and a panel of cell lines coupled with functional in vivo and in vitro experiments, we evaluated the prognostic and functional importance of RAL in NSCLC and their relationship to KRAS expression and mutation. RESULTS Immunohistochemical (N = 189) and transcriptomic (N = 337) analyses of NSCLC patients revealed high RALA and RALB expression was associated with poor survival. In a panel of 14 human NSCLC cell lines, RALA and RALB had higher expression in KRAS mutant cell lines whereas RALA but not RALB activity was higher in KRAS mutant cell lines. Depletion of RAL paralogs identified cell lines that are dependent on RAL expression for proliferation and anchorage independent growth. Overall, growth of NSCLC cell lines that carry a glycine to cystine KRAS mutation were more sensitive to RAL depletion than those with wild-type KRAS. The use of gene expression and outcome data from 337 human tumors in RAL-KRAS interaction analysis revealed that KRAS and RAL paralog expression jointly impact patient prognosis. CONCLUSION RAL GTPase expression carries important additional prognostic information to KRAS status in NSCLC patients. Simultaneously targeting RAL may provide a novel therapeutic approach in NSCLC patients harboring glycine to cystine KRAS mutations.
Collapse
|
44
|
Abstract
Despite more than three decades of intensive effort, no effective pharmacological inhibitors of the RAS oncoproteins have reached the clinic, prompting the widely held perception that RAS proteins are 'undruggable'. However, recent data from the laboratory and the clinic have renewed our hope for the development of RAS-inhibitory molecules. In this Review, we summarize the progress and the promise of five key approaches. Firstly, we focus on the prospects of using direct inhibitors of RAS. Secondly, we address the issue of whether blocking RAS membrane association is a viable approach. Thirdly, we assess the status of targeting RAS downstream effector signalling, which is arguably the most favourable current approach. Fourthly, we address whether the search for synthetic lethal interactors of mutant RAS still holds promise. Finally, RAS-mediated changes in cell metabolism have recently been described and we discuss whether these changes could be exploited for new therapeutic directions. We conclude with perspectives on how additional complexities, which are not yet fully understood, may affect each of these approaches.
Collapse
|
45
|
Gentry LR, Martin TD, Reiner DJ, Der CJ. Ral small GTPase signaling and oncogenesis: More than just 15minutes of fame. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2976-2988. [PMID: 25219551 DOI: 10.1016/j.bbamcr.2014.09.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/26/2023]
Abstract
Since their discovery in 1986, Ral (Ras-like) GTPases have emerged as critical regulators of diverse cellular functions. Ral-selective guanine nucleotide exchange factors (RalGEFs) function as downstream effectors of the Ras oncoprotein, and the RalGEF-Ral signaling network comprises the third best characterized effector of Ras-dependent human oncogenesis. Because of this, Ral GTPases as well as their effectors are being explored as possible therapeutic targets in the treatment of RAS mutant cancer. The two Ral isoforms, RalA and RalB, interact with a variety of downstream effectors and have been found to play key and distinct roles in both normal and neoplastic cell physiology including regulation of vesicular trafficking, migration and invasion, tumor formation, metastasis, and gene expression. In this review we provide an overview of Ral biochemistry and biology, and we highlight recent discoveries.
Collapse
Affiliation(s)
- Leanna R Gentry
- University of North Carolina at Chapel Hill, Department of Pharmacology, Chapel Hill, NC, USA
| | | | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Channing J Der
- University of North Carolina at Chapel Hill, Department of Pharmacology, Chapel Hill, NC, USA; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.
| |
Collapse
|
46
|
Oeckinghaus A, Postler TS, Rao P, Schmitt H, Schmitt V, Grinberg-Bleyer Y, Kühn LI, Gruber CW, Lienhard GE, Ghosh S. κB-Ras proteins regulate both NF-κB-dependent inflammation and Ral-dependent proliferation. Cell Rep 2014; 8:1793-1807. [PMID: 25220458 DOI: 10.1016/j.celrep.2014.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/19/2014] [Accepted: 08/06/2014] [Indexed: 02/01/2023] Open
Abstract
The transformation of cells generally involves multiple genetic lesions that undermine control of both cell death and proliferation. We now report that κB-Ras proteins act as regulators of NF-κB and Ral pathways, which control inflammation/cell death and proliferation, respectively. Cells lacking κB-Ras therefore not only show increased NF-κB activity, which results in increased expression of inflammatory mediators, but also exhibit elevated Ral activity, which leads to enhanced anchorage-independent proliferation (AIP). κB-Ras deficiency consequently leads to significantly increased tumor growth that can be dampened by inhibiting either Ral or NF-κB pathways, revealing the unique tumor-suppressive potential of κB-Ras proteins. Remarkably, numerous human tumors show reduced levels of κB-Ras, and increasing the level of κB-Ras in these tumor cells impairs their ability to undergo AIP, thereby implicating κB-Ras proteins in human disease.
Collapse
Affiliation(s)
- Andrea Oeckinghaus
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Thomas S Postler
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ping Rao
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Heike Schmitt
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Verena Schmitt
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yenkel Grinberg-Bleyer
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lars I Kühn
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gustav E Lienhard
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
47
|
Yan C, Liu D, Li L, Wempe MF, Guin S, Khanna M, Meier J, Hoffman B, Owens C, Wysoczynski CL, Nitz MD, Knabe WE, Ahmed M, Brautigan DL, Paschal BM, Schwartz MA, Jones DNM, Ross D, Meroueh SO, Theodorescu D. Discovery and characterization of small molecules that target the GTPase Ral. Nature 2014; 515:443-7. [PMID: 25219851 DOI: 10.1038/nature13713] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 07/24/2014] [Indexed: 12/22/2022]
Abstract
The Ras-like GTPases RalA and RalB are important drivers of tumour growth and metastasis. Chemicals that block Ral function would be valuable as research tools and for cancer therapeutics. Here we used protein structure analysis and virtual screening to identify drug-like molecules that bind to a site on the GDP-bound form of Ral. The compounds RBC6, RBC8 and RBC10 inhibited the binding of Ral to its effector RALBP1, as well as inhibiting Ral-mediated cell spreading of murine embryonic fibroblasts and anchorage-independent growth of human cancer cell lines. The binding of the RBC8 derivative BQU57 to RalB was confirmed by isothermal titration calorimetry, surface plasmon resonance and (1)H-(15)N transverse relaxation-optimized spectroscopy (TROSY) NMR spectroscopy. RBC8 and BQU57 show selectivity for Ral relative to the GTPases Ras and RhoA and inhibit tumour xenograft growth to a similar extent to the depletion of Ral using RNA interference. Our results show the utility of structure-based discovery for the development of therapeutics for Ral-dependent cancers.
Collapse
Affiliation(s)
- Chao Yan
- Department of Surgery, University of Colorado, Aurora, Colorado 80045, USA
| | - Degang Liu
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Liwei Li
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045, USA
| | - Sunny Guin
- Department of Surgery, University of Colorado, Aurora, Colorado 80045, USA
| | - May Khanna
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Jeremy Meier
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Brenton Hoffman
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Charles Owens
- Department of Surgery, University of Colorado, Aurora, Colorado 80045, USA
| | | | - Matthew D Nitz
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - William E Knabe
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Mansoor Ahmed
- 1] Department of Cardiology, Yale University, New Haven, Connecticut 06511, USA [2] Department of Cell Biology, Yale University, New Haven, Connecticut 06511, USA
| | - David L Brautigan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Bryce M Paschal
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Martin A Schwartz
- 1] Department of Cardiology, Yale University, New Haven, Connecticut 06511, USA [2] Department of Cell Biology, Yale University, New Haven, Connecticut 06511, USA
| | - David N M Jones
- Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA
| | - David Ross
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045, USA
| | - Samy O Meroueh
- 1] Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Department of Chemistry and Chemical Biology, Indiana University - Purdue University, Indianapolis, Indiana 46202, USA
| | - Dan Theodorescu
- 1] Department of Surgery, University of Colorado, Aurora, Colorado 80045, USA [2] Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA [3] University of Colorado Comprehensive Cancer Center, Aurora, Colorado 80045, USA
| |
Collapse
|
48
|
Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, Tang Y, Bi J, O'Neill R, Ruan Y, Chen J, Tian XC. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics 2014; 15:756. [PMID: 25185836 PMCID: PMC4162962 DOI: 10.1186/1471-2164-15-756] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/29/2014] [Indexed: 11/29/2022] Open
Abstract
Background During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology. Results Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development. Conclusions This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-756) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jingbo Chen
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA.
| | | |
Collapse
|
49
|
Kim EY, Kim A, Kim SK, Kim HJ, Chang J, Ahn CM, Lee JS, Shim HS, Chang YS. KRAS oncogene substitutions in Korean NSCLC patients: Clinical implication and relationship with pAKT and RalGTPases expression. Lung Cancer 2014; 85:299-305. [DOI: 10.1016/j.lungcan.2014.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/10/2014] [Accepted: 04/23/2014] [Indexed: 12/23/2022]
|
50
|
Personnic N, Lakisic G, Gouin E, Rousseau A, Gautreau A, Cossart P, Bierne H. A role for Ral GTPase-activating protein subunit β in mitotic regulation. FEBS J 2014; 281:2977-89. [PMID: 24814574 DOI: 10.1111/febs.12836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 01/05/2023]
Abstract
Ral proteins are small GTPases that play critical roles in normal physiology and in oncogenesis. There is little information on the GTPase-activating proteins (GAPs) that downregulate their activity. Here, we provide evidence that the noncatalytic β subunit of RalGAPα1/2 β complexes is involved in mitotic control. RalGAPβ localizes to the Golgi and nucleus during interphase, and relocalizes to the mitotic spindle and cytokinetic intercellular bridge during mitosis. Depletion of RalGAPβ causes chromosome misalignment and decreases the amount of mitotic cyclin B1, disturbing the metaphase-to-anaphase transition. Overexpression of RalGAPβ interferes with cell division, leading to binucleation and multinucleation, and cell death. We propose that RalGAPβ plays an essential role in the sequential progression of mitosis by controlling the spatial and temporal activation of Ral GTPases in the spindle assembly checkpoint (SAC) and cytokinesis. Deregulation of RalGAPβ might cause genomic instability, leading to human carcinogenesis.
Collapse
Affiliation(s)
- Nicolas Personnic
- Institut Pasteur, Unité des interactions Bactéries cellules, Paris, France; Inserm, U604, Paris, France; INRA, USC2020, Paris, France
| | | | | | | | | | | | | |
Collapse
|