1
|
Guerina FV, Patkar AP, Younger MA. Introduction to Techniques Used to Study Mosquito Neuroanatomy and Neural Circuitry. Cold Spring Harb Protoc 2024; 2024:pdb.top108305. [PMID: 37816602 DOI: 10.1101/pdb.top108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Mosquitoes transmit deadly pathogens from person to person as they obtain the blood meal that is essential for their life cycle. Female mosquitoes of many species are unable to reproduce without consuming protein that they obtain from blood. This developmental stage makes them highly efficient disease vectors of deadly pathogens. They can transmit pathogens between members of the same species and different species that can provide a route for evolving zoonotic viruses to jump from animals to humans. One possible way to develop novel strategies to combat pathogen transmission by mosquitoes is to study the sensory systems that drive mosquito reproductive behaviors, in particular the neural architecture and circuits of mosquito sensory afferent neurons, the central circuits that process sensory information, and the downstream circuits that drive reproductive behaviors. The study of mosquito neuroanatomy and circuitry also benefits basic neuroscience, allowing for comparative neuroanatomy in insect species, which has great value in the current model species-heavy landscape of neuroscience. Here, we introduce two important techniques that are used to study neuroanatomy and neural circuitry-namely, immunofluorescent labeling and neural tracing. We describe how to apply these approaches to study mosquito neuroanatomy and describe considerations for researchers using the techniques.
Collapse
Affiliation(s)
- Florence V Guerina
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Ameya P Patkar
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - Meg A Younger
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Center for Neurophotonics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
2
|
Younger MA. Whole-Mount Immunofluorescent Labeling of the Mosquito Central Nervous System. Cold Spring Harb Protoc 2024; 2024:pdb.prot108336. [PMID: 37816606 DOI: 10.1101/pdb.prot108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Mosquito-borne disease is a major global public health issue. One path toward the development of evidence-based strategies to limit mosquito biting is the study of the mosquito nervous system-in particular, the sensory systems that drive biting behavior. The central nervous system of insects consists of the brain and the ventral nerve cord. Here, we describe a protocol for dissecting, immunofluorescent labeling, and imaging both of these structures in the mosquito. This protocol was optimized for Aedes aegypti and works well on Anopheles gambiae tissue. It has not been tested in other mosquito species, but we anticipate that it would work on a range of mosquitoes, and, if not, our protocol will provide a starting point from which to optimize. Notably, a limited number of antibodies cross-react with Ae. aegypti proteins. This protocol is intended for use with validated antibodies and can also be used to test new antibodies as they are generated. It has been successfully used to visualize protein tags, such as green fluorescent protein, that have been introduced into the mosquito to amplify or detect their presence.
Collapse
Affiliation(s)
- Meg A Younger
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Center for Neurophotonics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
3
|
Younger MA. Dextran Amine-Conjugated Neural Tracing in Mosquitoes. Cold Spring Harb Protoc 2024; 2024:pdb.prot108337. [PMID: 37816605 DOI: 10.1101/pdb.prot108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
To understand the circuitry of the brain, it is often advantageous to visualize the processes of a single neuron or population of neurons. Identifying sites where a neuron, or neurons, originates and where it projects can allow a researcher to begin to map the circuitry underlying various processes, including sensory-guided behaviors. Furthermore, neural tracing allows one to map locations where processes terminate onto regions of the brain that may have known functions and sometimes to identify candidate upstream or downstream connections, based on proximity. Many methods of neural tracing are available; here, we focus on loading fluorescent dyes into a neuron (fluorescent dye filling). Different options for dyes exist to label neurites. Among the most versatile and easy to use are dextran amine-conjugated dyes. They fill neurons bidirectionally, not discriminating between anterograde or retrograde loading direction. Dye filling must be done in unfixed tissue, as the dye needs to move through the neurons; however, dextran amine conjugates are aldehyde-fixable and once cells have been fully loaded with dye the tissue can be fixed and subjected to immunostaining. Coupling neural tracing with immunofluorescence is a useful way to determine specific brain or ventral nerve cord (VNC) regions where a neuron projects. This protocol describes methods for loading dextran amine conjugated dyes into a sensory tissue in the mosquito to visualize sites of sensory neuron innervation in the central nervous system, as well as efferent projections to these structures. This protocol is described for Aedes aegypti, for which it was optimized, but it also works across a variety of insects.
Collapse
Affiliation(s)
- Meg A Younger
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Center for Neurophotonics, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
4
|
Doherty JF, Ames T, Brewster LI, Chiang J, Cyr E, Kelsey CR, Lee JP, Liu B, Lo IHY, Nirwal GK, Mohammed YG, Phelan O, Seyfourian P, Shannon DM, Tochor NK, Matthews BJ. An update and review of arthropod vector sensory systems: Potential targets for behavioural manipulation by parasites and other disease agents. ADVANCES IN PARASITOLOGY 2024; 124:57-89. [PMID: 38754927 DOI: 10.1016/bs.apar.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
For over a century, vector ecology has been a mainstay of vector-borne disease control. Much of this research has focused on the sensory ecology of blood-feeding arthropods (black flies, mosquitoes, ticks, etc.) with terrestrial vertebrate hosts. Of particular interest are the cues and sensory systems that drive host seeking and host feeding behaviours as they are critical for a vector to locate and feed from a host. An important yet overlooked component of arthropod vector ecology are the phenotypic changes observed in infected vectors that increase disease transmission. While our fundamental understanding of sensory mechanisms in disease vectors has drastically increased due to recent advances in genome engineering, for example, the advent of CRISPR-Cas9, and high-throughput "big data" approaches (genomics, proteomics, transcriptomics, etc.), we still do not know if and how parasites manipulate vector behaviour. Here, we review the latest research on arthropod vector sensory systems and propose key mechanisms that disease agents may alter to increase transmission.
Collapse
Affiliation(s)
| | - Tahnee Ames
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | - Jonathan Chiang
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Elsa Cyr
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Cameron R Kelsey
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Jeehan Phillip Lee
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Bingzong Liu
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Hok Yin Lo
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Gurleen K Nirwal
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | - Orna Phelan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Parsa Seyfourian
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
5
|
Yin C, Morita T, Parrish JZ. A cell atlas of the larval Aedes aegypti ventral nerve cord. Neural Dev 2024; 19:2. [PMID: 38297398 PMCID: PMC10829479 DOI: 10.1186/s13064-023-00178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024] Open
Abstract
Mosquito-borne diseases account for nearly 1 million human deaths annually, yet we have a limited understanding of developmental events that influence host-seeking behavior and pathogen transmission in mosquitoes. Mosquito-borne pathogens are transmitted during blood meals, hence adult mosquito behavior and physiology have been intensely studied. However, events during larval development shape adult traits, larvae respond to many of the same sensory cues as adults, and larvae are susceptible to infection by many of the same disease-causing agents as adults. Hence, a better understanding of larval physiology will directly inform our understanding of physiological processes in adults. Here, we use single cell RNA sequencing (scRNA-seq) to provide a comprehensive view of cellular composition in the Aedes aegypti larval ventral nerve cord (VNC), a central hub of sensory inputs and motor outputs which additionally controls multiple aspects of larval physiology. We identify more than 35 VNC cell types defined in part by neurotransmitter and neuropeptide expression. We also explore diversity among monoaminergic and peptidergic neurons that likely control key elements of larval physiology and developmental timing, and identify neuroblasts and immature neurons, providing a view of neuronal differentiation in the VNC. Finally, we find that larval cell composition, number, and position are preserved in the adult abdominal VNC, suggesting studies of larval VNC form and function will likely directly inform our understanding adult mosquito physiology. Altogether, these studies provide a framework for targeted analysis of VNC development and neuronal function in Aedes aegypti larvae.
Collapse
Affiliation(s)
- Chang Yin
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Takeshi Morita
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA, 98195, USA.
- Division of Education, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA.
| |
Collapse
|
6
|
Zhai R, Wang Q. Phylogenetic Analysis Provides Insight Into the Molecular Evolution of Nociception and Pain-Related Proteins. Evol Bioinform Online 2023; 19:11769343231216914. [PMID: 38107163 PMCID: PMC10725132 DOI: 10.1177/11769343231216914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Nociception and pain sensation are important neural processes in humans to avoid injury. Many proteins are involved in nociception and pain sensation in humans; however, the evolution of these proteins in animals is unknown. Here, we chose nociception- and pain-related proteins, including G protein-coupled receptors (GPCRs), ion channels (ICs), and neuropeptides (NPs), which are reportedly associated with nociception and pain in humans, and identified their homologs in various animals by BLAST, phylogenetic analysis and protein architecture comparison to reveal their evolution from protozoans to humans. We found that the homologs of transient receptor potential channel A 1 (TRPA1), TRAPM, acid-sensing IC (ASIC), and voltage-dependent calcium channel (VDCC) first appear in Porifera. Substance-P receptor 1 (TACR1) emerged from Coelenterata. Somatostatin receptor type 2 (SSTR2), TRPV1 and voltage-dependent sodium channels (VDSC) appear in Platyhelminthes. Calcitonin gene-related peptide receptor (CGRPR) was first identified in Nematoda. However, opioid receptors (OPRs) and most NPs were discovered only in vertebrates and exist from agnatha to humans. The results demonstrated that homologs of nociception and pain-related ICs exist from lower animal phyla to high animal phyla, and that most of the GPCRs originate from low to high phyla sequentially, whereas OPRs and NPs are newly evolved in vertebrates, which provides hints of the evolution of nociception and pain-related proteins in animals and humans.
Collapse
Affiliation(s)
- Rujun Zhai
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, P. R. China
| | - Qian Wang
- Changping Laboratory, Beijing, P. R. China
| |
Collapse
|
7
|
Anthoney N, Tainton-Heap L, Luong H, Notaras E, Kewin AB, Zhao Q, Perry T, Batterham P, Shaw PJ, van Swinderen B. Experimentally induced active and quiet sleep engage non-overlapping transcriptional programs in Drosophila. eLife 2023; 12:RP88198. [PMID: 37910019 PMCID: PMC10619980 DOI: 10.7554/elife.88198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Sleep in mammals can be broadly classified into two different physiological categories: rapid eye movement (REM) sleep and slow-wave sleep (SWS), and accordingly REM and SWS are thought to achieve a different set of functions. The fruit fly Drosophila melanogaster is increasingly being used as a model to understand sleep functions, although it remains unclear if the fly brain also engages in different kinds of sleep as well. Here, we compare two commonly used approaches for studying sleep experimentally in Drosophila: optogenetic activation of sleep-promoting neurons and provision of a sleep-promoting drug, gaboxadol. We find that these different sleep-induction methods have similar effects on increasing sleep duration, but divergent effects on brain activity. Transcriptomic analysis reveals that drug-induced deep sleep ('quiet' sleep) mostly downregulates metabolism genes, whereas optogenetic 'active' sleep upregulates a wide range of genes relevant to normal waking functions. This suggests that optogenetics and pharmacological induction of sleep in Drosophila promote different features of sleep, which engage different sets of genes to achieve their respective functions.
Collapse
Affiliation(s)
- Niki Anthoney
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Lucy Tainton-Heap
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Hang Luong
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Eleni Notaras
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Amber B Kewin
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Qiongyi Zhao
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Trent Perry
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Philip Batterham
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Paul J Shaw
- Department of Neuroscience, School of Medicine, Washington University in St. LouisSt LouisUnited States
| | | |
Collapse
|
8
|
Anthoney N, Tainton-Heap LA, Luong H, Notaras E, Kewin AB, Zhao Q, Perry T, Batterham P, Shaw PJ, van Swinderen B. Experimentally induced active and quiet sleep engage non-overlapping transcriptional programs in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535331. [PMID: 37066182 PMCID: PMC10103959 DOI: 10.1101/2023.04.03.535331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sleep in mammals can be broadly classified into two different physiological categories: rapid eye movement (REM) sleep and slow wave sleep (SWS), and accordingly REM and SWS are thought to achieve a different set of functions. The fruit fly Drosophila melanogaster is increasingly being used as a model to understand sleep functions, although it remains unclear if the fly brain also engages in different kinds of sleep as well. Here, we compare two commonly used approaches for studying sleep experimentally in Drosophila: optogenetic activation of sleep-promoting neurons and provision of a sleep-promoting drug, Gaboxadol. We find that these different sleep-induction methods have similar effects on increasing sleep duration, but divergent effects on brain activity. Transcriptomic analysis reveals that drug-induced deep sleep ('quiet' sleep) mostly downregulates metabolism genes, whereas optogenetic 'active' sleep upregulates a wide range of genes relevant to normal waking functions. This suggests that optogenetics and pharmacological induction of sleep in Drosophila promote different features of sleep, which engage different sets of genes to achieve their respective functions.
Collapse
Affiliation(s)
- Niki Anthoney
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | | | - Hang Luong
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052 Australia
| | - Eleni Notaras
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Amber B. Kewin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Qiongyi Zhao
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Trent Perry
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052 Australia
| | - Philip Batterham
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052 Australia
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO USA
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
9
|
Kohsaka H. Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion. Front Neural Circuits 2023; 17:1175899. [PMID: 37711343 PMCID: PMC10499525 DOI: 10.3389/fncir.2023.1175899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 09/16/2023] Open
Abstract
The motions that make up animal behavior arise from the interplay between neural circuits and the mechanical parts of the body. Therefore, in order to comprehend the operational mechanisms governing behavior, it is essential to examine not only the underlying neural network but also the mechanical characteristics of the animal's body. The locomotor system of fly larvae serves as an ideal model for pursuing this integrative approach. By virtue of diverse investigation methods encompassing connectomics analysis and quantification of locomotion kinematics, research on larval locomotion has shed light on the underlying mechanisms of animal behavior. These studies have elucidated the roles of interneurons in coordinating muscle activities within and between segments, as well as the neural circuits responsible for exploration. This review aims to provide an overview of recent research on the neuromechanics of animal locomotion in fly larvae. We also briefly review interspecific diversity in fly larval locomotion and explore the latest advancements in soft robots inspired by larval locomotion. The integrative analysis of animal behavior using fly larvae could establish a practical framework for scrutinizing the behavior of other animal species.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| |
Collapse
|
10
|
Meiser S, Sleeboom JM, Arkhypchuk I, Sandbote K, Kretzberg J. Cell anatomy and network input explain differences within but not between leech touch cells at two different locations. Front Cell Neurosci 2023; 17:1186997. [PMID: 37565030 PMCID: PMC10411907 DOI: 10.3389/fncel.2023.1186997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Mechanosensory cells in the leech share several common features with mechanoreceptors in the human glabrous skin. Previous studies showed that the six T (touch) cells in each body segment of the leech are highly variable in their responses to somatic current injection and change their excitability over time. Here, we investigate three potential reasons for this variability in excitability by comparing the responses of T cells at two soma locations (T2 and T3): (1) Differential effects of time-dependent changes in excitability, (2) divergent synaptic input from the network, and (3) different anatomical structures. These hypotheses were explored with a combination of electrophysiological double recordings, 3D reconstruction of neurobiotin-filled cells, and compartmental model simulations. Current injection triggered significantly more spikes with shorter latency and larger amplitudes in cells at soma location T2 than at T3. During longer recordings, cells at both locations increased their excitability over time in the same way. T2 and T3 cells received the same amount of synaptic input from the unstimulated network, and the polysynaptic connections between both T cells were mutually symmetric. However, we found a striking anatomical difference: While in our data set all T2 cells innervated two roots connecting the ganglion with the skin, 50% of the T3 cells had only one root process. The sub-sample of T3 cells with one root process was significantly less excitable than the T3 cells with two root processes and the T2 cells. To test if the additional root process causes higher excitability, we simulated the responses of 3D reconstructed cells of both anatomies with detailed multi-compartment models. The anatomical subtypes do not differ in excitability when identical biophysical parameters and a homogeneous channel distribution are assumed. Hence, all three hypotheses may contribute to the highly variable T cell responses, but none of them is the only factor accounting for the observed systematic difference in excitability between cells at T2 vs. T3 soma location. Therefore, future patch clamp and modeling studies are needed to analyze how biophysical properties and spatial distribution of ion channels on the cell surface contribute to the variability and systematic differences of electrophysiological phenotypes.
Collapse
Affiliation(s)
- Sonja Meiser
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jana Marie Sleeboom
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Institute of Physiology II, Faculty of Medicine, University Clinic Bonn (UKB), University of Bonn, Bonn, Germany
| | - Ihor Arkhypchuk
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Kevin Sandbote
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Department of Neuroscience, Cluster of Excellence Hearing4all, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
11
|
Boruah AP, Thakur KT. Arthropod-borne encephalitis: an overview for the clinician and emerging considerations. Postgrad Med J 2023; 99:826-833. [PMID: 37130817 PMCID: PMC10464853 DOI: 10.1136/pmj-2022-142002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
The rapid spread of arboviral infections in recent years has continually established arthropod-borne encephalitis to be a pressing global health concern. Causing a wide range of clinical presentations ranging from asymptomatic infection to fulminant neurological disease, the hallmark features of arboviral infection are important to clinically recognise. Arboviral infections may cause severe neurological presentations such as meningoencephalitis, epilepsy, acute flaccid paralysis and stroke. While the pathogenesis of arboviral infections is still being investigated, shared neuroanatomical pathways among these viruses may give insight into future therapeutic targets. The shifting infection transmission patterns and evolving distribution of arboviral vectors are heavily influenced by global climate change and human environmental disruption, therefore it is of utmost importance to consider this potential aetiology when assessing patients with encephalitic presentations.
Collapse
Affiliation(s)
- Abhilasha Pankaj Boruah
- Department of Neurology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kiran T Thakur
- Department of Neurology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
12
|
Santarelli S, Londero C, Soldano A, Candelaresi C, Todeschini L, Vernizzi L, Bellosta P. Drosophila melanogaster as a model to study autophagy in neurodegenerative diseases induced by proteinopathies. Front Neurosci 2023; 17:1082047. [PMID: 37274187 PMCID: PMC10232775 DOI: 10.3389/fnins.2023.1082047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Proteinopathies are a large group of neurodegenerative diseases caused by both genetic and sporadic mutations in particular genes which can lead to alterations of the protein structure and to the formation of aggregates, especially toxic for neurons. Autophagy is a key mechanism for clearing those aggregates and its function has been strongly associated with the ubiquitin-proteasome system (UPS), hence mutations in both pathways have been associated with the onset of neurodegenerative diseases, particularly those induced by protein misfolding and accumulation of aggregates. Many crucial discoveries regarding the molecular and cellular events underlying the role of autophagy in these diseases have come from studies using Drosophila models. Indeed, despite the physiological and morphological differences between the fly and the human brain, most of the biochemical and molecular aspects regulating protein homeostasis, including autophagy, are conserved between the two species.In this review, we will provide an overview of the most common neurodegenerative proteinopathies, which include PolyQ diseases (Huntington's disease, Spinocerebellar ataxia 1, 2, and 3), Amyotrophic Lateral Sclerosis (C9orf72, SOD1, TDP-43, FUS), Alzheimer's disease (APP, Tau) Parkinson's disease (a-syn, parkin and PINK1, LRRK2) and prion diseases, highlighting the studies using Drosophila that have contributed to understanding the conserved mechanisms and elucidating the role of autophagy in these diseases.
Collapse
Affiliation(s)
- Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Chiara Londero
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Candelaresi
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Leonardo Todeschini
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Luisa Vernizzi
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
13
|
Waldman J, Klafke GM, Tirloni L, Logullo C, da Silva Vaz I. Putative target sites in synganglion for novel ixodid tick control strategies. Ticks Tick Borne Dis 2023; 14:102123. [PMID: 36716581 PMCID: PMC10033424 DOI: 10.1016/j.ttbdis.2023.102123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
Acaricide resistance is a global problem that has impacts worldwide. Tick populations with broad resistance to all commercially available acaricides have been reported. Since resistance selection in ticks and their role in pathogen transmission to animals and humans result in important economic and public health burden, it is essential to develop new strategies for their control (i.e., novel chemical compounds, vaccines, biological control). The synganglion is the tick central nervous system and it is responsible for synthesizing and releasing signaling molecules with different physiological functions. Synganglion proteins are the targets of the majority of available acaricides. In this review we provide an overview of the mode-of-action and resistance mechanisms against neurotoxic acaricides in ticks, as well as putative target sites in synganglion, as a supporting tool to identify new target proteins and to develop new strategies for tick control.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Marcondes Klafke
- Instituto de Pesquisas Veterinárias Desidério Finamor - Centro de Pesquisa em Saúde Animal, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Laboratory of Bacteriology, Tick-Pathogen Transmission Unit, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Carlos Logullo
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Laboratório de Bioquímica de Artrópodes Hematófagos, IBqM, Universidade Federal do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Evaluation of Targeted Injections of Ivermectin or Potassium Chloride for Euthanasia of Anesthetized Thorny Devil Stick Insects (Eurycantha calcarata). JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2023. [DOI: 10.3390/jzbg4010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Insects are commonly utilized in biomedical research and have become increasingly popular in museum collections and as pets. Despite this, objective evaluation of insect euthanasia is scarce. This study investigated the effectiveness of targeted injections of ivermectin or potassium chloride (KCl) for the euthanasia of anesthetized thorny devil stick insects (Eurycantha calcarata). Ten clinically healthy mature insects (six males, four females) were enrolled. Insects were weighed and anesthetized via exposure to a cotton ball soaked with 1.6 mL of liquid isoflurane in a 1 L sealed chamber until loss of righting reflex and response to stimulation (induction). Insects then received one of three treatments: ivermectin 100 mg/kg (n = 4), KCl 200 mEq/kg (n = 4), or 0.9% sodium chloride 100 mL/kg (n = 2) injected along the ventral thoracic midline between the first leg plate and the caudal adjacent plate. Following injection, insects were serially monitored for return of spontaneous movement and righting reflex. Death was defined as the absence of spontaneous movement for 48 h. Median (range) induction time and isoflurane concentration at induction was 36 (22–39) min (n = 9) and 22 (19–22)%, respectively. Euthanasia was successful in 4/4, 3/4, and 0/2 isoflurane-anesthetized insects receiving ivermectin, KCl, or 0.9% sodium chloride, respectively. Recovery was prolonged at 10.5 (sodium chloride female), 11.0 (KCl male), and 18.0 (sodium chloride male) hours. This is the first prospective investigation of euthanasia in adult E. calcarata. In this preliminary study, ivermectin 100 mg/kg via ventral midline injection was effective for euthanasia of thorny devil stick insects.
Collapse
|
15
|
Picone M, Distefano GG, Marchetto D, Russo M, Baccichet M, Brusò L, Zangrando R, Gambaro A, Volpi Ghirardini A. Long-term effects of neonicotinoids on reproduction and offspring development in the copepod Acartia tonsa. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105761. [PMID: 36206640 DOI: 10.1016/j.marenvres.2022.105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoids (NEOs) are neurotoxic pesticides acting as nicotinic acetylcholine receptor agonists. NEOs' efficacy against pest insects has favoured their spreading use in agriculture, but their proven effectiveness against non-target insects in terrestrial and aquatic ecosystems also raised concern over their environmental impact. Crustaceans were often studied for the impacts of NEOs due to their economic values and nervous' system similarity with insects. However, most studies on crustaceans focused on acute effects or exposure of early-life stages, while long-term effects were seldom explored. The present study aimed to assess the potential long-term effects of four commercially available NEOs on the reproduction and offspring of the calanoid copepod Acartia tonsa, a key species in the food webs of several coastal and estuarine environments. NEOs were confirmed as potent interferents of copepod reproduction. The first-generation compound acetamiprid significantly inhibited egg production and hatching ratio at 10 ng L-1, while larval survival and development were affected at 81 ng L-1. Similarly, the first-generation compound thiacloprid significantly inhibited the hatching ratio and larval development at 9 ng L-1, while it did not affect egg production and larval survival. Second-generation compounds were less toxic than acetamiprid and thiacloprid: clothianidin affected significantly only larval development of the offspring at 62 ng L-1, while thiamethoxam was not toxic at both the tested concentrations (8 ng L-1 and 84 ng L-1). These data evidenced that effects on copepods may occur at concentrations below the chronic aquatic life benchmarks reported by USEPA for acetamiprid (2100 ng L-1) and thiacloprid (970 ng L-1), suggesting that long-term effects of NEOs have been underestimated. A comparison with environmental concentrations evidenced that NEO-mediated effects on copepods are more liable in coastal areas receiving discharge from wastewater treatment plants or diffuse inputs from agricultural land during pesticide application periods.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy.
| | - Gabriele Giuseppe Distefano
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Davide Marchetto
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Martina Russo
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Marco Baccichet
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Luca Brusò
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Roberta Zangrando
- Institute of Polar Sciences - National Research Council (ISP-CNR), Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| |
Collapse
|
16
|
Rispe C, Hervet C, de la Cotte N, Daveu R, Labadie K, Noel B, Aury JM, Thany S, Taillebois E, Cartereau A, Le Mauff A, Charvet CL, Auger C, Courtot E, Neveu C, Plantard O. Transcriptome of the synganglion in the tick Ixodes ricinus and evolution of the cys-loop ligand-gated ion channel family in ticks. BMC Genomics 2022; 23:463. [PMID: 35733088 PMCID: PMC9219234 DOI: 10.1186/s12864-022-08669-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ticks represent a major health issue for humans and domesticated animals. Exploring the expression landscape of the tick's central nervous system (CNS), known as the synganglion, would be an important step in understanding tick physiology and in managing tick-borne diseases, but studies on that topic are still relatively scarce. Neuron-specific genes like the cys-loop ligand-gated ion channels (cys-loop LGICs, or cysLGICs) are important pharmacological targets of acaricides. To date their sequence have not been well catalogued for ticks, and their phylogeny has not been fully studied. RESULTS We carried out the sequencing of transcriptomes of the I. ricinus synganglion, for adult ticks in different conditions (unfed males, unfed females, and partially-fed females). The de novo assembly of these transcriptomes allowed us to obtain a large collection of cys-loop LGICs sequences. A reference meta-transcriptome based on synganglion and whole body transcriptomes was then produced, showing high completeness and allowing differential expression analyses between synganglion and whole body. Many of the genes upregulated in the synganglion were associated with neurotransmission and/or localized in neurons or the synaptic membrane. As the first step of a functional study of cysLGICs, we cloned the predicted sequence of the resistance to dieldrin (RDL) subunit homolog, and functionally reconstituted the first GABA-gated receptor of Ixodes ricinus. A phylogenetic study was performed for the nicotinic acetylcholine receptors (nAChRs) and other cys-loop LGICs respectively, revealing tick-specific expansions of some types of receptors (especially for Histamine-like subunits and GluCls). CONCLUSIONS We established a large catalogue of genes preferentially expressed in the tick CNS, including the cysLGICs. We discovered tick-specific gene family expansion of some types of cysLGIC receptors, and a case of intragenic duplication, suggesting a complex pattern of gene expression among different copies or different alternative transcripts of tick neuro-receptors.
Collapse
Affiliation(s)
| | | | | | - Romain Daveu
- INRAE, Oniris, BIOEPAR, Nantes, France.,Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Steeve Thany
- Université d'Orléans, LBLGC USC INRAE 1328, 1 rue de Chartres, 45067, Orléans, France
| | - Emiliane Taillebois
- Université d'Orléans, LBLGC USC INRAE 1328, 1 rue de Chartres, 45067, Orléans, France
| | - Alison Cartereau
- Université d'Orléans, LBLGC USC INRAE 1328, 1 rue de Chartres, 45067, Orléans, France
| | - Anaïs Le Mauff
- Université d'Orléans, LBLGC USC INRAE 1328, 1 rue de Chartres, 45067, Orléans, France
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Neurons are the fundamental building blocks of nervous systems. It appears intuitive that the human brain is made up of hundreds, if not thousands different types of neurons. Conversely, the seemingly diffuse nerve net of Cnidaria is often assumed to be simple. However, evidence that the Cnidaria nervous system is indeed simple is sparse. Recent technical advances make it possible to assess the diversity and function of neurons with unprecedented resolution. Transgenic animals expressing genetically encoded Calcium sensors allow direct physiological assessments of neural responses within the nerve net and provide insight into the spatial organization of the nervous system. Moreover, response and activity patterns allow the characterization of cell types on a functional level. Molecular and genetic identities on the other hand can be assessed combining single-cell transcriptomic analysis with correlations of gene expression in defined neurons. Here I review recent advances on these two experimental strategies focusing on Hydra, Nematostella, and Clytia.
Collapse
Affiliation(s)
- Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
18
|
Wilson C, Moyano AL, Cáceres A. Perspectives on Mechanisms Supporting Neuronal Polarity From Small Animals to Humans. Front Cell Dev Biol 2022; 10:878142. [PMID: 35517494 PMCID: PMC9062071 DOI: 10.3389/fcell.2022.878142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Axon-dendrite formation is a crucial milestone in the life history of neurons. During this process, historically referred as “the establishment of polarity,” newborn neurons undergo biochemical, morphological and functional transformations to generate the axonal and dendritic domains, which are the basis of neuronal wiring and connectivity. Since the implementation of primary cultures of rat hippocampal neurons by Gary Banker and Max Cowan in 1977, the community of neurobiologists has made significant achievements in decoding signals that trigger axo-dendritic specification. External and internal cues able to switch on/off signaling pathways controlling gene expression, protein stability, the assembly of the polarity complex (i.e., PAR3-PAR6-aPKC), cytoskeleton remodeling and vesicle trafficking contribute to shape the morphology of neurons. Currently, the culture of hippocampal neurons coexists with alternative model systems to study neuronal polarization in several species, from single-cell to whole-organisms. For instance, in vivo approaches using C. elegans and D. melanogaster, as well as in situ imaging in rodents, have refined our knowledge by incorporating new variables in the polarity equation, such as the influence of the tissue, glia-neuron interactions and three-dimensional development. Nowadays, we have the unique opportunity of studying neurons differentiated from human induced pluripotent stem cells (hiPSCs), and test hypotheses previously originated in small animals and propose new ones perhaps specific for humans. Thus, this article will attempt to review critical mechanisms controlling polarization compiled over decades, highlighting points to be considered in new experimental systems, such as hiPSC neurons and human brain organoids.
Collapse
|
19
|
Nande A, Dubinkina V, Ravasio R, Zhang GH, Berman GJ. Bottlenecks, Modularity, and the Neural Control of Behavior. Front Behav Neurosci 2022; 16:835753. [PMID: 35464140 PMCID: PMC9020368 DOI: 10.3389/fnbeh.2022.835753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
In almost all animals, the transfer of information from the brain to the motor circuitry is facilitated by a relatively small number of neurons, leading to a constraint on the amount of information that can be transmitted. Our knowledge of how animals encode information through this pathway, and the consequences of this encoding, however, is limited. In this study, we use a simple feed-forward neural network to investigate the consequences of having such a bottleneck and identify aspects of the network architecture that enable robust information transfer. We are able to explain some recently observed properties of descending neurons—that they exhibit a modular pattern of connectivity and that their excitation leads to consistent alterations in behavior that are often dependent upon the desired behavioral state of the animal. Our model predicts that in the presence of an information bottleneck, such a modular structure is needed to increase the efficiency of the network and to make it more robust to perturbations. However, it does so at the cost of an increase in state-dependent effects. Despite its simplicity, our model is able to provide intuition for the trade-offs faced by the nervous system in the presence of an information processing constraint and makes predictions for future experiments.
Collapse
Affiliation(s)
- Anjalika Nande
- Department of Physics, Harvard University, Cambridge, MA, United States
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Veronika Dubinkina
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Riccardo Ravasio
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- The James Franck Institute, University of Chicago, Chicago, IL, United States
| | - Grace H. Zhang
- Department of Physics, Harvard University, Cambridge, MA, United States
| | - Gordon J. Berman
- Departments of Biology and Physics, Emory University, Atlanta, GA, United States
- *Correspondence: Gordon J. Berman
| |
Collapse
|
20
|
Inhibition of Larval Development of Marine Copepods Acartia tonsa by Neonocotinoids. TOXICS 2022; 10:toxics10040158. [PMID: 35448419 PMCID: PMC9026078 DOI: 10.3390/toxics10040158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
Neonicotinoids (NEOs) are neurotoxic pesticides widely used in agriculture due to their high effectiveness against pest insects. Despite their widespread use, very little is known about their toxicity towards marine organisms, including sensitive and ecologically relevant taxa such as copepods. Thus, we investigated the toxicity of five widely used NEOs, including acetamiprid (ACE), clothianidin (CLO), imidacloprid (IMI), thiacloprid (THI), and thiamethoxam (TMX), to assess their ability to inhibit the larval development of the copepod Acartia tonsa. The more toxic NEOs were ACE (EC50 = 0.73 μg L−1), TMX (EC50 = 1.71 μg L−1) and CLO (EC50 = 1.90 μg L−1), while the less toxic compound was IMI (EC50 = 8.84 μg L−1). Early life-stage mortality was unaffected by NEOs at all of the tested concentrations. The calculated toxicity data indicated that significant effects due to ACE (EC20 = 0.12 μg L−1), THI (EC20 = 0.88 μg L−1) and TMX (EC20 = 0.18 μg L−1) are observed at concentrations lower than established chronic aquatic life benchmarks reported by USEPA for freshwater invertebrates. Nevertheless, since environmental concentrations of NEOs are generally lower than the threshold concentrations we calculated for A. tonsa, the effects may be currently of concern only in estuaries receiving wastewater discharges or experiencing intense runoff from agriculture.
Collapse
|
21
|
Zhuo J, Gill JP, Jansen ED, Jenkins MW, Chiel HJ. Use of an invertebrate animal model ( Aplysia californica) to develop novel neural interfaces for neuromodulation. Front Neurosci 2022; 16:1080027. [PMID: 36620467 PMCID: PMC9813496 DOI: 10.3389/fnins.2022.1080027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
New tools for monitoring and manipulating neural activity have been developed with steadily improving functionality, specificity, and reliability, which are critical both for mapping neural circuits and treating neurological diseases. This review focuses on the use of an invertebrate animal, the marine mollusk Aplysia californica, in the development of novel neurotechniques. We review the basic physiological properties of Aplysia neurons and discuss the specific aspects that make it advantageous for developing novel neural interfaces: First, Aplysia nerves consist only of unmyelinated axons with various diameters, providing a particularly useful model of the unmyelinated C fibers in vertebrates that are known to carry important sensory information, including those that signal pain. Second, Aplysia's neural tissues can last for a long period in an ex vivo experimental setup. This allows comprehensive tests such as the exploration of parameter space on the same nerve to avoid variability between animals and minimize animal use. Third, nerves in large Aplysia can be many centimeters in length, making it possible to easily discriminate axons with different diameters based on their conduction velocities. Aplysia nerves are a particularly good approximation of the unmyelinated C fibers, which are hard to stimulate, record, and differentiate from other nerve fibers in vertebrate animal models using epineural electrodes. Fourth, neurons in Aplysia are large, uniquely identifiable, and electrically compact. For decades, researchers have used Aplysia for the development of many novel neurotechnologies. Examples include high-frequency alternating current (HFAC), focused ultrasound (FUS), optical neural stimulation, recording, and inhibition, microelectrode arrays, diamond electrodes, carbon fiber microelectrodes, microscopic magnetic stimulation and magnetic resonance electrical impedance tomography (MREIT). We also review a specific example that illustrates the power of Aplysia for accelerating technology development: selective infrared neural inhibition of small-diameter unmyelinated axons, which may lead to a translationally useful treatment in the future. Generally, Aplysia is suitable for testing modalities whose mechanism involves basic biophysics that is likely to be similar across species. As a tractable experimental system, Aplysia californica can help the rapid development of novel neuromodulation technologies.
Collapse
Affiliation(s)
- Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jeffrey P Gill
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.,Biophotonics Center, Vanderbilt University, Nashville, TN, United States.,Department of Neurological Surgery, Vanderbilt University, Nashville, TN, United States
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Hillel J Chiel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
22
|
Tinikul Y, Kruangkum T, Tinikul R, Sobhon P. Comparative neuroanatomical distribution and expression levels of neuropeptide F in the central nervous system of the female freshwater prawn, Macrobrachium rosenbergii, during the ovarian cycle. J Comp Neurol 2021; 530:729-755. [PMID: 34545567 DOI: 10.1002/cne.25241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022]
Abstract
Neuropeptide F (NPF) plays critical roles in controlling the feeding and reproduction of prawns. In the present study, we investigated changes in the expression levels of Macrobrachium rosenbergii neuropeptide F (MrNPF), and its neuroanatomical distribution in eyestalk (ES), brain (BR), subesophageal ganglion (SEG), thoracic ganglia (TG), and abdominal ganglia (AG), during the ovarian cycle of female prawn. By qRT-PCR, the amount of MrNPF transcripts exhibited a gradual increase in the ES, BR, and combined SEG and TG from stages I and II, to reach a maximum level at stage III, and slightly declined at stage IV, respectively. The highest to lowest expression levels were detected in combined SEG and TG, BR, ES, and AG, respectively. MrNPF immunolabeling was observed in several neuronal clusters, associated fibers, and neuropils of these central nervous system (CNS) tissues. MrNPF-ir was more intense in neurons and neuropils of SEG and TG than those found in other parts of the CNS. The number of MrNPF-ir neurons and intensity of MrNPF-ir were higher in the ES, BR, SEG, and TG at the late stages than those at the early stages of the ovarian cycle, while those in AG exhibited insignificant change. Taken together, there is a correlation between changes in the neuroanatomical distribution of MrNPF and stages of the ovarian cycle, implying that MrNPF may be an important neuropeptide that integrates sensory stimuli, including photo-, chemo-, and gustatory receptions, to control feeding and reproduction, particularly ovarian development, of this female prawn, M. rosenbergii.
Collapse
Affiliation(s)
- Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Nirody JA. Universal Features in Panarthropod Inter-Limb Coordination during Forward Walking. Integr Comp Biol 2021; 61:710-722. [PMID: 34043783 PMCID: PMC8427173 DOI: 10.1093/icb/icab097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Terrestrial animals must often negotiate heterogeneous, varying environments. Accordingly, their locomotive strategies must adapt to a wide range of terrain, as well as to a range of speeds to accomplish different behavioral goals. Studies in Drosophila have found that inter-leg coordination patterns (ICPs) vary smoothly with walking speed, rather than switching between distinct gaits as in vertebrates (e.g., horses transitioning between trotting and galloping). Such a continuum of stepping patterns implies that separate neural controllers are not necessary for each observed ICP. Furthermore, the spectrum of Drosophila stepping patterns includes all canonical coordination patterns observed during forward walking in insects. This raises the exciting possibility that the controller in Drosophila is common to all insects, and perhaps more generally to panarthropod walkers. Here, we survey and collate data on leg kinematics and inter-leg coordination relationships during forward walking in a range of arthropod species, as well as include data from a recent behavioral investigation into the tardigrade Hypsibius exemplaris. Using this comparative dataset, we point to several functional and morphological features that are shared among panarthropods. The goal of the framework presented in this review is to emphasize the importance of comparative functional and morphological analyses in understanding the origins and diversification of walking in Panarthropoda. Introduction.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10065, USA.,All Souls College, University of Oxford, Oxford, OX1 4AL, UK
| |
Collapse
|
24
|
Abstract
Major advances in our understanding of the functional heterogeneity of enteric neurons are driven by the application of newly developed, innovative methods. In contrast to this progress, both animal and human enteric neurons are usually divided into only two morphological subpopulations, “Dogiel type II” neurons (with several long processes) and “Dogiel type I” neurons (with several short processes). This implies no more than the distinction of intrinsic primary afferent from all other enteric neurons. The well-known chemical and functional diversity of enteric neurons is not reflected by this restrictive dichotomy of morphological data. Recent structural investigations of human enteric neurons were performed by different groups which mainly used two methodical approaches, namely detecting the architecture of their processes and target-specific tracing of their axonal courses. Both methods were combined with multiple immunohistochemistry in order to decipher neurochemical codes. This review integrates these morphological and immunohistological data and presents a classification of human enteric neurons which we believe is not yet complete but provides an essential foundation for the further development of human gastrointestinal neuropathology.
Collapse
Affiliation(s)
- Axel Brehmer
- Institute of Anatomy and Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstr. 9, 91054, Erlangen, Germany.
| |
Collapse
|
25
|
Rahimi-Majd M, Seifi MA, de Arcangelis L, Najafi MN. Role of anaxonic local neurons in the crossover to continuously varying exponents for avalanche activity. Phys Rev E 2021; 103:042402. [PMID: 34005924 DOI: 10.1103/physreve.103.042402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/19/2021] [Indexed: 11/07/2022]
Abstract
Local anaxonic neurons with graded potential release are important ingredients of nervous systems, present in the olfactory bulb system of mammalians and in the human visual system, as well as in arthropods and nematodes. We develop a neuronal network model including both axonic and anaxonic neurons and monitor the activity tuned by the following parameters: the decay length of the graded potential in local neurons, the fraction of local neurons, the largest eigenvalue of the adjacency matrix, and the range of connections of the local neurons. Tuning the fraction of local neurons, we derive the phase diagram including two transition lines: a critical line separating subcritical and supercritical regions, characterized by power-law distributions of avalanche sizes and durations, and a bifurcation line. We find that the overall behavior of the system is controlled by a parameter tuning the relevance of local neuron transmission with respect to the axonal one. The statistical properties of spontaneous activity are affected by local neurons at large fractions and on the condition that the graded potential transmission dominates the axonal one. In this case the scaling properties of spontaneous activity exhibit continuously varying exponents, rather than the mean-field branching model universality class.
Collapse
Affiliation(s)
- M Rahimi-Majd
- Department of Physics, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - M A Seifi
- Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| | - L de Arcangelis
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa (CE), Italy
| | - M N Najafi
- Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
26
|
David I, Ayali A. From Motor-Output to Connectivity: An In-Depth Study of in-vitro Rhythmic Patterns in the Cockroach Periplaneta americana. FRONTIERS IN INSECT SCIENCE 2021; 1:655933. [PMID: 38468881 PMCID: PMC10926548 DOI: 10.3389/finsc.2021.655933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2021] [Indexed: 03/13/2024]
Abstract
The cockroach is an established model in the study of locomotion control. While previous work has offered important insights into the interplay among brain commands, thoracic central pattern generators, and the sensory feedback that shapes their motor output, there remains a need for a detailed description of the central pattern generators' motor output and their underlying connectivity scheme. To this end, we monitored pilocarpine-induced activity of levator and depressor motoneurons in two types of novel in-vitro cockroach preparations: isolated thoracic ganglia and a whole-chain preparation comprising the thoracic ganglia and the subesophageal ganglion. Our data analyses focused on the motoneuron firing patterns and the coordination among motoneuron types in the network. The burstiness and rhythmicity of the motoneurons were monitored, and phase relations, coherence, coupling strength, and frequency-dependent variability were analyzed. These parameters were all measured and compared among network units both within each preparation and among the preparations. Here, we report differences among the isolated ganglia, including asymmetries in phase and coupling strength, which indicate that they are wired to serve different functions. We also describe the intrinsic default gait and a frequency-dependent coordination. The depressor motoneurons showed mostly similar characteristics throughout the network regardless of interganglia connectivity; whereas the characteristics of the levator motoneurons activity were mostly ganglion-dependent, and influenced by the presence of interganglia connectivity. Asymmetries were also found between the anterior and posterior homolog parts of the thoracic network, as well as between ascending and descending connections. Our analyses further discover a frequency-dependent inversion of the interganglia coordination from alternations between ipsilateral homolog oscillators to simultaneous activity. We present a detailed scheme of the network couplings, formulate coupling rules, and review a previously suggested model of connectivity in light of our new findings. Our data support the notion that the inter-hemiganglia coordination derives from the levator networks and their coupling with local depressor interneurons. Our findings also support a dominant role of the metathoracic ganglion and its ascending output in governing the anterior ganglia motor output during locomotion in the behaving animal.
Collapse
Affiliation(s)
- Izhak David
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Lette ED, Burnham QF, Lawler N, Horwitz P, Boyce MC, Broadhurst DI, Duffy R, Koenders A. Detecting Sex-Related Changes to the Metabolome of a Critically Endangered Freshwater Crayfish During the Mating Season. Front Mol Biosci 2021; 8:650839. [PMID: 33937331 PMCID: PMC8085417 DOI: 10.3389/fmolb.2021.650839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022] Open
Abstract
Captive breeding is a vital tool in the conservation of highly endangered species, as it is for the Margaret River hairy marron, Cherax tenuimanus, from the south west of Australia. A close relative, Cherax cainii, has almost completely displaced C. tenuimanus in the wild and is a successful aquaculture species, whereas C. tenuimanus has performed poorly in captivity. We used untargeted liquid chromatography-mass spectrometry to obtain metabolomic profiles of female and male C. tenuimanus held in controlled aquarium conditions during their reproductive period. Using repeated haemolymph sampling we tracked the metabolomic profiles of animals just prior to and for a period of up to 34 days after pairing with a similar sized potential mate. We identified 54 reproducible annotated metabolites including amino acids, fatty acids, biogenic amines, purine and pyrimidine metabolites and excretion metabolites. Hierarchical clustering analysis distinguished five metabolite clusters. Principal component-canonical variate analysis clearly distinguished females from males, both unpaired and paired; similar trends in profile changes in both sexes after pairing; and a striking shift in males upon pairing. We discuss three main patterns of metabolomic responses: differentiation between sexes; reactive responses to the disturbance of pairing; and convergent response to the disturbance of pairing for males. Females generally had higher concentrations of metabolites involved in metabolic rate, mobilisation of energy stores and stress. Responses to the disturbance of pairing were also related to elevated stress. Females were mobilising lipid stores to deposit yolk, whereas males had a rapid and strong response to pairing, with shifts in metabolites associated with gonad development and communication, indicating males could complete reproductive readiness only once paired with a female. The metabolomic profiles support a previously proposed potential mechanism for displacement of C. tenuimanus by C. cainii in the wild and identify several biomarkers for testing hypotheses regarding reproductive success using targeted metabolomics.
Collapse
Affiliation(s)
- Emily D. Lette
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| | - Quinton F. Burnham
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| | - Nathan Lawler
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, WA, Australia
| | - Pierre Horwitz
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| | - Mary C. Boyce
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, WA, Australia
| | - David I. Broadhurst
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, WA, Australia
| | - Rodney Duffy
- Department of Primary Industries and Regional Development of Western Australia, Perth, WA, Australia
| | - Annette Koenders
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
28
|
Rainey AN, Fukui SM, Mark K, King HM, Blitz DM. Intrinsic sources of tachykinin-related peptide in the thoracic ganglion mass of the crab, Cancer borealis. Gen Comp Endocrinol 2021; 302:113688. [PMID: 33275935 DOI: 10.1016/j.ygcen.2020.113688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022]
Abstract
Neuropeptides comprise the largest class of neural and neuroendocrine signaling molecules. Vertebrate tachykinins (TKs) and the structurally-related invertebrate tachykinin-related peptides (TRPs) together form the largest neuropeptide superfamily, with a number of conserved neural and neuroendocrine functions across species. Arthropods, including crustaceans, have provided many insights into neuropeptide signaling and function. Crustacean tachykinin-related peptide occurs in endocrine organs and cells and in two of the major crustacean CNS components, the supraoesophageal ganglion ("brain") and the stomatogastric nervous system. However, little is known about TRP sources in the remaining major CNS component, the thoracic ganglion mass (TGM). To gain further insight into the function of this peptide, we aimed to identify intrinsic TRP sources in the TGM of the Jonah crab, Cancer borealis. We first adapted a clearing protocol to improve TRP immunoreactivity specifically in the TGM, which is a dense, fused mass of multiple ganglia in short-bodied crustaceans such as Cancer species of crabs. We verified that the clearing protocol avoided distortion of cell body morphology yet increased visibility of TRP immunoreactivity. Using confocal microscopy, we found TRP-immunoreactive (TRP-IR) axon tracts running the length of the TGM, TRP-IR neuropil in all ganglia, and approximately 110 TRP-IR somata distributed throughout the TGM, within and between ganglia. These somata likely represent both neural and neuroendocrine sources of TRP. Thus, there are many potential intrinsic sources of TRP in the TGM that are positioned to regulate behaviors such as food intake, locomotion, respiration, and reproduction.
Collapse
Affiliation(s)
- Amanda N Rainey
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Stephanie M Fukui
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Katie Mark
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Hailey M King
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States
| | - Dawn M Blitz
- Department of Biology and Center for Neuroscience, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
29
|
Weihmann T. Survey of biomechanical aspects of arthropod terrestrialisation - Substrate bound legged locomotion. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100983. [PMID: 33160205 DOI: 10.1016/j.asd.2020.100983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Arthropods are the most diverse clade on earth with regard to both species number and variability of body plans. Their general body plan is characterised by variable numbers of legs, and many-legged locomotion is an essential aspect of many aquatic and terrestrial arthropod species. Moreover, arthropods belong to the first groups of animals to colonise subaerial habitats, and they did so repeatedly and independently in a couple of clades. Those arthropod clades that colonised land habitats were equipped with highly variable body plans and locomotor apparatuses. Proceeding from their respective specific anatomies, they were challenged with strongly changing environmental conditions as well as altered physical and physiological constraints. This review explores the transitions from aquatic to terrestrial habitats across the different arthropod body plans and explains the major mechanisms and principles that constrain design and function of a range of locomotor apparatuses. Important aspects of movement physiology addressed here include the effects of different numbers of legs, different body sizes, miniaturisation and simplification of body plans and different ratios of inertial and damping forces. The article's focus is on continuous legged locomotion, but related ecological and behavioural aspects are also taken into account.
Collapse
Affiliation(s)
- Tom Weihmann
- Dept. of Animal Physiology, Institute of Zoology, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany.
| |
Collapse
|
30
|
Laso‐Jadart R, Sugier K, Petit E, Labadie K, Peterlongo P, Ambroise C, Wincker P, Jamet J, Madoui M. Investigating population-scale allelic differential expression in wild populations of Oithona similis (Cyclopoida, Claus, 1866). Ecol Evol 2020; 10:8894-8905. [PMID: 32884665 PMCID: PMC7452778 DOI: 10.1002/ece3.6588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Acclimation allowed by variation in gene or allele expression in natural populations is increasingly understood as a decisive mechanism, as much as adaptation, for species evolution. However, for small eukaryotic organisms, as species from zooplankton, classical methods face numerous challenges. Here, we propose the concept of allelic differential expression at the population-scale (psADE) to investigate the variation in allele expression in natural populations. We developed a novel approach to detect psADE based on metagenomic and metatranscriptomic data from environmental samples. This approach was applied on the widespread marine copepod, Oithona similis, by combining samples collected during the Tara Oceans expedition (2009-2013) and de novo transcriptome assemblies. Among a total of 25,768 single nucleotide variants (SNVs) of O. similis, 572 (2.2%) were affected by psADE in at least one population (FDR < 0.05). The distribution of SNVs under psADE in different populations is significantly shaped by population genomic differentiation (Pearson r = 0.87, p = 5.6 × 10-30), supporting a partial genetic control of psADE. Moreover, a significant amount of SNVs (0.6%) were under both selection and psADE (p < .05), supporting the hypothesis that natural selection and psADE tends to impact common loci. Population-scale allelic differential expression offers new insights into the gene regulation control in populations and its link with natural selection.
Collapse
Affiliation(s)
- Romuald Laso‐Jadart
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| | - Kevin Sugier
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
| | - Emmanuelle Petit
- CEA, GenoscopeInstitut de Biologie François JacobUniversité Paris‐SaclayEvryFrance
| | - Karine Labadie
- CEA, GenoscopeInstitut de Biologie François JacobUniversité Paris‐SaclayEvryFrance
| | | | | | - Patrick Wincker
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| | - Jean‐Louis Jamet
- Mediterranean Institute of Oceanology (MIO)AMU‐UTLN UM110CNRS UMR7294, IRDUMR235Equipe Ecologie Marine et Biodiversité (EMBIO)Université de ToulonToulon Cedex 9France
| | - Mohammed‐Amin Madoui
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| |
Collapse
|
31
|
Prokop A. Cytoskeletal organization of axons in vertebrates and invertebrates. J Cell Biol 2020; 219:e201912081. [PMID: 32369543 PMCID: PMC7337489 DOI: 10.1083/jcb.201912081] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The maintenance of axons for the lifetime of an organism requires an axonal cytoskeleton that is robust but also flexible to adapt to mechanical challenges and to support plastic changes of axon morphology. Furthermore, cytoskeletal organization has to adapt to axons of dramatically different dimensions, and to their compartment-specific requirements in the axon initial segment, in the axon shaft, at synapses or in growth cones. To understand how the cytoskeleton caters to these different demands, this review summarizes five decades of electron microscopic studies. It focuses on the organization of microtubules and neurofilaments in axon shafts in both vertebrate and invertebrate neurons, as well as the axon initial segments of vertebrate motor- and interneurons. Findings from these ultrastructural studies are being interpreted here on the basis of our contemporary molecular understanding. They strongly suggest that axon architecture in animals as diverse as arthropods and vertebrates is dependent on loosely cross-linked bundles of microtubules running all along axons, with only minor roles played by neurofilaments.
Collapse
Affiliation(s)
- Andreas Prokop
- School of Biology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
32
|
Allen AM, Neville MC, Birtles S, Croset V, Treiber CD, Waddell S, Goodwin SF. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife 2020; 9:e54074. [PMID: 32314735 PMCID: PMC7173974 DOI: 10.7554/elife.54074] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ventral nerve cord (VNC) receives and processes descending signals from the brain to produce a variety of coordinated locomotor outputs. It also integrates sensory information from the periphery and sends ascending signals to the brain. We used single-cell transcriptomics to generate an unbiased classification of cellular diversity in the VNC of five-day old adult flies. We produced an atlas of 26,000 high-quality cells, representing more than 100 transcriptionally distinct cell types. The predominant gene signatures defining neuronal cell types reflect shared developmental histories based on the neuroblast from which cells were derived, as well as their birth order. The relative position of cells along the anterior-posterior axis could also be assigned using adult Hox gene expression. This single-cell transcriptional atlas of the adult fly VNC will be a valuable resource for future studies of neurodevelopment and behavior.
Collapse
Affiliation(s)
- Aaron M Allen
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Sebastian Birtles
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Vincent Croset
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | | | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
33
|
Ng TH, Kurtz J. Dscam in immunity: A question of diversity in insects and crustaceans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103539. [PMID: 31734281 DOI: 10.1016/j.dci.2019.103539] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
In insects and crustaceans, thousands of Down syndrome cell adhesion molecules (Dscam) can be generated by alternative splicing of variable exons from a single-locus gene, Dscam-hv. This extraordinarily versatile gene (38,016 protein isoforms produced in Drosophila) was first proposed to be involved in exon guidance and subsequently implicated in immunity as a hypervariable immune molecule. Almost 20 y after discovery of Dscam-hv, there have been many studies in insects and crustaceans regarding roles of Dscam in immunity, with many similarities and concurrently, many differences. Here, we review the current status of Dscam-hv, presented as a comparison of similarities and differences in insects and crustaceans and discuss hypotheses of Dscam functions in immunity.
Collapse
Affiliation(s)
- Tze Hann Ng
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.
| |
Collapse
|
34
|
Abstract
One of the most important aspects of the scientific endeavour is the definition of specific concepts as precisely as possible. However, it is also important not to lose sight of two facts: (i) we divide the study of nature into manageable parts in order to better understand it owing to our limited cognitive capacities and (ii) definitions are inherently arbitrary and heavily influenced by cultural norms, language, the current political climate, and even personal preferences, among many other factors. As a consequence of these facts, clear-cut definitions, despite their evident importance, are oftentimes quite difficult to formulate. One of the most illustrative examples about the difficulty of articulating precise scientific definitions is trying to define the concept of a brain. Even though the current thinking about the brain is beginning to take into account a variety of organisms, a vertebrocentric bias still tends to dominate the scientific discourse about this concept. Here I will briefly explore the evolution of our 'thoughts about the brain', highlighting the difficulty of constructing a universally (or even a generally) accepted formal definition of it and using planarians as one of the earliest examples of organisms proposed to possess a 'traditional', vertebrate-style brain. I also suggest that the time is right to attempt to expand our view of what a brain is, going beyond exclusively structural and taxa-specific criteria. Thus, I propose a classification that could represent a starting point in an effort to expand our current definitions of the brain, hopefully to help initiate conversations leading to changes of perspective on how we think about this concept. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Oné R Pagán
- Department of Biology, West Chester University , West Chester, PA 19383 , USA
| |
Collapse
|
35
|
Ortega A, Olivares-Bañuelos TN. Neurons and Glia Cells in Marine Invertebrates: An Update. Front Neurosci 2020; 14:121. [PMID: 32132895 PMCID: PMC7040184 DOI: 10.3389/fnins.2020.00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The nervous system (NS) of invertebrates and vertebrates is composed of two main types of cells: neurons and glia. In both types of organisms, nerve cells have similarities in biochemistry and functionality. The neurons are in charge of the synapse, and the glial cells are in charge of important functions of neuronal and homeostatic modulation. Knowing the mechanisms by which NS cells work is important in the biomedical area for the diagnosis and treatment of neurological disorders. For this reason, cellular and animal models to study the properties and characteristics of the NS are always sought. Marine invertebrates are strategic study models for the biological sciences. The sea slug Aplysia californica and the squid Loligo pealei are two examples of marine key organisms in the neurosciences field. The principal characteristic of marine invertebrates is that they have a simpler NS that consists of few and larger cells, which are well organized and have accessible structures. As well, the close phylogenetic relationship between Chordata and Echinodermata constitutes an additional advantage to use these organisms as a model for the functionality of neuronal cells and their cellular plasticity. Currently, there is great interest in analyzing the signaling processes between neurons and glial cells, both in vertebrates and in invertebrates. However, only few types of glial cells of invertebrates, mostly insects, have been studied, and it is important to consider marine organisms' research. For this reason, the objective of the review is to present an update of the most relevant information that exists around the physiology of marine invertebrate neuronal and glial cells.
Collapse
Affiliation(s)
- Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
36
|
Yasui K, Kano T, Standen EM, Aonuma H, Ijspeert AJ, Ishiguro A. Decoding the essential interplay between central and peripheral control in adaptive locomotion of amphibious centipedes. Sci Rep 2019; 9:18288. [PMID: 31792255 PMCID: PMC6889372 DOI: 10.1038/s41598-019-53258-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/24/2019] [Indexed: 11/11/2022] Open
Abstract
Amphibious animals adapt their body coordination to compensate for changing substrate properties as they transition between terrestrial and aquatic environments. Using behavioural experiments and mathematical modelling of the amphibious centipede Scolopendra subspinipes mutilans, we reveal an interplay between descending command (brain), local pattern generation, and sensory feedback that controls the leg and body motion during swimming and walking. The elongated and segmented centipede body exhibits a gradual transition in the locomotor patterns as the animal crosses between land and water. Changing environmental conditions elicit a mechano-sensory feedback mechanism, inducing a gait change at the local segment level. The body segments operating downstream of a severed nerve cord (no descending control) can generate walking with mechano-sensory inputs alone while swimming behaviour is not recovered. Integrating the descending control for swimming initiation with the sensory feedback control for walking in a mathematical model successfully generates the adaptive behaviour of centipede locomotion, capturing the possible mechanism for flexible motor control in animals.
Collapse
Affiliation(s)
- Kotaro Yasui
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai, 980-8577, Japan. .,Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-Ward, Tokyo, 102-0083, Japan.
| | - Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai, 980-8577, Japan
| | - Emily M Standen
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, N12W7, Kita-Ward, Sapporo, 060-0812, Japan
| | - Auke J Ijspeert
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Akio Ishiguro
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai, 980-8577, Japan
| |
Collapse
|
37
|
Matthews BJ, Younger MA, Vosshall LB. The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti. eLife 2019; 8:e43963. [PMID: 31112133 PMCID: PMC6597239 DOI: 10.7554/elife.43963] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/20/2019] [Indexed: 12/31/2022] Open
Abstract
Female Aedes aegypti mosquitoes are deadly vectors of arboviral pathogens and breed in containers of freshwater associated with human habitation. Because high salinity is lethal to offspring, correctly evaluating water purity is a crucial parenting decision. We found that the DEG/ENaC channel ppk301 and sensory neurons expressing ppk301 control egg-laying initiation and choice in Ae. aegypti. Using calcium imaging, we found that ppk301-expressing cells show ppk301-dependent responses to water but, unexpectedly, also respond to salt in a ppk301-independent fashion. This suggests that ppk301 is instructive for egg-laying at low-salt concentrations, but that a ppk301-independent pathway is responsible for inhibiting egg-laying at high-salt concentrations. Water is a key resource for insect survival and understanding how mosquitoes interact with water to control different behaviors is an opportunity to study the evolution of chemosensory systems.
Collapse
Affiliation(s)
- Benjamin J Matthews
- Laboratory of Neurogenetics and BehaviorThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Meg A Younger
- Laboratory of Neurogenetics and BehaviorThe Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and BehaviorThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| |
Collapse
|
38
|
Braz V, Gomes H, Galina A, Saramago L, Braz G, da Silva Vaz I, Logullo C, da Fonseca RN, Campos E, Moraes J. Inhibition of energy metabolism by 3-bromopyruvate in the hard tick Rhipicephalus microplus. Comp Biochem Physiol C Toxicol Pharmacol 2019; 218:55-61. [PMID: 30580107 DOI: 10.1016/j.cbpc.2018.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
The cattle tick R. microplus is the biggest obstacle to livestock rearing in tropical countries. It is responsible for billions of dollars in losses every year, affecting meat and milk production, beef and dairy cattle, and the leather industry. The lack of knowledge and strategies to combat the tick only increases the losses, it leads to successive and uncontrolled applications of acaricides, favouring the selection of strains resistant to commercially available chemical treatments. In this paper, we tested 3‑bromopyruvate (3‑BrPA), an alkylating agent with a high affinity for cysteine residues, on the R. microplus metabolism. We found that 3-BrPA was able to induce cell death in an assay using BME26 strain cell cultures derived from embryos, it was also able to reduce cellular respiration in developing embryos. 3-BrPA is a nonspecific inhibitor, affecting enzymes of different metabolic pathways in R. microplus. In our experiments, we demonstrated that 3-BrPA was able to affect the glycolytic enzyme hexokinase, reducing its activity by approximately 50%; and it strongly inhibited triose phosphate isomerase, which is an enzyme involved in both glycolysis and gluconeogenesis. Also, the mitochondrial respiratory chain was affected, NADH cytochrome c reductase (complex I-III) and succinate cytochrome c reductase (complex II-III) were strongly inhibited by 3-BrPA. Glutamate dehydrogenase was also affected by 3-BrPA, showing a gradual inhibition of activity in all the 3-BrPA concentrations tested. Altogether, these results show that 3-BrPA is a harmful compound to the tick organism.
Collapse
Affiliation(s)
- Valdir Braz
- Laboratory of Biochemistry Hatisaburo Masuda, Federal University of Rio de Janeiro, NUPEM - UFRJ/Macaé, Av. São José do Barreto 764, São José do Barreto, Macaé, RJ CEP 27971-550, Brazil
| | - Helga Gomes
- Laboratory of Biochemistry Hatisaburo Masuda, Federal University of Rio de Janeiro, NUPEM - UFRJ/Macaé, Av. São José do Barreto 764, São José do Barreto, Macaé, RJ CEP 27971-550, Brazil
| | - Antônio Galina
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil
| | - Luiz Saramago
- Laboratory of Biochemistry Hatisaburo Masuda, Federal University of Rio de Janeiro, NUPEM - UFRJ/Macaé, Av. São José do Barreto 764, São José do Barreto, Macaé, RJ CEP 27971-550, Brazil; Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil
| | - Glória Braz
- Chemical Institute, Federal University of Rio de Janeiro, Brazil
| | - Itabajara da Silva Vaz
- Center of Biotechnology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, RS CEP 91501-970, Brazil; National Institute of Science and Technology -Molecular Entomology, Rio de Janeiro, Brazil
| | - Carlos Logullo
- Laboratory of Biochemistry Hatisaburo Masuda, Federal University of Rio de Janeiro, NUPEM - UFRJ/Macaé, Av. São José do Barreto 764, São José do Barreto, Macaé, RJ CEP 27971-550, Brazil; National Institute of Science and Technology -Molecular Entomology, Rio de Janeiro, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratory of Biochemistry Hatisaburo Masuda, Federal University of Rio de Janeiro, NUPEM - UFRJ/Macaé, Av. São José do Barreto 764, São José do Barreto, Macaé, RJ CEP 27971-550, Brazil; National Institute of Science and Technology -Molecular Entomology, Rio de Janeiro, Brazil
| | - Eldo Campos
- Laboratory of Biochemistry Hatisaburo Masuda, Federal University of Rio de Janeiro, NUPEM - UFRJ/Macaé, Av. São José do Barreto 764, São José do Barreto, Macaé, RJ CEP 27971-550, Brazil; National Institute of Science and Technology -Molecular Entomology, Rio de Janeiro, Brazil
| | - Jorge Moraes
- Laboratory of Biochemistry Hatisaburo Masuda, Federal University of Rio de Janeiro, NUPEM - UFRJ/Macaé, Av. São José do Barreto 764, São José do Barreto, Macaé, RJ CEP 27971-550, Brazil; Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil; National Institute of Science and Technology -Molecular Entomology, Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
Kano T, Ikeshita Y, Fukuhara A, Ishiguro A. Body-limb coordination mechanism underlying speed-dependent gait transitions in sea roaches. Sci Rep 2019; 9:2848. [PMID: 30808952 PMCID: PMC6391416 DOI: 10.1038/s41598-019-39862-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/01/2019] [Indexed: 11/09/2022] Open
Abstract
The sea roach is an isopod with 14 legs; owing to its many degrees of freedom and coordination thereof, it can walk rapidly on rough terrain. Although there likely exists a remarkable decentralized control mechanism that facilitates fast and adaptive locomotion of sea roaches, it still remains elusive. To address this issue, we performed behavioural experiments and revealed that sea roaches often change their gait patterns depending on the locomotion speed. We suggest that the bending of the body trunk in the pitch direction is essential for the gait transitions, and we propose a decentralized control mechanism for body-limb coordination. We demonstrate this with a sea-roach-like robot whose gait transition is achieved by the proposed mechanism. This mechanism has some points in common with control mechanisms proposed for other legged animals. Thus, our findings will help unveil the common principle of legged locomotion and aid the design of multi-legged robots that move like animals.
Collapse
Affiliation(s)
- Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai, 980-8577, Japan.
| | - Yoshihito Ikeshita
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai, 980-8577, Japan
| | - Akira Fukuhara
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai, 980-8577, Japan
| | - Akio Ishiguro
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ward, Sendai, 980-8577, Japan
| |
Collapse
|
40
|
Distribution of neuropeptide F in the ventral nerve cord and its possible role on testicular development and germ cell proliferation in the giant freshwater prawn, Macrobrachium rosenbergii. Cell Tissue Res 2019; 376:471-484. [PMID: 30778730 DOI: 10.1007/s00441-019-02999-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/21/2019] [Indexed: 02/03/2023]
Abstract
Neuropeptide F in invertebrates is a homolog of neuropeptide Y in mammals and it is a member of FMRFamide-related peptides. In arthropods, such as insects, there are two types of neuropeptide F comprising long neuropeptide F (NPF) and short neuropeptide F (sNPF). Both NPFs are known to play a crucial role in the regulations of foraging, feeding-related behaviors, circadian rhythm, stress responses, aggression and reproduction in invertebrates. We have earlier found that in the giant freshwater prawn, Macrobrachium rosenbergii, there are three isoforms of NPF and four isoforms of sNPF and that NPFs are expressed in the eyestalks and brain. In the present study, we investigate further the tissue distribution of NPF-I in the ventral nerve cord (VNC) and its role in the development of testes in small male (SM) Macrobrachium rosenbergii. By immunolocalization, using the rabbit polyclonal antibody against NPF-I as a probe, we could detect NPF-I immunoreactivity in the neuropils and neuronal clusters of the subesophageal ganglia (SEG), thoracic ganglia (TG) and abdominal ganglia (AG) of the SM prawns. In functional assays, the administrations of synthetic NPF-I (KPDPTQLAAMADALKYLQELDKYYSQVSRPRFamide) and sNPF (APALRLRFamide) peptides significantly increased the growth rates of SM prawns and significantly increased the gonadosomatic index (GSI) and proliferations of early germ cells in the seminiferous tubules of their testes. It is, therefore, suggestive that NPFs may play critical roles in energy homeostasis towards promoting growth as well as testicular development in prawns that could be applied in the aquaculture of this species.
Collapse
|
41
|
Kwak B, Bae J. Locomotion of arthropods in aquatic environment and their applications in robotics. BIOINSPIRATION & BIOMIMETICS 2018; 13:041002. [PMID: 29508773 DOI: 10.1088/1748-3190/aab460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many bio-inspired robots have been developed so far after careful investigation of animals' locomotion. To successfully apply the locomotion of natural counterparts to robots for efficient and improved mobility, it is essential to understand their principles. Although a lot of research has studied either animals' locomotion or bio-inspired robots, there have only been a few attempts to broadly review both of them in a single article. Among the millions of animal species, this article reviewed various forms of aquatic locomotion in arthropods including relevant bio-inspired robots. Despite some previous robotics research inspired by aquatic arthropods, we found that many less-investigated or even unexplored areas are still present. Therefore, this article has been prepared to identify what types of new robotics research can be carried out after drawing inspiration from the aquatic locomotion of arthropods and to provide fruitful insights that may lead us to develop an agile and efficient aquatic robot.
Collapse
Affiliation(s)
- Bokeon Kwak
- Bio-Robotics and Control (BiRC) Laboratory, Department of Mechanical Engineering, UNIST, Ulsan, Republic of Korea
| | | |
Collapse
|
42
|
Szczecinski NS, Quinn RD. Leg-local neural mechanisms for searching and learning enhance robotic locomotion. BIOLOGICAL CYBERNETICS 2018; 112:99-112. [PMID: 28782078 DOI: 10.1007/s00422-017-0726-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Adapting motor output based on environmental forces is critical for successful locomotion in the real world. Arthropods use at least two neural mechanisms to adjust muscle activation while walking based on detected forces. Mechanism 1 uses negative feedback of leg depressor force to ensure that each stance leg supports an appropriate amount of the body's weight. Mechanism 2 encourages searching for ground contact if the leg supports no body weight. We expand the neural controller for MantisBot, a robot based upon a praying mantis, to include these mechanisms by incorporating leg-local memory and command neurons, as observed in arthropods. We present results from MantisBot transitioning between searching and stepping, mimicking data from animals as reported in the literature.
Collapse
|
43
|
Abstract
In this Guest Editorial, Jeremy Niven and Lars Chittka introduce our special issue on the evolution of nervous systems.
Collapse
|
44
|
Mantziaris C, Bockemühl T, Holmes P, Borgmann A, Daun S, Büschges A. Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect. J Neurophysiol 2017; 118:2296-2310. [PMID: 28724783 DOI: 10.1152/jn.00321.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 11/22/2022] Open
Abstract
To efficiently move around, animals need to coordinate their limbs. Proper, context-dependent coupling among the neural networks underlying leg movement is necessary for generating intersegmental coordination. In the slow-walking stick insect, local sensory information is very important for shaping coordination. However, central coupling mechanisms among segmental central pattern generators (CPGs) may also contribute to this. Here, we analyzed the interactions between contralateral networks that drive the depressor trochanteris muscle of the legs in both isolated and interconnected deafferented thoracic ganglia of the stick insect on application of pilocarpine, a muscarinic acetylcholine receptor agonist. Our results show that depressor CPG activity is only weakly coupled between all segments. Intrasegmental phase relationships differ between the three isolated ganglia, and they are modified and stabilized when ganglia are interconnected. However, the coordination patterns that emerge do not resemble those observed during walking. Our findings are in line with recent studies and highlight the influence of sensory input on coordination in slowly walking insects. Finally, as a direct interaction between depressor CPG networks and contralateral motoneurons could not be observed, we hypothesize that coupling is based on interactions at the level of CPG interneurons.NEW & NOTEWORTHY Maintaining functional interleg coordination is vitally important as animals locomote through changing environments. The relative importance of central mechanisms vs. sensory feedback in this process is not well understood. We analyzed coordination among the neural networks generating leg movements in stick insect preparations lacking phasic sensory feedback. Under these conditions, the networks governing different legs were only weakly coupled. In stick insect, central connections alone are thus insufficient to produce the leg coordination observed behaviorally.
Collapse
Affiliation(s)
- Charalampos Mantziaris
- Department of Animal Physiology, Zoological Institute, Biocenter, University of Cologne, Cologne, Germany
| | - Till Bockemühl
- Department of Animal Physiology, Zoological Institute, Biocenter, University of Cologne, Cologne, Germany
| | - Philip Holmes
- Department of Mechanical and Aerospace Engineering, Program in Applied and Computational Mathematics and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey; and
| | - Anke Borgmann
- Department of Animal Physiology, Zoological Institute, Biocenter, University of Cologne, Cologne, Germany
| | - Silvia Daun
- Department of Animal Physiology, Zoological Institute, Biocenter, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Zoological Institute, Biocenter, University of Cologne, Cologne, Germany;
| |
Collapse
|
45
|
Kano T, Sakai K, Yasui K, Owaki D, Ishiguro A. Decentralized control mechanism underlying interlimb coordination of millipedes. BIOINSPIRATION & BIOMIMETICS 2017; 12:036007. [PMID: 28375850 DOI: 10.1088/1748-3190/aa64a5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Legged animals exhibit adaptive and resilient locomotion through interlimb coordination. The long-term goal of this study is to clarify the relationship between the number of legs and the inherent decentralized control mechanism for interlimb coordination. As a preliminary step, the study focuses on millipedes as they represent the species with the greatest number of legs among various animal species. A decentralized control mechanism involving local force feedback was proposed based on the qualitative findings of behavioural experiments in which responses to the removal of part of the terrain and leg amputation were observed. The proposed mechanism was implemented in a developed millipede-like robot to demonstrate that the robot can adapt to the removal of the part of the terrain and leg amputation in a manner similar to that in behavioural experiments.
Collapse
Affiliation(s)
- Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | |
Collapse
|