1
|
Avaroth Bhaskaran R, Vondráčková Z, Koladiya A, Čapek M, Dionigi F, Begall S, Burda H, Peichl L, Němec P. Distinct retinal ganglion cell types in strictly subterranean, naturally microphthalmic mammals. Proc Biol Sci 2025; 292:20242586. [PMID: 39809306 PMCID: PMC11732417 DOI: 10.1098/rspb.2024.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
African mole-rats (Bathyergidae, Rodentia) are subterranean rodents that live in extensive dark underground tunnel systems and rarely emerge aboveground. They can discriminate between light and dark but show no overt visually driven behaviours except for light-avoidance responses. Their eyes and central visual system are strongly reduced but not degenerated. Here, we focus on retinal ganglion cells (RGCs). Sighted mammals have numerous RGC types with distinct morphological and functional properties that encode different aspects of a visual scene. We analysed the morphological diversity of 216 intracellularly dye-injected RGCs in the giant mole-rat (Fukomys mechowii) and 48 RGCs in Ansell's mole-rat (Fukomys anselli). Using a hierarchical cluster analysis on 11 morphological parameters, we show that both species possess at least five RGC types with distinct dendritic field sizes and branching patterns. These resemble some RGC types of the mouse and rat, but mole-rat RGCs feature overall sparser and more asymmetric branching patterns. The dendritic trees of most RGCs in all clusters are monostratified in the inner plexiform layer, but bistratified and multistratified/diffuse cells also exist. Thus, although RGC morphologies have become disorganized, the basic retinal organization principle of parallel information processing by distinct RGC types is retained.
Collapse
Affiliation(s)
| | - Zuzana Vondráčková
- Department of Zoology, Faculty of Science, Charles University, Prague128 43, Czech Republic
| | - Abhishek Koladiya
- Department of Pediatrics, Stanford University School of Medicine, StanfordCA 95305, USA
| | - Martin Čapek
- Light Microscopy, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Francesco Dionigi
- Department of Zoology, Faculty of Science, Charles University, Prague128 43, Czech Republic
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen45141, Germany
| | - Hynek Burda
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen45141, Germany
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague165 00, Czech Republic
| | - Leo Peichl
- Dr. Senckenbergische Anatomie, Institute for Clinical Neuroanatomy, Frankfurt am Main60590, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main60438, Germany
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Prague128 43, Czech Republic
| |
Collapse
|
2
|
Stone ML, Lee HH, Levine EM. Agarose hydrogel-mediated electroporation method for retinal tissue cultured at the air-liquid interface. iScience 2024; 27:111299. [PMID: 39628577 PMCID: PMC11612790 DOI: 10.1016/j.isci.2024.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
It is advantageous to culture the ex vivo retina and other tissues at the air-liquid interface to allow for more efficient gas exchange. However, gene delivery to these cultures can be challenging. Electroporation is a fast and robust method of gene delivery, but typically requires submergence in liquid buffer for electrical current flow. We have developed a submergence-free electroporation technique that incorporates an agarose hydrogel disk between the positive electrode and retina. Inner retinal neurons and Müller glia are transfected with increased propensity toward Müller glia transfection after extended time in culture. We also observed an increase in BrdU incorporation in Müller glia following electrical stimulation, and variation in detection of transfected cells from expression vectors with different promoters. This method advances our ability to use ex vivo retinal tissue for genetic studies and should be adaptable for other tissues cultured at an air-liquid interface.
Collapse
Affiliation(s)
- Megan L. Stone
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville TN 37232, USA
| | - Hannah H. Lee
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| | - Edward M. Levine
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville TN 37232, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| |
Collapse
|
3
|
Halabian A, Radahmadi M. The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review. Rev Neurosci 2024; 35:933-958. [PMID: 39520288 DOI: 10.1515/revneuro-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024]
Abstract
Variations in day length, or photoperiodism, whether natural or artificial light, significantly impact biological, physiological, and behavioral processes within the brain. Both natural and artificial light sources are environmental factors that significantly influence brain functions and mental well-being. Photoperiodism is a phenomenon, occurring either over a 24 h cycle or seasonally and denotes all biological responses of humans and animals to these fluctuations in day and night length. Conversely, artificial light occurrence refers to the presence of light during nighttime hours and/or its absence during the daytime (unnaturally long and short days, respectively). Light at night, which is a form of light pollution, is prevalent in many societies, especially common in certain emergency occupations. Moreover, individuals with certain mental disorders, such as depression, often exhibit a preference for darkness over daytime light. Nevertheless, disturbances in light patterns can have negative consequences, impacting brain performance through similar mechanisms albeit with varying degrees of severity. Furthermore, changes in day length lead to alterations in the activity of receptors, proteins, ion channels, and molecular signaling pathways, all of which can impact brain health. This review aims to summarize the mechanisms by which day length influences brain functions through neural circuits, hormonal systems, neurochemical processes, cellular activity, and even molecular signaling pathways.
Collapse
Affiliation(s)
- Alireza Halabian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western, Ontario, N6A 3K7 London, ON, Canada
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, 48455 Isfahan University of Medical Sciences , 81746-73461 Isfahan, Iran
| |
Collapse
|
4
|
Stone ML, Lee HH, Levine E. Agarose disk electroporation method for ex vivo retinal tissue cultured at the air-liquid interface reveals electrical stimulus-induced cell cycle reentry in retinal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572865. [PMID: 38187784 PMCID: PMC10769434 DOI: 10.1101/2023.12.21.572865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
It is advantageous to culture the ex vivo murine retina along with many other tissue types at the air-liquid interface. However, gene delivery to these cultures can be challenging. Electroporation is a fast and robust method of gene delivery, but typically requires submergence in a liquid buffer to allow electric current flow. We have developed a submergence-free electroporation technique using an agarose disk that allows for efficient gene delivery to the ex vivo murine retina. This method advances our ability to use ex vivo retinal tissue for genetic studies and can easily be adapted for any tissue cultured at an air-liquid interface. We found an increased ability to transfected Muller glia at 14 days ex vivo and an increase in BrdU incorporation in Muller glia following electrical stimulation. Use of this method has revealed valuable insights on the state of ex vivo retinal tissues and the effects of electrical stimulation on retinal cells.
Collapse
|
5
|
Martini M, Arias N. Disentangling the effects of near-infrared light stimulation and exercise on cognitive function in fNIRS studies. Neuroimage 2024; 292:120615. [PMID: 38631617 DOI: 10.1016/j.neuroimage.2024.120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) studies often aim to measure changes in the brain's hemodynamic response in relation to a specific intervention. We recently showed how a fNIRS device could induce photobiomodulatory effects on cognition by using its near-infrared (NIR) light. However, so far, fNIRS research has overlooked the stimulatory potential intrinsic to this technique. The work by Kuwamizu et al. (2023) on pupil dynamics during exercise is no exception. Here, we suggest a fix to their experimental design, which could be taken into account in other fNIRS studies, to guarantee an adequate level of control for possible unconsidered photobiomodulatory effects.
Collapse
Affiliation(s)
- Matteo Martini
- Department of Humanities, Letters, Cultural Heritage and Educational Studies, via Arpi, Foggia 71121, Italy.
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Psychology and Neuroscience, Institute of Psychiatry, King's College London, Denmark Hill, London SE5 8AF, UK; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo 33005, Spain; Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, Madrid 28248, Spain
| |
Collapse
|
6
|
Barrionuevo PA, Sandoval Salinas ML, Fanchini JM. Are ipRGCs involved in human color vision? Hints from physiology, psychophysics, and natural image statistics. Vision Res 2024; 217:108378. [PMID: 38458004 DOI: 10.1016/j.visres.2024.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Human photoreceptors consist of cones, rods, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). First studied in circadian regulation and pupillary control, ipRGCs project to a variety of brain centers suggesting a broader involvement beyond non-visual functions. IpRGC responses are stable, long-lasting, and with a particular codification of photoreceptor signals. In comparison with the transient and adaptive nature of cone and rod signals, ipRGCs' signaling might provide an ecological advantage to different attributes of color vision. Previous studies have indicated melanopsin's influence on visual responses yet its contribution to color perception in humans remains debated. We summarized evidence and hypotheses (from physiology, psychophysics, and natural image statistics) about direct and indirect involvement of ipRGCs in human color vision, by first briefly assessing the current knowledge about the role of melanopsin and ipRGCs in vision and codification of spectral signals. We then approached the question about melanopsin activation eliciting a color percept, discussing studies using the silent substitution method. Finally, we explore various avenues through which ipRGCs might impact color perception indirectly, such as through involvement in peripheral color matching, post-receptoral pathways, color constancy, long-term chromatic adaptation, and chromatic induction. While there is consensus about the role of ipRGCs in brightness perception, confirming its direct contribution to human color perception requires further investigation. We proposed potential approaches for future research, emphasizing the need for empirical validation and methodological thoroughness to elucidate the exact role of ipRGCs in human color vision.
Collapse
Affiliation(s)
- Pablo A Barrionuevo
- Allgemeine Psychologie, Justus-Liebig-Universität Gießen, Germany; Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina.
| | - María L Sandoval Salinas
- Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina; Instituto de Investigaciones de Biodiversidad Argentina (PIDBA), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Argentina
| | - José M Fanchini
- Instituto de Investigación en Luz, Ambiente y Visión (ILAV), CONICET - Universidad Nacional de Tucumán, Argentina; Departamento de Luminotecnia, Luz y Visión, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Argentina
| |
Collapse
|
7
|
McMahon DG, Dowling JE. Neuromodulation: Actions of Dopamine, Retinoic Acid, Nitric Oxide, and Other Substances on Retinal Horizontal Cells. Eye Brain 2023; 15:125-137. [PMID: 37928979 PMCID: PMC10625386 DOI: 10.2147/eb.s420050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 11/07/2023] Open
Abstract
Whereas excitation and inhibition of neurons are well understood, it is clear that neuromodulatory influences on neurons and their synapses play a major role in shaping neural activity in the brain. Memory and learning, emotional and other complex behaviors, as well as cognitive disorders have all been related to neuromodulatory mechanisms. A number of neuroactive substances including monoamines such as dopamine and neuropeptides have been shown to act as neuromodulators, but other substances thought to play very different roles in the body and brain act as neuromodulators, such as retinoic acid. We still understand little about how neuromodulatory substances exert their effects, and the present review focuses on how two such substances, dopamine and retinoic acid, exert their effects. The emphasis is on the underlying neuromodulatory mechanisms down to the molecular level that allow the second order bipolar cells and the output neurons of the retina, the ganglion cells, to respond to different environmental (ie lighting) conditions. The modulation described affects a simple circuit in the outer retina, involves several neuroactive substances and is surprisingly complex and not fully understood.
Collapse
Affiliation(s)
- Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - John E Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
8
|
Quan Y, Duan H, Zhan Z, Shen Y, Lin R, Liu T, Zhang T, Wu J, Huang J, Zhai G, Song X, Zhou Y, Sun X. Evaluation of the Glaucomatous Macular Damage by Chromatic Pupillometry. Ophthalmol Ther 2023; 12:2133-2156. [PMID: 37284935 PMCID: PMC10287851 DOI: 10.1007/s40123-023-00738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
INTRODUCTION This study aimed to examine the performance of binocular chromatic pupillometry for the objective and rapid detection of primary open-angle glaucoma (POAG), and to explore the association between pupillary light response (PLR) features and structural glaucomatous macular damage. METHODS Forty-six patients (mean age 41.00 ± 13.03 years) with POAG and 23 healthy controls (mean age 42.00 ± 11.08 years) were enrolled. All participants underwent sequenced PLR tests of full-field, superior/inferior quadrant-field chromatic stimuli using a binocular head-mounted pupillometer. The constricting amplitude, velocity, and time to max constriction/dilation, and the post-illumination pupil response (PIPR) were analyzed. The inner retina thickness and volume measurements were determined by spectral domain optical coherence tomography. RESULTS In the full-field stimulus experiment, time to pupil dilation was inversely correlated with perifoveal thickness (r = - 0.429, P < 0.001) and perifoveal volume (r = - 0.364, P < 0.001). Dilation time (AUC 0.833) showed good diagnostic performance, followed by the constriction amplitude (AUC 0.681) and PIPR (AUC 0.620). In the superior quadrant-field stimulus experiment, time of pupil dilation negatively correlated with inferior perifoveal thickness (r = - 0.451, P < 0.001) and inferior perifoveal volume (r = - 0.417, P < 0.001). The dilation time in response to the superior quadrant-field stimulus showed the best diagnostic performance (AUC 0.909). In the inferior quadrant-field stimulus experiment, time to pupil dilation (P < 0.001) correlated well with superior perifoveal thickness (r = - 0.299, P < 0.001) and superior perifoveal volume (r = - 0.304, P < 0.001). CONCLUSION The use of chromatic pupillometry offers a patient-friendly and objective approach to detect POAG, while the impairment of PLR features may serve as a potential indicator of structural macular damage.
Collapse
Affiliation(s)
- Yadan Quan
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Huiyu Duan
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zongyi Zhan
- Shenzhen Eye Hospital, Shenzhen, China
- Shenzhen Eye Institute, Shenzhen, China
- Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, China
| | - Yuening Shen
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Rui Lin
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Tingting Liu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Ting Zhang
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jing Huang
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guangtao Zhai
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefei Song
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yixiong Zhou
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Quan Y, Duan H, Zhan Z, Shen Y, Lin R, Liu T, Zhang T, Wu J, Huang J, Zhai G, Song X, Zhou Y, Sun X. Binocular head-mounted chromatic pupillometry can detect structural and functional loss in glaucoma. Front Neurosci 2023; 17:1187619. [PMID: 37456990 PMCID: PMC10346847 DOI: 10.3389/fnins.2023.1187619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Aim The aim of this study is to evaluate the utility of binocular chromatic pupillometry in detecting impaired pupillary light response (PLR) in patients with primary open-angle glaucoma (POAG) and to assess the feasibility of using binocular chromatic pupillometer in opportunistic POAG diagnosis in community-based or telemedicine-based services. Methods In this prospective, cross-sectional study, 74 patients with POAG and 23 healthy controls were enrolled. All participants underwent comprehensive ophthalmologic examinations including optical coherence tomography (OCT) and standard automated perimetry (SAP). The PLR tests included sequential tests of full-field chromatic stimuli weighted by rods, intrinsically photosensitive retinal ganglion cells (ipRGCs), and cones (Experiment 1), as well as alternating chromatic light flash-induced relative afferent pupillary defect (RAPD) test (Experiment 2). In Experiment 1, the constricting amplitude, velocity, and time to maximum constriction/dilation were calculated in three cell type-weighted responses, and the post-illumination response of ipRGC-weighted response was evaluated. In Experiment 2, infrared pupillary asymmetry (IPA) amplitude and anisocoria duration induced by intermittent blue or red light flashes were calculated. Results In Experiment 1, the PLR of POAG patients was significantly reduced in all conditions, reflecting the defect in photoreception through rods, cones, and ipRGCs. The variable with the highest area under the receiver operating characteristic curve (AUC) was time to max dilation under ipRGC-weighted stimulus, followed by the constriction amplitude under cone-weighted stimulus and the constriction amplitude response to ipRGC-weighted stimuli. The impaired PLR features were associated with greater visual field loss, thinner retinal nerve fiber layer (RNFL) thickness, and cupping of the optic disk. In Experiment 2, IPA and anisocoria duration induced by intermittent blue or red light flashes were significantly greater in participants with POAG than in controls. IPA and anisocoria duration had good diagnostic value, correlating with the inter-eye asymmetry of visual field loss. Conclusion We demonstrate that binocular chromatic pupillometry could potentially serve as an objective clinical tool for opportunistic glaucoma diagnosis in community-based or telemedicine-based services. Binocular chromatic pupillometry allows an accurate, objective, and rapid assessment of retinal structural impairment and functional loss in glaucomatous eyes of different severity levels.
Collapse
Affiliation(s)
- Yadan Quan
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Huiyu Duan
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zongyi Zhan
- Department of Retinal Disease, Shenzhen Eye Institute, Shenzhen Eye Hospital, Shenzhen Eye Hospital Affiliated to Jinan University, Shenzhen, China
| | - Yuening Shen
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Rui Lin
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Tingting Liu
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Ting Zhang
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jing Huang
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guangtao Zhai
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefei Song
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yixiong Zhou
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC and Chinese Academy of Medical Sciences Key Laboratory of Myopia, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener 2023; 12:8. [PMID: 36782262 PMCID: PMC9926748 DOI: 10.1186/s40035-023-00340-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at multiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neurodegenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclinical and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize circadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep disorders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidirectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.
Collapse
|
11
|
Dardente H, Simonneaux V. GnRH and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and RFRP-3. J Neuroendocrinol 2022; 34:e13124. [PMID: 35384117 DOI: 10.1111/jne.13124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Synchronization of mammalian breeding activity to the annual change of photoperiod and environmental conditions is of the utmost importance for individual survival and species perpetuation. Subsequent to the early 1960s, when the central role of melatonin in this adaptive process was demonstrated, our comprehension of the mechanisms through which light regulates gonadal activity has increased considerably. The current model for the photoperiodic neuroendocrine system points to pivotal roles for the melatonin-sensitive pars tuberalis (PT) and its seasonally-regulated production of thyroid-stimulating hormone (TSH), as well as for TSH-sensitive hypothalamic tanycytes, radial glia-like cells located in the basal part of the third ventricle. Tanycytes respond to TSH through increased expression of thyroid hormone (TH) deiodinase 2 (Dio2), which leads to heightened production of intrahypothalamic triiodothyronine (T3) during longer days of spring and summer. There is strong evidence that this local, long-day driven, increase in T3 links melatonin input at the PT to gonadotropin-releasing hormone (GnRH) output, to align breeding with the seasons. The mechanism(s) through which T3 impinges upon GnRH remain(s) unclear. However, two distinct neuronal populations of the medio-basal hypothalamus, which express the (Arg)(Phe)-amide peptides kisspeptin and RFamide-related peptide-3, appear to be well-positioned to relay this seasonal T3 message towards GnRH neurons. Here, we summarize our current understanding of the cellular, molecular and neuroendocrine players, which keep track of photoperiod and ultimately govern GnRH output and seasonal breeding.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Nilsson DE. The Evolution of Visual Roles – Ancient Vision Versus Object Vision. Front Neuroanat 2022; 16:789375. [PMID: 35221931 PMCID: PMC8863595 DOI: 10.3389/fnana.2022.789375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Just like other complex biological features, image vision (multi-pixel light sensing) did not evolve suddenly. Animal visual systems have a long prehistory of non-imaging light sensitivity. The first spatial vision was likely very crude with only few pixels, and evolved to improve orientation behaviors previously supported by single-channel directional photoreception. The origin of image vision was simply a switch from single to multiple spatial channels, which improved the behaviors for finding a suitable habitat and position itself within it. Orientation based on spatial vision obviously involves active guidance of behaviors but, by necessity, also assessment of habitat suitability and environmental conditions. These conditions are crucial for deciding when to forage, reproduce, seek shelter, rest, etc. When spatial resolution became good enough to see other animals and interact with them, a whole range of new visual roles emerged: pursuit, escape, communication and other interactions. All these new visual roles require entirely new types of visual processing. Objects needed to be separated from the background, identified and classified to make the correct choice of interaction. Object detection and identification can be used actively to guide behaviors but of course also to assess the over-all situation. Visual roles can thus be classified as either ancient non-object-based tasks, or object vision. Each of these two categories can also be further divided into active visual tasks and visual assessment tasks. This generates four major categories of vision into which I propose that all visual roles can be categorized.
Collapse
|
13
|
Wu F, Zhao Y, Zhang H. Ocular Autonomic Nervous System: An Update from Anatomy to Physiological Functions. Vision (Basel) 2022; 6:vision6010006. [PMID: 35076641 PMCID: PMC8788436 DOI: 10.3390/vision6010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The autonomic nervous system (ANS) confers neural control of the entire body, mainly through the sympathetic and parasympathetic nerves. Several studies have observed that the physiological functions of the eye (pupil size, lens accommodation, ocular circulation, and intraocular pressure regulation) are precisely regulated by the ANS. Almost all parts of the eye have autonomic innervation for the regulation of local homeostasis through synergy and antagonism. With the advent of new research methods, novel anatomical characteristics and numerous physiological processes have been elucidated. Herein, we summarize the anatomical and physiological functions of the ANS in the eye within the context of its intrinsic connections. This review provides novel insights into ocular studies.
Collapse
|
14
|
St. Hilaire MA. Modeling (circadian). PROGRESS IN BRAIN RESEARCH 2022; 273:181-198. [DOI: 10.1016/bs.pbr.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Bradley AE, Wancket LM, Rinke M, Gruebbel MM, Saladino BH, Schafer K, Katsuta O, Garcia B, Chanut F, Hughes K, Nelson K, Himmel L, McInnes E, Schucker A, Uchida K. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Rabbit. J Toxicol Pathol 2021; 34:183S-292S. [PMID: 34712007 PMCID: PMC8544166 DOI: 10.1293/tox.34.183s] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for
Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of
Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North
America (STP) to develop an internationally accepted nomenclature for proliferative and
non-proliferative lesions in laboratory animals. The purpose of this publication is to
provide a standardized nomenclature for classifying microscopic lesions observed in most
tissues and organs from the laboratory rabbit used in nonclinical safety studies. Some of
the lesions are illustrated by color photomicrographs. The standardized nomenclature
presented in this document is also available electronically on the internet
(http://www.goreni.org/). Sources of material included histopathology databases from
government, academia, and industrial laboratories throughout the world. Content includes
spontaneous lesions as well as lesions induced by exposure to test materials. Relevant
infectious and parasitic lesions are included as well. A widely accepted and utilized
international harmonization of nomenclature for lesions in laboratory animals will provide
a common language among regulatory and scientific research organizations in different
countries and increase and enrich international exchanges of information among
toxicologists and pathologists.
Collapse
Affiliation(s)
- Alys E Bradley
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | | | | | | | | | | | | | - Begonya Garcia
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | - Franck Chanut
- Sanofi, 1 Avenue Pierre Brosselette, 91380 Chilly-Mazarin, France
| | | | | | - Lauren Himmel
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Adrienne Schucker
- American Preclinical Services, LLC, 8945 Evergreen Blvd, Minneapolis, MN 55433
| | | |
Collapse
|
16
|
Abstract
Neurodegenerative diseases encompass a large group of conditions that are clinically and pathologically diverse yet are linked by a shared pathology of misfolded proteins. The accumulation of insoluble aggregates is accompanied by a progressive loss of vulnerable neurons. For some patients, the symptoms are motor focused (ataxias), while others experience cognitive and psychiatric symptoms (dementias). Among the shared symptoms of neurodegenerative diseases is a disruption of the sleep/wake cycle that occurs early in the trajectory of the disease and may be a risk factor for disease development. In many cases, the disruption in the timing of sleep and other rhythmic physiological markers immediately raises the possibility of neurodegeneration-driven disruption of the circadian timing system. The aim of this Review is to summarize the evidence supporting the hypothesis that circadian disruption is a core symptom within neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease, and to discuss the latest progress in this field. The Review discusses evidence that neurodegenerative processes may disrupt the structure and function of the circadian system and describes circadian-based interventions as well as timed drug treatments that may improve a wide range of symptoms associated with neurodegenerative disorders. It also identifies key gaps in our knowledge.
Collapse
|
17
|
Abstract
Every aspect of vision, from the opsin proteins to the eyes and the ways that they serve animal behavior, is incredibly diverse. It is only with an evolutionary perspective that this diversity can be understood and fully appreciated. In this review, I describe and explain the diversity at each level and try to convey an understanding of how the origin of the first opsin some 800 million years ago could initiate the avalanche that produced the astonishing diversity of eyes and vision that we see today. Despite the diversity, many types of photoreceptors, eyes, and visual roles have evolved multiple times independently in different animals, revealing a pattern of eye evolution strictly guided by functional constraints and driven by the evolution of gradually more demanding behaviors. I conclude the review by introducing a novel distinction between active and passive vision that points to uncharted territories in vision research. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dan-E Nilsson
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden;
| |
Collapse
|
18
|
Abstract
Species throughout the animal kingdom use the Earth's magnetic field (MF) to navigate using either or both of two mechanisms. The first relies on magnetite crystals in tissue where their magnetic moments align with the MF to transduce a signal transmitted to the central nervous system. The second and the subject of this paper involves cryptochrome (CRY) proteins located in cone photoreceptors distributed across the retina, studied most extensively in birds. According to the "Radical Pair Mechanism" (RPM), blue/UV light excites CRY's flavin cofactor (FAD) to generate radical pairs whose singlet-to-triplet interconversion rate is modulated by an external MF. The signaling product of the RPM produces an impression of the field across the retinal surface. In birds, the resulting signal on the optic nerve is transmitted along the thalamofugal pathway to the primary visual cortex, which projects to brain regions concerned with image processing, memory, and executive function. The net result is a bird's orientation to the MF's inclination: its vector angle relative to the Earth's surface. The quality of ambient light (e.g., polarization) provides additional input to the compass. In birds, the Type IV CRY isoform appears pivotal to the compass, given its positioning within retinal cones; a cytosolic location therein indicating no role in the circadian clock; relatively steady diurnal levels (unlike Type II CRY's cycling); and a full complement of FAD (essential for photosensitivity). The evidence indicates that mammalian Type II CRY isoforms play a light-independent role in the cellular molecular clock without a photoreceptive function.
Collapse
Affiliation(s)
| | - Joseph Brain
- Environmental Physiology, Molecular, and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
19
|
Lan Y, Zeng W, Dong X, Lu H. Opsin 5 is a key regulator of ultraviolet radiation-induced melanogenesis in human epidermal melanocytes. Br J Dermatol 2021; 185:391-404. [PMID: 33400324 PMCID: PMC8453816 DOI: 10.1111/bjd.19797] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 12/24/2022]
Abstract
Background Human skin, which is constantly exposed to solar ultraviolet radiation (UVR), has a unique ability to respond by increasing its pigmentation in a protective process driven by melanogenesis in human epidermal melanocytes (HEMs). However, the molecular mechanisms used by HEMs to detect and respond to UVR remain unclear. Objectives To investigate the function and potential mechanism of opsin 5 (OPN5), a photoreceptor responsive to UVR wavelengths, in melanogenesis in HEMs. Methods Melanin content in HEMs was determined using the NaOH method, and activity of tyrosinase (TYR) (a key enzyme in melanin synthesis) was determined by the l‐DOPA method. OPN5 expression in UVR‐treated vs. untreated HEMs and explant tissues was detected by reverse‐transcription quantitative polymerase chain reaction (RT‐qPCR), Western blotting and immunofluorescence. Short interfering RNA‐mediated OPN5 knockdown and a lentivirus OPN5 overexpression model were used to examine their respective effects on TYR, tyrosinase‐related protein 1 (TRP1), TRP2 and microphthalmia‐associated transcription factor (MITF) expression, under UVR. Changes in expression of TYR, TRP1 and TRP2 caused by changes in OPN5 expression level were detected by RT‐qPCR and Western blot. Furthermore, changes in signalling pathway proteins were assayed. Results We found that OPN5 is the key sensor in HEMs responsible for UVR‐induced melanogenesis. OPN5‐induced melanogenesis required Ca2+‐dependent G protein‐coupled receptor‐ and protein kinase C signal transduction, thus contributing to the UVR‐induced MITF response to mediate downstream cellular effects, and providing evidence of OPN5 function in mammalian phototransduction. Remarkably, OPN5 activation was necessary for UVR‐induced increase in cellular melanin and has an inherent function in melanocyte melanogenesis. Conclusions Our results provide insight into the molecular mechanisms of UVR sensing and phototransduction in melanocytes, and may reveal molecular targets for preventing pigmentation or pigment diseases.
What is already known about this topic?
Ultraviolet radiation (UVR) induces a protective response to DNA damage mediated by melanin synthesis in human epidermal melanocytes (HEMs). Tyrosinase (TYR), with tyrosinase‐related proteins (TRP1, TRP2), are the key enzymes for melanin synthesis. Microphthalmia‐associated transcription factor regulates key genes for melanocyte development and differentiation, and can stimulate melanogenesis by activating transcription of TYR and other pigmentation genes, including TRP1. Opsin 5 (OPN5) is known to function as a photoreceptor responsive to wavelengths in the near UV spectrum.
What does this study add?UVR induces melanogenesis in HEMs via OPN5. OPN5 regulates expression of TYR, TRP1 and TRP2 through the calcium‐dependent G protein‐coupled and protein kinase C signalling pathways. OPN5 has an inherent role in HEMs in mediating melanogenesis.
What is the translational message?OPN5 was discovered as a key sensor for UVR‐induced melanogenesis in human skin melanocytes. It could be a target for early treatment of pigmentation or pigment diseases, to provide a more personalized and economically feasible method.
Linked Comment: L.V.M. de Assis and A.M. de Lauro Castrucci. Br J Dermatol 2021; 185:249–250. Plain language summary available online
Collapse
Affiliation(s)
- Y Lan
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - W Zeng
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - X Dong
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - H Lu
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang, Guizhou, 550004, China.,Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, China
| |
Collapse
|
20
|
Abstract
During the evolution of life, the temporal rhythm of our rotating planet was internalized in the form of circadian rhythms. Circadian rhythms are ~24h internal manifestations that drive daily patterns of physiology and behavior. These rhythms are entrained (synchronized) to the external environment, primarily by the light-dark cycle, and precisely controlled via molecular clocks located within the suprachiasmatic nucleus of the hypothalamus. Misalignment and/or disruption of circadian rhythms can have detrimental consequences for human health. Indeed, studies suggest strong associations between mental health and circadian rhythms. However, direct interactions between mood regulation and the circadian system are just beginning to be uncovered and appreciated. This chapter examines the relationship between disruption of circadian rhythms and mental health. The primary focus will be outlining the association between circadian disruption, in the form of night shift work, exposure to light at night, jet lag, and social jet lag, and psychiatric illness (i.e., anxiety, major depressive disorder, bipolar disorder, and schizophrenia). Additionally, we review animal models of disrupted circadian rhythms, which provide further evidence in support of a strong association between circadian disruption and affective responses. Finally, we discuss future directions for the field and suggest areas of study that require further investigation.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States.
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
21
|
Non-visual Opsins and Novel Photo-Detectors in the Vertebrate Inner Retina Mediate Light Responses Within the Blue Spectrum Region. Cell Mol Neurobiol 2020; 42:59-83. [PMID: 33231827 DOI: 10.1007/s10571-020-00997-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
In recent decades, a number of novel non-visual opsin photopigments belonging to the family of G protein- coupled receptors, likely involved in a number of non-image-forming processes, have been identified and characterized in cells of the inner retina of vertebrates. It is now known that the vertebrate retina is composed of visual photoreceptor cones and rods responsible for diurnal/color and nocturnal/black and white vision, and cells like the intrinsically photosensitive retinal ganglion cells (ipRGCs) and photosensitive horizontal cells in the inner retina, both detecting blue light and expressing the photopigment melanopsin (Opn4). Remarkably, these non-visual photopigments can continue to operate even in the absence of vision under retinal degeneration. Moreover, inner retinal neurons and Müller glial cells have been shown to express other photopigments such as the photoisomerase retinal G protein-coupled receptor (RGR), encephalopsin (Opn3), and neuropsin (Opn5), all able to detect blue/violet light and implicated in chromophore recycling, retinal clock synchronization, neuron-to-glia communication, and other activities. The discovery of these new photopigments in the inner retina of vertebrates is strong evidence of novel light-regulated activities. This review focuses on the features, localization, photocascade, and putative functions of these novel non-visual opsins in an attempt to shed light on their role in the inner retina of vertebrates and in the physiology of the whole organism.
Collapse
|
22
|
Touitou Y, Point S. Effects and mechanisms of action of light-emitting diodes on the human retina and internal clock. ENVIRONMENTAL RESEARCH 2020; 190:109942. [PMID: 32758719 DOI: 10.1016/j.envres.2020.109942] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 05/11/2023]
Abstract
White light-emitting diodes (LEDs) will likely become the most used lighting devices worldwide in the future because of their very low prices over the course of their long lifespans which can be up to several tens of thousands of hours. The expansion of LED use in both urban and domestic lighting has prompted questions regarding their possible health effects, because the light that they provide is potentially high in the harmful blue band (400-500 nm) of the visible light spectrum. Research on the potential effects of LEDs and their blue band on human health has followed three main directions: 1) examining their retinal phototoxicity; 2) examining disruption of the internal clock, i.e., an out-of-sync clock, in shift workers and night workers, including the accompanying health issues, most concerningly an increased relative risk of cancer; and 3) examining risky, inappropriate late-night use of smartphones and consoles among children and adolescents. Here, we document the recognized or potential health issues associated with LED lighting together with their underlying mechanisms of action. There is so far no evidence that LED lighting is deleterious to human retina under normal use. However, exposure to artificial light at night is a new source of pollution because it affects the circadian clock. Blue-rich light, including cold white LEDs, should be considered a new endocrine disruptor, because it affects estrogen secretion and has unhealthful consequences in women, as demonstrated to occur via a complex mechanism.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, 75019, Paris, France.
| | | |
Collapse
|
23
|
Zhang R, Campanella C, Aristizabal S, Jamrozik A, Zhao J, Porter P, Ly S, Bauer BA. Impacts of Dynamic LED Lighting on the Well-Being and Experience of Office Occupants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197217. [PMID: 33023141 PMCID: PMC7579128 DOI: 10.3390/ijerph17197217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022]
Abstract
As a critical factor in the built environment, lighting presents considerable influence on occupants. Previous research across static lighting conditions has found that both illuminance and correlated color temperature (CCT) affect occupants’ physiological and psychological functioning. However, little research has been conducted on the non-visual impacts of dynamic lighting with daily variation in illuminance and CCT levels. The purpose of this study is to better understand the impact of dynamic lighting on office occupants’ health, well-being and experience at a living lab. Fifteen participants were recruited to work in three office modules for four months. Four lighting conditions were designed and implemented in this study, including two static lighting conditions and two dynamic lighting conditions with a specific predefined control scheme. A prototype lighting system with enhanced control capabilities was configured and implemented to ensure the desired lighting environment protocol. Both objective methods and subjective surveys were used to assess the behavioral and physiological outcomes of interest, including mental stress, sleep, productivity, satisfaction, mood, visual comfort and perceived naturalness. The results showed that the daytime behavioral impacts were either positive or mixed. Specifically, a significant alertness increase was observed in the afternoon, indicating a potential solution to reduce the natural feelings of sleepiness during the workday. There was also a marginal benefit for mood. The nighttime impacts include a significant decrease in perceived sleep quality and sleep time after subjects were exposed to dynamic lighting. No significant differences were observed for mental stress, productivity, visual comfort, or perceived naturalness. The findings present additional insights into the non-visual impacts of dynamic lighting and give recommendations for further investigations.
Collapse
Affiliation(s)
- Rongpeng Zhang
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
- Correspondence:
| | - Carolina Campanella
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Sara Aristizabal
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Anja Jamrozik
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Jie Zhao
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Paige Porter
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Shaun Ly
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Delos Labs, Delos Living, New York, NY 10014, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Brent A. Bauer
- Well Living Lab, Rochester, MN 55902, USA; (C.C.); (S.A.); (A.J.); (J.Z.); (P.P.); (S.L.); (B.A.B.)
- Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
24
|
Valdez-Lopez JC, Petr ST, Donohue MP, Bailey RJ, Gebreeziabher M, Cameron EG, Wolf JB, Szalai VA, Robinson PR. The C-Terminus and Third Cytoplasmic Loop Cooperatively Activate Mouse Melanopsin Phototransduction. Biophys J 2020; 119:389-401. [PMID: 32621866 PMCID: PMC7376183 DOI: 10.1016/j.bpj.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022] Open
Abstract
Melanopsin, an atypical vertebrate visual pigment, mediates non-image-forming light responses including circadian photoentrainment and pupillary light reflexes and contrast detection for image formation. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells are characterized by sluggish activation and deactivation of their light responses. The molecular determinants of mouse melanopsin's deactivation have been characterized (i.e., C-terminal phosphorylation and β-arrestin binding), but a detailed analysis of melanopsin's activation is lacking. We propose that an extended third cytoplasmic loop is adjacent to the proximal C-terminal region of mouse melanopsin in the inactive conformation, which is stabilized by the ionic interaction of these two regions. This model is supported by site-directed spin labeling and electron paramagnetic resonance spectroscopy of melanopsin, the results of which suggests a high degree of steric freedom at the third cytoplasmic loop, which is increased upon C-terminus truncation, supporting the idea that these two regions are close in three-dimensional space in wild-type melanopsin. To test for a functionally critical C-terminal conformation, calcium imaging of melanopsin mutants including a proximal C-terminus truncation (at residue 365) and proline mutation of this proximal region (H377P, L380P, Y382P) delayed melanopsin's activation rate. Mutation of all potential phosphorylation sites, including a highly conserved tyrosine residue (Y382), into alanines also delayed the activation rate. A comparison of mouse melanopsin with armadillo melanopsin-which has substitutions of various potential phosphorylation sites and a substitution of the conserved tyrosine-indicates that substitution of these potential phosphorylation sites and the tyrosine residue result in dramatically slower activation kinetics, a finding that also supports the role of phosphorylation in signaling activation. We therefore propose that melanopsin's C-terminus is proximal to intracellular loop 3, and C-terminal phosphorylation permits the ionic interaction between these two regions, thus forming a stable structural conformation that is critical for initiating G-protein signaling.
Collapse
Affiliation(s)
- Juan C Valdez-Lopez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Stephen T Petr
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Matthew P Donohue
- Center for Nanoscale and Technology, National Institutes of Standards and Technology, Gaithersburg, Maryland; Maryland NanoCenter, University of Maryland College Park, College Park, Maryland
| | - Robin J Bailey
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Meheret Gebreeziabher
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Evan G Cameron
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Julia B Wolf
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Veronika A Szalai
- Center for Nanoscale and Technology, National Institutes of Standards and Technology, Gaithersburg, Maryland
| | - Phyllis R Robinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland.
| |
Collapse
|
25
|
Barberà M, Escrivá L, Collantes-Alegre JM, Meca G, Rosato E, Martínez-Torres D. Melatonin in the seasonal response of the aphid Acyrthosiphon pisum. INSECT SCIENCE 2020; 27:224-238. [PMID: 30422395 DOI: 10.1111/1744-7917.12652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Aphids display life cycles largely determined by the photoperiod. During the warm long-day seasons, most aphid species reproduce by viviparous parthenogenesis. The shortening of the photoperiod in autumn induces a switch to sexual reproduction. Males and sexual females mate to produce overwintering resistant eggs. In addition to this full life cycle (holocycle), there are anholocyclic lineages that do not respond to changes in photoperiod and reproduce continuously by parthenogenesis. The molecular or hormonal events that trigger the seasonal response (i.e., induction of the sexual phenotypes) are still unknown. Although circadian synthesis of melatonin is known to play a key role in vertebrate photoperiodism, the involvement of the circadian clock and/or of the hormone melatonin in insect seasonal responses is not so well established. Here we show that melatonin levels in the aphid Acyrthosiphon pisum are significantly higher in holocyclic aphids reared under short days than under long days, while no differences were found between anholocyclic aphids under the same conditions. We also found that melatonin is localized in the aphid suboesophageal ganglion (SOG) and in the thoracic ganglionic mass (TGM). In analogy to vertebrates, insect-type arylalkylamine N-acetyltransferases (i-AANATs) are thought to play a key role in melatonin synthesis. We measured the expression of four i-AANAT genes identified in A. pisum and localized two of them in situ in the insect central nervous systems (CNS). Levels of expression of these genes were compatible with the quantities of melatonin observed. Moreover, like melatonin, expression of these genes was found in the SOG and the TGM.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980, Paterna, València, Spain
| | - Laura Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - Jorge Mariano Collantes-Alegre
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980, Paterna, València, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - Ezio Rosato
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980, Paterna, València, Spain
| |
Collapse
|
26
|
Steady-State Pupil Size Varies with Circadian Phase and Sleep Homeostasis in Healthy Young Men. Clocks Sleep 2019; 1:240-258. [PMID: 33089167 PMCID: PMC7445830 DOI: 10.3390/clockssleep1020021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
Pupil size informs about sympathovagal balance as well as cognitive and affective processes, and perception. It is also directly linked to phasic activity of the brainstem locus coeruleus, so that pupil measures have gained recent attention. Steady-state pupil size and its variability have been directly linked to sleep homeostasis and circadian phase, but results have been inconsistent. Here, we report robust changes in steady-state pupil size during 29 h of continuous wakefulness in healthy young men (N = 20; 18–30 years old) maintained in dim-light in strictly controlled constant routine conditions. These variations were associated with variations in motivation and sustained attention performance. Pupil size variability did not significantly change during the protocol. Yet, pupil size variability was linearly associated with subjective fatigue, sociability, and anguish. No associations were found between neither steady-state pupil size nor pupil size variability, and objective EEG measure of alertness and subjective sleepiness. Our data support therefore the notion that, compared with its variability, steady-state pupil size is strongly influenced by the concomitant changes in sleep need and circadian phase. In addition, steady-state pupil size appears to be related to motivation and attention, while its variability may be related to separate affective dimensions and subjective fatigue.
Collapse
|
27
|
Disinhibition of intrinsic photosensitive retinal ganglion cells in patients with X-linked congenital stationary night blindness. Graefes Arch Clin Exp Ophthalmol 2019; 257:1207-1215. [PMID: 30982101 DOI: 10.1007/s00417-019-04319-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To assess the pupil light response (PLR) to chromatic stimulation in patients with different types of X-linked congenital stationary night blindness (CSNB). METHODS Eight patients with CSNB due to CACNA1F and NYX mutations were exposed to blue and red light stimuli, and PLR was evaluated using infrared video pupillography. Pupil responses were compared between CSNB patients and healthy subjects (n = 34) at baseline, at maximum of constriction, for post-illumination pupil responses (PIPR) and the slope of redilation using Cohen's d. A subgroup comparison was performed descriptively between CACNA1F and NYX associated CSNB patients using the same parameters. RESULTS In CSNB, smaller baseline pupil diameters compared to healthy subjects were measured both before blue and red light stimulation (d = 1.44-1.625). The maximum constriction to blue light stimuli was smaller for the CSNB group compared to healthy subjects (d = 1.251) but not for red light stimuli (d = 0.449). Pupil response latencies were prolonged in CSNB for both light stimuli (d = -1.53 for blue and d = -1.011 for red stimulation). No relevant differences were found between the CSNB group and healthy subjects for PIPR (d = 0.01), but the slope of redilation was smaller for CSNB patients (d = 2.12). Paradoxical pupil constriction at light offset was not seen in our patients. CONCLUSION A reduced redilation and smaller baseline pupil diameters for patients with CSNB indicate a disinhibition of intrinsically photosensitive retinal ganglion cells due to affected post-photoreceptor transduction via bipolar cells and can explain the pupillary behavior in our patient group.
Collapse
|
28
|
Alejevski F, Saint-Charles A, Michard-Vanhée C, Martin B, Galant S, Vasiliauskas D, Rouyer F. The HisCl1 histamine receptor acts in photoreceptors to synchronize Drosophila behavioral rhythms with light-dark cycles. Nat Commun 2019; 10:252. [PMID: 30651542 PMCID: PMC6335465 DOI: 10.1038/s41467-018-08116-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Abstract
In Drosophila, the clock that controls rest-activity rhythms synchronizes with light-dark cycles through either the blue-light sensitive cryptochrome (Cry) located in most clock neurons, or rhodopsin-expressing histaminergic photoreceptors. Here we show that, in the absence of Cry, each of the two histamine receptors Ort and HisCl1 contribute to entrain the clock whereas no entrainment occurs in the absence of the two receptors. In contrast to Ort, HisCl1 does not restore entrainment when expressed in the optic lobe interneurons. Indeed, HisCl1 is expressed in wild-type photoreceptors and entrainment is strongly impaired in flies with photoreceptors mutant for HisCl1. Rescuing HisCl1 expression in the Rh6-expressing photoreceptors restores entrainment but it does not in other photoreceptors, which send histaminergic inputs to Rh6-expressing photoreceptors. Our results thus show that Rh6-expressing neurons contribute to circadian entrainment as both photoreceptors and interneurons, recalling the dual function of melanopsin-expressing ganglion cells in the mammalian retina.
Collapse
Affiliation(s)
- Faredin Alejevski
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Alexandra Saint-Charles
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
- Institut de la Vision, Univ. P. & M. Curie, INSERM, CNRS, Sorbonne Université, Paris, 75012, France
| | - Christine Michard-Vanhée
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Béatrice Martin
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Sonya Galant
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Daniel Vasiliauskas
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - François Rouyer
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
29
|
Jiang Z, Yue WWS, Chen L, Sheng Y, Yau KW. Cyclic-Nucleotide- and HCN-Channel-Mediated Phototransduction in Intrinsically Photosensitive Retinal Ganglion Cells. Cell 2018; 175:652-664.e12. [PMID: 30270038 PMCID: PMC6203304 DOI: 10.1016/j.cell.2018.08.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/19/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
Non-image-forming vision in mammals is mediated primarily by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, by far the best-studied subtype, melanopsin activates PLCβ4 (phospholipase C-β4) to open TRPC6,7 channels, mechanistically similar to phototransduction in fly rhabdomeric (microvillous) photoreceptors. We report here that, surprisingly, mouse M4-ipRGCs rely on a different and hitherto undescribed melanopsin-driven, ciliary phototransduction mechanism involving cyclic nucleotide as the second messenger and HCN channels rather than CNG channels as the ion channel for phototransduction. Even more surprisingly, within an individual mouse M2-ipRGC, this HCN-channel-dependent, ciliary phototransduction pathway operates in parallel with the TRPC6,7-dependent rhabdomeric pathway. These findings reveal a complex heterogeneity in phototransduction among ipRGCs and, more importantly, break a general dogma about segregation of the two phototransduction motifs, likely with strong evolutionary implications.
Collapse
Affiliation(s)
- Zheng Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Wendy W S Yue
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lujing Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yanghui Sheng
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Abstract
BACKGROUND The increasing use of light-emitting diodes (LEDs) for lighting applications and displays is giving rise to public and professional concern that blue LED emissions could damage the retina or via the proven influence on the melatonin levels disrupt the human day-night rhythm. OBJECTIVE The study aimed to measure the emission of LEDs and other relevant light sources and evaluate the results comparatively with the help of suitable evaluation functions in order to recognize whether LEDs differ considerably from other light sources in their hazard potential. MATERIAL AND METHODS The spectra of a cold white and a warm white LED, a white tablet LED display, a fluorescent tube and a halogen lamp were measured and evaluated together with a sunlight spectrum relative to each other using the blue light hazard retina weighting function and the circadian action function. RESULT Since LEDs can be very different, relative LED ratings also vary greatly. The warm white LED is the one with the lowest risk of blue light retinal damage and the lowest potential for inhibition of melatonin formation and in this respect even gentler than halogen lamps. For cold white LEDs, the values for photochemical retinal danger as well as for the expected inhibition of melatonin formation are much greater. The values for the tablet LED display are even higher. CONCLUSION Not only LEDs but all examined light sources emit in the blue spectral range, so that in principle they represent a retinal hazard. Depending on the employed LED type, this hazard may be greater or less compared to conventional light sources but even cold white LEDs are rated slightly better than sunlight at noon. To support consumers it might be helpful to classify LEDs and other illuminants by their potential hazard to the eye, as they are already labelled with respect to their energy efficiency.
Collapse
|
31
|
Chatterjee A, Lamaze A, De J, Mena W, Chélot E, Martin B, Hardin P, Kadener S, Emery P, Rouyer F. Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock. Curr Biol 2018; 28:2007-2017.e4. [PMID: 29910074 PMCID: PMC6039274 DOI: 10.1016/j.cub.2018.04.064] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023]
Abstract
The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Angélique Lamaze
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Joydeep De
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Wilson Mena
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Elisabeth Chélot
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Béatrice Martin
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Paul Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77845-3258, USA
| | | | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - François Rouyer
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
32
|
Souman JL, Borra T, de Goijer I, Schlangen LJM, Vlaskamp BNS, Lucassen MP. Spectral Tuning of White Light Allows for Strong Reduction in Melatonin Suppression without Changing Illumination Level or Color Temperature. J Biol Rhythms 2018; 33:420-431. [PMID: 29984614 DOI: 10.1177/0748730418784041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Studies with monochromatic light stimuli have shown that the action spectrum for melatonin suppression exhibits its highest sensitivity at short wavelengths, around 460 to 480 nm. Other studies have demonstrated that filtering out the short wavelengths from white light reduces melatonin suppression. However, this filtering of short wavelengths was generally confounded with reduced light intensity and/or changes in color temperature. Moreover, it changed the appearance from white light to yellow/orange, rendering it unusable for many practical applications. Here, we show that selectively tuning a polychromatic white light spectrum, compensating for the reduction in spectral power between 450 and 500 nm by enhancing power at even shorter wavelengths, can produce greatly different effects on melatonin production, without changes in illuminance or color temperature. On different evenings, 15 participants were exposed to 3 h of white light with either low or high power between 450 and 500 nm, and the effects on salivary melatonin levels and alertness were compared with those during a dim light baseline. Exposure to the spectrum with low power between 450 and 500 nm, but high power at even shorter wavelengths, did not suppress melatonin compared with dim light, despite a large difference in illuminance (175 vs. <5 lux). In contrast, exposure to the spectrum with high power between 450 and 500 nm (also 175 lux) resulted in almost 50% melatonin suppression. For alertness, no significant differences between the 3 conditions were observed. These results open up new opportunities for lighting applications that allow for the use of electrical lighting without disturbance of melatonin production.
Collapse
Affiliation(s)
- Jan L Souman
- Philips Lighting Research, Department Lighting Applications, Eindhoven, The Netherlands
| | - Tobias Borra
- Philips Lighting Research, Department Lighting Applications, Eindhoven, The Netherlands
| | - Iris de Goijer
- Philips Lighting Research, Department Lighting Applications, Eindhoven, The Netherlands.,Eindhoven University of Technology, Department of the Built Environment, Eindhoven, The Netherlands
| | - Luc J M Schlangen
- Philips Lighting Research, Department Lighting Applications, Eindhoven, The Netherlands
| | - Björn N S Vlaskamp
- Philips Research, Department Brain, Behavior & Cognition, Eindhoven, The Netherlands
| | - Marcel P Lucassen
- Philips Lighting Research, Department Lighting Applications, Eindhoven, The Netherlands
| |
Collapse
|
33
|
Beach KM, Hung LF, Arumugam B, Smith EL, Ostrin LA. Adenosine receptor distribution in Rhesus monkey ocular tissue. Exp Eye Res 2018; 174:40-50. [PMID: 29792846 DOI: 10.1016/j.exer.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/26/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Adenosine receptor (ADOR) antagonists, such as 7-methylxanthine (7-MX), have been shown to slow myopia progression in humans and animal models. Adenosine receptors are found throughout the body, and regulate the release of neurotransmitters such as dopamine and glutamate. However, the role of adenosine in eye growth is unclear. Evidence suggests that 7-MX increases scleral collagen fibril diameter, hence preventing axial elongation. This study used immunohistochemistry (IHC) and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) to examine the distribution of the four ADORs in the normal monkey eye to help elucidate potential mechanisms of action. Eyes were enucleated from six Rhesus monkeys. Anterior segments and eyecups were separated into components and flash-frozen for RNA extraction or fixed in 4% paraformaldehyde and processed for immunohistochemistry against ADORA1, ADORA2a, ADORA2b, and ADORA3. RNA was reverse-transcribed, and qPCR was performed using custom primers. Relative gene expression was calculated using the ΔΔCt method normalizing to liver expression, and statistical analysis was performed using Relative Expression Software Tool. ADORA1 immunostaining was highest in the iris sphincter muscle, trabecular meshwork, ciliary epithelium, and retinal nerve fiber layer. ADORA2a immunostaining was highest in the corneal epithelium, trabecular meshwork, ciliary epithelium, retinal nerve fiber layer, and scleral fibroblasts. ADORA2b immunostaining was highest in corneal basal epithelium, limbal stem cells, iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells and scattered scleral fibroblasts. ADORA3 immunostaining was highest in the iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells, and scleral fibroblasts. Compared to liver mRNA, ADORA1 mRNA was significantly higher in the brain, retina and choroid, and significantly lower in the iris/ciliary body. ADORA2a expression was higher in brain and retina, ADORA2b expression was higher in retina, and ADORA3 was higher in the choroid. In conclusion, immunohistochemistry and RT-qPCR indicated differential patterns of expression of the four adenosine receptors in the ocular tissues of the normal non-human primate. The presence of ADORs in scleral fibroblasts and the choroid may support mechanisms by which ADOR antagonists prevent myopia. The potential effects of ADOR inhibition on both anterior and posterior ocular structures warrant investigation.
Collapse
Affiliation(s)
- Krista M Beach
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Li-Fang Hung
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Baskar Arumugam
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Earl L Smith
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Lisa A Ostrin
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA.
| |
Collapse
|
34
|
Douglas RH. The pupillary light responses of animals; a review of their distribution, dynamics, mechanisms and functions. Prog Retin Eye Res 2018; 66:17-48. [PMID: 29723580 DOI: 10.1016/j.preteyeres.2018.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 11/28/2022]
Abstract
The timecourse and extent of changes in pupil area in response to light are reviewed in all classes of vertebrate and cephalopods. Although the speed and extent of these responses vary, most species, except the majority of teleost fish, show extensive changes in pupil area related to light exposure. The neuromuscular pathways underlying light-evoked pupil constriction are described and found to be relatively conserved, although the precise autonomic mechanisms differ somewhat between species. In mammals, illumination of only one eye is known to cause constriction in the unilluminated pupil. Such consensual responses occur widely in other animals too, and their function and relation to decussation of the visual pathway is considered. Intrinsic photosensitivity of the iris muscles has long been known in amphibia, but is in fact widespread in other animals. The functions of changes in pupil area are considered. In the majority of species, changes in pupil area serve to balance the conflicting demands of high spatial acuity and increased sensitivity in different light levels. In the few teleosts in which pupil movements occur they do not serve a visual function but play a role in camouflaging the eye of bottom-dwelling species. The occurrence and functions of the light-independent changes in pupil size displayed by many animals are also considered. Finally, the significance of the variations in pupil shape, ranging from circular to various orientations of slits, ovals, and other shapes, is discussed.
Collapse
Affiliation(s)
- Ronald H Douglas
- Division of Optometry & Visual Science City, University of London, Northampton Square, London, EC1V 0HB, United Kingdom.
| |
Collapse
|
35
|
The role of the circadian clock system in physiology. Pflugers Arch 2018; 470:227-239. [PMID: 29302752 DOI: 10.1007/s00424-017-2103-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/28/2022]
Abstract
Life on earth is shaped by the 24-h rotation of our planet around its axes. To adapt behavior and physiology to the concurring profound but highly predictable changes, endogenous circadian clocks have evolved that drive 24-h rhythms in invertebrate and vertebrate species. At the molecular level, circadian clocks comprised a set of clock genes organized in a system of interlocked transcriptional-translational feedback loops. A ubiquitous network of cellular central and peripheral tissue clocks coordinates physiological functions along the day through activation of tissue-specific transcriptional programs. Circadian rhythms impact on diverse physiological processes including the cardiovascular system, energy metabolism, immunity, hormone secretion, and reproduction. This review summarizes our current understanding of the mechanisms of circadian timekeeping in different species, its adaptation by external timing signals and the pathophysiological consequences of circadian disruption.
Collapse
|
36
|
Delwig A, Chaney SY, Bertke AS, Verweij J, Quirce S, Larsen DD, Yang C, Buhr E, VAN Gelder R, Gallar J, Margolis T, Copenhagen DR. Melanopsin expression in the cornea. Vis Neurosci 2018; 35:E004. [PMID: 29905117 PMCID: PMC6203320 DOI: 10.1017/s0952523817000359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A unique class of intrinsically photosensitive retinal ganglion cells in mammalian retinae has been recently discovered and characterized. These neurons can generate visual signals in the absence of inputs from rods and cones, the conventional photoreceptors in the visual system. These light sensitive ganglion cells (mRGCs) express the non-rod, non-cone photopigment melanopsin and play well documented roles in modulating pupil responses to light, photoentrainment of circadian rhythms, mood, sleep and other adaptive light functions. While most research efforts in mammals have focused on mRGCs in retina, recent studies reveal that melanopsin is expressed in non-retinal tissues. For example, light-evoked melanopsin activation in extra retinal tissue regulates pupil constriction in the iris and vasodilation in the vasculature of the heart and tail. As another example of nonretinal melanopsin expression we report here the previously unrecognized localization of this photopigment in nerve fibers within the cornea. Surprisingly, we were unable to detect light responses in the melanopsin-expressing corneal fibers in spite of our histological evidence based on genetically driven markers and antibody staining. We tested further for melanopsin localization in cell bodies of the trigeminal ganglia (TG), the principal nuclei of the peripheral nervous system that project sensory fibers to the cornea, and found expression of melanopsin mRNA in a subset of TG neurons. However, neither electrophysiological recordings nor calcium imaging revealed any light responsiveness in the melanopsin positive TG neurons. Given that we found no light-evoked activation of melanopsin-expressing fibers in cornea or in cell bodies in the TG, we propose that melanopsin protein might serve other sensory functions in the cornea. One justification for this idea is that melanopsin expressed in Drosophila photoreceptors can serve as a temperature sensor.
Collapse
Affiliation(s)
- Anton Delwig
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Shawnta Y Chaney
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Andrea S Bertke
- Proctor Foundation,School of Medicine,University of California San Francisco,San Francisco,California
| | - Jan Verweij
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Susana Quirce
- Instituto de Neurociencias de Alicante,Universidad Miguel Hernandez-CSIC,San Juan de Alicante,Spain
| | - Delaine D Larsen
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Cindy Yang
- Department of Anatomy,School of Medicine,University of California San Francisco,San Francisco,California
| | - Ethan Buhr
- Department of Ophthalmology,School of Medicine,University of Washington,Seattle,Washington
| | - Russell VAN Gelder
- Department of Ophthalmology,School of Medicine,University of Washington,Seattle,Washington
| | - Juana Gallar
- Instituto de Neurociencias de Alicante,Universidad Miguel Hernandez-CSIC,San Juan de Alicante,Spain
| | - Todd Margolis
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - David R Copenhagen
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| |
Collapse
|
37
|
Mishra I, Kumar V. Circadian basis of seasonal timing in higher vertebrates. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1345447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ila Mishra
- Department of Zoology, University of Delhi, Delhi, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
38
|
Abstract
Rhodopsin is the classical light sensor. Although rhodopsin has long been known to be important for image formation in the eye, the requirements for opsins in non-image formation and in extraocular light sensation were revealed much later. Most recent is the demonstration that an opsin in the fruit fly, Drosophila melanogaster, is expressed in pacemaker neurons in the brain and functions in light entrainment of circadian rhythms. However, the biggest surprise is that opsins have light-independent roles, countering more than a century of dogma that they function exclusively as light sensors. Through studies in Drosophila, light-independent roles of opsins have emerged in temperature sensation and hearing. Although these findings have been uncovered in the fruit fly, there are hints that opsins have light-independent roles in a wide array of animals, including mammals. Thus, despite the decades of focus on opsins as light detectors, they represent an important new class of polymodal sensory receptor.
Collapse
Affiliation(s)
- Nicole Y Leung
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106;
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106;
| |
Collapse
|
39
|
Tsuji T, Allchorne AJ, Zhang M, Tsuji C, Tobin VA, Pineda R, Raftogianni A, Stern JE, Grinevich V, Leng G, Ludwig M. Vasopressin casts light on the suprachiasmatic nucleus. J Physiol 2017; 595:3497-3514. [PMID: 28402052 DOI: 10.1113/jp274025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS A subpopulation of retinal ganglion cells expresses the neuropeptide vasopressin. These retinal ganglion cells project predominately to our biological clock, the suprachiasmatic nucleus (SCN). Light-induced vasopressin release enhances the responses of SCN neurons to light. It also enhances expression of genes involved in photo-entrainment of biological rhythms. ABSTRACT In all animals, the transition between night and day engages a host of physiological and behavioural rhythms. These rhythms depend not on the rods and cones of the retina, but on retinal ganglion cells (RGCs) that detect the ambient light level in the environment. These project to the suprachiasmatic nucleus (SCN) of the hypothalamus to entrain circadian rhythms that are generated within the SCN. The neuropeptide vasopressin has an important role in this entrainment. Many SCN neurons express vasopressin, and it has been assumed that the role of vasopressin in the SCN reflects the activity of these cells. Here we show that vasopressin is also expressed in many retinal cells that project to the SCN. Light-evoked vasopressin release contributes to the responses of SCN neurons to light, and enhances expression of the immediate early gene c-fos in the SCN, which is involved in photic entrainment of circadian rhythms.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Andrew J Allchorne
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Meng Zhang
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Chiharu Tsuji
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Vicky A Tobin
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Rafael Pineda
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Androniki Raftogianni
- Schaller Research Group on Neuropeptides, German Cancer Research Centre DKFZ, Central Institute of Mental Health, and University of Heidelberg, Heidelberg, Germany
| | - Javier E Stern
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Centre DKFZ, Central Institute of Mental Health, and University of Heidelberg, Heidelberg, Germany
| | - Gareth Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
40
|
Ishibashi F, Kojima R, Taniguchi M, Kosaka A, Uetake H, Tavakoli M. The Preferential Impairment of Pupil Constriction Stimulated by Blue Light in Patients with Type 2 Diabetes without Autonomic Neuropathy. J Diabetes Res 2017; 2017:6069730. [PMID: 28421205 PMCID: PMC5380853 DOI: 10.1155/2017/6069730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/12/2016] [Accepted: 02/23/2017] [Indexed: 12/14/2022] Open
Abstract
The main aim of the present paper is to examine whether the pupillary light reflex (PLR) mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs) is impaired in type 2 diabetic patients. One hundred and three diabetic patients without diabetic autonomic neuropathy (DAN) and 42 age-matched controls underwent a series of detailed neurological examinations. The patients were stratified into three groups: stage I, no neuropathy; stage II, asymptomatic neuropathy; stage III, symptomatic but without DAN. The PLR to 470 and 635 nm light at 20 cd/m2 was recorded. Small fiber neuropathy was assessed by corneal confocal microscopy and quantifying corneal nerve fiber (CNF) morphology. The 470 nm light induced a stronger and faster PLR than did 635 nm light in all subjects. The PLR to both lights was impaired equally across all of the diabetic subgroups. The postillumination pupil response (PIPR) after 470 nm light offset at ≥1.7 sec was attenuated in diabetic patients without differences between subgroups. Receiver operating characteristic analysis revealed that the PIPR mediated by ipRGCs in patients with stage II and stage III neuropathy was different from that of the control subjects. Clinical factors, nerve conduction velocity, and CNF measures were significantly correlated with PLR parameters with 470 nm light. PLR kinetics were more impaired by stimulation with blue light than with red light in diabetic patients without DAN.
Collapse
Affiliation(s)
| | | | | | | | | | - Mitra Tavakoli
- University of Exeter Medical School, Exeter, UK
- *Mitra Tavakoli:
| |
Collapse
|
41
|
Aptel F, Weinreb RN, Chiquet C, Mansouri K. 24-h monitoring devices and nyctohemeral rhythms of intraocular pressure. Prog Retin Eye Res 2016; 55:108-148. [PMID: 27477112 DOI: 10.1016/j.preteyeres.2016.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 01/26/2023]
Abstract
Intraocular pressure (IOP) is not a fixed value and varies over both the short term and periods lasting several months or years. In particular, IOP is known to vary throughout the 24-h period of a day, defined as a nyctohemeral rhythm in humans. In clinical practice, it is crucial to evaluate the changes in IOP over 24 h in several situations, including the diagnosis of ocular hypertension and glaucoma (IOP is often higher at night) and to optimize the therapeutic management of glaucoma. Until recently, all evaluations of 24-h IOP rhythm were performed using repeated IOP measurements, requiring individuals to be awakened for nocturnal measurements. This method may be imperfect, because it is not physiologic and disturbs the sleep architecture, and also because it provides a limited number of time point measurements not sufficient to finely asses IOP changes. These limitations may have biased previous descriptions of physiological IOP rhythm. Recently, extraocular and intraocular devices integrating a pressure sensor for continuous IOP monitoring have been developed and are available for use in humans. The objective of this article is to present the contributions of these new 24-h monitoring devices for the study of the nyctohemeral rhythms. In healthy subjects and untreated glaucoma subjects, a nyctohemeral rhythm is consistently found and frequently characterized by a mean diurnal IOP lower than the mean nocturnal IOP, with a diurnal bathyphase - usually in the middle or at the end of the afternoon - and a nocturnal acrophase, usually in the middle or at the end of the night.
Collapse
Affiliation(s)
- Florent Aptel
- Inserm U1042, Hypoxia and Physiopathology Laboratory, University Grenoble Alpes, Grenoble, France; Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Center and Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Christophe Chiquet
- Inserm U1042, Hypoxia and Physiopathology Laboratory, University Grenoble Alpes, Grenoble, France; Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France
| | - Kaweh Mansouri
- Glaucoma Center, Montchoisi Clinic, Swiss Vision Network, Lausanne, Switzerland; Department of Ophthalmology, University of Colorado School of Medicine, Denver, CO, USA.
| |
Collapse
|
42
|
Disruption of adolescents’ circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors. ACTA ACUST UNITED AC 2016; 110:467-479. [DOI: 10.1016/j.jphysparis.2017.05.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/12/2017] [Accepted: 05/05/2017] [Indexed: 12/29/2022]
|
43
|
Liao H, Ren X, Peterson BB, Marshak DW, Yau K, Gamlin PD, Dacey DM. Melanopsin-expressing ganglion cells on macaque and human retinas form two morphologically distinct populations. J Comp Neurol 2016; 524:2845-72. [PMID: 26972791 PMCID: PMC4970949 DOI: 10.1002/cne.23995] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/30/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022]
Abstract
The long-term goal of this research is to understand how retinal ganglion cells that express the photopigment melanopsin, also known as OPN4, contribute to vision in humans and other primates. Here we report the results of anatomical studies using our polyclonal antibody specifically against human melanopsin that confirm and extend previous descriptions of melanopsin cells in primates. In macaque and human retina, two distinct populations of melanopsin cells were identified based on dendritic stratification in either the inner or the outer portion of the inner plexiform layer (IPL). Variation in dendritic field size and cell density with eccentricity was confirmed, and dendritic spines, a new feature of melanopsin cells, were described. The spines were the sites of input from DB6 diffuse bipolar cell axon terminals to the inner stratifying type of melanopsin cells. The outer stratifying melanopsin type received inputs from DB6 bipolar cells via a sparse outer axonal arbor. Outer stratifying melanopsin cells also received inputs from axon terminals of dopaminergic amacrine cells. On the outer stratifying melanopsin cells, ribbon synapses from bipolar cells and conventional synapses from amacrine cells were identified in electron microscopic immunolabeling experiments. Both inner and outer stratifying melanopsin cell types were retrogradely labeled following tracer injection in the lateral geniculate nucleus (LGN). In addition, a method for targeting melanopsin cells for intracellular injection using their intrinsic fluorescence was developed. This technique was used to demonstrate that melanopsin cells were tracer coupled to amacrine cells and would be applicable to electrophysiological experiments in the future. J. Comp. Neurol. 524:2845-2872, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hsi‐Wen Liao
- Department of NeuroscienceJohn Hopkins University School of MedicineBaltimoreMaryland21205‐2185
| | - Xiaozhi Ren
- Department of NeuroscienceJohn Hopkins University School of MedicineBaltimoreMaryland21205‐2185
| | - Beth B. Peterson
- Department of Biological StructureUniversity of Washington and the Washington National Primate Research CenterSeattleWashington98195‐7420
| | - David W. Marshak
- Department of Neurobiology and AnatomyUniversity of Texas Medical SchoolHoustonTexas77030
| | - King‐Wai Yau
- Department of NeuroscienceJohn Hopkins University School of MedicineBaltimoreMaryland21205‐2185
- Department of OphthalmologyJohn Hopkins University School of MedicineBaltimoreMaryland21205‐2185
| | - Paul D. Gamlin
- Department of OphthalmologyUniversity of Alabama at BirminghamBirminghamAlabama35294
| | - Dennis M. Dacey
- Department of Biological StructureUniversity of Washington and the Washington National Primate Research CenterSeattleWashington98195‐7420
| |
Collapse
|
44
|
Cavero I, Holzgrefe H. 15 th Annual Meeting of the Safety Pharmacology Society: Focus on traditional sensory systems. J Pharmacol Toxicol Methods 2016; 83:55-71. [PMID: 27659846 DOI: 10.1016/j.vascn.2016.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
INTRODUCTION This report summarizes and comments key talks on the five traditional senses (ear, vestibular system, vision, taste, olfaction, and touch) which were delivered during the 2015 Annual Meeting of the Safety Pharmacology (SP) Society. AREAS COVERED The functional observational battery (FOB) can detect major candidate drug liabilities only on ear, touch and vision. Anatomy, physiology, pharmacology, and pathology notions on each sensory system introduce speaker talks. Techniques for evaluating drug effects on hearing functions are reviewed. Nonclinical approaches to assess vestibular toxicity leading to balance deficits are presented. Retinal explants studied with multielectrode arrays allow the identification of drug liability sites on the retina. Routinely performed Safety Pharmacology assays are not powered to address candidate drug-induced disturbances on taste and smell. This weakness needs correction since unintended pharmacological impairment of these sensorial functions may have serious health consequences. Neuropathy produced by chemotherapeutic agents may cause multiple sensorial perception distortions. CONCLUSIONS Safety Pharmacology studies should ensure the safety of any candidate drug on the five sensorial systems.
Collapse
|
45
|
Senthilan PR, Helfrich-Förster C. Rhodopsin 7-The unusual Rhodopsin in Drosophila. PeerJ 2016; 4:e2427. [PMID: 27651995 PMCID: PMC5018682 DOI: 10.7717/peerj.2427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1–Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a “vertebrate-melanopsin-type”–cluster, and Rh3, Rh4 and Rh5 form an “insect-type”-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins.
Collapse
|
46
|
À propos du système circadien chez l’homme : de l’horloge interne à la sécrétion de mélatonine. ANNALES PHARMACEUTIQUES FRANÇAISES 2016; 74:331-4. [DOI: 10.1016/j.pharma.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 11/22/2022]
|
47
|
Lei S, Goltz HC, Sklar JC, Wong AMF. The absence of attenuating effect of red light exposure on pre-existing melanopsin-driven post-illumination pupil response. Vision Res 2016; 124:59-65. [PMID: 27371765 DOI: 10.1016/j.visres.2016.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 11/18/2022]
Abstract
It has been proposed that after activation by blue light, activated melanopsin is converted back to its resting state by long wavelength red light exposure, a putative mechanism of melanopsin chromophore recovery in vivo. We tested this hypothesis by investigating whether red light attenuates the ongoing post-illumination pupil response (PIPR) induced by melanopsin-activating blue light. Pupillary light responses were tested using "Blue+Red" double flashes and "Blue Only" single flash stimuli in 10 visually normal subjects. For "Blue+Red" conditions, PIPR was induced with an intense blue flash, followed by experimental red light exposure of variable intensity and duration (Experiment 1) immediately or 9s after the offset of the blue flash (Experiment 2). For "Blue Only" conditions, only the PIPR-inducing blue stimuli were presented (reference condition). PIPR was defined as the mean pupil size from 10 to 30s (Experiment 1) and from 25 to 60s (Experiment 2) after the offset of blue light stimuli. The results showed that PIPR from "Blue+Red" conditions did not differ significantly from those of "Blue Only" conditions (p=0.55) in Experiment 1. The two stimulation conditions also did not differ in Experiment 2 (p=0.38). We therefore conclude that red light exposure does not alter the time course of PIPR induced by blue light. This finding does not support the hypothesis that long wavelength red light reverses activated melanopsin; rather it lends support to the hypothesis that the wavelengths of stimuli driving both the forward and backward reactions of melanopsin may be similar.
Collapse
Affiliation(s)
- Shaobo Lei
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Herbert C Goltz
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Jaime C Sklar
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Agnes M F Wong
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada; Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
48
|
Dall'Ara I, Ghirotto S, Ingusci S, Bagarolo G, Bertolucci C, Barbujani G. Demographic history and adaptation account for clock gene diversity in humans. Heredity (Edinb) 2016; 117:165-72. [PMID: 27301334 DOI: 10.1038/hdy.2016.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
Circadian clocks give rise to daily oscillations in behavior and physiological functions that often anticipate upcoming environmental changes generated by the Earth rotation. In model organisms a relationship exists between several genes affecting the circadian rhythms and latitude. We investigated the allele distributions at 116 000 single-nucleotide polymorphisms (SNPs) of 25 human clock and clock-related genes from the 1000Genomes Project, and at a reference data set of putatively neutral polymorphisms. The global genetic structure at the clock genes did not differ from that observed at the reference data set. We then tested for evidence of local adaptation searching for FST outliers under both an island and a hierarchical model, and for significant association between allele frequencies and environmental variables by a Bayesian approach. A total of 230 SNPs in 23 genes, or 84 SNPs in 19 genes, depending on the significance thresholds chosen, showed signs of local adaptation, whereas a maximum of 190 SNPs in 23 genes had significant covariance with one or more environmental variables. Only two SNPs from two genes (NPAS2 and AANAT) exhibit both elevated population differentiation and covariance with at least one environmental variable. We then checked whether the SNPs emerging from these analyses fall within a set of candidate SNPs associated with different chronotypes or sleep disorders. Correlation of five such SNPs with environmental variables supports a selective role of latitude or photoperiod, but certainly not a major one.
Collapse
Affiliation(s)
- I Dall'Ara
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - S Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - S Ingusci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Bagarolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - C Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
49
|
Muscarinic acetylcholine receptor-mediated stimulation of retinal ganglion cell photoreceptors. Neuropharmacology 2016; 108:305-15. [PMID: 27055770 DOI: 10.1016/j.neuropharm.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 12/16/2022]
Abstract
Melanopsin-dependent phototransduction in intrinsically photosensitive retinal ganglion cells (ipRGCs) involves a Gq-coupled phospholipase C (PLC) signaling cascade. Acetylcholine, released in the mammalian retina by starburst amacrine cells, can also activate Gq-PLC pathways through certain muscarinic acetylcholine receptors (mAChRs). Using multielectrode array recordings of rat retinas, we demonstrate that robust spiking responses can be evoked in neonatal and adult ipRGCs after bath application of the muscarinic agonist carbachol. The stimulatory action of carbachol on ipRGCs was a direct effect, as confirmed through calcium imaging experiments on isolated ipRGCs in purified cultures. Using flickering (6 Hz) yellow light stimuli at irradiances below the threshold for melanopsin activation, spiking responses could be elicited in ipRGCs that were suppressed by mAChR antagonism. Therefore, this work identified a novel melanopsin-independent pathway for stimulating sustained spiking in ganglion cell photoreceptors. This mAChR-mediated pathway could enhance ipRGC spiking responses in conditions known to evoke retinal acetylcholine release, such as those involving flickering or moving visual stimuli. Furthermore, this work identifies a pharmacological approach for light-independent ipRGC stimulation that could be targeted by mAChR agonists.
Collapse
|
50
|
Díaz NM, Morera LP, Guido ME. Melanopsin and the Non-visual Photochemistry in the Inner Retina of Vertebrates. Photochem Photobiol 2015; 92:29-44. [DOI: 10.1111/php.12545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Nicolás M. Díaz
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Luis P. Morera
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Mario E. Guido
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| |
Collapse
|