1
|
Chekesa B, Singh H, Gonzalez-Juarbe N, Vashee S, Wiscovitch-Russo R, Dupont CL, Girma M, Kerro O, Gumi B, Ameni G. Whole-genome sequencing-based genetic diversity, transmission dynamics, and drug-resistant mutations in Mycobacterium tuberculosis isolated from extrapulmonary tuberculosis patients in western Ethiopia. Front Public Health 2024; 12:1399731. [PMID: 39185123 PMCID: PMC11341482 DOI: 10.3389/fpubh.2024.1399731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Background Extrapulmonary tuberculosis (EPTB) refers to a form of Tuberculosis (TB) where the infection occurs outside the lungs. Despite EPTB being a devastating disease of public health concern, it is frequently overlooked as a public health problem. This study aimed to investigate genetic diversity, identify drug-resistance mutations, and trace ongoing transmission chains. Methods A cross-sectional study was undertaken on individuals with EPTB in western Ethiopia. In this study, whole-genome sequencing (WGS) was employed to analyze Mycobacterium tuberculosis (MTB) samples obtained from EPTB patients. Out of the 96 genomes initially sequenced, 89 met the required quality standards for genetic diversity, and drug-resistant mutations analysis. The data were processed using robust bioinformatics tools. Results Our analysis reveals that the majority (87.64%) of the isolates can be attributed to Lineage-4 (L4), with L4.6.3 and L4.2.2.2 emerging as the predominant sub-lineages, constituting 34.62% and 26.92%, respectively. The overall clustering rate and recent transmission index (RTI) were 30 and 17.24%, respectively. Notably, 7.87% of the isolates demonstrated resistance to at least one anti-TB drug, although multi-drug resistance (MDR) was observed in only 1.12% of the isolates. Conclusions The genetic diversity of MTBC strains in western Ethiopia was found to have low inter-lineage diversity, with L4 predominating and exhibiting high intra-lineage diversity. The notably high clustering rate in the region implies a pressing need for enhanced TB infection control measures to effectively disrupt the transmission chain. It's noteworthy that 68.75% of resistance-conferring mutations went undetected by both GeneXpert MTB/RIF and the line probe assay (LPA) in western Ethiopia. The identification of resistance mutations undetected by both GeneXpert and LPA, along with the detection of mixed infections through WGS, emphasizes the value of adopting WGS as a high-resolution approach for TB diagnosis and molecular epidemiological surveillance.
Collapse
Affiliation(s)
- Basha Chekesa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Collage of Natural and Computational Science, Wallaga University, Nekemte, Ethiopia
| | - Harinder Singh
- Infectious Diseases, Genomic Medicine, and Synthetic Biology Group, J. Craig Venter Institute, Rockville, MD, United States
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases, Genomic Medicine, and Synthetic Biology Group, J. Craig Venter Institute, Rockville, MD, United States
| | - Sanjay Vashee
- Infectious Diseases, Genomic Medicine, and Synthetic Biology Group, J. Craig Venter Institute, Rockville, MD, United States
| | - Rosana Wiscovitch-Russo
- Infectious Diseases, Genomic Medicine, and Synthetic Biology Group, J. Craig Venter Institute, Rockville, MD, United States
| | - Christopher L. Dupont
- Genomic Medicine, Environment & Sustainability, and Synthetic Biology groups, J. Craig Venter Institute, La Jolla, CA, United States
| | - Musse Girma
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Oudessa Kerro
- Institute of Agriculture, The University of Tennessee, Knoxville, TN, United States
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Palittapongarnpim P, Tantivitayakul P, Aiewsakun P, Mahasirimongkol S, Jaemsai B. Genomic Interactions Between Mycobacterium tuberculosis and Humans. Annu Rev Genomics Hum Genet 2024; 25:183-209. [PMID: 38640230 DOI: 10.1146/annurev-genom-021623-101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Mycobacterium tuberculosis is considered by many to be the deadliest microbe, with the estimated annual cases numbering more than 10 million. The bacteria, including Mycobacterium africanum, are classified into nine major lineages and hundreds of sublineages, each with different geographical distributions and levels of virulence. The phylogeographic patterns can be a result of recent and early human migrations as well as coevolution between the bacteria and various human populations, which may explain why many studies on human genetic factors contributing to tuberculosis have not been replicable in different areas. Moreover, several studies have revealed the significance of interactions between human genetic variations and bacterial genotypes in determining the development of tuberculosis, suggesting coadaptation. The increased availability of whole-genome sequence data from both humans and bacteria has enabled a better understanding of these interactions, which can inform the development of vaccines and other control measures.
Collapse
Affiliation(s)
- Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand;
| | - Pakorn Aiewsakun
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Surakameth Mahasirimongkol
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
- Information and Communication Technology Center, Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand;
| | - Bharkbhoom Jaemsai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| |
Collapse
|
3
|
Reta MA, Said HM, Maningi NE, Wubetu GY, Agonafir M, Fourie PB. Genetic diversity of Mycobacterium tuberculosis strains isolated from spiritual holy water site attendees in Northwest Ethiopia. A cross-sectional study. New Microbes New Infect 2024; 59:101235. [PMID: 38590765 PMCID: PMC11000200 DOI: 10.1016/j.nmni.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Background The genetic diversity of Mycobacterium tuberculosis complex (MTBC) strains was characterized among isolates from individuals with pulmonary tuberculosis (PTB) symptoms attended holy water sites (HWSs) in the Amhara region, Ethiopia. Methods A cross-sectional study was done from June 2019 to March 2020 to describe the genetic diversity and drug-resistance profiles of MTBC isolates. Sputum specimens were collected and cultured in the Löwenstein-Jensen culture medium. Line Probe Assay, MTBDRplus VER 2.0, and MTBDRsl VER 2.0 were used to detect first-and second-line anti-TB drug-resistance patterns. A spoligotyping technique was utilized to characterize the genetic diversity. Statistical analysis was performed using STATA 15. Results Of 560 PTB-symptomatic participants, 122 (21.8%) were culture-positive cases. Spoligotyping of 116 isolates revealed diverse MTBC sublineages, with four major lineages: Euro-American (EA) (Lineage 4), East-African-Indian (EAI) (Lineage 3), Ethiopian (ETH) (Lineage 7), East Asian (EA) (Lineage 2). The majority (96.6%) of the isolates were EA (lineage 4) and EAI, with proportions of 54.3% and 42.2%, respectively. A total of 31 spoligotype patterns were identified, 26 of which were documented in the SITVIT2 database. Of these, there were 15 unique spoligotypes, while eleven were grouped with 2-17 isolates. SIT149/T3-ETH (n = 17), SIT26/CAS1-DELHI (n = 16), SIT25/CAS1-DELHI (n = 12), and SIT52/T2 (n = 11) spoligotypes were predominant. A rare spoligotype pattern: SIT41/Turkey and SIT1/Beijing, has also been identified in North Shewa. The overall clustering rate of sub-lineages with known SIT was 76.4%.Of the 122 culture-positive isolates tested, 16.4% were resistant to rifampicin (RIF) and/or isoniazid (INH). Multidrug-resistant TB (MDR-TB) was detected in 12.3% of isolates, five of which were fluoroquinolones (FLQs) resistant. SIT149/T3-ETH and SIT21/CAS1-KILI sublineages showed a higher proportion of drug resistance. Conclusions Diverse MTBC spoligotypes were identified, with the T and CAS families and EA (lineage 4) predominating. A high prevalence of drug-resistant TB, with SIT149/T3-ETH and CAS1-KILI sublineages comprising a greater share, was observed. A study with large sample size and a sequencing method with stronger discriminatory power is warranted to understand better the genetic diversity of circulating MTBC in this cohort of study, which would help to adopt targeted interventions.
Collapse
Affiliation(s)
- Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Halima M. Said
- National Institute for Communicable Diseases (NICD), Centre for Tuberculosis, Johannesburg, South Africa
| | - Nontuthuko Excellent Maningi
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Durban, South Africa
| | - Gizachew Yismaw Wubetu
- Amhara Public Health Institute (APHI), Bahir Dar, Ethiopia
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mulualem Agonafir
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Shamebo T, Gumi B, Zewude A, Gashaw F, Mohammed T, Girma M, Zerihun B, Getu M, Mekasha S, Getahun M, Wondale B, Petros B, Ameni G. Molecular epidemiology and drug sensitivity of Mycobacterium tuberculosis in homeless individuals in the Addis Ababa city, Ethiopia. Sci Rep 2023; 13:21370. [PMID: 38049519 PMCID: PMC10695943 DOI: 10.1038/s41598-023-48407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023] Open
Abstract
Although homeless segment of the society could be the hotspots for tuberculosis (TB) transmission, there is little data on TB in homeless individuals in Ethiopia. The objective of this study was to investigate the molecular epidemiology and drug sensitivity of Mycobacterium tuberculosis (M. tuberculosis) isolated from homeless individuals in Addis Ababa, Ethiopia. The study was conducted on 59 M. tuberculosis isolates, which were recovered by the clinical screening of 5600 homeless individuals and bacteriological examination of 641 individuals with symptoms of pulmonary tuberculosis (PTB). Region of difference-9 (RD9) based polymerase-chain reaction (PCR), Spoligotyping and 24-loci Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR) typing were used for genotyping of the isolates. In addition, drug sensitivity test was performed on the isolates using BD Bactec Mycobacterial Growth Inhibition Tube (MGIT) 960. Fifty-eight of the 59 isolates were positive by spoligotyping and spoligotyping International type (SIT) 53, SIT 37, and SIT 149 were the dominant spoligotypes; each consisting of 19%, 15.5%, and10.3% of the isolates, respectively. The majority of the isolates (89.7%) were members of the Euro-American (EA) major lineage. MIRU-VNTR identified Ethiopia_3, Delhi/CAS, Ethiopia_2, TUR, X-type, Ethiopia_H37Rv-like strain, Haarlem and Latin-American Mediterranean (LAM) sub lineages. The proportion of clustering was 77.6% (45/58) in spoligotyping while it was 39.7% (23/58) in 24-loci MIRU-VNTR typing. Furthermore, the proportion of clustering was significantly lowered to 10.3% (6/58) when a combination of spoligotyping and 24-loci MIRU-VNTRplus was used. The recent transmission index (RTI) recorded by spoligotyping, 24-loci MIRU-VNTR typing, and a combination of the two genotyping methods were 58.6%, 27.6% and 5.2%, respectively. Young age and living in groups were significantly associated with strain clustering (P < 0.05). The drug sensitivity test (DST) result showed 8.9% (4/58) of the isolates were resistant to one or more first line ant-TB drugs; but multidrug resistant isolate was not detected. Clustering and RTI could suggest the transmission of TB in the homeless individuals, which could suggest a similar pattern of transmission between homeless individuals and the general population. Hence, the TB control program should consider homeless individuals during the implementation of TB control program.
Collapse
Affiliation(s)
- Tsegaye Shamebo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO. Box 1176, Addis Ababa, Ethiopia
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Po. Box 1176, Addis Ababa, Ethiopia
| | - Aboma Zewude
- Ethiopian National Tuberculosis Reference Laboratory, Ethipian Public Health Institute, PO. Box 1242 or 5654, Addis Ababa, Ethiopia
- Arba Minch University, Araba Minch, Ethiopia
| | - Fikru Gashaw
- Kotebe University of Education, Addis Ababa, Ethiopia
| | - Temesgen Mohammed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
- Arba Minch University, Araba Minch, Ethiopia
| | - Muse Girma
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Po. Box 1176, Addis Ababa, Ethiopia
| | - Betselot Zerihun
- Ethiopian National Tuberculosis Reference Laboratory, Ethipian Public Health Institute, PO. Box 1242 or 5654, Addis Ababa, Ethiopia
| | - Melak Getu
- Ethiopian National Tuberculosis Reference Laboratory, Ethipian Public Health Institute, PO. Box 1242 or 5654, Addis Ababa, Ethiopia
| | - Sindew Mekasha
- Ethiopian National Tuberculosis Reference Laboratory, Ethipian Public Health Institute, PO. Box 1242 or 5654, Addis Ababa, Ethiopia
| | - Muluwork Getahun
- Ethiopian National Tuberculosis Reference Laboratory, Ethipian Public Health Institute, PO. Box 1242 or 5654, Addis Ababa, Ethiopia
| | | | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO. Box 1176, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Po. Box 1176, Addis Ababa, Ethiopia.
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
5
|
Lee OYC, Wu HHT, Besra GS, Minnikin DE, Jaeger HY, Maixner F, Zink A, Gasparik M, Pap I, Bereczki Z, Pálfi G. Sensitive lipid biomarker detection for tuberculosis in late Neanderthal skeletons from Subalyuk Cave, Hungary. Tuberculosis (Edinb) 2023; 143S:102420. [PMID: 38012927 DOI: 10.1016/j.tube.2023.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Skeletal remains of two Neanderthal individuals, a 25-35 year-old woman and a 3-4 year-old child, were discovered in a Subalyuk Cave in North-Eastern Hungary. Radiocarbon dating of the female and child remains revealed an age of 39,732-39,076 and 36,117-35,387 cal BP, respectively. Paleopathological studies of these Neanderthal remains revealed probable evidence of skeletal mycobacterial infection, including in the sacrum of the adult specimen and the endocranial surface of the child's skull. Application of PCR amplification to the juvenile cranium and a vertebra gave a positive result (IS6110) for tuberculosis, backed up by spoligotyping. Lipid biomarker analyses of the same two specimens revealed definitive signals for C32 mycoserosates, a very characteristic component of the Mycobacterium tuberculosis complex (MTBC). A vertebra from the adult provided weak evidence for mycocerosate biomarkers. The correlation of probable skeletal lesions with characteristic amplified DNA fragments and a proven lipid biomarker points to the presence of tuberculosis in these Neanderthals. In particular, the closely similar biomarker profiles, for two distinct juvenile cranial and vertebral bones, strengthen this diagnosis.
Collapse
Affiliation(s)
- Oona Y-C Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Houdini H T Wu
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK.
| | - David E Minnikin
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Heidi Y Jaeger
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy
| | - Mihály Gasparik
- Department of Palaeontology and Geology, Hungarian Natural History Museum, Hungary
| | - Ildikó Pap
- Department of Anthropology, Hungarian Natural History Museum, Hungary; Department of Anthropology, Eötvös Loránd University, Budapest, Hungary; Department of Biological Anthropology, University of Szeged, Hungary
| | - Zsolt Bereczki
- Department of Biological Anthropology, University of Szeged, Hungary
| | - György Pálfi
- Department of Biological Anthropology, University of Szeged, Hungary
| |
Collapse
|
6
|
Meaza A, Riviere E, Bonsa Z, Rennie V, Gebremicael G, de Diego-Fuertes M, Meehan CJ, Medhin G, Abebe G, Ameni G, Van Rie A, Gumi B. Genomic transmission clusters and circulating lineages of Mycobacterium tuberculosis among refugees residing in refugee camps in Ethiopia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105530. [PMID: 38008242 DOI: 10.1016/j.meegid.2023.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Understanding the transmission dynamics of Mycobacterium tuberculosis (Mtb) could benefit the design of tuberculosis (TB) prevention and control strategies for refugee populations. Whole Genome Sequencing (WGS) has not yet been used to document the Mtb transmission dynamics among refugees in Ethiopia. We applied WGS to accurately identify transmission clusters and Mtb lineages among TB cases in refugee camps in Ethiopia. METHOD AND DESIGN We conducted a cross-sectional study of 610 refugees in refugee camps in Ethiopia presenting with symptoms of TB. WGS data of 67 isolates was analyzed using the Maximum Accessible Genome for Mtb Analysis (MAGMA) pipeline; iTol and FigTree were used to visualize phylogenetic trees, lineages, and the presence of transmission clusters. RESULTS Mtb culture-positive refugees originated from South Sudan (52/67, 77.6%), Somalia (9/67, 13.4%). Eritrea (4/67, 6%), and Sudan (2/67, 3%). The majority (52, 77.6%) of the isolates belonged to Mtb lineage (L) 3, and one L9 was identified from a Somalian refugee. The vast majority (82%) of the isolates were pan-susceptible Mtb, and none were multi-drug-resistant (MDR)-TB. Based on the 5-single nucleotide polymorphisms cutoff, we identified eight potential transmission clusters containing 23.9% of the isolates. Contact investigation confirmed epidemiological links with either family or social interaction within the refugee camps or with neighboring refugee camps. CONCLUSION Four lineages (L1, L3, L4, and L9) were identified, with the majority of strains being L3, reflecting the Mtb L3 dominance in South Sudan, where the majority of refugees originated from. Recent transmission among refugees was relatively low (24%), likely due to the short study period. The improved understanding of the Mtb transmission dynamics using WGS in refugee camps could assist in designing effective TB control programs for refugees.
Collapse
Affiliation(s)
- Abyot Meaza
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), PO Box 1176, Sefere Selam campus, Addis Ababa, Ethiopia; Ethiopian Public Health Institute (EPHI), PO Box 1242, Swaziland Street, Addis Ababa, Ethiopia.
| | - Emmanuel Riviere
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zegeye Bonsa
- Mycobacteriology Research Center, Jimma University, Jimma, Ethiopia
| | - Vincent Rennie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Gebremedhin Gebremicael
- Ethiopian Public Health Institute (EPHI), PO Box 1242, Swaziland Street, Addis Ababa, Ethiopia
| | - Miguel de Diego-Fuertes
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Conor J Meehan
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), PO Box 1176, Sefere Selam campus, Addis Ababa, Ethiopia
| | - Gemeda Abebe
- Mycobacteriology Research Center, Jimma University, Jimma, Ethiopia; Department of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), PO Box 1176, Sefere Selam campus, Addis Ababa, Ethiopia; Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Annelies Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), PO Box 1176, Sefere Selam campus, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Agonafir M, Belay G, Maningi NE, Feleke A, Reta MA, Olifant SL, Hassen MS, Girma T, Fourie PB. Genetic diversity of Mycobacterium tuberculosis isolates from the central, eastern and southeastern Ethiopia. Heliyon 2023; 9:e22898. [PMID: 38125463 PMCID: PMC10731068 DOI: 10.1016/j.heliyon.2023.e22898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The population structure of Mycobacterium tuberculosis complex (MTBC) in Ethiopia is diverse but dominated by Euro-American (Lineage 4) and East-African-Indian (Lineage 3) lineages. The objective of this study was to describe the genetic diversity of MTBC isolates in Central, Eastern and Southeastern Ethiopia. Methods A total of 223 MTBC culture isolates obtained from patients referred to Adama and Harar TB reference laboratories were spoligotyped. Demographic and clinical characteristics were collected. Results Six major lineages: Euro-American (Lineage 4), East-African-Indian (Lineage 3), East Asian (Lineage 2), Indo-Oceanic (Lineage 1), Mycobacterium africanum (Lineage 5 and Lineage 6) and Ethiopian (Lineage 7) were identified. The majority (94.6 %) of the isolates were Euro-American and East-African-Indian, with proportions of 75.3 % and 19.3 %, respectively. Overall, 77 different spoligotype patterns were identified of which 42 were registered in the SITVIT2 database. Of these, 27 spoligotypes were unique, while 15 were clustered with 2-49 isolates. SIT149/T3_ETH (n = 49), SIT53/T1 (n = 33), SIT21/CAS1_Kili (n = 24) and SIT41/Turkey (n = 11) were the dominant spoligotypes. A rare Beijing spoligotype pattern, SIT541, has also been identified in Eastern Ethiopia. The overall clustering rate of sub-lineages with known SIT was 71.3 %. Age group (25-34) was significantly associated with clustering. Conclusion We found a heterogeneous population structure of MTBC dominated by T and CAS families, and the Euro-American lineage. The identification of the Beijing strain, particularly the rare SIT541 spoligotype in Eastern Ethiopia, warrants a heightened surveillance plan, as little is known about this genotype. A large-scale investigation utilizing a tool with superior discriminatory power, such as whole genome sequencing, is necessary to gain a thorough understanding of the genetic diversity of MTBC in the nation, which would help direct the overall control efforts.
Collapse
Affiliation(s)
- Mulualem Agonafir
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Nontuthuko E. Maningi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adey Feleke
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Sharon L. Olifant
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Tewodros Girma
- Harar Health Research and Regional Laboratory, Harar, Ethiopia
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Mekonnen D, Munshea A, Nibret E, Adnew B, Getachew H, Kebede A, Gebrewahid A, Herrera-Leon S, Aramendia AA, Benito A, Abascal E, Jacqueline C, Aseffa A, Herrera-Leon L. Mycobacterium tuberculosis Sub-Lineage 4.2.2/SIT149 as Dominant Drug-Resistant Clade in Northwest Ethiopia 2020-2022: In-silico Whole-Genome Sequence Analysis. Infect Drug Resist 2023; 16:6859-6870. [PMID: 37908783 PMCID: PMC10614653 DOI: 10.2147/idr.s429001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Drug resistance (DR) in Mycobacterium tuberculosis complex (MTBC) is mainly associated with certain lineages and varies across regions and countries. The Beijing genotype is the leading resistant lineage in Asia and western countries. M. tuberculosis (Mtb) (sub) lineages responsible for most drug resistance in Ethiopia are not well described. Hence, this study aimed to identify the leading drug resistance sub-lineages and characterize first-line anti-tuberculosis drug resistance-associated single nucleotide polymorphisms (SNPs). Methods A facility-based cross-sectional study was conducted in 2020-2022 among new and presumptive multidrug resistant-TB (MDR-TB) cases in Northwest Ethiopia. Whole-genome sequencing (WGS) was performed on 161 isolates using Illumina NovaSeq 6000 technology. The SNP mutations associated with drug resistance were identified using MtbSeq and TB profiler Bioinformatics softwares. Results Of the 146 Mtb isolates that were successfully genotyped, 20 (13.7%) harbored one or more resistance-associated SNPs. L4.2.2.ETH was the leading drug-resistant sub-lineage, accounting for 10/20 (50%) of the resistant Mtb. MDR-TB isolates showed extensive mutations against first-line anti-TB drugs. Ser450Leu/(tcg/tTg) for Rifampicin (RIF), Ser315Thr/(agc/aCc) for Isoniazid (INH), Met306Ile/(atg/atA(C)) for Ethambutol (EMB), and Gly69Asp for Streptomycin (STR) were the leading resistance associated mutations which accounted for 56.5%, 89.5%, 47%, and 29.4%, respectively. The presence of both clustered and non-clustered drug resistance (DR) isolates indicated that the epidemics is driven by both new DR development and acquired resistance. Conclusion The high prevalence of drug-resistant TB due to geographically restricted sub-lineages (L4.2.2.ETH) indicates the ongoing local micro epidemics. The Mtb drug resistance surveillance system must be improved. Further evolutionary analysis of L4.2.2.ETH strain is highly desirable to understand evolutionary forces that leads L4.2.2.ETH in to high level DR and transmissible sub-lineage.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abaineh Munshea
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Endalkachew Nibret
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | | | | | - Amiro Kebede
- Amhara Public Health Institute, Bahir Dar, Ethiopia
| | | | - Silvia Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Agustín Benito
- National Center of Tropical Medicine, Institute of Health Carlos III, Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Madrid, Spain
| | - Estefanía Abascal
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Camille Jacqueline
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- European Public Health Microbiology Training Programme, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Laura Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- CIBER Epidemiologia y Salud Publica, Madrid, Spain
| |
Collapse
|
9
|
Sahal MR, Senelle G, La K, Panda TW, Taura DW, Guyeux C, Cambau E, Sola C. Mycobacterium tuberculosis complex drug-resistance, phylogenetics, and evolution in Nigeria: Comparison with Ghana and Cameroon. PLoS Negl Trop Dis 2023; 17:e0011619. [PMID: 37824575 PMCID: PMC10597489 DOI: 10.1371/journal.pntd.0011619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/24/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023] Open
Abstract
In this article, we provide an in-depth analysis on the drug-resistance phenotypic characteristics of a cohort of 325 tuberculosis and characterize by Whole Genome Sequencing 24 isolates from Nigeria belonging to L4, L5 and L6. Our results suggest an alarming rate of drug-resistance of the L4.6.2.2 Mycobacterium tuberculosis complex (MTBC) lineage and a high diversity of L5. We compiled these new Sequence Read Archives (SRAs) to previously published ones from available Bioprojects run in Nigeria. We performed RAxML phylogenetic reconstructions of larger samples that include public NCBI SRAs from some neighboring countries (Cameroon, Ghana). To confront phylogenetic reconstruction to metadata, we used a new proprietary database named TB-Annotator. We show that L5 genomes in Northern Nigeria belong to new clades as the ones described until now and allow an update of the taxonomy of L5. In addition, we describe the L4.6.2.2 lineage in Nigeria, Cameroon and Ghana. We provide computations on the likely divergence time of L4.6.2.2 and suggest a new hypothesis concerning its origin. Finally we provide a short overview on M. bovis diversity in Nigeria. This study constitutes a baseline knowledge on the global genomic diversity, phylogeography and phylodynamics of MTBC in Nigeria, as well as on the natural history of this largely ignored but densely populated country of Africa. These results highlight the need of sequencing additional MTBC genomes in Nigeria and more generally in West-Africa, both for public health and for academic reasons. The likelihood of replacement of L5-L6 by L4.6.2.2 isolates, leave potentially little time to gather historical knowledge informative on the ancient history of tuberculosis in West-Africa.
Collapse
Affiliation(s)
- Muhammed Rabiu Sahal
- Université Paris-Cité, IAME, Inserm, Paris, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gaetan Senelle
- FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Science Department, Univ. Franche-Comté (UFC), 16 Route de Gray, 25000 Besançon, France
| | - Kevin La
- Université Paris-Cité, IAME, Inserm, Paris, France
| | | | | | - Christophe Guyeux
- FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Science Department, Univ. Franche-Comté (UFC), 16 Route de Gray, 25000 Besançon, France
| | - Emmanuelle Cambau
- Université Paris-Cité, IAME, Inserm, Paris, France
- APHP, GHU Nord site Bichat, Service de Mycobactériologie Spécialisée et de Référence, Paris, France
| | - Christophe Sola
- Université Paris-Cité, IAME, Inserm, Paris, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Shibabaw A, Gelaw B, Ghanem M, Legall N, Schooley AM, Soehnlen MK, Salvador LCM, Gebreyes W, Wang SH, Tessema B. Molecular epidemiology and transmission dynamics of multi-drug resistant tuberculosis strains using whole genome sequencing in the Amhara region, Ethiopia. BMC Genomics 2023; 24:400. [PMID: 37460951 DOI: 10.1186/s12864-023-09502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Drug resistant Mycobacterium tuberculosis prevention and care is a major challenge in Ethiopia. The World health organization has designated Ethiopia as one of the 30 high burden multi-drug resistant tuberculosis (MDR-TB) countries. There is limited information regarding genetic diversity and transmission dynamics of MDR-TB in Ethiopia. OBJECTIVE To investigate the molecular epidemiology and transmission dynamics of MDR-TB strains using whole genome sequence (WGS) in the Amhara region. METHODS Forty-five MDR-TB clinical isolates from Amhara region were collected between 2016 and 2018, and characterized using WGS and 24-loci Mycobacterium Interspersed Repetitive Units Variable Number of Tandem Repeats (MIRU-VNTR) typing. Clusters were defined based on the maximum distance of 12 single nucleotide polymorphisms (SNPs) or alleles as the upper threshold of genomic relatedness. Five or less SNPs or alleles distance or identical 24-loci VNTR typing is denoted as surrogate marker for recent transmission. RESULTS Forty-one of the 45 isolates were analyzed by WGS and 44% (18/41) of the isolates were distributed into 4 clusters. Of the 41 MDR-TB isolates, 58.5% were classified as lineage 4, 36.5% lineage 3 and 5% lineage 1. Overall, TUR genotype (54%) was the predominant in MDR-TB strains. 41% (17/41) of the isolates were clustered into four WGS groups and the remaining isolates were unique strains. The predominant cluster (Cluster 1) was composed of nine isolates belonging to lineage 4 and of these, four isolates were in the recent transmission links. CONCLUSIONS Majority of MDR-TB strain cluster and predominance of TUR lineage in the Amhara region give rise to concerns for possible ongoing transmission. Efforts to strengthen TB laboratory to advance diagnosis, intensified active case finding, and expanded contact tracing activities are needed in order to improve rapid diagnosis and initiate early treatment. This would lead to the interruption of the transmission chain and stop the spread of MDR-TB in the Amhara region.
Collapse
Affiliation(s)
- Agumas Shibabaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH, USA.
- Department of Medical Microbiology, School of Medical Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
- Michigan Department of Health and Human Services, Infectious disease, Lansing, MI, USA.
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| | - Baye Gelaw
- Department of Medical Microbiology, School of Medical Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Noah Legall
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Angie M Schooley
- Michigan Department of Health and Human Services, Infectious disease, Lansing, MI, USA
| | - Marty K Soehnlen
- Michigan Department of Health and Human Services, Infectious disease, Lansing, MI, USA
| | - Liliana C M Salvador
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and life sciences, University of Arizona, Tucson, AZ, USA
| | - Wondwossen Gebreyes
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Shu-Hua Wang
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Belay Tessema
- Department of Medical Microbiology, School of Medical Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
11
|
Mekonnen D, Munshea A, Nibret E, Adnew B, Herrera-Leon S, Amor Aramendia A, Benito A, Abascal E, Jacqueline C, Aseffa A, Herrera-Leon L. Comparative whole-genome sequence analysis of Mycobacterium tuberculosis isolated from pulmonary tuberculosis and tuberculous lymphadenitis patients in Northwest Ethiopia. Front Microbiol 2023; 14:1211267. [PMID: 37455714 PMCID: PMC10348828 DOI: 10.3389/fmicb.2023.1211267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Background Tuberculosis (TB), caused by the Mycobacterium tuberculosis complex (MTBC), is a chronic infectious disease with both pulmonary and extrapulmonary forms. This study set out to investigate and compare the genomic diversity and transmission dynamics of Mycobacterium tuberculosis (Mtb) isolates obtained from tuberculous lymphadenitis (TBLN) and pulmonary TB (PTB) cases in Northwest Ethiopia. Methods A facility-based cross-sectional study was conducted using two groups of samples collected between February 2021 and June 2022 (Group 1) and between June 2020 and June 2022 (Group 2) in Northwest Ethiopia. Deoxyribonucleic acid (DNA) was extracted from 200 heat-inactivated Mtb isolates. Whole-genome sequencing (WGS) was performed from 161 isolates having ≥1 ng DNA/μl using Illumina NovaSeq 6000 technology. Results From the total 161 isolates sequenced, 146 Mtb isolates were successfully genotyped into three lineages (L) and 18 sub-lineages. The Euro-American (EA, L4) lineage was the prevailing (n = 100; 68.5%) followed by Central Asian (CAS, L3, n = 43; 25.3%) and then L7 (n = 3; 2.05%). The L4.2.2.ETH sub-lineage accounted for 19.9%, while Haarlem estimated at 13.7%. The phylogenetic tree revealed distinct Mtb clusters between PTB and TBLN isolates even though there was no difference at lineages and sub-lineages levels. The clustering rate (CR) and recent transmission index (RTI) for PTB were 30 and 15%, respectively. Similarly, the CR and RTI for TBLN were 31.1 and 18 %, respectively. Conclusion and recommendations PTB and TBLN isolates showed no Mtb lineages and sub-lineages difference. However, at the threshold of five allelic distances, Mtb isolates obtained from PTB and TBLN form distinct complexes in the phylogenetic tree, which indicates the presence of Mtb genomic variation among the two clinical forms. The high rate of clustering and RTI among TBLN implied that TBLN was likely the result of recent transmission and/or reactivation from short latency. Hence, the high incidence rate of TBLN in the Amhara region could be the result of Mtb genomic diversity and rapid clinical progression from primary infection and/or short latency. To validate this conclusion, a similar community-based study with a large sample size and better sampling technique is highly desirable. Additionally, analysis of genomic variants other than phylogenetic informative regions could give insightful information. Combined analysis of the host and the pathogen genome (GXG) together with environmental (GxGxE) factors could give comprehensive co-evolutionary information.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Amhara Public Health Institute, Bahir Dar, Ethiopia
| | - Abaineh Munshea
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Endalkachew Nibret
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | | | - Silvia Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Agustín Benito
- National Center of Tropical Medicine, Institute of Health Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - Estefanía Abascal
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Camille Jacqueline
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- European Public Health Microbiology Training Programme, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Laura Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- CIBER Epidemiologia y Salud Publica, Madrid, Spain
| |
Collapse
|
12
|
Mekonnen D, Munshea A, Nibret E, Derbie A, Wubetu M, Taye M, Zeru T, Bezabih B, Azage M, Bobosha K, Aseffa A. Rapid Bioethical Assessment for Mycobacterium tuberculosis and Host Genetic Study in Amhara Regional State, Ethiopia: Towards a Context-Specific Ethical Approach. Ethiop J Health Sci 2023; 33:413-422. [PMID: 37576164 PMCID: PMC10416330 DOI: 10.4314/ejhs.v33i3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background Rapid Ethical Assessment (REA) is a rapid qualitative study anticipated to understand the ethical sphere of the research setting prior to recruiting study subjects. This study assessed the communities' knowledge about tuberculosis (TB) and research, understand the social arrangements advisable for recruiting research participant and appraised the information provision and consent process. Methods The study was conducted in Amhara region, Ethiopia from 5th-30th January 2021. Google-based survey, face-to-face in-depth interview and focus group discussion were carried out to collect the data from researchers, data collectors, health professionals, TB program officers. A structured questionnaire was administered to assess the knowledge of TB patients and healthy controls about TB, research, gene, (co)evolution and consent process. Results Over 71% of researchers were not satisfied with the current consent process, and 82.7% of researchers agreed that the best interest of the research participants was not adequately addressed in the current research practices in ANRS. TB patients and healthy controls misunderstood research and its goals. Participants advised the researchers to approach the community with the assistance of health extension workers (HEW) or religious/local leaders. Combined use of verbal and written based information provision at individual participant level is the preferred way for information provision. Conclusions The adherence of researchers to standard information provision and consent process was very low. Healthy controls and TB patients have low level of knowledge and awareness about research, ethics and genomic research-related common terms. Hence, public education is required to strengthen the research ethics in the region.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Ethiopia
| | - Abaineh Munshea
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Ethiopia
- Department of Biology, Bahir Dar University, Ethiopia
| | - Endalkachew Nibret
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Ethiopia
- Department of Biology, Bahir Dar University, Ethiopia
| | - Awoke Derbie
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Ethiopia
- The Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Ethiopia
| | - Mastewal Wubetu
- Department of Ethiopia Langue(s) and Literature-Amharic, Faculty of Humanities, Bahir Dar University, Ethiopia
| | - Mengistie Taye
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Ethiopia
- Department of Animal Science, College of Agriculture and Environmental Sciences, Bahir Dar University, Ethiopia
| | - Taye Zeru
- Amhara Public Health Institute, Ethiopia
| | | | - Muluken Azage
- Department of Environmental Health, School of public health, College of Medicine and Health Sciences, Bahir Dar University, Ethiopia
| | | | | |
Collapse
|
13
|
Hailu E, Cantillon D, Madrazo C, Rose G, Wheeler PR, Golby P, Adnew B, Gagneux S, Aseffa A, Gordon SV, Comas I, Young DB, Waddell SJ, Larrouy-Maumus G, Berg S. Lack of methoxy-mycolates characterizes the geographically restricted lineage 7 of Mycobacterium tuberculosis complex. Microb Genom 2023; 9:mgen001011. [PMID: 37171244 PMCID: PMC10272862 DOI: 10.1099/mgen.0.001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 05/13/2023] Open
Abstract
Lineage 7 (L7) emerged in the phylogeny of the Mycobacterium tuberculosis complex (MTBC) subsequent to the branching of 'ancient' lineage 1 and prior to the Eurasian dispersal of 'modern' lineages 2, 3 and 4. In contrast to the major MTBC lineages, the current epidemiology suggests that prevalence of L7 is highly confined to the Ethiopian population, or when identified outside of Ethiopia, it has mainly been in patients of Ethiopian origin. To search for microbiological factors that may contribute to its restricted distribution, we compared the genome of L7 to the genomes of globally dispersed MTBC lineages. The frequency of predicted functional mutations in L7 was similar to that documented in other lineages. These include mutations characteristic of modern lineages - such as constitutive expression of nitrate reductase - as well as mutations in the VirS locus that are commonly found in ancient lineages. We also identified and characterized multiple lineage-specific mutations in L7 in biosynthesis pathways of cell wall lipids, including confirmed deficiency of methoxy-mycolic acids due to a stop-gain mutation in the mmaA3 gene that encodes a methoxy-mycolic acid synthase. We show that the abolished biosynthesis of methoxy-mycolates of L7 alters the cell structure and colony morphology on selected growth media and impacts biofilm formation. The loss of these mycolic acid moieties may change the host-pathogen dynamic for L7 isolates, explaining the limited geographical distribution of L7 and contributing to further understanding the spread of MTBC lineages across the globe.
Collapse
Affiliation(s)
- Elena Hailu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Daire Cantillon
- Brighton and Sussex Centre for Global Health Research, Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer, UK
- Present address: Department of Tropical Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carlos Madrazo
- Biomedicine Institute of Valencia, Spanish Research Council (IBV-CSIC), Valencia, Spain
| | - Graham Rose
- Francis Crick Institute, London, UK
- Present address: North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children, London, UK
| | | | - Paul Golby
- Animal and Plant Health Agency, Weybridge, UK
| | | | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Stephen V. Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Iñaki Comas
- Biomedicine Institute of Valencia, Spanish Research Council (IBV-CSIC), Valencia, Spain
| | - Douglas B. Young
- Francis Crick Institute, London, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Simon J. Waddell
- Brighton and Sussex Centre for Global Health Research, Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Stefan Berg
- Animal and Plant Health Agency, Weybridge, UK
- Present address: Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
14
|
Ndong Sima CAA, Smith D, Petersen DC, Schurz H, Uren C, Möller M. The immunogenetics of tuberculosis (TB) susceptibility. Immunogenetics 2022; 75:215-230. [DOI: 10.1007/s00251-022-01290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
|
15
|
Saelens JW, Sweeney MI, Viswanathan G, Xet-Mull AM, Jurcic Smith KL, Sisk DM, Hu DD, Cronin RM, Hughes EJ, Brewer WJ, Coers J, Champion MM, Champion PA, Lowe CB, Smith CM, Lee S, Stout JE, Tobin DM. An ancestral mycobacterial effector promotes dissemination of infection. Cell 2022; 185:4507-4525.e18. [PMID: 36356582 PMCID: PMC9691622 DOI: 10.1016/j.cell.2022.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/27/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
The human pathogen Mycobacterium tuberculosis typically causes lung disease but can also disseminate to other tissues. We identified a M. tuberculosis (Mtb) outbreak presenting with unusually high rates of extrapulmonary dissemination and bone disease. We found that the causal strain carried an ancestral full-length version of the type VII-secreted effector EsxM rather than the truncated version present in other modern Mtb lineages. The ancestral EsxM variant exacerbated dissemination through enhancement of macrophage motility, increased egress of macrophages from established granulomas, and alterations in macrophage actin dynamics. Reconstitution of the ancestral version of EsxM in an attenuated modern strain of Mtb altered the migratory mode of infected macrophages, enhancing their motility. In a zebrafish model, full-length EsxM promoted bone disease. The presence of a derived nonsense variant in EsxM throughout the major Mtb lineages 2, 3, and 4 is consistent with a role for EsxM in regulating the extent of dissemination.
Collapse
Affiliation(s)
- Joseph W Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mollie I Sweeney
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ana María Xet-Mull
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kristen L Jurcic Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dana M Sisk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Daniel D Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rachel M Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erika J Hughes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - W Jared Brewer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia A Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sunhee Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jason E Stout
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA.
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Sabin S, Morales-Arce AY, Pfeifer SP, Jensen JD. The impact of frequently neglected model violations on bacterial recombination rate estimation: a case study in Mycobacterium canettii and Mycobacterium tuberculosis. G3 (BETHESDA, MD.) 2022; 12:jkac055. [PMID: 35253851 PMCID: PMC9073693 DOI: 10.1093/g3journal/jkac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Mycobacterium canettii is a causative agent of tuberculosis in humans, along with the members of the Mycobacterium tuberculosis complex. Frequently used as an outgroup to the M. tuberculosis complex in phylogenetic analyses, M. canettii is thought to offer the best proxy for the progenitor species that gave rise to the complex. Here, we leverage whole-genome sequencing data and biologically relevant population genomic models to compare the evolutionary dynamics driving variation in the recombining M. canettii with that in the nonrecombining M. tuberculosis complex, and discuss differences in observed genomic diversity in the light of expected levels of Hill-Robertson interference. In doing so, we highlight the methodological challenges of estimating recombination rates through traditional population genetic approaches using sequences called from populations of microorganisms and evaluate the likely mis-inference that arises owing to a neglect of common model violations including purifying selection, background selection, progeny skew, and population size change. In addition, we compare performance when full within-host polymorphism data are utilized, versus the more common approach of basing analyses on within-host consensus sequences.
Collapse
Affiliation(s)
- Susanna Sabin
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Ana Y Morales-Arce
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
17
|
Chiner-Oms Á, López MG, Moreno-Molina M, Furió V, Comas I. Gene evolutionary trajectories in Mycobacterium tuberculosis reveal temporal signs of selection. Proc Natl Acad Sci U S A 2022; 119:e2113600119. [PMID: 35452305 PMCID: PMC9173582 DOI: 10.1073/pnas.2113600119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Genetic differences between different Mycobacterium tuberculosis complex (MTBC) strains determine their ability to transmit within different host populations, their latency times, and their drug resistance profiles. Said differences usually emerge through de novo mutations and are maintained or discarded by the balance of evolutionary forces. Using a dataset of ∼5,000 strains representing global MTBC diversity, we determined the past and present selective forces that have shaped the current variability observed in the pathogen population. We identified regions that have evolved under changing types of selection since the time of the MTBC common ancestor. Our approach highlighted striking differences in the genome regions relevant for host–pathogen interaction and, in particular, suggested an adaptive role for the sensor protein of two-component systems. In addition, we applied our approach to successfully identify potential determinants of resistance to drugs administered as second-line tuberculosis treatments.
Collapse
Affiliation(s)
- Álvaro Chiner-Oms
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
| | - Mariana G. López
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
| | | | - Victoria Furió
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
- CIBER en Epidemiología y Salud Pública, Valencia, Spain
| |
Collapse
|
18
|
Welekidan LN, Yimer SA, Skjerve E, Dejene TA, Homberset H, Tønjum T, Brynildsrud O. Whole Genome Sequencing of Drug Resistant and Drug Susceptible Mycobacterium tuberculosis Isolates From Tigray Region, Ethiopia. Front Microbiol 2021; 12:743198. [PMID: 34938276 PMCID: PMC8685502 DOI: 10.3389/fmicb.2021.743198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Tuberculosis, mainly caused by Mycobacterium tuberculosis (Mtb), is an ancient human disease that gravely affects millions of people annually. We wanted to explore the genetic diversity and lineage-specific association of Mtb with drug resistance among pulmonary tuberculosis patients. Methods: Sputum samples were collected from pulmonary tuberculosis patients at six different healthcare institutions in Tigray, Ethiopia, between July 2018 and August 2019. DNA was extracted from 74 Mtb complex isolates for whole-genome sequencing (WGS). All genomes were typed and screened for mutations with known associations with antimicrobial resistance using in silico methods, and results were cross-verified with wet lab methods. Results: Lineage (L) 4 (55.8%) was predominant, followed by L3 (41.2%); L1 (1.5%) and L2 (1.5%) occurred rarely. The most frequently detected sublineage was CAS (38.2%), followed by Ural (29.4%), and Haarlem (11.8%). The recent transmission index (RTI) was relatively low. L4 and Ural strains were more resistant than the other strains to any anti-TB drug (P < 0.05). The most frequent mutations to RIF, INH, EMB, SM, PZA, ETH, FLQs, and 2nd-line injectable drugs occurred at rpoB S450L, katG S315T, embB M306I/V, rpsL K43R, pncA V139A, ethA M1R, gyrA D94G, and rrs A1401G, respectively. Disputed rpoB mutations were also shown in four (16%) of RIF-resistant isolates. Conclusion: Our WGS analysis revealed the presence of diverse Mtb genotypes. The presence of a significant proportion of disputed rpoB mutations highlighted the need to establish a WGS facility at the regional level to monitor drug-resistant mutations. This will help control the transmission of DR-TB and ultimately contribute to the attainment of 100% DST coverage for TB patients as per the End TB strategy.
Collapse
Affiliation(s)
- Letemichael Negash Welekidan
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway.,Division of Biomedical Sciences, Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Solomon Abebe Yimer
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway.,Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Eystein Skjerve
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Tsehaye Asmelash Dejene
- Division of Biomedical Sciences, Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Håvard Homberset
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Unit for Genome Dynamics, Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Ola Brynildsrud
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway.,Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
19
|
Dusthackeer A, Kumar A, Mohanvel SK, Mahizhaveni B, Shivakumar S, Raghavi S, Azhagendran S, Vetrivel S, Rao VG, Yadav R, Paluru V, Purthy AJ, Hussain T, Kashyap V, Devi KR, Krishnan AKI, Anand P, Das P, Bansal AK, Das M, Kaur H, Raghunath D, Mondal R, Thomas BE. Mycobacterium tuberculosis strain lineage in mixed tribal population across India and Andaman Nicobar Island. World J Microbiol Biotechnol 2021; 37:192. [PMID: 34637049 DOI: 10.1007/s11274-021-03164-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
In India, the tribal population constitutes almost 8.6% of the nation's total population. Despite their large presence, there are only a few reports available on Mycobacterium tuberculosis (M. tb) strain prevalence in Indian tribal communities considering the mobile nature of this population and also the influence of the mainstream populations they coexist within many areas for their livelihood. This study attempts to provide critical information pertaining to the TB strain diversity, its public health implications, and distribution among the tribal population in eleven Indian states and Andaman & Nicobar (A&N) Island. The study employed a population-based molecular approach. Clinical isolates were received from 66 villages (10 states and Island) and these villages were selected by implying situation analysis. A total of 78 M. tb clinical isolates were received from 10 different states and A&N Island. Among these, 16 different strains were observed by spoligotyping technique. The major M. tb strains spoligotype belong to the Beijing, CAS1_DELHI, and EAI5 family of M. tb strains followed by EAI1_SOM, EAI6_BGD1, LAM3, LAM6, LAM9, T1, T2, U strains. Drug-susceptibility testing (DST) results showed almost 15.4% of clinical isolates found to be resistant to isoniazid (INH) or rifampicin (RMP) + INH. Predominant multidrug-resistant (MDR-TB) isolates seem to be Beijing strain. Beijing, CAS1_DELHI, EAI3_IND, and EAI5 were the principal strains infecting mixed tribal populations across India. Despite the small sample size, this study has demonstrated higher diversity among the TB strains with significant MDR-TB findings. Prevalence of Beijing MDR-TB strains in Central, Southern, Eastern India and A&N Island indicates the transmission of the TB strains.
Collapse
Affiliation(s)
- Azger Dusthackeer
- Department of Bacteriology, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India.
| | - Ashok Kumar
- Department of Bacteriology, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | | | - B Mahizhaveni
- Department of Bacteriology, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | - S Shivakumar
- Department of Bacteriology, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | - S Raghavi
- Department of Social and Behavioural Research, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | - S Azhagendran
- Department of Social and Behavioural Research, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | - S Vetrivel
- Department of Social and Behavioural Research, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| | - Vikas Gangadhar Rao
- Division of Communicable Diseases, Indian Council of Medical Research-National Institute for Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Rajiv Yadav
- Division of Communicable Diseases, Indian Council of Medical Research-National Institute for Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Vijayachari Paluru
- Clinical Microbiology, Indian Council of Medical Research-Regional Medical Research Centre, Port Blair, Andaman and Nicobar Island, 744101, India
| | - Anil Jacob Purthy
- Department of Community Medicine, Pondicherry Institute of Medical Sciences, Puducherry, 605014, India
| | - Tahziba Hussain
- Department of Immunology, Indian Council of Medical Research-Regional Medical Research Centre, Bhubaneshwar, Odisha, 721023, India
| | - Vivek Kashyap
- Department of Preventive and Social Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, 834009, India
| | - K Rekha Devi
- ICMR - Regional Medical Research Centre, N. E. Region, Diburgah, Assam, 786 001, India
| | - Anil Kumar Indira Krishnan
- School of Public Health, SRM Medical College Research Centre, Kancheepuram (Dt), Kattankulathur, Tamil Nadu, 603203, India
| | - Praveen Anand
- Desert Medicine Research Centre (ICMR), New Pali Road, Jodhpur, Rajasthan, 342005, India
| | - Pradeep Das
- ICMR - Rajendra Memorial Research of Medical Science (RMRIMS), Agamkuan, Patna, Bihar, 800007, India
| | - Avi Kumar Bansal
- Department of Epidemiology/Public Health, ICMR-National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Dr. M. Miyazaki Marg, Tajganj, Agra, 282001, India
| | - Madhuchhanda Das
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, 110016, India
| | - Harpreet Kaur
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, 110016, India
| | - D Raghunath
- Tribal TB ICMR Task Force, Indian Council of Medical Research, New Delhi, 110016, India
| | - Rajesh Mondal
- ICMR - Bhopal Memorial Hospital & Research Centre, Bhopal, India.
| | - Beena E Thomas
- Department of Social and Behavioural Research, Indian Council of Medical Research-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600031, India
| |
Collapse
|
20
|
Merid Y, Hailu E, Habtamu G, Tilahun M, Abebe M, Hailu M, Hailu T, Datiko DG, Woldeamanuel Y, Aseffa A. Molecular Epidemiology of Mycobacterium tuberculosis strains isolated from pulmonary tuberculosis patients in south Ethiopia. J Infect Dev Ctries 2021; 15:1299-1307. [PMID: 34669600 PMCID: PMC8556644 DOI: 10.3855/jidc.14742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 01/22/2023] Open
Abstract
Introduction: Understanding the epidemiology of tuberculosis is limited by lack of genotyping data. We sought to characterize the drug susceptibility testing patterns and genetic diversity of M. tuberculosis isolates in southern Ethiopia. Methodology: A cross-sectional study was conducted among newly diagnosed sputum smear positive patients with tuberculosis visiting nine health facilities in southern Ethiopia from June 2015 to May 2016. Three consecutive sputum samples (spot-morning-spot) per patient were examined using acid-fast bacilli smear microscopy with all smear positive specimens having acid-fast bacilli cultures performed. M. tuberculosis isolates had drug susceptibility testing performed using indirect proportion method and were genotyped with RD9 deletion analysis and spoligotyping. Mapping of strain was made using geographic information system. Results: Among 250 newly diagnosed patients with tuberculosis, 4% were HIV co-infected. All 230 isolates tested were M. tuberculosis strains belonging to three lineages: Euro-American, 187 (81%), East-African-Indian, 31 (14%), and Lineage 7 (Ethiopian lineage), 8 (4%); categorized into 63 different spoligotype patterns, of which 85% fell into 28 clusters. M. tuberculosis strains were clustered by geographic localities. The dominant spoligotypes were SIT149 (21%) and SIT53 (19%). Drug susceptibility testing found that 14% of isolates tested were resistant to ≥ 1 first line anti- tuberculosis drugs and 11% to INH. SIT 149 was dominant among drug resistant isolates. Conclusions: The study revealed several clusters and drug resistant strains of M. tuberculosis in the study area, suggesting recent transmission including of drug resistant tuberculosis. Wider monitoring of drug susceptibility testing and geospatial analysis of transmission trends is required to control tuberculosis in southern Ethiopia.
Collapse
Affiliation(s)
- Yared Merid
- College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia.
| | - Elena Hailu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Getnet Habtamu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Melaku Tilahun
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Mesay Hailu
- College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Tsegaye Hailu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
21
|
Diriba G, Kebede A, Tola HH, Alemu A, Yenew B, Moga S, Addise D, Mohammed Z, Getahun M, Fantahun M, Tadesse M, Dagne B, Amare M, Assefa G, Abera D, Desta K. Mycobacterial Lineages Associated with Drug Resistance in Patients with Extrapulmonary Tuberculosis in Addis Ababa, Ethiopia. Tuberc Res Treat 2021; 2021:5239529. [PMID: 34589236 PMCID: PMC8476284 DOI: 10.1155/2021/5239529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND In Ethiopia, tuberculosis (TB) is one of the most common causes of illness and death. However, there is limited information available on lineages associated with drug resistance among extrapulmonary tuberculosis patients in Ethiopia. In this study, researchers looked into Mycobacterium tuberculosis lineages linked to drug resistance in patients with extrapulmonary tuberculosis in Addis Ababa, Ethiopia. METHODS On 151 Mycobacterium tuberculosis isolates, a cross-sectional analysis was performed. Spoligotyping was used to characterize mycobacterial lineages, while a phenotypic drug susceptibility test was performed to determine the drug resistance pattern. Data were analyzed using SPSS version 23. RESULTS Among 151 Mycobacterium tuberculosis complex (MTBC) genotyped isolates, four lineages (L1-L4), and Mycobacterium bovis were identified. The predominantly identified lineage was Euro-American (73.5%) followed by East-African-Indian (19.2%). Any drug resistance (RR) and multidrug-resistant (MDR) tuberculosis was identified among 16.2% and 7.2% of the Euro-American lineage, respectively, while it was 30.8% and 15.4% among the East-African-Indian lineages. Among all three preextensively drug-resistance (pre-XDR) cases identified, two isolates belong to T3-ETH, and the other one strain was not defined by the database. There was no statistically significant association between any type of drug resistance and either lineage or sublineages of Mycobacterium tuberculosis. CONCLUSION A higher proportion of any type of drug resistance and MDR was detected among the East-African-Indian lineage compared to others. However, there was no statistically significant association between any type of drug resistance and either lineages or sublineages. Thus, the authors recommend a large-scale study.
Collapse
Affiliation(s)
- Getu Diriba
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abebaw Kebede
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Ayinalem Alemu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Bazezew Yenew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Shewki Moga
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | | | - Mengistu Fantahun
- St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | | | - Biniyam Dagne
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Misikir Amare
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Dessie Abera
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kassu Desta
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
22
|
Diversity of Mycobacterium tuberculosis Complex Lineages Associated with Pulmonary Tuberculosis in Southwestern, Uganda. Tuberc Res Treat 2021; 2021:5588339. [PMID: 34306752 PMCID: PMC8264515 DOI: 10.1155/2021/5588339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/05/2021] [Indexed: 11/23/2022] Open
Abstract
Uganda is among the 22 countries in the world with a high burden of tuberculosis. The southwestern region of the country has consistently registered a high TB/HIV incidence rate. This study is aimed at characterizing the Mycobacterium tuberculosis complex (MTBC) genotypic diversity in southwestern Uganda. A total of 283 sputum samples from patients with pulmonary tuberculosis were genotyped using specific single nucleotide polymorphism markers for lineages 3 and 4. Most of the patients were males with a mean age of 34. The lineage 4 Ugandan family was found to be the most dominant strains accounting for 59.7% of all cases followed by lineage 3 at 15.2%. The lineage 4 non-Ugandan family accounted for 14.5% of all cases while 4.2% showed amplification for both lineage 4 and lineage 3. Eighteen samples (6.4%) of the strains remained unclassified since they could not be matched to any lineage based on the genotyping technique used. This study demonstrates that a wide diversity of strains is causing pulmonary tuberculosis in this region with those belonging to the lineage 4 Ugandan family being more predominant. However, to confirm this, further studies using more discriminative genotyping methods are necessary.
Collapse
|
23
|
Menardo F, Gagneux S, Freund F. Multiple Merger Genealogies in Outbreaks of Mycobacterium tuberculosis. Mol Biol Evol 2021; 38:290-306. [PMID: 32667991 PMCID: PMC8480183 DOI: 10.1093/molbev/msaa179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Kingman coalescent and its developments are often considered among the most important advances in population genetics of the last decades. Demographic inference based on coalescent theory has been used to reconstruct the population dynamics and evolutionary history of several species, including Mycobacterium tuberculosis (MTB), an important human pathogen causing tuberculosis. One key assumption of the Kingman coalescent is that the number of descendants of different individuals does not vary strongly, and violating this assumption could lead to severe biases caused by model misspecification. Individual lineages of MTB are expected to vary strongly in reproductive success because 1) MTB is potentially under constant selection due to the pressure of the host immune system and of antibiotic treatment, 2) MTB undergoes repeated population bottlenecks when it transmits from one host to the next, and 3) some hosts show much higher transmission rates compared with the average (superspreaders). Here, we used an approximate Bayesian computation approach to test whether multiple-merger coalescents (MMC), a class of models that allow for large variation in reproductive success among lineages, are more appropriate models to study MTB populations. We considered 11 publicly available whole-genome sequence data sets sampled from local MTB populations and outbreaks and found that MMC had a better fit compared with the Kingman coalescent for 10 of the 11 data sets. These results indicate that the null model for analyzing MTB outbreaks should be reassessed and that past findings based on the Kingman coalescent need to be revisited.
Collapse
Affiliation(s)
- Fabrizio Menardo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sébastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fabian Freund
- Department of Plant Biodiversity and Breeding Informatics, Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
24
|
Cheng B, Behr MA, Howden BP, Cohen T, Lee RS. Reporting practices for genomic epidemiology of tuberculosis: a systematic review of the literature using STROME-ID guidelines as a benchmark. THE LANCET. MICROBE 2021; 2:e115-e129. [PMID: 33842904 PMCID: PMC8034592 DOI: 10.1016/s2666-5247(20)30201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pathogen genomics have become increasingly important in infectious disease epidemiology and public health. The Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID) guidelines were developed to outline a minimum set of criteria that should be reported in genomic epidemiology studies to facilitate assessment of study quality. We evaluate such reporting practices, using tuberculosis as an example. METHODS For this systematic review, we initially searched MEDLINE, Embase Classic, and Embase on May 3, 2017, using the search terms "tuberculosis" and "genom* sequencing". We updated this initial search on April 23, 2019, and also included a search of bioRxiv at this time. We included studies in English, French, or Spanish that recruited patients with microbiologically confirmed tuberculosis and used whole genome sequencing for typing of strains. Non-human studies, conference abstracts, and literature reviews were excluded. For each included study, the number and proportion of fulfilled STROME-ID criteria were recorded by two reviewers. A comparison of the mean proportion of fulfilled STROME-ID criteria before and after publication of the STROME-ID guidelines (in 2014) was done using a two-tailed t test. Quasi-Poisson regression and tobit regression were used to examine associations between study characteristics and the number and proportion of fulfilled STROME-ID criteria. This study was registered with PROSPERO, CRD42017064395. FINDINGS 976 titles and abstracts were identified by our primary search, with an additional 16 studies identified in bioRxiv. 114 full texts (published between 2009 and 2019) were eligible for inclusion. The mean proportion of STROME-ID criteria fulfilled was 50% (SD 12; range 16-75). The proportion of criteria fulfilled was similar before and after STROME-ID publication (51% [SD 11] vs 46% [14], p=0·26). The number of criteria reported (among those applicable to all studies) was not associated with impact factor, h-index, country of affiliation of senior author, or sample size of isolates. Similarly, the proportion of criteria fulfilled was not associated with these characteristics, with the exception of a sample size of isolates of 277 or more (the highest quartile). In terms of reproducibility, 100 (88%) studies reported which bioinformatic tools were used, but only 33 (33%) reported corresponding version numbers. Sequencing data were available for 86 (75%) studies. INTERPRETATION The reporting of STROME-ID criteria in genomic epidemiology studies of tuberculosis between 2009 and 2019 was low, with implications for assessment of study quality. The considerable proportion of studies without bioinformatics version numbers or sequencing data available highlights a key concern for reproducibility.
Collapse
Affiliation(s)
- Brianna Cheng
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Marcel A Behr
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Benjamin P Howden
- The Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Robyn S Lee
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Ayalew S, Wegayehu T, Taye H, Wassie L, Girma S, Berg S, Mihret A. Drug Resistance Conferring Mutation and Genetic Diversity of Mycobacterium tuberculosis Isolates in Tuberculosis Lymphadenitis Patients; Ethiopia. Infect Drug Resist 2021; 14:575-584. [PMID: 33623398 PMCID: PMC7894881 DOI: 10.2147/idr.s298683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/31/2021] [Indexed: 12/16/2022] Open
Abstract
Background Tuberculosis lymphadenitis (TBLN) is a growing public health concern in Ethiopia. However, there is limited information available on gene mutations conferring drug resistance and genetic diversity of M. tuberculosis isolates from TBLN patients. Methods Drug resistance and genetic diversity analysis were done on 91 M. tuberculosis isolates from culture positive TBLN patients collected between 2016 and 2017. Detection of mutations conferring resistance was carried out using GenoType MTBDRplus VER 2.0. Thereafter, isolates were typed using spoligotyping. Results Out of the 91 strains, mutations conferring resistance to rifampicin (RIF) and isoniazid (INH) were observed in two (2.2%) and six (6.6%) isolates, respectively. The two RIF resistant isolates displayed a mutation at codon 531 in the rpoB gene with amino acid change of S531L. Among the six INH resistant strains, four isolates had shown mutation at the KatG gene at codon 315 with amino acid change of S315T, one isolate had a mutation at the inhA gene at codon 15 with amino acid change of C15T and one isolate had a mutation at the inhA gene with unknown amino acid change. All drug resistant isolates were from treatment naive TBLN patients. The dominantly identified Spoligo International Types (SITs) were SIT25, SIT149, and SIT53, respectively; these accounted for 43% of the total number of strains. The isolates were grouped into four main lineages; Lineage 1 (2, 2.2%), Lineage 3 (38, 41.7%), Lineage 4 (49, 53.8%) and Lineage 7 (2, 2.2%). Four out of six (66.7%) isolates with drug resistance conferring mutations belonged to clustered strains (strains with shared SIT). Conclusion The detection of drug resistant conferring mutation in treatment naïve TBLN patients together with detection of drug resistant isolates among clustered strains might suggest resistant strains' transmission in the community. This needs to be carefully considered to prevent the spread of drug resistant clones in the country.
Collapse
Affiliation(s)
- Sosina Ayalew
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.,Department of Biology, College of Natural Sciences, Arba Minch University (AMU), Arba Minch, Ethiopia
| | - Teklu Wegayehu
- Department of Biology, College of Natural Sciences, Arba Minch University (AMU), Arba Minch, Ethiopia
| | - Hawult Taye
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Liya Wassie
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Selfu Girma
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Stefan Berg
- Bacteriology Department, Animal and Plant Health Agency, Weybridge, UK
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
26
|
Santos-Pereira A, Magalhães C, Araújo PMM, Osório NS. Evolutionary Genetics of Mycobacterium tuberculosis and HIV-1: "The Tortoise and the Hare". Microorganisms 2021; 9:147. [PMID: 33440808 PMCID: PMC7827287 DOI: 10.3390/microorganisms9010147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
The already enormous burden caused by Mycobacterium tuberculosis and Human Immunodeficiency Virus type 1 (HIV-1) alone is aggravated by co-infection. Despite obvious differences in the rate of evolution comparing these two human pathogens, genetic diversity plays an important role in the success of both. The extreme evolutionary dynamics of HIV-1 is in the basis of a robust capacity to evade immune responses, to generate drug-resistance and to diversify the population-level reservoir of M group viral subtypes. Compared to HIV-1 and other retroviruses, M. tuberculosis generates minute levels of genetic diversity within the host. However, emerging whole-genome sequencing data show that the M. tuberculosis complex contains at least nine human-adapted phylogenetic lineages. This level of genetic diversity results in differences in M. tuberculosis interactions with the host immune system, virulence and drug resistance propensity. In co-infected individuals, HIV-1 and M. tuberculosis are likely to co-colonize host cells. However, the evolutionary impact of the interaction between the host, the slowly evolving M. tuberculosis bacteria and the HIV-1 viral "mutant cloud" is poorly understood. These evolutionary dynamics, at the cellular niche of monocytes/macrophages, are also discussed and proposed as a relevant future research topic in the context of single-cell sequencing.
Collapse
Affiliation(s)
- Ana Santos-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Carlos Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Pedro M. M. Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno S. Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
27
|
Ejo M, Torrea G, Uwizeye C, Kassa M, Girma Y, Bekele T, Ademe Y, Diro E, Gehre F, Rigouts L, de Jong BC. Genetic diversity of the Mycobacterium tuberculosis complex strains from newly diagnosed tuberculosis patients in Northwest Ethiopia reveals a predominance of East-African-Indian and Euro-American lineages. Int J Infect Dis 2020; 103:72-80. [PMID: 33189940 DOI: 10.1016/j.ijid.2020.11.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES This study described the population structure of M. tuberculosis complex (MTBc) strains among patients with pulmonary or lymph node tuberculosis (TB) in Northwest Ethiopia and tested the performance of culture isolation and MPT64-based speciation for Lineage 7 (L7). METHODS Patients were recruited between April 2017 and June 2019 in North Gondar, Ethiopia. The MPT64 assay was used to confirm MTBc, and spoligotyping was used to characterize mycobacterial lineages. Line probe assay (LPA) was used to detect resistance to rifampicin and isoniazid. RESULTS Among 274 MTBc genotyped isolates, there were five MTBc lineages: L1-L4 and L7 were identified, with predominant East-African-Indian (L3) (53.6%) and Euro-American (L4) (40.1%) strains, and low prevalence (2.6%) of Ethiopia L7. The genotypes were similarly distributed between pulmonary and lymph node TB, and all lineages were equally isolated by culture and recognized as MTBc by the MPT64 assay. Additionally, LPA showed that 259 (94.5%) MTBc were susceptible to both rifampicin and isoniazid, and one (0.4%) was multi-drug resistant (resistant to both rifampicin and isoniazid). CONCLUSION These findings show that TB in North Gondar, Ethiopia, is mainly caused by L3 and L4 strains, with low rates of L7, confirmed as MTBc by MPT64 assay and with limited resistance to rifampicin and isoniazid.
Collapse
Affiliation(s)
- Mebrat Ejo
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; University of Gondar, Gondar, Ethiopia; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | - Meseret Kassa
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Yilak Girma
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Tiruzer Bekele
- Department of Pathology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yilkal Ademe
- Department of Pathology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ermias Diro
- Department of Internal Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Florian Gehre
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany; East African Community Secretariat (EAC), Arusha, Tanzania
| | - Leen Rigouts
- Institute of Tropical Medicine (ITM), Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
28
|
Abascal E, Pérez-Lago L, Martínez-Lirola M, Chiner-Oms Á, Herranz M, Chaoui I, Comas I, El Messaoudi MD, Cárdenas JAG, Santantón S, Bouza E, García-de-Viedma D. Whole genome sequencing-based analysis of tuberculosis (TB) in migrants: rapid tools for cross-border surveillance and to distinguish between recent transmission in the host country and new importations. ACTA ACUST UNITED AC 2020; 24. [PMID: 30696526 PMCID: PMC6351995 DOI: 10.2807/1560-7917.es.2019.24.4.1800005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background The analysis of transmission of tuberculosis (TB) is challenging in areas with a large migrant population. Standard genotyping may fail to differentiate transmission within the host country from new importations, which is key from an epidemiological perspective. Aim To propose a new strategy to simplify and optimise cross-border surveillance of tuberculosis and to distinguish between recent transmission in the host country and new importations Methods We selected 10 clusters, defined by 24-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR), from a population in Spain rich in migrants from eastern Europe, north Africa and west Africa and reanalysed 66 isolates by whole-genome sequencing (WGS). A multiplex-allele-specific PCR was designed to target strain-specific marker single nucleotide polymorphisms (SNPs), identified from WGS data, to optimise the surveillance of the most complex cluster. Results In five of 10 clusters not all isolates showed the short genetic distances expected for recent transmission and revealed a higher number of SNPs, thus suggesting independent importations of prevalent strains in the country of origin. In the most complex cluster, rich in Moroccan cases, a multiplex allele-specific oligonucleotide-PCR (ASO-PCR) targeting the marker SNPs for the transmission subcluster enabled us to prospectively identify new secondary cases. The ASO-PCR-based strategy was transferred and applied in Morocco, demonstrating that the strain was prevalent in the country. Conclusion We provide a new model for optimising the analysis of cross-border surveillance of TB transmission in the scenario of global migration.
Collapse
Affiliation(s)
- Estefanía Abascal
- These authors have contributed equally.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Pérez-Lago
- These authors have contributed equally.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Álvaro Chiner-Oms
- Unidad Mixta Genómica y Salud, Centro Superior de Investigación en Salud Pública (FISABIO)-Universitat de València, Valencia, Spain
| | - Marta Herranz
- CIBER Enfermedades respiratorias (CIBERES), Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Imane Chaoui
- Unité de Biologie et Recherches Médicales, Division des Sciences du Vivant, Centre National de l'Energie, des Sciences et des Techniques Nucléaires (CNESTEN), Rabat, Morocco
| | - Iñaki Comas
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain.,Instituto de Biomedicina de Valencia (IBV) Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | | | - Sheila Santantón
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilio Bouza
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,CIBER Enfermedades respiratorias (CIBERES), Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Darío García-de-Viedma
- CIBER Enfermedades respiratorias (CIBERES), Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Servicio Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
29
|
Al-Zahrani IA, Al-Ahmadi BM. Dissemination of VIM-producing Pseudomonas aeruginosa associated with high-risk clone ST654 in a tertiary and quaternary hospital in Makkah, Saudi Arabia. J Chemother 2020; 33:12-20. [PMID: 32602782 DOI: 10.1080/1120009x.2020.1785741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To the best of our knowledge, no molecular surveillance that has been conducted to identify the most common clones of carbapenem-resistant Pseudomonas aeruginosa (CRPA) in western Saudi Arabia. Therefore, this study aimed to identify genetic diversity and the most common CRPA clones in this region. Thirty-five CRPA isolates were collected from a tertiary and quaternary hospital in Makkah. bla VIM was the most common carbapenemase-encoding gene (11 CRPA isolates), while blaGES was reported in only three isolates. CRPA isolates were subjected to multi- locus sequence typing and showed relatively high genetic diversity with 20 sequence types. Approximately one-third (31.4%) of the CRPA isolates belonged to two high-risk clones (ST235 and ST654). This troublesome finding raises serious concerns about the emergence and further dissemination of CRPA high-risk clones in local hospitals and suggest that surveillance programs should be established in this region to monitor and control clonal dissemination of all multidrug resistant bacteria, including CRPA.
Collapse
Affiliation(s)
- Ibrahim A Al-Zahrani
- Faculty of Applied Medical Sciences, Medical Laboratory Technology Department, King Abdulaziz University, Jeddah, Saudi Arabia.,Special infectious Agents Unit-Biosafety Level-3, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bashaer M Al-Ahmadi
- Faculty of Applied Medical Sciences, Medical Laboratory Technology Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat Commun 2020; 11:2917. [PMID: 32518235 PMCID: PMC7283319 DOI: 10.1038/s41467-020-16626-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/13/2020] [Indexed: 02/03/2023] Open
Abstract
The human- and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to have expanded from a common progenitor in Africa. However, the molecular events that accompanied this emergence remain largely unknown. Here, we describe two MTBC strains isolated from patients with multidrug resistant tuberculosis, representing an as-yet-unknown lineage, named Lineage 8 (L8), seemingly restricted to the African Great Lakes region. Using genome-based phylogenetic reconstruction, we show that L8 is a sister clade to the known MTBC lineages. Comparison with other complete mycobacterial genomes indicate that the divergence of L8 preceded the loss of the cobF genome region - involved in the cobalamin/vitamin B12 synthesis - and gene interruptions in a subsequent common ancestor shared by all other known MTBC lineages. This discovery further supports an East African origin for the MTBC and provides additional molecular clues on the ancestral genome reduction associated with adaptation to a pathogenic lifestyle. The human- and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to be evolved from a common progenitor in Africa. Here, the authors identify two MTBC strains isolated from patients with multidrug-resistant tuberculosis, representing an as-yet-unknown lineage further supporting an East African origin for the MTBC.
Collapse
|
31
|
Guimaraes AMS, Zimpel CK. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020; 8:E667. [PMID: 32375210 PMCID: PMC7285088 DOI: 10.3390/microorganisms8050667] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis is the main pathogen of bovine, zoonotic, and wildlife tuberculosis. Despite the existence of programs for bovine tuberculosis (bTB) control in many regions, the disease remains a challenge for the veterinary and public health sectors, especially in developing countries and in high-income nations with wildlife reservoirs. Current bTB control programs are mostly based on test-and-slaughter, movement restrictions, and post-mortem inspection measures. In certain settings, contact tracing and surveillance has benefited from M. bovis genotyping techniques. More recently, whole-genome sequencing (WGS) has become the preferential technique to inform outbreak response through contact tracing and source identification for many infectious diseases. As the cost per genome decreases, the application of WGS to bTB control programs is inevitable moving forward. However, there are technical challenges in data analyses and interpretation that hinder the implementation of M. bovis WGS as a molecular epidemiology tool. Therefore, the aim of this review is to describe M. bovis genotyping techniques and discuss current standards and challenges of the use of M. bovis WGS for transmission investigation, surveillance, and global lineages distribution. We compiled a series of associated research gaps to be explored with the ultimate goal of implementing M. bovis WGS in a standardized manner in bTB control programs.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Cristina K. Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
32
|
Sousa J, Cá B, Maceiras AR, Simões-Costa L, Fonseca KL, Fernandes AI, Ramos A, Carvalho T, Barros L, Magalhães C, Chiner-Oms Á, Machado H, Veiga MI, Singh A, Pereira R, Amorim A, Vieira J, Vieira CP, Bhatt A, Rodrigues F, Rodrigues PNS, Gagneux S, Castro AG, Guimarães JT, Bastos HN, Osório NS, Comas I, Saraiva M. Mycobacterium tuberculosis associated with severe tuberculosis evades cytosolic surveillance systems and modulates IL-1β production. Nat Commun 2020; 11:1949. [PMID: 32327653 PMCID: PMC7181847 DOI: 10.1038/s41467-020-15832-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/23/2020] [Indexed: 01/26/2023] Open
Abstract
Genetic diversity of Mycobacterium tuberculosis affects immune responses and clinical outcomes of tuberculosis (TB). However, how bacterial diversity orchestrates immune responses to direct distinct TB severities is unknown. Here we study 681 patients with pulmonary TB and show that M. tuberculosis isolates from cases with mild disease consistently induce robust cytokine responses in macrophages across multiple donors. By contrast, bacteria from patients with severe TB do not do so. Secretion of IL-1β is a good surrogate of the differences observed, and thus to classify strains as probable drivers of different TB severities. Furthermore, we demonstrate that M. tuberculosis isolates that induce low levels of IL-1β production can evade macrophage cytosolic surveillance systems, including cGAS and the inflammasome. Isolates exhibiting this evasion strategy carry candidate mutations, generating sigA recognition boxes or affecting components of the ESX-1 secretion system. Therefore, we provide evidence that M. tuberculosis strains manipulate host-pathogen interactions to drive variable TB severities.
Collapse
Grants
- The authors thank the excellent support from the i3S scientific platforms, namely Animal facility, Advanced Light Microscopy and BioSciences Screening, member of the national infrastructure PPBI - Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122). This work was financed by FCT - Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Inovação grant POCI-01-0145-FEDER-028955 (to MS) and by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013, to MIV, FR, AGC and NSO). IC acknowledges the support of Ministerio de Ciencia, Innovación y Universidades (SAF2016-77346-R) and the European Research Council (638553-TB-ACCELERATE). HNB acknowledges the support of Bolsa D. Manuel de Mello and of the Portuguese Society for Pneumology; AB and MS were also recipients of an International Exchanges Grant from the Royal Society. JS is funded by a research fellow NORTE-01-0145-FEDER-000012; BC and KLF are funded by FCT PhD scholarships SFRH/BD/114403/2016 and SFRH/BD/114405/2016, respectively; MIV is funded by FCT through DL 57/2016 (CRP) and MS through Estimulo Individual ao Emprego Científico.
Collapse
Affiliation(s)
- Jeremy Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Baltazar Cá
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Raquel Maceiras
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Luisa Simões-Costa
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Kaori L Fonseca
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Isabel Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Angélica Ramos
- São João Hospital Center & EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
| | - Teresa Carvalho
- São João Hospital Center & EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
| | - Leandro Barros
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Carlos Magalhães
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Henrique Machado
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Rui Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
| | - António Amorim
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jorge Vieira
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Cristina P Vieira
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro N S Rodrigues
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - António Gil Castro
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Tiago Guimarães
- São João Hospital Center & EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Helder Novais Bastos
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- São João Hospital Center, Porto, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iñaki Comas
- Biomedicine Institute of Valencia (CSIC), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Margarida Saraiva
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal.
| |
Collapse
|
33
|
Genetic diversity and drug resistance pattern of Mycobacterium tuberculosis strains isolated from pulmonary tuberculosis patients in the Benishangul Gumuz region and its surroundings, Northwest Ethiopia. PLoS One 2020; 15:e0231320. [PMID: 32267877 PMCID: PMC7141659 DOI: 10.1371/journal.pone.0231320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/20/2020] [Indexed: 01/30/2023] Open
Abstract
Introduction Tuberculosis (TB) remains a major global public health problem and is the leading cause of death from a single bacterium, Mycobacterium tuberculosis (MTB) complex. The emergence and spread of drug-resistant strains aggravate the problem, especially in tuberculosis high burden countries such as Ethiopia. The supposedly high initial cost of laboratory diagnosis coupled with scarce financial resources has limited collection of information about drug resistance patterns and circulating strains in peripheral and emerging regions of Ethiopia. Here, we investigated drug susceptibility and genetic diversity of mycobacterial isolates among pulmonary tuberculosis patients in the Benishangul Gumuz region and its surroundings in northwest Ethiopia. Methods and material In a cross-sectional study, 107 consecutive sputum smear-positive pulmonary tuberculosis (PTB) patients diagnosed at two hospitals and seven health centers were enrolled between October 2013 and June 2014. Sputum samples were cultured at Armauer Hansen Research Institute (AHRI) TB laboratory, and drug susceptibility testing (DST) was performed against Isoniazid, Rifampicin, Ethambutol, and Streptomycin using the indirect proportion method. Isolates were characterized using polymerase chain reaction (PCR)based Region of Difference 9 (RD9) testing and spoligotyping. Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS) for Windows version 24.0. Results Of 107 acid-fast-bacilli (AFB) smear-positive sputum samples collected, 81.3% (87/107) were culture positive. A PCR based RD9 testing revealed that all the 87 isolates were M. tuberculosis. Of these isolates, 16.1% (14/87) resistance to one or more drugs was observed. Isoniazid monoresistance occurred in 6.9% (6/87). Multidrug resistance (MDR) was observed in two isolates (2.3%), one of which was resistant to all the four drugs tested. Spoligotyping revealed that the majority, 61.3% (46/75) of strains could be grouped into ten spoligotype patterns containing two to 11 isolates each while the remaining 38.7% (29/75) were unique. SIT289 (11 isolates) and SIT53 (nine isolates) constituted 43.5% (20/46) among clustered isolates while 29.3% (22/75) were ‘‘New” to the database. The dominant families were T, 37% (28/75), CAS, 16.0% (12/75), and H, 8% (6/75), adding up to 51.3% (46/75) of all isolates identified. Conclusion and recommendations The current study indicates a moderate prevalence of MDR TB. However, the observed high monoresistance to Isoniazid, one of the two proxy drugs for MDR-TB, reveals the hidden potential threat fora sudden increase in MDR-TB if resistance to Rifampicin would increase. Clustered spoligotype patterns suggest ongoing active tuberculosis transmission in the area. The results underscore the need for enhanced monitoring of TB drug resistance and epidemiological studies in this and other peripheral regions of the country using robust molecular tools with high discriminatory power such as the Mycobacterial Interspersed Repetitive Units -Variable Number of Tandem Repeats (MIRU-VNTR) typing and whole-genome sequencing (WGS).
Collapse
|
34
|
TbD1 deletion as a driver of the evolutionary success of modern epidemic Mycobacterium tuberculosis lineages. Nat Commun 2020; 11:684. [PMID: 32019932 PMCID: PMC7000671 DOI: 10.1038/s41467-020-14508-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) strains are classified into different phylogenetic lineages (L), three of which (L2/L3/L4) emerged from a common progenitor after the loss of the MmpS6/MmpL6-encoding Mtb-specific deletion 1 region (TbD1). These TbD1-deleted “modern” lineages are responsible for globally-spread tuberculosis epidemics, whereas TbD1-intact “ancestral” lineages tend to be restricted to specific geographical areas, such as South India and South East Asia (L1) or East Africa (L7). By constructing and characterizing a panel of recombinant TbD1-knock-in and knock-out strains and comparison with clinical isolates, here we show that deletion of TbD1 confers to Mtb a significant increase in resistance to oxidative stress and hypoxia, which correlates with enhanced virulence in selected cellular, guinea pig and C3HeB/FeJ mouse infection models, the latter two mirroring in part the development of hypoxic granulomas in human disease progression. Our results suggest that loss of TbD1 at the origin of the L2/L3/L4 Mtb lineages was a key driver for their global epidemic spread and outstanding evolutionary success. Mycobacterium tuberculosis (Mtb) modern strains emerged from a common progenitor after the loss of Mtb-specific deletion 1 region (TbD1). Here, the authors show that deletion of TbD1 correlates with enhanced Mtb virulence in animal models, mirroring the development of hypoxic granulomas in human disease progression.
Collapse
|
35
|
López MG, Dogba JB, Torres-Puente M, Goig GA, Moreno-Molina M, Villamayor LM, Cadmus S, Comas I. Tuberculosis in Liberia: high multidrug-resistance burden, transmission and diversity modelled by multiple importation events. Microb Genom 2020; 6:e000325. [PMID: 31935183 PMCID: PMC7067037 DOI: 10.1099/mgen.0.000325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB) surveillance is scarce in most African countries, even though it is the continent with the greatest disease incidence according to the World Health Organization. Liberia is within the 30 countries with the highest TB burden, probably as a consequence of the long civil war and the recent Ebola outbreak, both crippling the health system and depreciating the TB prevention and control programmes. Due to difficulties working in the country, there is a lack of resistance surveys and bacillus characterization. Here, we use genome sequencing of Mycobacteriumtuberculosis clinical isolates to fill this gap. Our results highlight that the bacillus population structure is dominated by lineage 4 strains that harbour an outstanding genetic diversity, higher than in the rest of Africa as a whole. Coalescent analyses demonstrate that strains currently circulating in Liberia were introduced several times beginning in the early year 600 CE until very recently coinciding with migratory movements associated with the civil war and Ebola epidemics. A higher multidrug-resistant (MDR)-TB frequency (23.5 %) than current estimates was obtained together with non-catalogued drug-resistance mutations. Additionally, 39 % of strains were in genomic clusters revealing that ongoing transmission is a major contribution to the TB burden in the country. Our report emphasizes the importance of TB surveillance and control in African countries where bacillus diversity, MDR-TB prevalence and transmission are coalescing to jeopardize TB control programmes.
Collapse
Affiliation(s)
- Mariana G. López
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - John B. Dogba
- Tuberculosis and Brucellosis Laboratories, Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
- Center for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Nigeria
- Tuberculosis Laboratory, National Public Health Reference Laboratory, National Public Health Institute of Liberia, Margibi, Liberia
| | - Manuela Torres-Puente
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Galo A. Goig
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Miguel Moreno-Molina
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Luis M. Villamayor
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- Unidad Mixta “Infección y Salud Pública” (FISABIO-CSISP), Valencia, Spain
| | - Simeon Cadmus
- Tuberculosis and Brucellosis Laboratories, Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
- Center for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Nigeria
- Tuberculosis Laboratory, National Public Health Reference Laboratory, National Public Health Institute of Liberia, Margibi, Liberia
| | - Iñaki Comas
- Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
36
|
Fellag M, Loukil A, Saad J, Lepidi H, Bouzid F, Brégeon F, Drancourt M. Translocation of Mycobacterium tuberculosis after experimental ingestion. PLoS One 2019; 14:e0227005. [PMID: 31887178 PMCID: PMC6936814 DOI: 10.1371/journal.pone.0227005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/09/2019] [Indexed: 02/04/2023] Open
Abstract
Human tuberculosis is a life-threatening infection following the inhalation of Mycobacterium tuberculosis, while the closely related bacteria Mycobacterium bovis and Mycobacterium canettii are thought to be transmitted by ingestion. To explore whether M. tuberculosis could also infect individuals by ingestion, male BALBc mice were fed 2 x 106 CFUs of M. tuberculosis Beijing or phosphate-buffered saline as a negative control, over a 28-day experiment. While eight negative control mice remained disease-free, M. tuberculosis was identified in the lymph nodes and lungs of 8/14 mice and in the spleens of 4/14 mice by microscopy, PCR-based detection and culture. Whole-genome sequencing confirmed the identity of the inoculum and the tissue isolates. In these genetically identical mice, the dissemination of M. tuberculosis correlated with the results of the culture detection of four intestinal bacteria. These observations indicate that ingested M. tuberculosis mycobacteria can translocate, notably provoking lymphatic tuberculosis.
Collapse
Affiliation(s)
- Mustapha Fellag
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Ahmed Loukil
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Jamal Saad
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Hubert Lepidi
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Fériel Bouzid
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Fabienne Brégeon
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
37
|
Haile B, Tafess K, Zewude A, Yenew B, Siu G, Ameni G. Spoligotyping and drug sensitivity of Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients in the Arsi Zone of southeastern Ethiopia. New Microbes New Infect 2019; 33:100620. [PMID: 31908780 PMCID: PMC6938991 DOI: 10.1016/j.nmni.2019.100620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/15/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of morbidity and mortality in different zones of Ethiopia. This study was undertaken to identify the strains of Mycobacterium tuberculosis and evaluate their drug sensitivity profiles in the Arsi Zone. A total of 111 isolates of M. tuberculosis from individuals with pulmonary TB were included and speciation and strain identification were performed using Region of difference 9 and spoligotyping, respectively. The drug sensitivity patterns were assessed using Bactec MGIT 960 SIRE and GenoType MTBDRplus line probe assays. Of 111 isolates, 83% were interpretable and 56 different spoligotype patterns were identified. From these, 22 patterns were shared types while the remaining 34 were orphans. The predominant shared types were spoligotype international type (SIT) 149 and SIT53, comprising 12 and 11 isolates, respectively. Euro-American lineage was the dominant lineage followed by East-African-Indian. Phenotypically, 17.2% of tested isolates were resistant to any first-line drugs and 3.1% were multidrug-resistant. Higher (6.2%) mono-resistance was observed to streptomycin, and no resistance was observed to rifampicin or ethambutol. Genotypically, five (5.4%) isolates were resistant to isoniazid and mutated at codon S315T1 of katG. In contrast, only 1.1% of the isolates were resistant to rifampicin and were mutated at codon S531L of rpoB gene. In this study, a high proportion of orphan strains were isolated, which could suggest the presence of new strains and a high percentage of mono-resistance, warranting the need to strengthen control efforts.
Collapse
Affiliation(s)
- B Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,College of Veterinary Medicine and Animal Science, Department of Veterinary Epidemiology and Public Health, University of Gondar, Gondar, Ethiopia
| | - K Tafess
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.,Department of Medical Laboratory, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - A Zewude
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - B Yenew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - G Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - G Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
38
|
Cancino-Muñoz I, Gil-Brusola A, Torres-Puente M, Mariner-Llicer C, Dogba J, Akinseye V, Adesokan K, Kwaghe A, Ejeh F, Cadmus S, Comas I. Development and application of affordable SNP typing approaches to genotype Mycobacterium tuberculosis complex strains in low and high burden countries. Sci Rep 2019; 9:15343. [PMID: 31653874 PMCID: PMC6814786 DOI: 10.1038/s41598-019-51326-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/26/2019] [Indexed: 11/21/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) comprises the species that causes tuberculosis (TB) which affects 10 million people every year. A robust classification of species, lineages, and sub-lineages is important to explore associations with drug resistance, epidemiological patterns or clinical outcomes. We present a rapid and easy-to-follow methodology to classify clinical TB samples into the main MTBC clades. Approaches are based on the identification of lineage and sub-lineage diagnostic SNP using a real-time PCR high resolution melting assay and classic Sanger sequencing from low-concentrated, low quality DNA. Thus, suitable for implementation in middle and low-income countries. Once we validated our molecular procedures, we characterized a total of 491 biological samples from human and cattle hosts, representing countries with different TB burden. Overall, we managed to genotype ~95% of all samples despite coming from unpurified and low-concentrated DNA. Our approach also allowed us to detect zoonotic cases in eight human samples from Nigeria. To conclude, the molecular techniques we have developed, are accurate, discriminative and reproducible. Furthermore, it costs less than other classic typing methods, resulting in an affordable alternative method in TB laboratories.
Collapse
Affiliation(s)
- Irving Cancino-Muñoz
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
- FISABIO Public Health, Genomics and Health Unit, Valencia, Spain
| | - Ana Gil-Brusola
- Hospital Universitari I Politècnic La Fe, Microbiology Department, Valencia, Spain
| | | | | | - John Dogba
- University of Ibadan, Department of Veterinary Public Health & Preventive Medicine, Ibadan, Nigeria
- University of Ibadan, Centre for Control and Prevention of Zoonosis, Ibadan, Nigeria
| | - Victor Akinseye
- University of Ibadan, Department of Veterinary Public Health & Preventive Medicine, Ibadan, Nigeria
| | - Kehinde Adesokan
- University of Ibadan, Department of Veterinary Public Health & Preventive Medicine, Ibadan, Nigeria
| | - Ayi Kwaghe
- Federal Ministry of Agriculture and Rural Development, Department of Veterinary and Pest Control Services, Garki, Nigeria
| | - Francis Ejeh
- University of Maiduguri, Department of Veterinary Microbiology, Maiduguri, Nigeria
| | - Simeon Cadmus
- University of Ibadan, Department of Veterinary Public Health & Preventive Medicine, Ibadan, Nigeria
- University of Ibadan, Centre for Control and Prevention of Zoonosis, Ibadan, Nigeria
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
39
|
Mekonnen D, Derbie A, Chanie A, Shumet A, Biadglegne F, Kassahun Y, Bobosha K, Mihret A, Wassie L, Munshea A, Nibret E, Yimer SA, Tønjum T, Aseffa A. Molecular epidemiology of M. tuberculosis in Ethiopia: A systematic review and meta-analysis. Tuberculosis (Edinb) 2019; 118:101858. [PMID: 31430694 PMCID: PMC6817397 DOI: 10.1016/j.tube.2019.101858] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
The molecular epidemiology of Mycobacterium tuberculosis (M. tuberculosis, Mtb) is poorly documented in Ethiopia. The data that exists has not yet been collected in an overview metadata form. Thus, this review summarizes available literature on the genomic diversity, geospatial distribution and transmission patterns of Mtb lineages (L) and sublineages in Ethiopia. Spoligotyping and Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats (MIRU-VNTR) based articles were identified from MEDLINE via PubMed and Scopus. The last date of article search was done on 12th February 2019. Articles were selected following the PRISMA flow diagram. The proportion of (sub)lineages was summarized at national level and further disaggregated by region. Clustering and recent transmission index (RTI) were determined using metan command and random effect meta-analysis model. The meta-analysis was computed using Stata 14 (Stata Corp. College Station, TX, USA). Among 4371 clinical isolates, 99.5% were Mtb and 0.5% were M. bovis. Proportionally, L4, L3, L1 and L7 made up 62.3%, 21.7%, 7.9% and 3.4% of the total isolates, respectively. Among sublineages, L4.2. ETH/SIT149, L4.10/SIT53, L3. ETH1/SIT25 and L4.6/SIT37 were the leading clustered isolates accounting for 14.4%, 9.7%, 7.2% and 5.5%, respectively. Based on MIRU-VNTR, the rate of clustering was 41% and the secondary case rate from a single source case was estimated at 29%. Clustering and recent transmission index was higher in eastern and southwestern Ethiopia compared with the northwestern part of the country. High level of genetic diversity with a high rate of clustering was noted which collectively mirrored the phenomena of micro-epidemics and super-spreading. The largest set of clustered strains deserves special attention and further characterization using whole genome sequencing (WGS) to better understand the evolution, genomic diversity and transmission dynamics of Mtb.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia; Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Awoke Derbie
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia; The Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia.
| | - Asmamaw Chanie
- Institute of Land Administration, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Abebe Shumet
- Felege Hiwot Referral Hospital, Bahir Dar, Ethiopia.
| | - Fantahun Biadglegne
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Yonas Kassahun
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Kidist Bobosha
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia; Department of Medical Microbiology, Immunology and Parasitology, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Liya Wassie
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Abaineh Munshea
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia; Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Endalkachew Nibret
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia; Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Solomon Abebe Yimer
- Department of Microbiology, University of Oslo, PO Box 4950, Nydalen, NO-0424, Oslo, Norway; Coalition for Epidemic Preparedness Innovations, CEPI, P.O. Box 123, Torshov 0412, Oslo, Norway.
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, PO Box 4950, Nydalen, NO-0424, Oslo, Norway.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| |
Collapse
|
40
|
Chiner-Oms Á, Comas I. Large genomics datasets shed light on the evolution of the Mycobacterium tuberculosis complex. INFECTION GENETICS AND EVOLUTION 2019; 72:10-15. [DOI: 10.1016/j.meegid.2019.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 01/21/2023]
|
41
|
Williams AC, Hill LJ. Nicotinamide and Demographic and Disease transitions: Moderation is Best. Int J Tryptophan Res 2019; 12:1178646919855940. [PMID: 31320805 PMCID: PMC6610439 DOI: 10.1177/1178646919855940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Good health and rapid progress depend on an optimal dose of nicotinamide. Too little meat triggers the neurodegenerative condition pellagra and tolerance of symbionts such as tuberculosis (TB), risking dysbioses and impaired resistance to acute infections. Nicotinamide deficiency is an overlooked diagnosis in poor cereal-dependant economies masquerading as 'environmental enteropathy' or physical and cognitive stunting. Too much meat (and supplements) may precipitate immune intolerance and autoimmune and allergic disease, with relative infertility and longevity, via the tryptophan-nicotinamide pathway. This switch favours a dearth of regulatory T (Treg) and an excess of T helper cells. High nicotinamide intake is implicated in cancer and Parkinson's disease. Pro-fertility genes, evolved to counteract high-nicotinamide-induced infertility, may now be risk factors for degenerative disease. Moderation of the dose of nicotinamide could prevent some common diseases and personalised doses at times of stress or, depending on genetic background or age, may treat some other conditions.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
42
|
O'Neill MB, Shockey A, Zarley A, Aylward W, Eldholm V, Kitchen A, Pepperell CS. Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Mol Ecol 2019; 28:3241-3256. [PMID: 31066139 PMCID: PMC6660993 DOI: 10.1111/mec.15120] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis (M.tb) is a globally distributed, obligate pathogen of humans that can be divided into seven clearly defined lineages. An emerging consensus places the origin and global dispersal of M.tb within the past 6,000 years: identifying how the ancestral clone of M.tb spread and differentiated within this timeframe is important for identifying the ecological drivers of the current pandemic. We used Bayesian phylogeographic inference to reconstruct the migratory history of M.tb in Africa and Eurasia and to investigate lineage specific patterns of spread from a geographically diverse sample of 552 M.tb genomes. Applying evolutionary rates inferred with ancient M.tb genome calibration, we estimated the timing of major events in the migratory history of the pathogen. Inferred timings contextualize M.tb dispersal within historical phenomena that altered patterns of connectivity throughout Africa and Eurasia: trans-Indian Ocean trade in spices and other goods, the Silk Road and its predecessors, the expansion of the Roman Empire, and the European Age of Exploration. We found that Eastern Africa and Southeast Asia have been critical in the dispersal of M.tb. Our results further reveal that M.tb populations have grown through range expansion, as well as in situ, and delineate the independent evolutionary trajectories of bacterial subpopulations underlying the current pandemic.
Collapse
Affiliation(s)
- Mary B. O'Neill
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Unit of Human Evolutionary GeneticsInstitut PasteurParisFrance
| | - Abigail Shockey
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Alex Zarley
- Department of GeographyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - William Aylward
- Department of Classical and Ancient Near Eastern StudiesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Vegard Eldholm
- Infection Control and Environmental HealthNorwegian Institute of Public HealthOsloNorway
| | - Andrew Kitchen
- Department of AnthropologyUniversity of IowaIowa CityIAUSA
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
43
|
Conceição EC, Refregier G, Gomes HM, Olessa-Daragon X, Coll F, Ratovonirina NH, Rasolofo-Razanamparany V, Lopes ML, van Soolingen D, Rutaihwa L, Gagneux S, Bollela VR, Suffys PN, Duarte RS, Lima KVB, Sola C. Mycobacterium tuberculosis lineage 1 genetic diversity in Pará, Brazil, suggests common ancestry with east-African isolates potentially linked to historical slave trade. INFECTION GENETICS AND EVOLUTION 2019; 73:337-341. [PMID: 31170529 DOI: 10.1016/j.meegid.2019.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 11/17/2022]
Abstract
Lineage 1 (L1) is one of seven Mycobacterium tuberculosis complex (MTBC) lineages. The objective of this study was to improve the complex taxonomy of L1 using phylogenetic SNPs, and to look for the origin of the main L1 sublineage prevalent in Para, Brazil. We developed a high-throughput SNPs-typing assay based on 12-L1-specific SNPs. This assay allowed us to experimentally retrieve SNP patterns on nine of these twelve SNPs in 277 isolates previously tentatively assigned to L1 spoligotyping-based sublineages. Three collections were used: Pará-Brazil (71); RIVM, the Netherlands (102), Madagascar (104). One-hundred more results were generated in Silico using the PolyTB database. Based on the final SNPs combination, the samples were classified into 11 clusters (C1-C11). Most isolates within a SNP-based cluster shared a mutual spoligotyping-defined lineage. However, L1/EAI1-SOM (SIT48) and L1/EAI6-BGD1 (SIT591) showed a poor correlation with SNP data and are not monophyletic. L1/EAI8-MDG and L1/EAI3-IND belonged to C5; this result suggests that they share a common ancestor. L1.1.3/SIT129, a spoligotype pattern found in SNPs-cluster C6, was found to be shared between Pará/Brazil and Malawi. SIT129 was independently found to be highly prevalent in Mozambique, which suggests a migration history from East-Africa to Brazil during the 16th-18th slave trade period to Northern Brazil.
Collapse
Affiliation(s)
- Emilyn Costa Conceição
- Institut de Biologie Intégrative de la Cellule, I2BC, UMR9198, CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 91198 Gif-sur-Yvette cedex, France; Pós-Graduação Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil.
| | - Guislaine Refregier
- Institut de Biologie Intégrative de la Cellule, I2BC, UMR9198, CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Harrison Magdinier Gomes
- Institut de Biologie Intégrative de la Cellule, I2BC, UMR9198, CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 91198 Gif-sur-Yvette cedex, France; Laboratório de Biologia Molecular Aplicada a Micobactéria, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro-RJ, Brazil
| | - Xavier Olessa-Daragon
- Institut de Biologie Intégrative de la Cellule, I2BC, UMR9198, CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Francesc Coll
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Noël Harijaona Ratovonirina
- Institut de Biologie Intégrative de la Cellule, I2BC, UMR9198, CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 91198 Gif-sur-Yvette cedex, France; Unité des Mycobactéries, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - Maria Luiza Lopes
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua-PA, Brazil
| | - Dick van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Liliana Rutaihwa
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Valdes Roberto Bollela
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Philip Noel Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactéria, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro-RJ, Brazil
| | - Rafael Silva Duarte
- Pós-Graduação Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | | | - Christophe Sola
- Institut de Biologie Intégrative de la Cellule, I2BC, UMR9198, CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 91198 Gif-sur-Yvette cedex, France; Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
44
|
Chiner-Oms Á, Sánchez-Busó L, Corander J, Gagneux S, Harris SR, Young D, González-Candelas F, Comas I. Genomic determinants of speciation and spread of the Mycobacterium tuberculosis complex. SCIENCE ADVANCES 2019; 5:eaaw3307. [PMID: 31448322 PMCID: PMC6691555 DOI: 10.1126/sciadv.aaw3307] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Models on how bacterial lineages differentiate increase our understanding of early bacterial speciation events and the genetic loci involved. Here, we analyze the population genomics events leading to the emergence of the tuberculosis pathogen. The emergence is characterized by a combination of recombination events involving core pathogenesis functions and purifying selection on early diverging loci. We identify the phoR gene, the sensor kinase of a two-component system involved in virulence, as a key functional player subject to pervasive positive selection after the divergence of the Mycobacterium tuberculosis complex from its ancestor. Previous evidence showed that phoR mutations played a central role in the adaptation of the pathogen to different host species. Now, we show that phoR mutations have been under selection during the early spread of human tuberculosis, during later expansions, and in ongoing transmission events. Our results show that linking pathogen evolution across evolutionary and epidemiological time scales points to past and present virulence determinants.
Collapse
Affiliation(s)
- Á. Chiner-Oms
- Unidad Mixta “Infección y Salud Pública” FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas (ISysBio), Valencia, Spain
| | - L. Sánchez-Busó
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - J. Corander
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
- Department of Biostatistics, University of Oslo, 0317 Oslo, Norway
- Helsinki Institute of Information Technology (HIIT), Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - S. Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - S. R. Harris
- Microbiotica, BioData Innovation Centre, Wellcome Genome Campus, Cambridge CB10 1DR, UK
| | - D. Young
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - F. González-Candelas
- Unidad Mixta “Infección y Salud Pública” FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas (ISysBio), Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Valencia, Spain
| | - I. Comas
- CIBER en Epidemiología y Salud Pública, Valencia, Spain
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| |
Collapse
|
45
|
Rutaihwa LK, Menardo F, Stucki D, Gygli SM, Ley SD, Malla B, Feldmann J, Borrell S, Beisel C, Middelkoop K, Carter EJ, Diero L, Ballif M, Jugheli L, Reither K, Fenner L, Brites D, Gagneux S. Multiple Introductions of Mycobacterium tuberculosis Lineage 2–Beijing Into Africa Over Centuries. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00112] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Rutaihwa LK, Sasamalo M, Jaleco A, Hella J, Kingazi A, Kamwela L, Kingalu A, Malewo B, Shirima R, Doetsch A, Feldmann J, Reinhard M, Borrell S, Brites D, Reither K, Doulla B, Fenner L, Gagneux S. Insights into the genetic diversity of Mycobacterium tuberculosis in Tanzania. PLoS One 2019; 14:e0206334. [PMID: 30978186 PMCID: PMC6461268 DOI: 10.1371/journal.pone.0206334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/14/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human tuberculosis (TB) is caused by seven phylogenetic lineages of the Mycobacterium tuberculosis complex (MTBC), Lineage 1-7. Recent advances in rapid genotyping of MTBC based on single nucleotide polymorphisms (SNP), allow for phylogenetically robust strain classification, paving the way for defining genotype-phenotype relationships in clinical settings. Such studies have revealed that, in addition to host and environmental factors, strain variation in the MTBC influences the outcome of TB infection and disease. In Tanzania, such molecular epidemiological studies of TB however are scarce in spite of a high TB burden. METHODS AND FINDINGS Here we used SNP-typing to characterize a nationwide collection of 2,039 MTBC clinical isolates representative of 1.6% of all new and retreatment TB cases notified in Tanzania during 2012 and 2013. Four lineages, namely Lineage 1-4 were identified within the study population. The distribution and frequency of these lineages varied across regions but overall, Lineage 4 was the most frequent (n = 866, 42.5%), followed by Lineage 3 (n = 681, 33.4%) and 1 (n = 336, 16.5%), with Lineage 2 being the least frequent (n = 92, 4.5%). We found Lineage 2 to be independently associated with female sex (adjusted odds ratio [aOR] 2.14; 95% confidence interval [95% CI] 1.31 - 3.50, p = 0.002) and retreatment cases (aOR 1.67; 95% CI 0.95 - 2.84, p = 0. 065) in the study population. We found no associations between MTBC lineage and patient age or HIV status. Our sublineage typing based on spacer oligotyping on a subset of Lineage 1, 3 and 4 strains revealed the presence of mainly EAI, CAS and LAM families. Finally, we detected low levels of multidrug resistant isolates among a subset of 144 retreatment cases. CONCLUSIONS This study provides novel insights into the MTBC lineages and the possible influence of pathogen-related factors on the TB epidemic in Tanzania.
Collapse
Affiliation(s)
- Liliana K. Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Mohamed Sasamalo
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Aladino Jaleco
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jerry Hella
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Lujeko Kamwela
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Amri Kingalu
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Bryceson Malewo
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Raymond Shirima
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Anna Doetsch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Julia Feldmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Basra Doulla
- Central Tuberculosis Reference Laboratory, Dar es Salaam, Tanzania
- National Tuberculosis and Leprosy Programme, Dar es Salaam, Tanzania
| | - Lukas Fenner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
47
|
Panchal V, Jatana N, Malik A, Taneja B, Pal R, Bhatt A, Besra GS, Thukral L, Chaudhary S, Rao V. A novel mutation alters the stability of PapA2 resulting in the complete abrogation of sulfolipids in clinical mycobacterial strains. FASEB Bioadv 2019; 1:306-319. [PMID: 32123834 PMCID: PMC6996325 DOI: 10.1096/fba.2018-00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023] Open
Abstract
The analysis of whole genomes has revealed specific geographical distribution of Mycobacterium tuberculosis (Mtb) strains across the globe suggestive of unique niche dependent adaptive mechanisms. We provide an important correlation of a genome-based mutation to a molecular phenotype across two predominant clinical Mtb lineages of the Indian subcontinent. We have identified a distinct lineage specific mutation-G247C, translating into an alanine-proline conversion in the papA2 gene of Indo-oceanic lineage 1 (L1) Mtb strains, and restoration of cell wall sulfolipids by simple genetic complementation of papA2 from lineage 3 (L3) or from H37Rv (lineage 4-L4) attributed the loss of this glycolipid to this specific mutation in Indo-Oceanic L1 Mtb. The investigation of structure of Mtb PapA2 revealed a distinct nonribosomal peptide synthetase (NRPS) C domain conformation with an unconventional presence of a zinc binding motif. Surprisingly, the A83P mutation did not map to either the catalytic center in the N-terminal subdomain or any of the substrate-binding region of the protein. On the contrary, the inherent ability of mutant PapA2 to form insoluble aggregates and molecular simulations with the wild-type/mutant (Wt/mut) PapA2 purports an important role for the surface associated 83rd residue in protein conformation. This study demonstrates the importance of a critical structural residue in the papA2 protein of Mtb and helps establish a link between observed genomic alteration and its molecular consequence in the successful human pathogen Mtb. Significance We demonstrate the effect of a unique SNP in PapA2 gene of Indo-oceanic Mycobacterium tuberculosis (Mtb) strains leading to the loss of sulfolipid from these strains. By X-ray crystallographic analysis and molecular dynamics (MD) simulations, we show the importance of this residue in the global PapA2 structure. The presence of a Zn atom has not been reported before for this class of proteins. Here, we provide an important link between genomic alteration and its molecular consequence in Mtb highlighting one of the many adaptive mechanisms that have contributed to its success as a human pathogen. A high degree of identity with PapA1, 3, or 4 would help in interpreting the structure of these PapA proteins and other acyl transferases of other biological systems.
Collapse
Affiliation(s)
- Vipul Panchal
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| | - Nidhi Jatana
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Anchal Malik
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Bhupesh Taneja
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| | | | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - Gurdyal S Besra
- School of Biosciences and Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - Lipi Thukral
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| | - Sarika Chaudhary
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Vivek Rao
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| |
Collapse
|
48
|
Transmission dynamics study of tuberculosis isolates with whole genome sequencing in southern Sweden. Sci Rep 2019; 9:4931. [PMID: 30894568 PMCID: PMC6426893 DOI: 10.1038/s41598-019-39971-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/06/2019] [Indexed: 11/17/2022] Open
Abstract
Epidemiological contact tracing complemented with genotyping of clinical Mycobacterium tuberculosis isolates is important for understanding disease transmission. In Sweden, tuberculosis (TB) is mostly reported in migrant and homeless where epidemiologic contact tracing could pose a problem. This study compared epidemiologic linking with genotyping in a low burden country. Mycobacterium tuberculosis isolates (n = 93) collected at Scania University Hospital in Southern Sweden were analysed with the standard genotyping method mycobacterial interspersed repetitive units-variable number tandem repeats (MIRU-VNTR) and the results were compared with whole genome sequencing (WGS). Using a maximum of twelve single nucleotide polymorphisms (SNPs) as the upper threshold of genomic relatedness noted among hosts, we identified 18 clusters with WGS comprising 52 patients with overall pairwise genetic maximum distances ranging from zero to nine SNPs. MIRU-VNTR and WGS clustered the same isolates, although the distribution differed depending on MIRU-VNTR limitations. Both genotyping techniques identified clusters where epidemiologic linking was insufficient, although WGS had higher correlation with epidemiologic data. To summarize, WGS provided better resolution of transmission than MIRU-VNTR in a setting with low TB incidence. WGS predicted epidemiologic links better which could consolidate and correct the epidemiologically linked cases, avoiding thus false clustering.
Collapse
|
49
|
Bekele S, Derese Y, Hailu E, Mihret A, Dagne K, Yamuah L, Hailu T, Ayele S, Beyene D, Berg S, Aseffa A. Line-probe assay and molecular typing reveal a potential drug resistant clone of Mycobacterium tuberculosis in Ethiopia. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2018; 4:15. [PMID: 30534412 PMCID: PMC6280437 DOI: 10.1186/s40794-018-0075-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022]
Abstract
Background Antimicrobial resistance is a global concern of increasing significance. Multidrug resistant tuberculosis (MDR-TB) is spreading worldwide. It is important to monitor trends of antimycobacterial resistance. This is particularly true for high TB burden countries such as Ethiopia where disproportionally less drug sensitivity data are reported from. Methods The prevalence of drug resistance was assessed with the line probe assay GenoType MTBDRplus in a set of 161 M. tuberculosis strains that were selected from four common lineages and sub-lineages previously identified in Ethiopia. Most of the tested M. tuberculosis isolates had been genotyped by established Spoligotyping and MIRU-VNTR typing methods. Results The proportion of MDR-TB among the isolates was 3.1%. Mono-resistance was 1.2% to rifampicin and 4.3% to isoniazid, and resistance to either of the two first line drugs was 8.7%. Strains of Lineage 4 had the highest resistance rate (13.6%) followed by Lineage 3 (4.9%). None of the isolates representing Lineages 1 and Lineage 7 were drug resistant. Multidrug resistance among pulmonary TB and TB lymphadenitis clinical isolates was 2.8 and 3.7%, respectively. Drug resistance of strains carrying the most prevalent spoligotype in Ethiopia - SIT149 - was further explored. Stratification by MIRU-VNTR identified one genotype with a high rate of drug resistance against Rifampicin and Isoniazid and circulation of a potential MDR-TB clone is proposed. Conclusion Although the strain selection was not fully randomized, the overall M. tuberculosis drug resistance rate in this strain set was 8.7% while the rate of MDR was 3.1%. In parallel, we identified a sub-lineage that showed a high rate of resistance to both rifampicin and isoniazid. These resistant strains may belong to a clone of M. tuberculosis that is circulating in the highlands of Ethiopia. Electronic supplementary material The online version of this article (10.1186/s40794-018-0075-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiferaw Bekele
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia.,2Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,4Present address: J. Craig Venter Institute, Rockville, MD USA
| | - Yohannes Derese
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Elena Hailu
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Adane Mihret
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Kifle Dagne
- 2Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Lawrence Yamuah
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Tsegaye Hailu
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Samuel Ayele
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Demissew Beyene
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Stefan Berg
- 3Animal and Plant Health Agency, New Haw, Surrey, UK
| | - Abraham Aseffa
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia.,4Present address: J. Craig Venter Institute, Rockville, MD USA
| |
Collapse
|
50
|
Liu Q, Ma A, Wei L, Pang Y, Wu B, Luo T, Zhou Y, Zheng HX, Jiang Q, Gan M, Zuo T, Liu M, Yang C, Jin L, Comas I, Gagneux S, Zhao Y, Pepperell CS, Gao Q. China's tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis. Nat Ecol Evol 2018; 2:1982-1992. [PMID: 30397300 PMCID: PMC6295914 DOI: 10.1038/s41559-018-0680-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022]
Abstract
A small number of high-burden countries account for the majority of tuberculosis cases worldwide. Detailed data are lacking from these regions. To explore the evolutionary history of Mycobacterium tuberculosis in China-the country with the third highest tuberculosis burden-we analysed a countrywide collection of 4,578 isolates. Little genetic diversity was detected, with 99.4% of the bacterial population belonging to lineage 2 and three sublineages of lineage 4. The deeply rooted phylogenetic positions and geographic restriction of these four genotypes indicate that their populations expanded in situ following a small number of introductions to China. Coalescent analyses suggest that these bacterial subpopulations emerged in China around 1,000 years ago, and expanded in parallel from the twelfth century onwards, and that the whole population peaked in the late eighteenth century. More recently, sublineage L2.3, which is indigenous to China and exhibited relatively high transmissibility and extensive global dissemination, came to dominate the population dynamics of M. tuberculosis in China. Our results indicate that historical expansion of four M. tuberculosis strains shaped the current tuberculosis epidemic in China, and highlight the long-term genetic continuity of the indigenous M. tuberculosis population.
Collapse
Affiliation(s)
- Qingyun Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Aijing Ma
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lanhai Wei
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Pang
- National Tuberculosis Clinical Laboratory, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Beibei Wu
- The Institute of TB Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Tao Luo
- West China School of Basic Medical Sciences and Forensic Medicines, Sichuan University, Chengdu, China
| | - Yang Zhou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi Jiang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Mingyu Gan
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Tianyu Zuo
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mei Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chongguang Yang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, USA
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Iñaki Comas
- Institute of Biomedicine of Valencia, CSIC and CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Caitlin S Pepperell
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
- Shenzhen Center for Chronic Disease Control, Shenzhen, China.
| |
Collapse
|