1
|
Broad Z, Lefreve J, Wilkinson MJ, Barton S, Barbier F, Jung H, Donovan D, Ortiz-Barrientos D. Gravitropic Gene Expression Divergence Associated With Adaptation to Contrasting Environments in an Australian Wildflower. Mol Ecol 2024:e17543. [PMID: 39444280 DOI: 10.1111/mec.17543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Plants adapt to their local environment through complex interactions between genes, gene networks and hormones. Although the impact of gene expression on trait regulation and evolution has been recognised for many decades, its role in the evolution of adaptation is still a subject of intense exploration. We used a Multi-parent Advanced Generation Inter-Cross (MAGIC) population, which we derived from crossing multiple parents from two distinct coastal ecotypes of an Australia wildflower, Senecio lautus. We focused on studying the contrasting gravitropic behaviours of these ecotypes, which have evolved independently multiple times and show strong responses to natural selection in field experiments, emphasising the role of natural selection in their evolution. Here, we investigated how gene expression differences have contributed to the adaptive evolution of gravitropism. We studied gene expression in 60 pools at five time points (30, 60, 120, 240 and 480 min) after rotating half of the pools 90°. We found 428 genes with differential expression in response to the 90° rotation treatment. Of these, 81 genes (~19%) have predicted functions related to the plant hormones auxin and ethylene, which are crucial for the gravitropic response. By combining insights from Arabidopsis mutant studies and analysing our gene networks, we propose a preliminary model to explain the differences in gravitropism between ecotypes. This model suggests that the differences arise from changes in the transport and availability of the two hormones auxin and ethylene. Our findings indicate that the genetic basis of adaptation involves interconnected signalling pathways that work together to give rise to new ecotypes.
Collapse
Affiliation(s)
- Zoe Broad
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - James Lefreve
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
- School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland, Australia
| | - Melanie J Wilkinson
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Samuel Barton
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
- School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland, Australia
| | - Francois Barbier
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
- School of Agriculture and Food Sustainability, St Lucia, Queensland, Australia
| | - Hyungtaek Jung
- Australian National University, College of Health and Medicine, Canberra, Australian Capital Territory, Australia
| | - Diane Donovan
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
- School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Centre of Excellence in Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Sheng H, Bouwmeester HJ, Munnik T. Phosphate promotes Arabidopsis root skewing and circumnutation through reorganisation of the microtubule cytoskeleton. THE NEW PHYTOLOGIST 2024. [PMID: 39360424 DOI: 10.1111/nph.20152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Phosphate (Pi) plays a key role in plant growth and development. Hence, plants display a range of adaptations to acquire it, including changes in root system architecture (RSA). Whether Pi triggers directional root growth is unknown. We investigated whether Arabidopsis roots sense Pi and grow towards it, that is whether they exhibit phosphotropism. While roots did exhibit a clear Pi-specific directional growth response, it was, however, always to the left, independent of the direction of the Pi gradient. We discovered that increasing concentrations of KH2PO4, trigger a dose-dependent skewing response, in both primary and lateral roots. This phenomenon is Pi-specific - other nutrients do not trigger this - and involves the reorganisation of the microtubule cytoskeleton in epidermal cells of the root elongation zone. Higher Pi levels promote left-handed cell file rotation that results in right-handed, clockwise, root growth and leftward skewing as a result of the helical movement of roots (circumnutation). Our results shed new light on the role of Pi in root growth, and may provide novel insights for crop breeding to optimise RSA and P-use efficiency.
Collapse
Affiliation(s)
- Hui Sheng
- Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Teun Munnik
- Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| |
Collapse
|
3
|
Wang X, Yuan Y, Charrier L, Deng Z, Geisler M, Deng XW, Chen H. Light-stabilized GIL1 suppresses PIN3 activity to inhibit hypocotyl gravitropism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1886-1897. [PMID: 38990128 DOI: 10.1111/jipb.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
Light and gravity coordinately regulate the directional growth of plants. Arabidopsis Gravitropic in the Light 1 (GIL1) inhibits the negative gravitropism of hypocotyls in red and far-red light, but the underlying molecular mechanisms remain elusive. Our study found that GIL1 is a plasma membrane-localized protein. In endodermal cells of the upper part of hypocotyls, GIL1 controls the negative gravitropism of hypocotyls. GIL1 directly interacts with PIN3 and inhibits the auxin transport activity of PIN3. Mutation of PIN3 suppresses the abnormal gravitropic response of gil1 mutant. The GIL1 protein is unstable in darkness but it is stabilized by red and far-red light. Together, our data suggest that light-stabilized GIL1 inhibits the negative gravitropism of hypocotyls by suppressing the activity of the auxin transporter PIN3, thereby enhancing the emergence of young seedlings from the soil.
Collapse
Affiliation(s)
- Xiaolian Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yanfang Yuan
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Laurence Charrier
- Department of Biology, University of Fribourg, Fribourg, 1700, Switzerland
| | - Zhaoguo Deng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, 1700, Switzerland
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Wei R, Ma L, Ma S, Xu L, Ma T, Ma Y, Cheng Z, Dang J, Li S, Chai Q. Intrinsic Mechanism of CaCl 2 Alleviation of H 2O 2 Inhibition of Pea Primary Root Gravitropism. Int J Mol Sci 2024; 25:8613. [PMID: 39201298 PMCID: PMC11354692 DOI: 10.3390/ijms25168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Normal root growth is essential for the plant uptake of soil nutrients and water. However, exogenous H2O2 inhibits the gravitropic growth of pea primary roots. It has been shown that CaCl2 application can alleviate H2O2 inhibition, but the exact alleviation mechanism is not clear. Therefore, the present study was carried out by combining the transcriptome and metabolome with a view to investigate in depth the mechanism of action of exogenous CaCl2 to alleviate the inhibition of pea primordial root gravitropism by H2O2. The results showed that the addition of CaCl2 (10 mmol·L-1) under H2O2 stress (150 mmol·L-1) significantly increased the H2O2 and starch content, decreased peroxidase (POD) activity, and reduced the accumulation of sugar metabolites and lignin in pea primary roots. Down-regulated genes regulating peroxidase, respiratory burst oxidase, and lignin synthesis up-regulated PGM1, a key gene for starch synthesis, and activated the calcium and phytohormone signaling pathways. In summary, 10 mmol·L-1 CaCl2 could alleviate H2O2 stress by modulating the oxidative stress response, signal transduction, and starch and lignin accumulation within pea primary roots, thereby promoting root gravitropism. This provides new insights into the mechanism by which CaCl2 promotes the gravitropism of pea primary roots under H2O2 treatment.
Collapse
Affiliation(s)
- Ruonan Wei
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Site Management Center, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ling Xu
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Tingfeng Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Yantong Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Zhen Cheng
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Junhong Dang
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Sheng Li
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiang Chai
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Qu M, Huang X, Shabala L, Fuglsang AT, Yu M, Shabala S. Understanding Ameliorating Effects of Boron on Adaptation to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1960. [PMID: 39065487 PMCID: PMC11280838 DOI: 10.3390/plants13141960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
When faced with salinity stress, plants typically exhibit a slowdown in their growth patterns. Boron (B) is an essential micronutrient for plants that are known to play a critical role in controlling cell wall properties. In this study, we used the model plant Arabidopsis thaliana Col-0 and relevant mutants to explore how the difference in B availability may modulate plant responses to salt stress. There was a visible root growth suppression of Col-0 with the increased salt levels in the absence of B while this growth reduction was remarkably alleviated by B supply. Pharmacological experiments revealed that orthovanadate (a known blocker of H+-ATPase) inhibited root growth at no B condition, but had no effect in the presence of 30 μM B. Salinity stress resulted in a massive K+ loss from mature zones of A. thaliana roots; this efflux was attenuated in the presence of B. Supplemental B also increased the magnitude of net H+ pumping by plant roots. Boron availability was also essential for root halotropism. Interestingly, the aha2Δ57 mutant with active H+-ATPase protein exhibited the same halotropism response as Col-0 while the aha2-4 mutant had a stronger halotropism response (larger bending angle) compared with that of Col-0. Overall, the ameliorative effect of B on the A. thaliana growth under salt stress is based on the H+-ATPase stimulation and a subsequent K+ retention, involving auxin- and ROS-pathways.
Collapse
Affiliation(s)
- Mei Qu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark;
| | - Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
| | - Lana Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark;
| | - Min Yu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
6
|
Shahbazi M, Rutter LA, Barker R. Transcriptional response of Arabidopsis thaliana's root-tip to spaceflight. PLANT MOLECULAR BIOLOGY 2024; 114:79. [PMID: 38935184 DOI: 10.1007/s11103-024-01478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Plants are expected to play a critical role in the biological life support systems of crewed spaceflight missions, including in the context of upcoming missions targeting the Moon and Mars. Therefore, understanding the response of plants to spaceflight is essential for improving the selection and engineering of plants and spaceflight conditions. In particular, understanding the root-tip's response to spaceflight is of importance as it is the center of orchestrating the development of the root, the primary organ for the absorption of nutrients and anchorage. GLDS-120 is a pioneering study by Paul et al. that used transcriptomics to evaluate the spaceflight response of the root-tip of the model plant Arabidopsis thaliana in dark and light through separate analyses of three genotype groups (Wassilewskija, Columbia-0, and Columbia-0 PhyD) and comparison of genotype responses. Here, we provide a complementary analysis of this dataset through a combined analysis of all samples while controlling for the genotypes in a paired analysis. We identified a robust transcriptional response to spaceflight with 622 DEGs in light and 200 DEGs in dark conditions. Gene enrichment analysis identified 37 and 13 significantly enriched terms from biological processes in light and dark conditions, respectively. Prominent enrichment for hypoxia-related terms in both conditions suggests hypoxia is a key stressor for root development during spaceflight. Additional enriched terms in light conditions include the circadian cycle, light response, and terms for the metabolism of flavonoid and indole-containing compounds. These results further our understanding of plants' responses to the spaceflight environment.
Collapse
Affiliation(s)
- Mohammad Shahbazi
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| | - Lindsay A Rutter
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Bai Q, Xuan S, Li W, Ali K, Zheng B, Ren H. Molecular mechanism of brassinosteroids involved in root gravity response based on transcriptome analysis. BMC PLANT BIOLOGY 2024; 24:485. [PMID: 38822229 PMCID: PMC11143716 DOI: 10.1186/s12870-024-05174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Brassinosteroids (BRs) are a class of phytohormones that regulate a wide range of developmental processes in plants. BR-associated mutants display impaired growth and response to developmental and environmental stimuli. RESULTS Here, we found that a BR-deficient mutant det2-1 displayed abnormal root gravitropic growth in Arabidopsis, which was not present in other BR mutants. To further elucidate the role of DET2 in gravity, we performed transcriptome sequencing and analysis of det2-1 and bri1-116, bri1 null mutant allele. Expression levels of auxin, gibberellin, cytokinin, and other related genes in the two mutants of det2-1 and bri1-116 were basically the same. However, we only found that a large number of JAZ (JASMONATE ZIM-domain) genes and jasmonate synthesis-related genes were upregulated in det2-1 mutant, suggesting increased levels of endogenous JA. CONCLUSIONS Our results also suggested that DET2 not only plays a role in BR synthesis but may also be involved in JA regulation. Our study provides a new insight into the molecular mechanism of BRs on the root gravitropism.
Collapse
Affiliation(s)
- Qunwei Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi Province, 716000, PR China
| | - Shurong Xuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Wenjuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Bowen Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China
| | - Hongyan Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China.
| |
Collapse
|
8
|
Wexler Y, Schroeder JI, Shkolnik D. Hydrotropism mechanisms and their interplay with gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1732-1746. [PMID: 38394056 DOI: 10.1111/tpj.16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Plants partly optimize their water recruitment from the growth medium by directing root growth toward a moisture source, a phenomenon termed hydrotropism. The default mechanism of downward growth, termed gravitropism, often functions to counteract hydrotropism when the water-potential gradient deviates from the gravity vector. This review addresses the identity of the root sites in which hydrotropism-regulating factors function to attenuate gravitropism and the interplay between these various factors. In this context, the function of hormones, including auxin, abscisic acid, and cytokinins, as well as secondary messengers, calcium ions, and reactive oxygen species in the conflict between these two opposing tropisms is discussed. We have assembled the available data on the effects of various chemicals and genetic backgrounds on both gravitropism and hydrotropism, to provide an up-to-date perspective on the interactions that dictate the orientation of root tip growth. We specify the relevant open questions for future research. Broadening our understanding of root mechanisms of water recruitment holds great potential for providing advanced approaches and technologies that can improve crop plant performance under less-than-optimal conditions, in light of predicted frequent and prolonged drought periods due to global climate change.
Collapse
Affiliation(s)
- Yonatan Wexler
- Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Julian I Schroeder
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, 92093-0116, USA
| | - Doron Shkolnik
- Faculty of Agriculture, Food and Environment, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
9
|
Chen JC, Lin HY, Novák O, Strnad M, Lee YI, Fang SC. Diverse geotropic responses in the orchid family. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38809156 DOI: 10.1111/pce.14975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
In epiphytes, aerial roots are important to combat water-deficient, nutrient-poor, and high-irradiance microhabitats. However, whether aerial roots can respond to gravity and whether auxin plays a role in regulating aerial root development remain open-ended questions. Here, we investigated the gravitropic response of the epiphytic orchid Phalaenopsis aphrodite. Our data showed that aerial roots of P. aphrodite failed to respond to gravity, and this was correlated with a lack of starch granules/statolith sedimentation in the roots and the absence of the auxin efflux carrier PIN2 gene. Using an established auxin reporter, we discovered that auxin maximum was absent in the quiescent center of aerial roots of P. aphrodite. Also, gravity failed to trigger auxin redistribution in the root caps. Hence, loss of gravity sensing and gravity-dependent auxin redistribution may be the genetic factors contributing to aerial root development. Moreover, the architectural and functional innovations that achieve fast gravitropism in the flowering plants appear to be lost in both terrestrial and epiphytic orchids, but are present in the early diverged orchid subfamilies. Taken together, our findings provide physiological and molecular evidence to support the notion that epiphytic orchids lack gravitropism and suggest diverse geotropic responses in the orchid family.
Collapse
Affiliation(s)
- Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Cai Z, Dai Y, Jin X, Xu H, Huang Z, Xie Z, Yu X, Luo J. Ambient temperature regulates root circumnutation in rice through the ethylene pathway: transcriptome analysis reveals key genes involved. FRONTIERS IN PLANT SCIENCE 2024; 15:1348295. [PMID: 38525142 PMCID: PMC10957643 DOI: 10.3389/fpls.2024.1348295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Plant roots are constantly prepared to adjust their growth trajectories to avoid unfavorable environments, and their ability to reorient is particularly crucial for survival. Under laboratory conditions, this continuous reorientation of the root tip is manifested as coiling or waving, which we refer to as root circumnutation. However, the effect of ambient temperature (AT) on root circumnutation remains unexplored. In this study, rice seedlings were employed to assess the impact of varying ATs on root circumnutation. The role of ethylene in mediating root circumnutation under elevated AT was examined using the ethylene biosynthesis inhibitor aminooxyacetic acid (AOA) and the ethylene perception antagonist silver thiosulfate (STS). Furthermore, transcriptome sequencing, weighted gene co-expression network analysis, and real-time quantitative PCR were utilized to analyze gene expressions in rice root tips under four distinct treatments: 25°C, 35°C, 35°C+STS, and 35°C+AOA. As a result, genes associated with ethylene synthesis and signaling (OsACOs and OsERFs), auxin synthesis and transport (OsYUCCA6, OsABCB15, and OsNPFs), cell elongation (OsEXPAs, OsXTHs, OsEGL1, and OsEXORDIUMs), as well as the inhibition of root curling (OsRMC) were identified. Notably, the expression levels of these genes increased with rising temperatures above 25°C. This study is the first to demonstrate that elevated AT can induce root circumnutation in rice via the ethylene pathway and proposes a potential molecular model through the identification of key genes. These findings offer valuable insights into the growth regulation mechanism of plant roots under elevated AT conditions.
Collapse
Affiliation(s)
- Zeping Cai
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Yinuo Dai
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Xia Jin
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Hui Xu
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Zhen Huang
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Zhenyu Xie
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Xudong Yu
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Jiajia Luo
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
11
|
Zheng L, Hu Y, Yang T, Wang Z, Wang D, Jia L, Xie Y, Luo L, Qi W, Lv Y, Beeckman T, Xuan W, Han Y. A root cap-localized NAC transcription factor controls root halotropic response to salt stress in Arabidopsis. Nat Commun 2024; 15:2061. [PMID: 38448433 PMCID: PMC10917740 DOI: 10.1038/s41467-024-46482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Plants are capable of altering root growth direction to curtail exposure to a saline environment (termed halotropism). The root cap that surrounds root tip meristematic stem cells plays crucial roles in perceiving and responding to environmental stimuli. However, how the root cap mediates root halotropism remains undetermined. Here, we identified a root cap-localized NAC transcription factor, SOMBRERO (SMB), that is required for root halotropism. Its effect on root halotropism is attributable to the establishment of asymmetric auxin distribution in the lateral root cap (LRC) rather than to the alteration of cellular sodium equilibrium or amyloplast statoliths. Furthermore, SMB is essential for basal expression of the auxin influx carrier gene AUX1 in LRC and for auxin redistribution in a spatiotemporally-regulated manner, thereby leading to directional bending of roots away from higher salinity. Our findings uncover an SMB-AUX1-auxin module linking the role of the root cap to the activation of root halotropism.
Collapse
Affiliation(s)
- Lulu Zheng
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Tianzhao Yang
- National Engineering Laboratory of Crop Stress Resistence Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Daoyuan Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Letian Jia
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuanming Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Long Luo
- National Engineering Laboratory of Crop Stress Resistence Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Weicong Qi
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yuanda Lv
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent, B-9052, Belgium
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistence Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
12
|
Li X, Zhao R, Liu J, Li Z, Chen A, Xu S, Sheng X. Dynamic changes in calcium signals during root gravitropism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108481. [PMID: 38447424 DOI: 10.1016/j.plaphy.2024.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Gravitropism is a vital mechanism through which plants adapt to their environment. Previous studies indicated that Ca2+ may play an important role in plant gravitropism. However, our understanding of the calcium signals in root gravitropism is still largely limited. Using a vertical stage confocal and transgenic Arabidopsis R-GECO1, our data showed that gravity stimulation enhances the occurrence of calcium spikes and increases the Ca2+ concentration in the lower side of the root cap. Furthermore, a close correlation was observed in the asymmetry of calcium signals with the inclination angles at which the roots were oriented. The frequency of calcium spikes on the lower side of 90°-rotated root decreases rapidly over time, whereas the asymmetric distribution of auxin readily strengthens for up to 3 h, indicating that the calcium spikes, promoted by gravity stimulation, may precede auxin as one of the early signals. In addition, the root gravitropism of starchless mutants is severely impaired. Correspondingly, no significant increase in calcium spike occurrence was observed in the root caps of these mutants within 15 min following a 90° rotation, indicating the involvement of starch grains in the formation of calcium spikes. However, between 30 and 45 min after a 90° rotation, asymmetric calcium spikes were indeed observed in the root of starchless mutants, suggesting that starch grains are not indispensable for the formation of calcium spikes. Besides, co-localization analysis suggests that the ER may function as calcium stores during the occurrence of calcium spikes. These findings provide further insights into plant gravitropism.
Collapse
Affiliation(s)
- Xinyu Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruoxin Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jiahui Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ziwei Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ai Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shi Xu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
13
|
Hao B, Zhang R, Zhang C, Wen N, Xia Y, Zhao Y, Li Q, Qiao L, Li W. Characterization of OsPIN2 Mutants Reveal Novel Roles for Reactive Oxygen Species in Modulating Not Only Root Gravitropism but Also Hypoxia Tolerance in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:476. [PMID: 38498461 PMCID: PMC10892736 DOI: 10.3390/plants13040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Tolerance to submergence-induced hypoxia is an important agronomic trait especially for crops in lowland and flooding-affected areas. Although rice (Oryza sativa) is considered a flood-tolerant crop, only limited cultivars display strong tolerance to prolonged submergence and/or hypoxic stress. Therefore, characterization of hypoxic resistant genes and/or germplasms have important theoretical and practical significance for rice breeding and sustained improvements. Previous investigations have demonstrated that loss-of-function of OsPIN2, a gene encoding an auxin efflux transporter, results in the loss of root gravitropism due to disrupted auxin transport in the root tip. In this study, we revealed a novel connection between OsPIN2 and reactive oxygen species (ROS) in modulating root gravitropism and hypoxia tolerance in rice. It is shown that the OsPIN2 mutant had decreased accumulation of ROS in root tip, due to the downregulation of glycolate oxidase encoding gene OsGOX6, one of the main H2O2 sources. The morphological defects of root including waved rooting and agravitropism in OsPIN2 mutant may be rescued partly by exogenous application of H2O2. The OsPIN2 mutant exhibited increased resistance to ROS toxicity in roots due to treatment with H2O2. Furthermore, it is shown that the OsPIN2 mutant had increased tolerance to hypoxic stress accompanied by lower ROS accumulation in roots, because the hypoxia stress led to over production of ROS in the roots of the wild type but not in that of OsPIN2 mutant. Accordingly, the anoxic resistance-related gene SUB1B showed differential expression in the root of the WT and OsPIN2 mutant in response to hypoxic conditions. Notably, compared with the wild type, the OsPIN2 mutant displayed a different pattern of auxin distribution in the root under hypoxia stress. It was shown that hypoxia stress caused a significant increase in auxin distribution in the root tip of the WT but not in that of the war1 mutant. In summary, these results suggested that OsPIN2 may play a role in regulating ROS accumulation probably via mediating auxin transport and distribution in the root tip, affecting root gravitropism and hypoxic tolerance in rice seedlings. These findings may contribute to the genetic improvement and identification of potential hypoxic tolerant lines in rice.
Collapse
Affiliation(s)
- Bowen Hao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Ruihan Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Chengwei Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Na Wen
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Yu Xia
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Yang Zhao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Qinying Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Lei Qiao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Wenqiang Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
14
|
Cosca CM, Haggard JA, Kato HM, Sklavenitis EM, Blumstein DT. Do environmental stimuli modify sensitive plant (Mimosa pudica L.) risk assessment? PLoS One 2023; 18:e0294971. [PMID: 38127910 PMCID: PMC10734946 DOI: 10.1371/journal.pone.0294971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Although plants and animals both assess their environment and respond to stimuli, this reaction is considered a behavior in animals and a response in plants. Responses in plants are seen within various timescales- from the nanosecond stimuli is presented to a lifelong progression. Within this study, we bridge the gap between animal behavioral studies and plant response. Sensitive plants (Mimosa pudica L.) are an ideal subject for this due to the rapid closure of their primary leaflets when touched. We designed a multimodal, or stress combination, experiment to test two hypotheses with sensitive plants: if they could be distracted and if they would alter their risk assessment when exposed to external stimuli (wind and sound). To evaluate the distraction hypothesis, we measured an individual's latency to close, hypothesizing that if the plants were distracted, they would take longer to close. To evaluate the uncertain risk hypothesis, we quantified the latency to reopen, hypothesizing that if the plants were uncertain, they would take longer to reopen. We also quantified the number of pinnae closed on the selected stem to test for changes in risk assessment across treatments. We expected the unimodal treatments would distract or alter risk assessment, and the multimodal treatment would elicit an enhanced response. Multimodal stimuli had a significant effect on the number of pinnae closed before the tap, but we found no evidence that plants were distracted by any stimulus tested. We found that temperature had a significant effect on the latency to close, and that plants modified their risk assessment when exposed to experimental wind stimuli. By manipulating environmental stimuli, we found that sensitive plants trade-off energy and perceived risk much in the way that is commonly found in animals. Framing the study of plants' responses to environmental stimuli as behavioral questions may generate new insights.
Collapse
Affiliation(s)
- Charlotte M. Cosca
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Justin A. Haggard
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Halli M. Kato
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eleni M. Sklavenitis
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
15
|
Henry AR, Miller ND, Spalding EP. Patch Track Software for Measuring Kinematic Phenotypes of Arabidopsis Roots Demonstrated on Auxin Transport Mutants. Int J Mol Sci 2023; 24:16475. [PMID: 38003665 PMCID: PMC10671601 DOI: 10.3390/ijms242216475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Plant roots elongate when cells produced in the apical meristem enter a transient period of rapid expansion. To measure the dynamic process of root cell expansion in the elongation zone, we captured digital images of growing Arabidopsis roots with horizontal microscopes and analyzed them with a custom image analysis program (PatchTrack) designed to track the growth-driven displacement of many closely spaced image patches. Fitting a flexible logistics equation to patch velocities plotted versus position along the root axis produced the length of the elongation zone (mm), peak relative elemental growth rate (% h-1), the axial position of the peak (mm from the tip), and average root elongation rate (mm h-1). For a wild-type root, the average values of these kinematic traits were 0.52 mm, 23.7% h-1, 0.35 mm, and 0.1 mm h-1, respectively. We used the platform to determine the kinematic phenotypes of auxin transport mutants. The results support a model in which the PIN2 auxin transporter creates an area of expansion-suppressing, supraoptimal auxin concentration that ends 0.1 mm from the quiescent center (QC), and that ABCB4 and ABCB19 auxin transporters maintain expansion-limiting suboptimal auxin levels beginning approximately 0.5 mm from the QC. This study shows that PatchTrack can quantify dynamic root phenotypes in kinematic terms.
Collapse
Affiliation(s)
| | | | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA (N.D.M.)
| |
Collapse
|
16
|
Zhao HM, Zheng DF, Feng NJ, Zhou GS, Khan A, Lu XT, Deng P, Zhou H, Du YW. Regulatory effects of Hemin on prevention and rescue of salt stress in rapeseed (Brassica napus L.) seedlings. BMC PLANT BIOLOGY 2023; 23:558. [PMID: 37957575 PMCID: PMC10644511 DOI: 10.1186/s12870-023-04595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Salt stress severely restricts rapeseed growth and productivity. Hemin can effectively alleviate salt stress in plants. However, the regulatory effect of Hemin on rapeseed in salt stress is unclear. Here, we analyzed the response and remediation mechanism of Hemin application to rapeseed before and after 0.6% (m salt: m soil) NaCl stress. Experiment using two Brassica napus (AACC, 2n = 38) rapeseed varieties Huayouza 158R (moderately salt-tolerant) and Huayouza 62 (strongly salt-tolerant). To explore the best optional ways to improve salt stress resistance in rapeseed. RESULTS Our findings revealed that exogenous application of Hemin enhanced morph-physiological traits of rapeseed and significantly attenuate the inhibition of NaCl stress. Compared to Hemin (SH) treatment, Hemin (HS) significantly improved seedlings root length, seedlings height, stem diameter and accumulated more dry matter biomass under NaCl stress. Moreover, Hemin (HS) significantly improved photosynthetic efficiency, activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and decreased electrolyte leakage (EL) and malondialdehyde (MDA) content, thus resulting in the alleviation of oxidative membrane damage. Hemin (HS) showed better performance than Hemin (SH) under NaCl stress. CONCLUSION Hemin could effectively mitigate the adverse impacts of salt stress by regulating the morph-physiological, photosynthetic and antioxidants traits of rapeseed. This study may provide a basis for Hemin to regulate cultivated rapeseed salt tolerance and explore a better way to alleviate salt stress.
Collapse
Affiliation(s)
- Hui-Min Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Dian-Feng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Nai-Jie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Guang-Sheng Zhou
- College of Plant Science & Technology of Hua Zhong Agricultural University, Wuhan, 430070, China.
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xu-Tong Lu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - You-Wei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| |
Collapse
|
17
|
Chen J, Yu R, Li N, Deng Z, Zhang X, Zhao Y, Qu C, Yuan Y, Pan Z, Zhou Y, Li K, Wang J, Chen Z, Wang X, Wang X, He SN, Dong J, Deng XW, Chen H. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants. Cell 2023; 186:4788-4802.e15. [PMID: 37741279 PMCID: PMC10615846 DOI: 10.1016/j.cell.2023.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Gravity controls directional growth of plants, and the classical starch-statolith hypothesis proposed more than a century ago postulates that amyloplast sedimentation in specialized cells initiates gravity sensing, but the molecular mechanism remains uncharacterized. The LAZY proteins are known as key regulators of gravitropism, and lazy mutants show striking gravitropic defects. Here, we report that gravistimulation by reorientation triggers mitogen-activated protein kinase (MAPK) signaling-mediated phosphorylation of Arabidopsis LAZY proteins basally polarized in root columella cells. Phosphorylation of LAZY increases its interaction with several translocons at the outer envelope membrane of chloroplasts (TOC) proteins on the surface of amyloplasts, facilitating enrichment of LAZY proteins on amyloplasts. Amyloplast sedimentation subsequently guides LAZY to relocate to the new lower side of the plasma membrane in columella cells, where LAZY induces asymmetrical auxin distribution and root differential growth. Together, this study provides a molecular interpretation for the starch-statolith hypothesis: the organelle-movement-triggered molecular polarity formation.
Collapse
Affiliation(s)
- Jiayue Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Renbo Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Key Laboratory of Vegetable Research Center, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Na Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zhaoguo Deng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xinxin Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yaran Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chengfu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yanfang Yuan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhexian Pan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yangyang Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kunlun Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiajun Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhiren Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiaoyi Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaolian Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shu-Nan He
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
18
|
Bian J, Cui Y, Li J, Guan Y, Tian S, Liu X. Genome-wide analysis of PIN genes in cultivated peanuts (Arachis hypogaea L.): identification, subcellular localization, evolution, and expression patterns. BMC Genomics 2023; 24:629. [PMID: 37865765 PMCID: PMC10590530 DOI: 10.1186/s12864-023-09723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Auxin is an important hormone in plants and the PIN-FORMED (PIN) genes are essential to auxin distribution in growth and developmental processes of plants. Peanut is an influential cash crop, but research into PIN genes in peanuts remains limited. RESULTS In this study, 16 PIN genes were identified in the genome of cultivated peanut, resolving into four subfamilies. All PIN genes were predicted to be located in the plasma membrane and a subcellular location experiment confirmed this prediction for eight of them. The gene structure, cis-elements in the promoter, and evolutionary relationships were elucidated, facilitating our understanding of peanut PINs and their evolution. In addition, the expression patterns of these PINs in various tissues were analyzed according to a previously published transcriptome dataset and qRT-PCR, which gave us a clear understanding of the temporal and spatial expression of PIN genes in different growth stages and different tissues. The expression trend of homologous genes was similar. AhPIN2A and AhPIN2B exhibited predominant expression in roots. AhPIN1A-1 and AhPIN1B-1 displayed significant upregulation following peg penetration, suggesting a potential close association with peanut pod development. Furthermore, we presented the gene network and gene ontology enrichment of these PINs. Notably, AhABCB19 exhibited a co-expression relationship with AhPIN1A and AhPIN1B-1, with all three genes displaying higher expression levels in peanut pegs and pods. These findings reinforce their potential role in peanut pod development. CONCLUSIONS This study details a comprehensive analysis of PIN genes in cultivated peanuts and lays the foundation for subsequent studies of peanut gene function and phenotype.
Collapse
Affiliation(s)
- Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Yuanyuan Cui
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Jihua Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Yu Guan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Shuhua Tian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Xiaoqin Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China.
| |
Collapse
|
19
|
Varshney K, Gutjahr C. KAI2 Can Do: Karrikin Receptor Function in Plant Development and Response to Abiotic and Biotic Factors. PLANT & CELL PHYSIOLOGY 2023; 64:984-995. [PMID: 37548562 PMCID: PMC10504578 DOI: 10.1093/pcp/pcad077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
The α/β hydrolase KARRIKIN INSENSITIVE 2 (KAI2) functions as a receptor for a yet undiscovered phytohormone, provisionally termed KAI2 ligand (KL). In addition, it perceives karrikin, a butenolide compound found in the smoke of burnt plant material. KAI2-mediated signaling is involved in regulating seed germination and in shaping seedling and adult plant morphology, both above and below ground. It also governs responses to various abiotic stimuli and stresses and shapes biotic interactions. KAI2-mediated signaling is being linked to an elaborate cross-talk with other phytohormone pathways such as auxin, gibberellin, abscisic acid, ethylene and salicylic acid signaling, in addition to light and nutrient starvation signaling. Further connections will likely be revealed in the future. This article summarizes recent advances in unraveling the function of KAI2-mediated signaling and its interaction with other signaling pathways.
Collapse
Affiliation(s)
- Kartikye Varshney
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Caroline Gutjahr
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
20
|
Wang L, Jäggi S, Cofer TM, Waterman JM, Walthert M, Glauser G, Erb M. Immature leaves are the dominant volatile-sensing organs of maize. Curr Biol 2023; 33:3679-3689.e3. [PMID: 37597519 DOI: 10.1016/j.cub.2023.07.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Plants perceive herbivory-induced volatiles and respond to them by upregulating their defenses. To date, the organs responsible for volatile perception remain poorly described. Here, we show that responsiveness to the herbivory-induced green leaf volatile (Z)-3-hexenyl acetate (HAC) in terms of volatile emission, transcriptional regulation, and jasmonate defense hormone activation is largely constrained to younger maize leaves. Older leaves are much less sensitive to HAC. In a given leaf, responsiveness to HAC is high at immature developmental stages and drops off rapidly during maturation. Responsiveness to the non-volatile elicitor ZmPep3 shows an opposite pattern, demonstrating that this form of hyposmia (i.e., decreased sense of smell) is not due to a general defect in jasmonate defense signaling in mature leaves. Neither stomatal conductance nor leaf cuticle composition explains the unresponsiveness of older leaves to HAC, suggesting perception mechanisms upstream of jasmonate signaling as driving factors. Finally, we show that hyposmia in older leaves is not restricted to HAC and extends to the full blend of herbivory-induced volatiles. In conclusion, our work identifies immature maize leaves as dominant stress volatile-sensing organs. The tight spatiotemporal control of volatile perception may facilitate within plant defense signaling to protect young leaves and may allow plants with complex architectures to explore the dynamic odor landscapes at the outer periphery of their shoots.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| | - Simon Jäggi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Tristan M Cofer
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Jamie M Waterman
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Mario Walthert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Science, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
21
|
Zhai T, Teng J, Fan X, Yu S, Wang C, Guo X, Yang W, Zhang S. Nitrile-Specific Protein NSP2 and Its Interacting Protein MPK3 Synergistically Regulate Plant Disease Resistance in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2857. [PMID: 37571011 PMCID: PMC10421354 DOI: 10.3390/plants12152857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Glucosinolates and their degradation products have a wide range of actions and are important components of plant defense. NSP2 (nitrile-specific protein 2) is a key regulator in the breakdown process of glucosinolates. However, the precise function of NSP2 in plant disease resistance beyond its role in glucosinolate degradation is still unclear. In this study, we discovered that NSP2 which was induced by Pst DC3000, influenced PR genes expression and reactive oxygen burst. Additionally, omics analysis revealed that NSP2 was engaged in plant-pathogen interaction and several hormone signal transduction pathways. Furthermore, immunoprecipitation-tandem mass spectrometry analysis (IP-MS), bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation demonstrated that NSP2 interacts with MPK3. Genetic analysis shows that NSP2 may be a function downstream of MPK3. Upon pathogen inoculation, NSP2 protein levels increase while MPK3 protein levels decrease. Moreover, the level of phosphorylated NSP2 decreases. Taken together, this study sheds light on a new mode of synergistic action between NSP2 and MPK3 in the disease resistance process.
Collapse
Affiliation(s)
- Tingting Zhai
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (X.F.); (S.Y.); (C.W.)
| | - Jun Teng
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China;
| | - Xintong Fan
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (X.F.); (S.Y.); (C.W.)
| | - Shaowei Yu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (X.F.); (S.Y.); (C.W.)
| | - Chen Wang
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (X.F.); (S.Y.); (C.W.)
| | - Xingqi Guo
- School of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 271018, China;
| | - Wei Yang
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (X.F.); (S.Y.); (C.W.)
| | - Shuxin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai’an 271018, China; (T.Z.); (X.F.); (S.Y.); (C.W.)
| |
Collapse
|
22
|
Djemal R, Bradai M, Amor F, Hanin M, Ebel C. Wheat type one protein phosphatase promotes salt and osmotic stress tolerance in arabidopsis via auxin-mediated remodelling of the root system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107832. [PMID: 37327648 DOI: 10.1016/j.plaphy.2023.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
The control of optimal root growth and plant stress responses depends largely on a variety of phytohormones among which auxin and brassinosteroids (BRs) are the most influential. We have previously reported that the durum wheat type 1 protein phosphatase TdPP1 participates in the control of root growth by modulating BR signaling. In this study, we pursue our understanding of how TdPP1 fulfills this regulatory function on root growth by evaluating the physiological and molecular responses of Arabidopsis TdPP1 over-expressing lines to abiotic stresses. Our results showed that when exposed to 300 mM Mannitol or 100 mM NaCl, the seedlings of TdPP1 over-expressors exhibit modified root architecture with higher lateral root density, and longer root hairs concomitant with a lower inhibition of the primary root growth. These lines also exhibit faster gravitropic response and a decrease in primary root growth inhibition when exposed to high concentrations of exogenous IAA. On another hand, a cross between TdPP1 overexpressors and DR5:GUS marker line was performed to monitor auxin accumulation in roots. Remarkably, the TdPP1 overexpression resulted in an enhanced auxin gradient under salt stress with a higher accumulation in primary and lateral root tips. Moreover, TdPP1 transgenics exhibit a significant induction of a subset of auxin-responsive genes under salt stress conditions. Therefore, our results reveal a role of PP1 in enhancing auxin signaling to help shape greater root plasticity thus improving plant stress resilience.
Collapse
Affiliation(s)
- Rania Djemal
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Mariem Bradai
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Fatma Amor
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| | - Chantal Ebel
- Plant Physiology and Functional Genomics Research Unit, Higher Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia.
| |
Collapse
|
23
|
Abstract
Gravity is a fundamental interaction that permeates throughout our Universe. On Earth, gravity gives weight to physical objects, and has been a constant presence throughout terrestrial biological evolution. Thus, gravity has shaped all biological functions, some examples include the growth of plants (e.g., gravitropism), the structure and morphology of biological parts in multicellular organisms, to its effects on our physiological function when humans travel into space. Moreover, from an evolutionary perspective, gravity has been a constant force on biology, and life, to our understanding, should have no reason to not experience the effects of gravity. Interestingly, there appear to be specific biological mechanisms that activate in the absence of gravity, with the space environment the only location to study the effects of a lack of gravity on biological systems. Thus, in this perspective piece, biological adaptations from the cellular to the whole organism levels to the presence and absence of gravity will be organized and described, as well as outlining future areas of research for gravitational biological investigations to address. Up to now, we have observed and shown how gravity effects biology at different levels, with a few examples including genetic (e.g., cell cycle, metabolism, signal transduction associated pathways, etc.), biochemically (e.g., cytoskeleton, NADPH oxidase, Yes-associated protein, etc.), and functionally (e.g., astronauts experiencing musculoskeletal and cardiovascular deconditioning, immune dysfunction, etc., when traveling into space). Based from these observations, there appear to be gravity-sensitive and specific pathways across biological organisms, though knowledge gaps of the effects of gravity on biology remain, such as similarities and differences across species, reproduction, development, and evolutionary adaptations, sex-differences, etc. Thus, here an overview of the literature is provided for context of gravitational biology research to-date and consideration for future studies, as we prepare for long-term occupation of low-Earth Orbit and cis-Lunar space, and missions to the Moon and Mars, experiencing the effects of Lunar and Martian gravity on biology, respectively, through our Artemis program.
Collapse
|
24
|
Kuya N, Nishijima R, Kitomi Y, Kawakatsu T, Uga Y. Transcriptome profiles of rice roots under simulated microgravity conditions and following gravistimulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1193042. [PMID: 37360733 PMCID: PMC10288856 DOI: 10.3389/fpls.2023.1193042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Root system architecture affects the efficient uptake of water and nutrients in plants. The root growth angle, which is a critical component in determining root system architecture, is affected by root gravitropism; however, the mechanism of root gravitropism in rice remains largely unknown. In this study, we conducted a time-course transcriptome analysis of rice roots under conditions of simulated microgravity using a three-dimensional clinostat and following gravistimulation to detect candidate genes associated with the gravitropic response. We found that HEAT SHOCK PROTEIN (HSP) genes, which are involved in the regulation of auxin transport, were preferentially up-regulated during simulated microgravity conditions and rapidly down-regulated by gravistimulation. We also found that the transcription factor HEAT STRESS TRANSCRIPTION FACTOR A2s (HSFA2s) and HSFB2s, showed the similar expression patterns with the HSPs. A co-expression network analysis and an in silico motif search within the upstream regions of the co-expressed genes revealed possible transcriptional control of HSPs by HSFs. Because HSFA2s are transcriptional activators, whereas HSFB2s are transcriptional repressors, the results suggest that the gene regulatory networks governed by HSFs modulate the gravitropic response through transcriptional control of HSPs in rice roots.
Collapse
Affiliation(s)
- Noriyuki Kuya
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ryo Nishijima
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yuka Kitomi
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
25
|
Araniti F, Talarico E, Madeo ML, Greco E, Minervino M, Álvarez-Rodríguez S, Muto A, Ferrari M, Chiappetta A, Bruno L. Short-term exposition to acute Cadmium toxicity induces the loss of root gravitropic stimuli perception through PIN2-mediated auxin redistribution in Arabidopsis thaliana (L.) Heynh. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111726. [PMID: 37149227 DOI: 10.1016/j.plantsci.2023.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd), one of the most widespread and water-soluble polluting heavy metals, has been widely studied on plants, even if the mechanisms underlying its phytotoxicity remain elusive. Indeed, most experiments are performed using extensive exposure time to the toxicants, not observing the primary targets affected. The present work studied Cd effects on Arabidopsis thaliana (L.) Heynh's root apical meristem (RAM) exposed for short periods (24h and 48h) to acute phytotoxic concentrations (100 and 150µM). The effects were studied through integrated morpho-histological, molecular, pharmacological and metabolomic analyses, highlighting that Cd inhibited primary root elongation by affecting the meristem zone via altering cell expansion. Moreover, Cd altered Auxin accumulation in RAM and affected PINs polar transporters particularly PIN2. In addition, we observed that high Cd concentration induced accumulation of reactive oxygen species (ROS) in roots, which resulted in an altered organization of cortical microtubules and the starch and sucrose metabolism, altering the statolith formation and, consequently, the gravitropic root response. Our results demonstrated that short Cd exposition (24h) affected cell expansion preferentially, altering auxin distribution and inducing ROS accumulation, which resulted in an alteration of gravitropic response and microtubules orientation pattern.
Collapse
Affiliation(s)
- Fabrizio Araniti
- Department of Agricultural and Environmental Sciences, University of Milano, Milan 20133, Italy
| | - Emanuela Talarico
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Maria Letizia Madeo
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Eleonora Greco
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Marco Minervino
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Sara Álvarez-Rodríguez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Michele Ferrari
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Adriana Chiappetta
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy.
| |
Collapse
|
26
|
Xu K, Jourquin J, Xu X, De Smet I, Fernandez AI, Beeckman T. Dynamic GOLVEN-ROOT GROWTH FACTOR 1 INSENSITIVE signaling in the root cap mediates root gravitropism. PLANT PHYSIOLOGY 2023; 192:256-273. [PMID: 36747317 PMCID: PMC10152645 DOI: 10.1093/plphys/kiad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 05/03/2023]
Abstract
Throughout the exploration of the soil, roots interact with their environment and adapt to different conditions. Directional root growth is guided by asymmetric molecular patterns but how these become established or are dynamically regulated is poorly understood. Asymmetric gradients of the phytohormone auxin are established during root gravitropism, mainly through directional transport mediated by polarized auxin transporters. Upon gravistimulation, PIN-FORMED2 (PIN2) is differentially distributed and accumulates at the lower root side to facilitate asymmetric auxin transport up to the elongation zone where it inhibits cell elongation. GOLVEN (GLV) peptides function in gravitropism by affecting PIN2 abundance in epidermal cells. In addition, GLV signaling through ROOT GROWTH FACTOR 1 INSENSITIVE (RGI) receptors regulates root apical meristem maintenance. Here, we show that GLV-RGI signaling in these 2 processes in Arabidopsis (Arabidopsis thaliana) can be mapped to different cells in the root tip and that, in the case of gravitropism, it operates mainly in the lateral root cap (LRC) to maintain PIN2 levels at the plasma membrane (PM). Furthermore, we found that GLV signaling upregulates the phosphorylation level of PIN2 in an RGI-dependent manner. In addition, we demonstrated that the RGI5 receptor is asymmetrically distributed in the LRC and accumulates in the lower side of the LRC after gravistimulation. Asymmetric GLV-RGI signaling in the root cap likely accounts for differential PIN2 abundance at the PM to temporarily support auxin transport up to the elongation zone, thereby representing an additional level of control on the asymmetrical auxin flux to mediate differential growth of the root.
Collapse
Affiliation(s)
- Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Ana I Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| |
Collapse
|
27
|
Ai G, Huang R, Zhang D, Li M, Li G, Li W, Ahiakpa JK, Wang Y, Hong Z, Zhang J. SlGH3.15, a member of the GH3 gene family, regulates lateral root development and gravitropism response by modulating auxin homeostasis in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111638. [PMID: 36796648 DOI: 10.1016/j.plantsci.2023.111638] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Multiple Gretchen Hagen 3 (GH3) genes have been implicated in a range of processes in plant growth and development through their roles in maintaining hormonal homeostasis. However, there has only been limited study on the functions of GH3 genes in tomato (Solanum lycopersicum). In this work, we investigated the important function of SlGH3.15, a member of the GH3 gene family in tomato. Overexpression of SlGH3.15 led to severe dwarfism in both the above- and below-ground sections of the plant, accompanied by a substantial decrease in free IAA content and reduction in the expression of SlGH3.9, a paralog of SlGH3.15. Exogenous supply of IAA negatively affected the elongation of the primary root and partially restored the gravitropism defects in SlGH3.15-overexpression lines. While no phenotypic change was observed in the SlGH3.15 RNAi lines, double knockout lines of SlGH3.15 and SlGH3.9 were less sensitive to treatments with the auxin polar transport inhibitor. Overall, these findings revealed important roles of SlGH3.15 in IAA homeostasis and as a negative regulator of free IAA accumulation and lateral root formation in tomato.
Collapse
Affiliation(s)
- Guo Ai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rong Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Dedi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Miao Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guobin Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wangfang Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - John K Ahiakpa
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
28
|
Ďúranová H, Šimora V, Ďurišová Ľ, Olexiková L, Kovár M, Požgajová M. Modifications in Ultrastructural Characteristics and Redox Status of Plants under Environmental Stress: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1666. [PMID: 37111889 PMCID: PMC10144148 DOI: 10.3390/plants12081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
The rate of global environmental change is unprecedented, with climate change causing an increase in the oscillation and intensification of various abiotic stress factors that have negative impacts on crop production. This issue has become an alarming global concern, especially for countries already facing the threat of food insecurity. Abiotic stressors, such as drought, salinity, extreme temperatures, and metal (nanoparticle) toxicities, are recognized as major constraints in agriculture, and are closely associated with the crop yield penalty and losses in food supply. In order to combat abiotic stress, it is important to understand how plant organs adapt to changing conditions, as this can help produce more stress-resistant or stress-tolerant plants. The investigation of plant tissue ultrastructure and subcellular components can provide valuable insights into plant responses to abiotic stress-related stimuli. In particular, the columella cells (statocytes) of the root cap exhibit a unique architecture that is easily recognizable under a transmission electron microscope, making them a useful experimental model for ultrastructural observations. In combination with the assessment of plant oxidative/antioxidative status, both approaches can shed more light on the cellular and molecular mechanisms involved in plant adaptation to environmental cues. This review summarizes life-threatening factors of the changing environment that lead to stress-related damage to plants, with an emphasis on their subcellular components. Additionally, selected plant responses to such conditions in the context of their ability to adapt and survive in a challenging environment are also described.
Collapse
Affiliation(s)
- Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| | - Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia; (Ľ.Ď.); (M.K.)
| | - Lucia Olexiková
- Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia;
| | - Marek Kovár
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia; (Ľ.Ď.); (M.K.)
| | - Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
29
|
Caumon H, Vernoux T. A matter of time: auxin signaling dynamics and the regulation of auxin responses during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad132. [PMID: 37042516 DOI: 10.1093/jxb/erad132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 06/19/2023]
Abstract
As auxin is a major regulator of plant development, studying the signaling mechanisms by which auxin influences cellular activities is of primary importance. In this review, we describe the current knowledge on the different modalities of signaling, from the well-characterized canonical nuclear auxin pathway, to the more recently discovered or re-discovered non-canonical modes of auxin signaling. In particular, we discuss how both the modularity of the nuclear auxin pathway and the dynamic regulation of its core components allow to trigger specific transcriptomic responses. We highlight the fact that the diversity of modes of auxin signaling allows for a wide range of timescales of auxin responses, from second-scale cytoplasmic responses to minute/hour-scale modifications of gene expression. Finally, we question the extent to which the temporality of auxin signaling and responses contributes to development in both the shoot and the root meristems. We conclude by stressing the fact that future investigations should allow to build an integrative view not only of the spatial control, but also of the temporality of auxin-mediated regulation of plant development, from the cell to the whole organism.
Collapse
Affiliation(s)
- Hugo Caumon
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
30
|
Nishimura T, Makigawa S, Sun J, Kodama K, Sugiyama H, Matsumoto K, Iwata T, Wasano N, Kano A, Morita MT, Fujii Y, Shindo M. Design and synthesis of strong root gravitropism inhibitors with no concomitant growth inhibition. Sci Rep 2023; 13:5173. [PMID: 36997582 PMCID: PMC10063617 DOI: 10.1038/s41598-023-32063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 04/01/2023] Open
Abstract
Herein, we describe a highly potent gravitropic bending inhibitor with no concomitant growth inhibition. Previously, we reported that (2Z,4E)-5-phenylpenta-2,4-dienoic acid (ku-76) selectively inhibits root gravitropic bending of lettuce radicles at 5 μM. Based on the structure-activity relationship study of ku-76 as a lead compound, we designed and synthesized various C4-substituted analogs of ku-76. Among the analogs, 4-phenylethynyl analog exhibited the highest potency for gravitropic bending inhibition, which was effective at only 0.01 μM. Remarkably, 4-phenylethynyl analog is much more potent than the known inhibitor, NPA. Substitution in the para position on the aromatic ring of 4-phenylethynyl group was tolerated without diminished activity. In addition, evaluation using Arabidopsis indicated that 4-phenylethynyl analog inhibits gravitropism by affecting auxin distribution in the root tips. Based on the effects on Arabidopsis phenotypes, 4-phenylethynyl analog may be a novel inhibitor that differs in action from the previously reported auxin transport inhibitors.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Saki Makigawa
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Jun Sun
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kozue Kodama
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Hiromi Sugiyama
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kenji Matsumoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
- Department of Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Takayuki Iwata
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Naoya Wasano
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Arihiro Kano
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Yoshiharu Fujii
- International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-koen, Kasuga, 816-8580, Japan.
| |
Collapse
|
31
|
Barker R, Kruse CPS, Johnson C, Saravia-Butler A, Fogle H, Chang HS, Trane RM, Kinscherf N, Villacampa A, Manzano A, Herranz R, Davin LB, Lewis NG, Perera I, Wolverton C, Gupta P, Jaiswal P, Reinsch SS, Wyatt S, Gilroy S. Meta-analysis of the space flight and microgravity response of the Arabidopsis plant transcriptome. NPJ Microgravity 2023; 9:21. [PMID: 36941263 PMCID: PMC10027818 DOI: 10.1038/s41526-023-00247-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/10/2023] [Indexed: 03/23/2023] Open
Abstract
Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight experiments deposited in the National Aeronautics and Space Administration's GeneLab data repository. These data were reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common computational pipeline for either the microarray or the RNA-seq datasets. Such a standardized approach to analysis should greatly increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (i.e., microarray versus RNA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e., that share multiple elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the complexity in drawing conclusions arising from comparisons made between experiments with very different designs.
Collapse
Affiliation(s)
- Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Colin P S Kruse
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, 87545, USA
| | | | - Amanda Saravia-Butler
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Logyx, LLC, Mountain View, CA, 94043, USA
| | - Homer Fogle
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Bionetics, Yorktown, VA, 23693, USA
| | - Hyun-Seok Chang
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Ralph Møller Trane
- Department of Statistics, University of Wisconsin, Madison, WI, 53706, USA
| | - Noah Kinscherf
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Alicia Villacampa
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Aránzazu Manzano
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-741, USA
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-741, USA
| | - Imara Perera
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chris Wolverton
- Department of Botany and Microbiology, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sigrid S Reinsch
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sarah Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
32
|
Suzuki H, Kato H, Iwano M, Nishihama R, Kohchi T. Auxin signaling is essential for organogenesis but not for cell survival in the liverwort Marchantia polymorpha. THE PLANT CELL 2023; 35:1058-1075. [PMID: 36529527 PMCID: PMC10015169 DOI: 10.1093/plcell/koac367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 05/12/2023]
Abstract
Auxin plays pleiotropic roles in plant development via gene regulation upon its perception by the receptors TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFBs). This auxin-regulated transcriptional control mechanism originated in the common ancestor of land plants. Although the complete loss of TIR1/AFBs causes embryonic lethality in Arabidopsis thaliana, it is unclear whether the requirement for TIR1-mediated auxin perception in cell viability can be generalized. The model liverwort Marchantia polymorpha has a minimal auxin signaling system with only a single TIR1/AFB, MpTIR1. Here we show by genetic, biochemical, and transcriptomic analyses that MpTIR1 functions as an evolutionarily conserved auxin receptor. Null mutants and conditionally knocked-out mutants of MpTIR1 were viable but incapable of forming any organs and grew as cell masses. Principal component analysis performed using transcriptomes at various developmental stages indicated that MpTIR1 is involved in the developmental transition from spores to organized thalli, during which apical notches containing stem cells are established. In Mptir1 cells, stem cell- and differentiation-related genes were up- and downregulated, respectively. Our findings suggest that, in M. polymorpha, auxin signaling is dispensable for cell division but is essential for three-dimensional patterning of the plant body by establishing pluripotent stem cells for organogenesis, a derived trait of land plants.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hirotaka Kato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
33
|
Guo L, Klaus A, Baer M, Kirschner GK, Salvi S, Hochholdinger F. ENHANCED GRAVITROPISM 2 coordinates molecular adaptations to gravistimulation in the elongation zone of barley roots. THE NEW PHYTOLOGIST 2023; 237:2196-2209. [PMID: 36604847 DOI: 10.1111/nph.18717] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Root gravitropism includes gravity perception in the root cap, signal transduction between root cap and elongation zone, and curvature response in the elongation zone. The barley (Hordeum vulgare) mutant enhanced gravitropism 2 (egt2) displays a hypergravitropic root phenotype. We compared the transcriptomic reprogramming of the root cap, the meristem, and the elongation zone of wild-type (WT) and egt2 seminal roots upon gravistimulation in a time-course experiment and identified direct interaction partners of EGT2 by yeast-two-hybrid screening and bimolecular fluorescence complementation validation. We demonstrated that the elongation zone is subjected to most transcriptomic changes after gravistimulation. Here, 33% of graviregulated genes are also transcriptionally controlled by EGT2, suggesting a central role of this gene in controlling the molecular networks associated with gravitropic bending. Gene co-expression analyses suggested a role of EGT2 in cell wall and reactive oxygen species-related processes, in which direct interaction partners of EGT2 regulated by EGT2 and gravity might be involved. Taken together, this study demonstrated the central role of EGT2 and its interaction partners in the networks controlling root zone-specific transcriptomic reprogramming of barley roots upon gravistimulation. These findings can contribute to the development of novel root idiotypes leading to improved crop performance.
Collapse
Affiliation(s)
- Li Guo
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Alina Klaus
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Marcel Baer
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Gwendolyn K Kirschner
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| |
Collapse
|
34
|
Mukherjee S, Corpas FJ. H 2 O 2 , NO, and H 2 S networks during root development and signalling under physiological and challenging environments: Beneficial or toxic? PLANT, CELL & ENVIRONMENT 2023; 46:688-717. [PMID: 36583401 PMCID: PMC10108057 DOI: 10.1111/pce.14531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a reactive oxygen species (ROS) and a key modulator of the development and architecture of the root system under physiological and adverse environmental conditions. Nitric oxide (NO) and hydrogen sulphide (H2 S) also exert myriad functions on plant development and signalling. Accumulating pieces of evidence show that depending upon the dose and mode of applications, NO and H2 S can have synergistic or antagonistic actions in mediating H2 O2 signalling during root development. Thus, H2 O2 -NO-H2 S crosstalk might essentially impart tolerance to elude oxidative stress in roots. Growth and proliferation of root apex involve crucial orchestration of NO and H2 S-mediated ROS signalling which also comprise other components including mitogen-activated protein kinase, cyclins, cyclin-dependent kinases, respiratory burst oxidase homolog (RBOH), and Ca2+ flux. This assessment provides a comprehensive update on the cooperative roles of NO and H2 S in modulating H2 O2 homoeostasis during root development, abiotic stress tolerance, and root-microbe interaction. Furthermore, it also analyses the scopes of some fascinating future investigations associated with strigolactone and karrikins concerning H2 O2 -NO-H2 S crosstalk in plant roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur CollegeUniversity of KalyaniWest BengalIndia
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in PlantsEstación Experimental del Zaidín (Spanish National Research Council, CSIC)GranadaSpain
| |
Collapse
|
35
|
Wang Y, Peng Y, Guo H. To curve for survival: Apical hook development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:324-342. [PMID: 36562414 DOI: 10.1111/jipb.13441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Apical hook is a simple curved structure formed at the upper part of hypocotyls when dicot seeds germinate in darkness. The hook structure is transient but essential for seedlings' survival during soil emergence due to its efficient protection of the delicate shoot apex from mechanical injury. As a superb model system for studying plant differential growth, apical hook has fascinated botanists as early as the Darwin age, and significant advances have been achieved at both the morphological and molecular levels to understand how apical hook development is regulated. Here, we will mainly summarize the research progress at these two levels. We will also briefly compare the growth dynamics between apical hook and hypocotyl gravitropic bending at early seed germination phase, with the aim to deduce a certain consensus on their connections. Finally, we will outline the remaining questions and future research perspectives for apical hook development.
Collapse
Affiliation(s)
- Yichuan Wang
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
36
|
Su SH, Moen A, Groskopf RM, Baldwin KL, Vesperman B, Masson PH. Low-Speed Clinorotation of Brachypodium distachyon and Arabidopsis thaliana Seedlings Triggers Root Tip Curvatures That Are Reminiscent of Gravitropism. Int J Mol Sci 2023; 24:1540. [PMID: 36675054 PMCID: PMC9861679 DOI: 10.3390/ijms24021540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Clinostats are instruments that continuously rotate biological specimens along an axis, thereby averaging their orientation relative to gravity over time. Our previous experiments indicated that low-speed clinorotation may itself trigger directional root tip curvature. In this project, we have investigated the root curvature response to low-speed clinorotation using Arabidopsis thaliana and Brachypodium distachyon seedlings as models. We show that low-speed clinorotation triggers root tip curvature in which direction is dictated by gravitropism during the first half-turn of clinorotation. We also show that the angle of root tip curvature is modulated by the speed of clinorotation. Arabidopsis mutations affecting gravity susception (pgm) or gravity signal transduction (arg1, toc132) are shown to affect the root tip curvature response to low-speed clinorotation. Furthermore, low-speed vertical clinorotation triggers relocalization of the PIN3 auxin efflux facilitator to the lateral membrane of Arabidopsis root cap statocytes, and creates a lateral gradient of auxin across the root tip. Together, these observations support a role for gravitropism in modulating root curvature responses to clinorotation. Interestingly, distinct Brachypodium distachyon accessions display different abilities to develop root tip curvature responses to low-speed vertical clinorotation, suggesting the possibility of using genome-wide association studies to further investigate this process.
Collapse
Affiliation(s)
- Shih-Heng Su
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Alexander Moen
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Rien M. Groskopf
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | | | - Brian Vesperman
- Kate Baldwin LLC, Analytical Design, Cross Plains, WI 53528, USA
| | - Patrick H. Masson
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|
37
|
Che X, Splitt BL, Eckholm MT, Miller ND, Spalding EP. BRXL4-LAZY1 interaction at the plasma membrane controls Arabidopsis branch angle and gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:211-224. [PMID: 36478485 PMCID: PMC10107345 DOI: 10.1111/tpj.16055] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Gravitropism guides growth to shape plant architecture above and below ground. Mutations in LAZY1 impair stem gravitropism and cause less upright inflorescence branches (wider angles). The LAZY1 protein resides at the plasma membrane and in the nucleus. The plasma membrane pool is necessary and sufficient for setting branch angles. To investigate the molecular mechanism of LAZY1 function, we screened for LAZY1-interacting proteins in yeast. We identified BRXL4, a shoot-specific protein related to BREVIS RADIX. The BRXL4-LAZY1 interaction occurred at the plasma membrane in plant cells, and not detectably in the nucleus. Mutations in the C-terminus of LAZY1, but not other conserved regions, prevented the interaction. Opposite to lazy1, brxl4 mutants displayed faster gravitropism and more upright branches. Overexpressing BRXL4 produced strong lazy1 phenotypes. The apparent negative regulation of LAZY1 function is consistent with BRXL4 reducing LAZY1 expression or the amount of LAZY1 at the plasma membrane. Measurements indicated that both are true. LAZY1 mRNA was three-fold more abundant in brxl4 mutants and almost undetectable in BRXL4 overexpressors. Plasma membrane LAZY1 was higher and nuclear LAZY1 lower in brxl4 mutants compared with the wild type. To explain these results, we suggest that BRXL4 reduces the amount of LAZY1 at the plasma membrane where it functions in gravity signaling and promotes LAZY1 accumulation in the nucleus where it reduces LAZY1 expression, possibly by suppressing its own transcription. This explanation of how BRXL4 negatively regulates LAZY1 suggests ways to modify shoot system architecture for practical purposes.
Collapse
Affiliation(s)
- Ximing Che
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Bessie L. Splitt
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Magnus T. Eckholm
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Nathan D. Miller
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Edgar P. Spalding
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| |
Collapse
|
38
|
Gao C, Li M, Li D. Root architecture and visualization model of cotton group with different planting spacing under local irrigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1080234. [PMID: 37152176 PMCID: PMC10160472 DOI: 10.3389/fpls.2023.1080234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023]
Abstract
Planting spacing plays a key role in the root system architecture of the cotton group under local irrigation. This study used the Cellular Automata (CA) theory to establish a root visualization model for the cotton group at two different planting spacing (30 and 15 cm) within a leaching-pond. At a planting spacing of 30 cm, the lateral roots grew almost horizontally toward the irrigation point, and a logarithmic relationship was observed between root length density and soil water suction. However, at a planting spacing of 15 cm, the lateral roots exhibited overlapping growth and mainly competed for resources, and a power function relationship was observed between root length density and soil water suction. The main parameters of the visualization model for each treatment were essentially consistent with the experimental observations, with respective simulation errors were 6.03 and 15.04%. The findings suggest that the correlation between root length density and soil water suction in the cotton plants is a crucial driving force for the model, leading to a more accurate replication of the root structure development pathway. In conclusion, the root system exhibits a certain degree of self-similarity, which extends into the soil.
Collapse
Affiliation(s)
- Chao Gao
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
| | - Mingsi Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi, China
- *Correspondence: Mingsi Li, ; Dongwei Li,
| | - Dongwei Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
- *Correspondence: Mingsi Li, ; Dongwei Li,
| |
Collapse
|
39
|
Kirschner GK. It takes more than being LAZY: regulation of shoot branching angle by BRXL4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:209-210. [PMID: 36651818 DOI: 10.1111/tpj.16076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
40
|
Zhang H, Tang Z, Zhang Y, Liu L, Zhao D, Liu X, Guo L, Dong J. TOP1α suppresses lateral root gravitropism in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2022; 17:2098646. [PMID: 35819101 PMCID: PMC9278425 DOI: 10.1080/15592324.2022.2098646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Root gravitropism is important for anchorage and exploration of soil for water and nutrients. It affects root architecture, which is one of the elements that influence crop yield. The mechanism of primary root gravitropism has been widely studied, but it is still not clear how lateral root gravitropism is regulated. Here, in this study, we found that Topoisomerase I α (TOP1α) repressed lateral root gravitropic growth, which was opposite to the previous report that TOP1α maintains primary root gravitropism, revealing a dual function of TOP1α in root gravitropism regulation. Further investigation showed that Target of Rapamycin (TOR) was suppressed in columella cells of lateral root to inhibit columella cell development, especially amyloplast biosynthesis. Our findings uncovered a new mechanism about lateral root gravitropism regulation, which might provide a theoretical support for improving agricultural production.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ziyan Tang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Ying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Dan Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hengshui University, Hengshui, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
41
|
Zhao R, Liu Z, Li Z, Xu S, Sheng X. Gravity induces asymmetric Ca 2+ spikes in the root cap in the early stage of gravitropism. PLANT SIGNALING & BEHAVIOR 2022; 17:2025325. [PMID: 35023420 PMCID: PMC9176234 DOI: 10.1080/15592324.2021.2025325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 05/19/2023]
Abstract
Gravitropism is an important strategy for the adaptation of plants to the changing environment. Previous reports indicated that Ca2+ participated in plant gravity response. However, present information on the functions of Ca2+ in plant gravitropism was obtained mainly on coleoptiles, hypocotyls, and petioles, little is known about the dynamic changes of Ca2+ during root gravitropism. In the present study, the transgenic Arabidopsis thaliana R-GECO1 was placed horizontally and subsequently vertically on a refitted Leica SP8 laser scanning confocal microscopy with a vertical stage. Real-time observations indicated that gravistimulation induced not only an increase in the Ca2+ concentration, but also an accelerated occurrence of Ca2+ sparks in the root cap, especially in the lower side of the lateral root cap, indicating a strong tie between Ca2+ dynamics and gravistimulation during the early stage of root gravity response.
Collapse
Affiliation(s)
- Ruoxin Zhao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zonghao Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ziwei Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shi Xu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
42
|
Üstüner S, Schäfer P, Eichmann R. Development specifies, diversifies and empowers root immunity. EMBO Rep 2022; 23:e55631. [PMID: 36330761 PMCID: PMC9724680 DOI: 10.15252/embr.202255631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/04/2023] Open
Abstract
Roots are a highly organised plant tissue consisting of different cell types with distinct developmental functions defined by cell identity networks. Roots are the target of some of the most devastating diseases and possess a highly effective immune system. The recognition of microbe- or plant-derived molecules released in response to microbial attack is highly important in the activation of complex immunity gene networks. Development and immunity are intertwined, and immunity activation can result in growth inhibition. In turn, by connecting immunity and cell identity regulators, cell types are able to launch a cell type-specific immunity based on the developmental function of each cell type. By this strategy, fundamental developmental processes of each cell type contribute their most basic functions to drive cost-effective but highly diverse and, thus, efficient immune responses. This review highlights the interdependence of root development and immunity and how the developmental age of root cells contributes to positive and negative outcomes of development-immunity cross-talk.
Collapse
Affiliation(s)
- Sim Üstüner
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| |
Collapse
|
43
|
Mora CC, Perotti MF, González-Grandío E, Ribone PA, Cubas P, Chan RL. AtHB40 modulates primary root length and gravitropism involving CYCLINB and auxin transporters. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111421. [PMID: 35995111 DOI: 10.1016/j.plantsci.2022.111421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Gravitropism is a finely regulated tropistic response based on the plant perception of directional cues. Such perception allows them to direct shoot growth upwards, above ground, and root growth downwards, into the soil, anchoring the plant to acquire water and nutrients. Gravity sensing occurs in specialized cells and depends on auxin distribution, regulated by influx/efflux carriers. Here we report that AtHB40, encoding a transcription factor of the homeodomain-leucine zipper I family, was expressed in the columella and the root tip. Athb40 mutants exhibited longer primary roots. Enhanced primary root elongation was in agreement with a higher number of cells in the transition zone and the induction of CYCLINB transcript levels. Moreover, athb40 mutants and AtHB40 overexpressors displayed enhanced and delayed gravitropistic responses, respectively. These phenotypes were associated with altered auxin distribution and deregulated expression of the auxin transporters LAX2, LAX3, and PIN2. Accordingly, lax2 and lax3 mutants also showed an altered gravitropistic response, and LAX3 was identified as a direct target of AtHB40. Furthermore, AtHB40 is induced by AtHB53 when the latter is upregulated by auxin. Altogether, these results indicate that AtHB40 modulates cell division and auxin distribution in the root tip thus altering primary root length and gravitropism.
Collapse
Affiliation(s)
- Catia Celeste Mora
- Instituto de Agrobiotecnología del Litoral (CONICET, Universidad Nacional del Litoral, FBCB), Colectora Ruta Nacional 168, km 0, 3000 Santa Fe, Argentina
| | - María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral (CONICET, Universidad Nacional del Litoral, FBCB), Colectora Ruta Nacional 168, km 0, 3000 Santa Fe, Argentina
| | | | - Pamela Anahí Ribone
- Instituto de Agrobiotecnología del Litoral (CONICET, Universidad Nacional del Litoral, FBCB), Colectora Ruta Nacional 168, km 0, 3000 Santa Fe, Argentina
| | - Pilar Cubas
- Centro Nacional de Biotecnología (CNB) - CSIC, Madrid, Spain
| | - Raquel Lía Chan
- Instituto de Agrobiotecnología del Litoral (CONICET, Universidad Nacional del Litoral, FBCB), Colectora Ruta Nacional 168, km 0, 3000 Santa Fe, Argentina.
| |
Collapse
|
44
|
Hasenstein KH, Park MR, John SP, Ajala C. High-gradient magnetic fields and starch metabolism: results from a space experiment. Sci Rep 2022; 12:18256. [PMID: 36309570 PMCID: PMC9617909 DOI: 10.1038/s41598-022-22691-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/18/2022] [Indexed: 12/31/2022] Open
Abstract
Directing plant growth in weightlessness requires understanding the processes that establish plant orientation and how to manipulate them. Both gravi- and phototropism determine directional growth and previous experiments showed that high gradient magnetic fields (HGMF) can induce curvature in roots and shoots. Experiments with Brassica rapa verified that that gravitropism-like induction of curvature is possible in space and that the HGMF-responsive organelles are amyloplasts. We assessed the effect of space and HGMF based on 16 genes and compared their transcription with static growth and clinorotation. Amyloplasts size in root tips increased under weightlessness but decreased under clinorotation but not in response to magnetic fields. Amyloplast size changes were correlated with reduced amylase transcription in space samples and enhanced transcription after clinorotation. Mechanostimulation and weightlessness have opposite effects on the size of amyloplasts. The data show that plants perceive weightlessness, and that their metabolism adjusts to microgravity and mechanostimulation. Thus, clinorotation as surrogate for space research may lead to incorrect interpretations.
Collapse
Affiliation(s)
- K H Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA, 70504-43602, USA.
| | - M R Park
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA, 70504-43602, USA
- Central Area Crop Breeding Div., National Institute of Crop Science, Suwon, 16429, Gyeonggi-do, Korea
| | - S P John
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA, 70504-43602, USA
| | - C Ajala
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA, 70504-43602, USA
- Cemvita Factory, 9350 Kirby Drive, Suite 100, Houston, TX, 77054, USA
| |
Collapse
|
45
|
Yu B, Zheng W, Xing L, Zhu JK, Persson S, Zhao Y. Root twisting drives halotropism via stress-induced microtubule reorientation. Dev Cell 2022. [PMID: 36243013 DOI: 10.1101/2022.06.05.494861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants have evolved signaling mechanisms that guide growth away from adverse environments that can cause yield losses. Root halotropism is a sodium-specific negative tropism that is crucial for surviving and thriving under high salinity. Although root halotropism was discovered some years ago, the underlying molecular and cellular mechanisms remain unknown. Here, we show that abscisic acid (ABA)-mediated root twisting determines halotropism in Arabidopsis. An ABA-activated SnRK2 protein kinase (SnRK2.6) phosphorylates the microtubule-associated protein SP2L at Ser406, which induces a change in the anisotropic cell expansion at the root transition zone and is required for root twisting during halotropism. Salt stress triggers SP2L-mediated cortical microtubule reorientation, which guides cellulose microfibril patterns. Our findings thus outline the molecular mechanism of root halotropism and indicate that anisotropic cell expansion through microtubule reorientation and microfibril deposition has a central role in mediating tropic responses.
Collapse
Affiliation(s)
- Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenna Zheng
- Department of Plant & Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lu Xing
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Staffan Persson
- Department of Plant & Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
46
|
Leveraging orthology within maize and Arabidopsis QTL to identify genes affecting natural variation in gravitropism. Proc Natl Acad Sci U S A 2022; 119:e2212199119. [PMID: 36161933 PMCID: PMC9546580 DOI: 10.1073/pnas.2212199119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants typically orient their organs with respect to the Earth's gravity field by a dynamic process called gravitropism. To discover conserved genetic elements affecting seedling root gravitropism, we measured the process in a set of Zea mays (maize) recombinant inbred lines with machine vision and compared the results with those obtained in a similar study of Arabidopsis thaliana. Each of the several quantitative trait loci that we mapped in both species spanned many hundreds of genes, too many to test individually for causality. We reasoned that orthologous genes may be responsible for natural variation in monocot and dicot root gravitropism. If so, pairs of orthologous genes affecting gravitropism may be present within the maize and Arabidopsis QTL intervals. A reciprocal comparison of sequences within the QTL intervals identified seven pairs of such one-to-one orthologs. Analysis of knockout mutants demonstrated a role in gravitropism for four of the seven: CCT2 functions in phosphatidylcholine biosynthesis, ATG5 functions in membrane remodeling during autophagy, UGP2 produces the substrate for cellulose and callose polymer extension, and FAMA is a transcription factor. Automated phenotyping enabled this discovery of four naturally varying components of a conserved process (gravitropism) by making it feasible to conduct the same large-scale experiment in two species.
Collapse
|
47
|
Yang Y, Liu F, Liu L, Zhu M, Yuan J, Mai YX, Zou JJ, Le J, Wang Y, Palme K, Li X, Wang Y, Wang L. The unconventional prefoldin RPB5 interactor mediates the gravitropic response by modulating cytoskeleton organization and auxin transport in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1916-1934. [PMID: 35943836 DOI: 10.1111/jipb.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Gravity-induced root curvature involves the asymmetric distribution of the phytohormone auxin. This response depends on the concerted activities of the auxin transporters such as PIN-FORMED (PIN) proteins for auxin efflux and AUXIN RESISTANT 1 (AUX1) for auxin influx. However, how the auxin gradient is established remains elusive. Here we identified a new mutant with a short root, strong auxin distribution in the lateral root cap and an impaired gravitropic response. The causal gene encoded an Arabidopsis homolog of the human unconventional prefoldin RPB5 interactor (URI). AtURI interacted with prefoldin 2 (PFD2) and PFD6, two β-type PFD members that modulate actin and tubulin patterning in roots. The auxin reporter DR5rev :GFP showed that asymmetric auxin redistribution after gravistimulation is disordered in aturi-1 root tips. Treatment with the endomembrane protein trafficking inhibitor brefeldin A indicated that recycling of the auxin transporter PIN2 is disrupted in aturi-1 roots as well as in pfd mutants. We propose that AtURI cooperates with PFDs to recycle PIN2 and modulate auxin distribution.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Fang Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Le Liu
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Mingyue Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Jinfeng Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Jun-Jie Zou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Klaus Palme
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| |
Collapse
|
48
|
Root twisting drives halotropism via stress-induced microtubule reorientation. Dev Cell 2022; 57:2412-2425.e6. [DOI: 10.1016/j.devcel.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/06/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
|
49
|
Lu C, Tian Y, Hou X, Hou X, Jia Z, Li M, Hao M, Jiang Y, Wang Q, Pu Q, Yin Z, Li Y, Liu B, Kang X, Zhang G, Ding X, Liu Y. Multiple forms of vitamin B 6 regulate salt tolerance by balancing ROS and abscisic acid levels in maize root. STRESS BIOLOGY 2022; 2:39. [PMID: 37676445 PMCID: PMC10441934 DOI: 10.1007/s44154-022-00061-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 09/08/2023]
Abstract
Salt stress causes osmotic stress, ion toxicity and oxidative stress, inducing the accumulation of abscisic acid (ABA) and excessive reactive oxygen species (ROS) production, which further damage cell structure and inhibit the development of roots in plants. Previous study showed that vitamin B6 (VB6) plays a role in plant responses to salt stress, however, the regulatory relationship between ROS, VB6 and ABA under salt stress remains unclear yet in plants. In our study, we found that salt stress-induced ABA accumulation requires ROS production, in addition, salt stress also promoted VB6 (including pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), and pyridoxal 5'-phosphate (PLP)) accumulation, which involved in ROS scavenging and ABA biosynthesis. Furthermore, VB6-deficient maize mutant small kernel2 (smk2) heterozygous is more susceptible to salt stress, and which failed to scavenge excessive ROS effectively or induce ABA accumulation in maize root under salt stress, interestingly, which can be restored by exogenous PN and PLP, respectively. According to these results, we proposed that PN and PLP play an essential role in balancing ROS and ABA levels under salt stress, respectively, it laid a foundation for VB6 to be better applied in crop salt resistance than ABA.
Collapse
Affiliation(s)
- Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xuanxuan Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xin Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zichang Jia
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Min Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Mingxia Hao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Qingbin Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Shandong Pengbo Biotechnology Co., LTD, Taian, 271018, China
| | - Qiong Pu
- Shandong Agriculture and Engineering University, Jinan, 250000, Shandong, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Yantai Academy of Agricultural Sciences, Yantai, 265500, Shandong, China
| | - Xiaojing Kang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Guangyi Zhang
- Shandong Xinyuan Seed Industry Co., LTD, Taian, 271000, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Yinggao Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
50
|
Baba AI, Mir MY, Riyazuddin R, Cséplő Á, Rigó G, Fehér A. Plants in Microgravity: Molecular and Technological Perspectives. Int J Mol Sci 2022; 23:10548. [PMID: 36142459 PMCID: PMC9505700 DOI: 10.3390/ijms231810548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Plants are vital components of our ecosystem for a balanced life here on Earth, as a source of both food and oxygen for survival. Recent space exploration has extended the field of plant biology, allowing for future studies on life support farming on distant planets. This exploration will utilize life support technologies for long-term human space flights and settlements. Such longer space missions will depend on the supply of clean air, food, and proper waste management. The ubiquitous force of gravity is known to impact plant growth and development. Despite this, we still have limited knowledge about how plants can sense and adapt to microgravity in space. Thus, the ability of plants to survive in microgravity in space settings becomes an intriguing topic to be investigated in detail. The new knowledge could be applied to provide food for astronaut missions to space and could also teach us more about how plants can adapt to unique environments. Here, we briefly review and discuss the current knowledge about plant gravity-sensing mechanisms and the experimental possibilities to research microgravity-effects on plants either on the Earth or in orbit.
Collapse
Affiliation(s)
- Abu Imran Baba
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Mohd Yaqub Mir
- Doctoral School of Neuroscience, Semmelweis University, H-1083 Budapest, Hungary
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, H-1121 Budapest, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Ágnes Cséplő
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Gábor Rigó
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Attila Fehér
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| |
Collapse
|