1
|
Cunningham P, Shankar M, vonHoldt B, Brzeski KE, Kienle SS. Coyotes can do 'puppy dog eyes' too: comparing interspecific variation in Canis facial expression muscles. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241046. [PMID: 39359465 PMCID: PMC11444785 DOI: 10.1098/rsos.241046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Facial expressions are critical for non-verbal communication. The Canis genus epitomizes the interplay between behaviour and morphology in the evolution of non-verbal communication. Recent work suggests that the levator anguli oculi medialis (LAOM) muscle is unique to dogs (Canis familiaris) within the Canis genus and evolved due to domestication. The LAOM raises the inner eyebrows, resulting in the 'puppy dog eyes' expression. Here, we test whether the LAOM is a derived trait in dogs by (i) examining the facial expression muscles of a closely related and ancestral wild Canis species, the coyote (C. latrans) and (ii) comparing our results with other Canis and canid taxa. We discover that coyotes have a well-developed LAOM like dogs, which differs from the modified/absent LAOM in grey wolves. Our findings challenge the hypothesis that the LAOM developed due to domestication. We suggest that the LAOM is a basal trait that was lost in grey wolves. Additionally, we find inter- and intraspecific variations in the size of the muscles of the outer ear, forehead, lips and rostrum, indicating potential adaptations related to sensory perception, communication and individual-level functional variations within canids. Together, this research expands our knowledge of facial expressions, their evolution and their role in communication.
Collapse
Affiliation(s)
| | - Mahita Shankar
- Department of Biology, Baylor University, Waco, TX76707, USA
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Kristin E. Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI49931, USA
| | - Sarah S. Kienle
- Department of Biology, Baylor University, Waco, TX76707, USA
| |
Collapse
|
2
|
Kato S, Arakaki S, Nagano AJ, Kikuchi K, Hirase S. Genomic landscape of introgression from the ghost lineage in a gobiid fish uncovers the generality of forces shaping hybrid genomes. Mol Ecol 2024; 33:e17216. [PMID: 38047388 DOI: 10.1111/mec.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Extinct lineages can leave legacies in the genomes of extant lineages through ancient introgressive hybridization. The patterns of genomic survival of these extinct lineages provide insight into the role of extinct lineages in current biodiversity. However, our understanding on the genomic landscape of introgression from extinct lineages remains limited due to challenges associated with locating the traces of unsampled 'ghost' extinct lineages without ancient genomes. Herein, we conducted population genomic analyses on the East China Sea (ECS) lineage of Chaenogobius annularis, which was suspected to have originated from ghost introgression, with the aim of elucidating its genomic origins and characterizing its landscape of introgression. By combining phylogeographic analysis and demographic modelling, we demonstrated that the ECS lineage originated from ancient hybridization with an extinct ghost lineage. Forward simulations based on the estimated demography indicated that the statistic γ of the HyDe analysis can be used to distinguish the differences in local introgression rates in our data. Consistent with introgression between extant organisms, we found reduced introgression from extinct lineage in regions with low recombination rates and with functional importance, thereby suggesting a role of linked selection that has eliminated the extinct lineage in shaping the hybrid genome. Moreover, we identified enrichment of repetitive elements in regions associated with ghost introgression, which was hitherto little known but was also observed in the re-analysis of published data on introgression between extant organisms. Overall, our findings underscore the unexpected similarities in the characteristics of introgression landscapes across different taxa, even in cases of ghost introgression.
Collapse
Affiliation(s)
- Shuya Kato
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| | - Seiji Arakaki
- Amakusa Marine Biological Laboratory, Kyushu University, Amakusa, Kumamoto, Japan
| | - Atsushi J Nagano
- Department of Life Sciences, Faculty of Agriculture, Ryukoku University, Ōtsu, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| | - Shotaro Hirase
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
3
|
Souilmi Y, Wasef S, Williams MP, Conroy G, Bar I, Bover P, Dann J, Heiniger H, Llamas B, Ogbourne S, Archer M, Ballard JWO, Reed E, Tobler R, Koungoulos L, Walshe K, Wright JL, Balme J, O’Connor S, Cooper A, Mitchell KJ. Ancient genomes reveal over two thousand years of dingo population structure. Proc Natl Acad Sci U S A 2024; 121:e2407584121. [PMID: 38976766 PMCID: PMC11287250 DOI: 10.1073/pnas.2407584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Dingoes are culturally and ecologically important free-living canids whose ancestors arrived in Australia over 3,000 B.P., likely transported by seafaring people. However, the early history of dingoes in Australia-including the number of founding populations and their routes of introduction-remains uncertain. This uncertainty arises partly from the complex and poorly understood relationship between modern dingoes and New Guinea singing dogs, and suspicions that post-Colonial hybridization has introduced recent domestic dog ancestry into the genomes of many wild dingo populations. In this study, we analyzed genome-wide data from nine ancient dingo specimens ranging in age from 400 to 2,746 y old, predating the introduction of domestic dogs to Australia by European colonists. We uncovered evidence that the continent-wide population structure observed in modern dingo populations had already emerged several thousand years ago. We also detected excess allele sharing between New Guinea singing dogs and ancient dingoes from coastal New South Wales (NSW) compared to ancient dingoes from southern Australia, irrespective of any post-Colonial hybrid ancestry in the genomes of modern individuals. Our results are consistent with several demographic scenarios, including a scenario where the ancestry of dingoes from the east coast of Australia results from at least two waves of migration from source populations with varying affinities to New Guinea singing dogs. We also contribute to the growing body of evidence that modern dingoes derive little genomic ancestry from post-Colonial hybridization with other domestic dog lineages, instead descending primarily from ancient canids introduced to Sahul thousands of years ago.
Collapse
Affiliation(s)
- Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Sally Wasef
- Ancient DNA Facility, Defence Genomics, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Innovation Division, Forensic Science Queensland, Queensland Health, Coopers Plains, QLD4108, Australia
| | - Matthew P. Williams
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Department of Biology, The Pennsylvania State University, State College, PA16802
| | - Gabriel Conroy
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD4111, Australia
| | - Pere Bover
- Fundación Agencia Aragonesa para la Investigacióny el Desarrollo (ARAID), Zaragoza50018, Spain
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA)-Grupo Aragosaurus, Universidad de Zaragoza, Zaragoza50009, Spain
| | - Jackson Dann
- Grützner Laboratory of Comparative Genomics, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Holly Heiniger
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, ActonACT2601, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA5000, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Michael Archer
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales Sydney, SydneyNSW2052, Australia
| | - J. William O. Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC3052, Australia
| | - Elizabeth Reed
- Ecology and Evolutionary Biology, School of Biological Sciences, The University of Adelaide, AdelaideSA5005, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Evolution of Cultural Diversity Initiative, School of Culture, History and Language, College of Asia and the Pacific, The Australian National University, Acton, ACT2601, Australia
| | - Loukas Koungoulos
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW2010, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Keryn Walshe
- School of Anthropology and Archaeology, University of Auckland, Auckland1010, New Zealand
| | - Joanne L. Wright
- Queensland Department of Education, Kelvin Grove State College, Kelvin Grove, QLD4059, Australia
| | - Jane Balme
- School of Social Sciences, University of Western Australia, Crawley, WA6009, Australia
| | - Sue O’Connor
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Alan Cooper
- Gulbali Institute, Charles Sturt University, Albury, NSW2640, Australia
| | - Kieren J. Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- Manaaki Whenua—Landcare Research, Lincoln, Canterbury7608, New Zealand
| |
Collapse
|
4
|
Salado I, Preick M, Lupiáñez-Corpas N, Fernández-Gil A, Vilà C, Hofreiter M, Leonard JA. Large variance in inbreeding within the Iberian wolf population. J Hered 2024; 115:349-359. [PMID: 37955431 PMCID: PMC11235127 DOI: 10.1093/jhered/esad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
The gray wolf (Canis lupus) population on the Iberian Peninsula was the largest in western and central Europe during most of the 20th century, with its size apparently never under a few hundred individuals. After partial legal protection in the 1970s in Spain, the northwest Iberian population increased to about 300 to 350 packs and then stabilized. In contrast to many current European wolf populations, which have been connected through gene flow, the Iberian wolf population has been isolated for decades. Here, we measured changes in genomic diversity and inbreeding through the last decades in a geographic context. We find that the level of genomic diversity in Iberian wolves is low compared with other Eurasian wolf populations. Despite population expansion in the last 50 years, some modern wolves had very high inbreeding, especially in the recently recolonized and historical edge areas. These individuals contrast with others with low inbreeding within the same population. The high variance in inbreeding despite population expansion seems associated with small-scale fragmentation of the range that is revealed by the genetic similarity between modern and historical samples from close localities despite being separated by decades, remaining differentiated from other individuals that are just over 100 km away, a small distance for a species with great dispersal capacity inhabiting a continuous range. This illustrates that, despite its demographically stable condition, the population would probably benefit from favoring connectivity within the population as well as genetic exchange with other European wolf populations to avoid excessive fragmentation and local inbreeding depression.
Collapse
Affiliation(s)
- Isabel Salado
- Conservation and Evolutionary Genetics Group, Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Michaela Preick
- Evolutionary Adaptive Genomics Group, Faculty of Science, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Natividad Lupiáñez-Corpas
- Conservation and Evolutionary Genetics Group, Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Alberto Fernández-Gil
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics Group, Faculty of Science, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| |
Collapse
|
5
|
Musiani M, Randi E. Conservation genomics of wolves: The global impact of RK Wayne's research. J Hered 2024; 115:458-469. [PMID: 38381553 DOI: 10.1093/jhered/esae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
RK Wayne has arguably been the most influential geneticist of canids, famously promoting the conservation of wolves in his homeland, the United States. His influence has been felt in other countries and regions outside the contiguous United States, where he inspired others, also including former graduate students and research fellows of his, to use modern molecular techniques to examine the evolutionary biology of canids to inform the conservation and management of wolves. In this review, we focus on the implications of Wayne's work on wolves outside the United States. He envisioned a clear future for wolf conservation research, involving the study of wolves' ecological and genetic diversity, and the description of ecotypes requiring conservation. He also documented widespread hybridization among canids and introgression of DNA from domestic dogs to wolves, a process that started dozens of thousands of years ago. His work therefore calls for innovative studies, such as examining the potential fitness benefits of introgression. Inspired by his results, for example, on the purging of deleterious alleles in small populations, wolf researchers should use novel molecular tools to challenge other conservation genetics paradigms. Overall, RK Wayne's work constitutes a call for answers, which as scientists or citizens concerned with conservation matters, we are obliged to address, as we contribute to monitoring and maintaining biodiversity during our period of dramatic transformations of the biosphere.
Collapse
Affiliation(s)
- Marco Musiani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Ettore Randi
- Department of Chemistry and Bioscience, Aalborg University, Aalborg Øst, Denmark
| |
Collapse
|
6
|
Yuan J, Hu J, Liu W, Chen S, Zhang F, Wang S, Zhang Z, Wang L, Xiao B, Li F, Hofreiter M, Lai X, Westbury MV, Sheng G. Camelus knoblochi genome reveals the complex evolutionary history of Old World camels. Curr Biol 2024; 34:2502-2508.e5. [PMID: 38754423 DOI: 10.1016/j.cub.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Extant Old World camels (genus Camelus) contributed to the economic and cultural exchanges between the East and West for thousands of years.1,2 Although many remains have been unearthed,3,4,5 we know neither whether the prevalent hybridization observed between extant Camelus species2,6,7 also occurred between extinct lineages and the ancestors of extant Camelus species nor why some populations became extinct while others survived. To investigate these questions, we generated paleogenomic and stable isotope data from an extinct two-humped camel species, Camelus knoblochi. We find that in the mitochondrial phylogeny, all C. knoblochi form a paraphyletic group that nests within the diversity of modern, wild two-humped camels (Camelus ferus). In contrast, they are clearly distinguished from both wild and domesticated (Camelus bactrianus) two-humped camels on the nuclear level. Moreover, the divergence pattern of the three camel species approximates a trifurcation, because the most common topology is only slightly more frequent than the two other possible topologies. This mito-nuclear phylogenetic discordance likely arose due to interspecific gene flow between all three species, suggesting that interspecific hybridization is not exclusive to modern camels but a recurrent phenomenon throughout the evolutionary history of the genus Camelus. These results suggest that the genomic complexity of Old World camels' evolutionary history is underestimated when considering data from only modern species. Finally, we find that C. knoblochi populations began declining prior to the last glacial maximum and, by integrating palaeoecological evidence and stable isotope data, suggest that this was likely due to failure to adapt to a changing environment.
Collapse
Affiliation(s)
- Junxia Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China; Faculty of Materials Science and Chemistry, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China.
| | - Jiaming Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China; School of Earth Sciences, China University of Geosciences, Lumo Road 388, Wuhan 430074, People's Republic of China
| | - Wenhui Liu
- Institute of Environmental Archaeology, National Museum of China, East Chang'an Street 16, Beijing 100006, People's Republic of China
| | - Shungang Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China
| | - Fengli Zhang
- Daqing Museum, Wenyuan Street 2, Daqing, Heilongjiang 163711, People's Republic of China
| | - Siren Wang
- Daqing Museum, Wenyuan Street 2, Daqing, Heilongjiang 163711, People's Republic of China
| | - Zhen Zhang
- Zhaoyuan Museum, Zhongyang Street 192, Daqing, Heilongjiang 166599, People's Republic of China
| | - Linying Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China
| | - Bo Xiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China; School of Earth Sciences, China University of Geosciences, Lumo Road 388, Wuhan 430074, People's Republic of China
| | - Fuqiang Li
- Yifu Museum, China University of Geosciences, Lumo Road 388, Wuhan 430074, People's Republic of China
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Xulong Lai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China; School of Earth Sciences, China University of Geosciences, Lumo Road 388, Wuhan 430074, People's Republic of China
| | - Michael V Westbury
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1353 Copenhagen, Denmark.
| | - Guilian Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China; School of Environmental Studies, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China.
| |
Collapse
|
7
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596098. [PMID: 38854139 PMCID: PMC11160643 DOI: 10.1101/2024.05.27.596098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inference of species trees plays a crucial role in advancing our understanding of evolutionary relationships and has immense significance for diverse biological and medical applications. Extensive genome sequencing efforts are currently in progress across a broad spectrum of life forms, holding the potential to unravel the intricate branching patterns within the tree of life. However, estimating species trees starting from raw genome sequences is quite challenging, and the current cutting-edge methodologies require a series of error-prone steps that are neither entirely automated nor standardized. In this paper, we present ROADIES, a novel pipeline for species tree inference from raw genome assemblies that is fully automated, easy to use, scalable, free from reference bias, and provides flexibility to adjust the tradeoff between accuracy and runtime. The ROADIES pipeline eliminates the need to align whole genomes, choose a single reference species, or pre-select loci such as functional genes found using cumbersome annotation steps. Moreover, it leverages recent advances in phylogenetic inference to allow multi-copy genes, eliminating the need to detect orthology. Using the genomic datasets released from large-scale sequencing consortia across three diverse life forms (placental mammals, pomace flies, and birds), we show that ROADIES infers species trees that are comparable in quality with the state-of-the-art approaches but in a fraction of the time. By incorporating optimal approaches and automating all steps from assembled genomes to species and gene trees, ROADIES is poised to improve the accuracy, scalability, and reproducibility of phylogenomic analyses.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| |
Collapse
|
8
|
Bartolini-Lucenti S, Cirilli O, Melchionna M, Raia P, Tseng ZJ, Flynn JJ, Rook L. Virtual reconstruction of the Canis arnensis type (Canidae, Mammalia) from the Upper Valdarno Basin (Italy, Early Pleistocene). Sci Rep 2024; 14:8303. [PMID: 38594298 PMCID: PMC11004169 DOI: 10.1038/s41598-024-53073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/27/2024] [Indexed: 04/11/2024] Open
Abstract
Taphonomic deformation, whether it be brittle or plastic, is possibly the most influential process hindering the correct understanding of fossil species morphology. This is especially true if the deformation affects type specimens or applies to or obscures taxonomically diagnostic or functionally significant traits. Target Deformation, a recently developed virtual manipulation protocol, was implemented to address this issue by applying landmark-guided restoration of the original, deformed fossils, using undeformed specimens (or parts thereof) of the same species as a reference. The enigmatic Early Pleistocene canid Canis arnensis provides a typical example of a fossil species in dire need of virtual restoration. Its lectotype specimen is heavily deformed and none of the few known skulls are well preserved, obscuring the recognition of its systematic and phylogenetic position. Our results indicate that the algorithm effectively countered the lectotype skull's laterolateral compression and its concomitant rostrocaudal elongation. Morphometrically, comparison of the retrodeformed cranium (IGF 867_W) with other specimens of the same species, and to other fossil and extant canid material, confirms IGF 867_W consistently clusters within C. arnensis variability. Overall, the evidence presented here confirms that Target Deformation provides a powerful tool to better characterize complex taxa like C. arnensis, whose knowledge is severely affected by the state of preservation of its fossil material.
Collapse
Affiliation(s)
- S Bartolini-Lucenti
- Earth Science Department, Paleo[Fab]Lab, University of Florence, via La Pira 4, 50121, Florence, Italy.
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/Columnes s/n, Campus de la UAB, 08193, Cerdanyola del Vallès, Spain.
| | - O Cirilli
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/Columnes s/n, Campus de la UAB, 08193, Cerdanyola del Vallès, Spain
- Laboratory of Evolutionary Biology, Department of Anatomy, College of Medicine, 520 W St. N.W., Washington, DC, 20059, USA
| | - M Melchionna
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - P Raia
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Via Cinthia 21, 80126, Naples, Italy
| | - Z J Tseng
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA, 94720, USA
| | - J J Flynn
- Division of Paleontology, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - L Rook
- Earth Science Department, Paleo[Fab]Lab, University of Florence, via La Pira 4, 50121, Florence, Italy.
- Changes Foundation, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
9
|
Bertola LD, Quinn L, Hanghøj K, Garcia-Erill G, Rasmussen MS, Balboa RF, Meisner J, Bøggild T, Wang X, Lin L, Nursyifa C, Liu X, Li Z, Chege M, Moodley Y, Brüniche-Olsen A, Kuja J, Schubert M, Agaba M, Santander CG, Sinding MHS, Muwanika V, Masembe C, Siegismund HR, Moltke I, Albrechtsen A, Heller R. Giraffe lineages are shaped by major ancient admixture events. Curr Biol 2024; 34:1576-1586.e5. [PMID: 38479386 DOI: 10.1016/j.cub.2024.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/29/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.
Collapse
Affiliation(s)
- Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bøggild
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mumbi Chege
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands; Wildlife Research and Training Institute, Naivasha, Kenya
| | - Yoshan Moodley
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa
| | | | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Morris Agaba
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Nelson Mandela Road, Arusha, Tanzania
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Charles Masembe
- College of Natural Sciences, Makerere University, P O. Box 7062, Kampala, Uganda
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Wu Z, Solís-Lemus C. Ultrafast learning of four-node hybridization cycles in phylogenetic networks using algebraic invariants. BIOINFORMATICS ADVANCES 2024; 4:vbae014. [PMID: 38384862 PMCID: PMC10879748 DOI: 10.1093/bioadv/vbae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Motivation The abundance of gene flow in the Tree of Life challenges the notion that evolution can be represented with a fully bifurcating process which cannot capture important biological realities like hybridization, introgression, or horizontal gene transfer. Coalescent-based network methods are increasingly popular, yet not scalable for big data, because they need to perform a heuristic search in the space of networks as well as numerical optimization that can be NP-hard. Here, we introduce a novel method to reconstruct phylogenetic networks based on algebraic invariants. While there is a long tradition of using algebraic invariants in phylogenetics, our work is the first to define phylogenetic invariants on concordance factors (frequencies of four-taxon splits in the input gene trees) to identify level-1 phylogenetic networks under the multispecies coalescent model. Results Our novel hybrid detection methodology is optimization-free as it only requires the evaluation of polynomial equations, and as such, it bypasses the traversal of network space, yielding a computational speed at least 10 times faster than the fastest-to-date network methods. We illustrate our method's performance on simulated and real data from the genus Canis. Availability and implementation We present an open-source publicly available Julia package PhyloDiamond.jl available at https://github.com/solislemuslab/PhyloDiamond.jl with broad applicability within the evolutionary community.
Collapse
Affiliation(s)
- Zhaoxing Wu
- Department of Statistics, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Claudia Solís-Lemus
- Department of Plant Pathology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
11
|
Tensen L, Fischer K. Evaluating hybrid speciation and swamping in wild carnivores with a decision-tree approach. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14197. [PMID: 37811741 DOI: 10.1111/cobi.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 10/10/2023]
Abstract
Hybridization is an important evolutionary force with a principal role in the origin of new species, known as hybrid speciation. However, ongoing hybridization can create hybrid swamping, in which parental genomes are completely lost. This can become a biodiversity threat if it involves species that have adapted to certain environmental conditions and occur nowhere else. Because conservation scientists commonly have a negative attitude toward hybrids, it is important to improve understanding of the influence of interspecific gene flow on the persistence of species. We reviewed the literature on species hybridization to build a list of all known cases in the order Carnivora. To examine the relative impact, we also noted level of introgression, whether fertile offspring were produced, and whether there was mention of negative or positive evolutionary effects (hybrid speciation and swamping). To evaluate the conservation implications of hybrids, we developed a decision-making tree with which to determine which actions should be taken to manage hybrid species. We found 53 hybrids involving 68 unique taxa, which is roughly 23% of all carnivore species. They mainly involved monophyletic (83%) and sympatric species (75%). For 2 species, the outcome of the assessment was to eliminate or restrict the hybrids: Ethiopian wolf (Canis simensis) and Scottish wildcat (Felis silvestris silvestris). Both species hybridize with their domestic conspecifics. For all other cases, we suggest hybrids be protected in the same manner as native species. We found no evidence of genomic extinction in Carnivora. To the contrary, some species appear to be of hybrid origin, such as the Asiatic black bear (Ursus thibetanus) and African golden wolf (Canis lupaster). Other positive outcomes of hybridization are novel genetic diversity, adaptation to extreme environments, and increased reproductive fitness. These outcomes are particularly valuable for counterbalancing genetic drift and enabling adaptive introgression in a human-dominated world.
Collapse
Affiliation(s)
- Laura Tensen
- Institute for Integrated Natural Sciences, Department of Zoology, University of Koblenz, Koblenz, Germany
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Klaus Fischer
- Institute for Integrated Natural Sciences, Department of Zoology, University of Koblenz, Koblenz, Germany
| |
Collapse
|
12
|
Jarausch A, von Thaden A, Sin T, Corradini A, Pop MI, Chiriac S, Gazzola A, Nowak C. Assessment of genetic diversity, population structure and wolf-dog hybridisation in the Eastern Romanian Carpathian wolf population. Sci Rep 2023; 13:22574. [PMID: 38114536 PMCID: PMC10730609 DOI: 10.1038/s41598-023-48741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
The Carpathian Mountains have been constantly inhabited by grey wolves and present one of the largest distribution areas in Europe, comprising between 2300 and 2700 individuals in Romania. To date, however, relatively little is known about the Romanian wolf population. We aimed to provide a first assessment of genetic diversity, population structure and wolf-dog hybridisation based on 444 mostly non-invasively collected samples in the Eastern Romanian Carpathians. Pack reconstruction and analysis of population genetic parameters were performed with mitochondrial DNA control-region sequencing and microsatellite genotyping. We found relatively high levels of genetic diversity, which is similar to values found in previous studies on Carpathian wolves from Poland and Slovakia, as well as to the long-lasting Dinaric-Balkan wolf population. We found no significant population structure in our study region, suggesting effective dispersal and admixture. Analysis of wolf-dog hybridisation using a Single Nucleotide Polymorphism panel optimised for hybrid detection revealed low rates of admixture between wolves and domestic dogs. Our results provide evidence for the existence of a genetically viable wolf population in the Romanian Carpathians. The genetic data obtained in this study may serve as valuable baseline information for the elaboration of monitoring standards and management plans for wolves in Romania.
Collapse
Affiliation(s)
- Anne Jarausch
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, 63571, Gelnhausen, Germany.
- Department of Biological Sciences, Johann Wolfgang Goethe-University, Biologicum, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany.
| | - Alina von Thaden
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, 63571, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Teodora Sin
- Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania
- Association for the Conservation of Biological Diversity, Ion Creanga 12, 620083, Focsani, Romania
| | - Andrea Corradini
- Association for the Conservation of Biological Diversity, Ion Creanga 12, 620083, Focsani, Romania
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38098, San Michele all'Adige, TN, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, PA, Italy
| | - Mihai I Pop
- Association for the Conservation of Biological Diversity, Ion Creanga 12, 620083, Focsani, Romania
| | - Silviu Chiriac
- Environmental Protection Agency, Vrancea County, Dinicu Golescu 2, 620106, Focsani, Romania
| | - Andrea Gazzola
- Association for the Conservation of Biological Diversity, Ion Creanga 12, 620083, Focsani, Romania
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, 63571, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Thawornwattana Y, Seixas F, Yang Z, Mallet J. Major patterns in the introgression history of Heliconius butterflies. eLife 2023; 12:RP90656. [PMID: 38108819 PMCID: PMC10727504 DOI: 10.7554/elife.90656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Gene flow between species, although usually deleterious, is an important evolutionary process that can facilitate adaptation and lead to species diversification. It also makes estimation of species relationships difficult. Here, we use the full-likelihood multispecies coalescent (MSC) approach to estimate species phylogeny and major introgression events in Heliconius butterflies from whole-genome sequence data. We obtain a robust estimate of species branching order among major clades in the genus, including the 'melpomene-silvaniform' group, which shows extensive historical and ongoing gene flow. We obtain chromosome-level estimates of key parameters in the species phylogeny, including species divergence times, present-day and ancestral population sizes, as well as the direction, timing, and intensity of gene flow. Our analysis leads to a phylogeny with introgression events that differ from those obtained in previous studies. We find that Heliconius aoede most likely represents the earliest-branching lineage of the genus and that 'silvaniform' species are paraphyletic within the melpomene-silvaniform group. Our phylogeny provides new, parsimonious histories for the origins of key traits in Heliconius, including pollen feeding and an inversion involved in wing pattern mimicry. Our results demonstrate the power and feasibility of the full-likelihood MSC approach for estimating species phylogeny and key population parameters despite extensive gene flow. The methods used here should be useful for analysis of other difficult species groups with high rates of introgression.
Collapse
Affiliation(s)
| | - Fernando Seixas
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
14
|
Ninausz N, Fehér P, Csányi E, Heltai M, Szabó L, Barta E, Kemenszky P, Sándor G, Jánoska F, Horváth M, Kusza S, Frank K, Varga L, Stéger V. White and other fur colourations and hybridization in golden jackals (Canis aureus) in the Carpathian basin. Sci Rep 2023; 13:21969. [PMID: 38082037 PMCID: PMC10713657 DOI: 10.1038/s41598-023-49265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The golden jackal (Canis aureus) is a reoccurring species in the centre of the Carpathian basin, in Hungary. In total, 31 golden jackal tissue samples were collected, from 8 white-coated, 2 black-coated and one mottled animal across Hungary. Sequences and fragment length polymorphisms were studied for white colour (MC1R), and for black coat colouration (CBD103). In each white animal, the most widespread mutation causing white fur colour in dogs in homozygous form was detected. Three animals were found to carry the mutation in heterozygous form. The two black golden jackals were heterozygous for the 3 bp deletion in CBD103 that mutation for black coat colouration in dogs, and one of them also carried the mutation causing white fur. None of the white animals showed signs of hybridization, but both the black and the mottled coloured individuals were found to be hybrids based on genetic testing. Kinship was found three times, twice between white animals, and once between a white animal and an agouti animal carrying the mutation of white coat. Our results confirm the findings that golden jackal-dog hybrids may occur without human intervention, and the detected mutation causing white fur colour in golden jackals could possibly be due to an early hybridization event.
Collapse
Affiliation(s)
- Nóra Ninausz
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Fehér
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Erika Csányi
- Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Miklós Heltai
- Department of Wildlife Biology and Management, Institute of Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - László Szabó
- Department of Wildlife Biology and Management, Institute of Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Endre Barta
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Gyula Sándor
- Faculty of Forestry, University of Sopron, Sopron, Hungary
| | - Ferenc Jánoska
- Faculty of Forestry, University of Sopron, Sopron, Hungary
| | | | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | | | - László Varga
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Viktor Stéger
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| |
Collapse
|
15
|
Jensen A, Swift F, de Vries D, Beck RMD, Kuderna LFK, Knauf S, Chuma IS, Keyyu JD, Kitchener AC, Farh K, Rogers J, Marques-Bonet T, Detwiler KM, Roos C, Guschanski K. Complex Evolutionary History With Extensive Ancestral Gene Flow in an African Primate Radiation. Mol Biol Evol 2023; 40:msad247. [PMID: 37987553 PMCID: PMC10691879 DOI: 10.1093/molbev/msad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Understanding the drivers of speciation is fundamental in evolutionary biology, and recent studies highlight hybridization as an important evolutionary force. Using whole-genome sequencing data from 22 species of guenons (tribe Cercopithecini), one of the world's largest primate radiations, we show that rampant gene flow characterizes their evolutionary history and identify ancient hybridization across deeply divergent lineages that differ in ecology, morphology, and karyotypes. Some hybridization events resulted in mitochondrial introgression between distant lineages, likely facilitated by cointrogression of coadapted nuclear variants. Although the genomic landscapes of introgression were largely lineage specific, we found that genes with immune functions were overrepresented in introgressing regions, in line with adaptive introgression, whereas genes involved in pigmentation and morphology may contribute to reproductive isolation. In line with reports from other systems that hybridization might facilitate diversification, we find that some of the most species-rich guenon clades are of admixed origin. This study provides important insights into the prevalence, role, and outcomes of ancestral hybridization in a large mammalian radiation.
Collapse
Affiliation(s)
- Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala SE-75236, Sweden
| | - Frances Swift
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Robin M D Beck
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Lukas F K Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Insel Riems 17493, Germany
| | | | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, UK
- School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Kyle Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona 08003, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Barcelona 08010, Spain
| | - Kate M Detwiler
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala SE-75236, Sweden
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Ciucani MM, Ramos-Madrigal J, Hernández-Alonso G, Carmagnini A, Aninta SG, Sun X, Scharff-Olsen CH, Lanigan LT, Fracasso I, Clausen CG, Aspi J, Kojola I, Baltrūnaitė L, Balčiauskas L, Moore J, Åkesson M, Saarma U, Hindrikson M, Hulva P, Bolfíková BČ, Nowak C, Godinho R, Smith S, Paule L, Nowak S, Mysłajek RW, Lo Brutto S, Ciucci P, Boitani L, Vernesi C, Stenøien HK, Smith O, Frantz L, Rossi L, Angelici FM, Cilli E, Sinding MHS, Gilbert MTP, Gopalakrishnan S. The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs. iScience 2023; 26:107307. [PMID: 37559898 PMCID: PMC10407145 DOI: 10.1016/j.isci.2023.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment.
Collapse
Affiliation(s)
- Marta Maria Ciucani
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Germán Hernández-Alonso
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Carmagnini
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sabhrina Gita Aninta
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Xin Sun
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Thomas Lanigan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ilaria Fracasso
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Cecilie G. Clausen
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jouni Aspi
- Ecology and Genetics Research Unit, University of Oulu, Finland
| | - Ilpo Kojola
- Natural Resources Institute Finland, Rovaniemi, Finland
| | | | | | - Jane Moore
- Società Amatori Cirneco dell’Etna, Modica (RG), Italy
| | - Mikael Åkesson
- Swedish University of Agricultural Sciences, Grimsö Wildlife Research Station, Department of Ecology, Riddarhyttan, Sweden
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Pavel Hulva
- Charles University, Department of Zoology, Faculty of Science, Prague 2, Czech Republic
| | | | - Carsten Nowak
- Center for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Raquel Godinho
- CIBIO/InBIO, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Ladislav Paule
- Faculty of Forestry, Technical University, Zvolen, Slovakia
| | - Sabina Nowak
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Robert W. Mysłajek
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Sabrina Lo Brutto
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
- Museum of Zoology "P. Doderlein", SIMUA, University of Palermo, Palermo, Italy
| | - Paolo Ciucci
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Luigi Boitani
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Hans K. Stenøien
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oliver Smith
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Francesco Maria Angelici
- FIZV, Via Marco Aurelio 2, Roma, Italy
- National Center for Wildlife, Al Imam Faisal Ibn Turki Ibn Abdullah, Ulaishah, Saudi Arabia
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural Heritage (DBC), University of Bologna, Bologna, Italy
| | - Mikkel-Holger S. Sinding
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Jabin G, Joshi BD, Wang MS, Mukherjee T, Dolker S, Wang S, Chandra K, Chinnadurai V, Sharma LK, Thakur M. Mid-Pleistocene Transitions Forced Himalayan ibex to Evolve Independently after Split into an Allopatric Refugium. BIOLOGY 2023; 12:1097. [PMID: 37626983 PMCID: PMC10451794 DOI: 10.3390/biology12081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Pleistocene glaciations had profound impact on the spatial distribution and genetic makeup of species in temperate ecosystems. While the glacial period trapped several species into glacial refugia and caused abrupt decline in large populations, the interglacial period facilitated population growth and range expansion leading to allopatric speciation. Here, we analyzed 40 genomes of four species of ibex and found that Himalayan ibex in the Pamir Mountains evolved independently after splitting from its main range about 0.1 mya following the Pleistocene species pump concept. Demographic trajectories showed Himalayan ibex experienced two historic bottlenecks, one each c. 0.8-0.5 mya and c. 50-30 kya, with an intermediate large population expansion c. 0.2-0.16 mya coinciding with Mid-Pleistocene Transitions. We substantiate with multi-dimensional evidence that Himalayan ibex is an evolutionary distinct phylogenetic species of Siberian ibex which need to be prioritized as Capra himalayensis for taxonomic revision and conservation planning at a regional and global scale.
Collapse
Affiliation(s)
- Gul Jabin
- Zoological Survey of India, Kolkata 700053, India
- Department of Zoology, University of Calcutta, Kolkata 700019, India
| | | | - Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Stanzin Dolker
- Zoological Survey of India, Kolkata 700053, India
- Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Sheng Wang
- Kunming Institute of Zoology, Kunming 650223, China
| | | | | | | | | |
Collapse
|
18
|
Li WL, Liu YH, Li JX, Ding MT, Adeola AC, Isakova J, Aldashev AA, Peng MS, Huang X, Xie G, Chen X, Yang WK, Zhou WW, Ghanatsaman ZA, Olaogun SC, Sanke OJ, Dawuda PM, Hytönen MK, Lohi H, Esmailizadeh A, Poyarkov AD, Savolainen P, Wang GD, Zhang YP. Multiple Origins and Genomic Basis of Complex Traits in Sighthounds. Mol Biol Evol 2023; 40:msad158. [PMID: 37433053 PMCID: PMC10401622 DOI: 10.1093/molbev/msad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol" (gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149 T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007 T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.
Collapse
Affiliation(s)
- Wu-Lue Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meng-Ting Ding
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Jainagul Isakova
- Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - Almaz A Aldashev
- Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Xuezhen Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Guoli Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xi Chen
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Kang Yang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Wei Zhou
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zeinab Amiri Ghanatsaman
- Animal Science Research Department, Fars Agricultural and Natural Resources research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oscar J Sanke
- Ministry of Agriculture and Natural Resources, Taraba State Government, Jalingo, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, Roma, Southern Africa
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Andrey D Poyarkov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Moscow, Russia
| | - Peter Savolainen
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, Solna, Sweden
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
19
|
Hernández‐Alonso G, Ramos‐Madrigal J, Sun X, Scharff‐Olsen CH, Sinding MS, Martins NF, Ciucani MM, Mak SST, Lanigan LT, Clausen CG, Bhak J, Jeon S, Kim C, Eo KY, Cho S, Boldgiv B, Gantulga G, Unudbayasgalan Z, Kosintsev PA, Stenøien HK, Gilbert MTP, Gopalakrishnan S. Conservation implications of elucidating the Korean wolf taxonomic ambiguity through whole-genome sequencing. Ecol Evol 2023; 13:e10404. [PMID: 37546572 PMCID: PMC10401669 DOI: 10.1002/ece3.10404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
The taxonomic status of the now likely extirpated Korean Peninsula wolf has been extensively debated, with some arguing it represents an independent wolf lineage, Canis coreanus. To investigate the Korean wolf's genetic affiliations and taxonomic status, we sequenced and analysed the genomes of a Korean wolf dated to the beginning of the 20th century, and a captive wolf originally from the Pyongyang Central Zoo. Our results indicated that the Korean wolf bears similar genetic ancestry to other regional East Asian populations, therefore suggesting it is not a distinct taxonomic lineage. We identified regional patterns of wolf population structure and admixture in East Asia with potential conservation consequences in the Korean Peninsula and on a regional scale. We find that the Korean wolf has similar genomic diversity and inbreeding to other East Asian wolves. Finally, we show that, in contrast to the historical sample, the captive wolf is genetically more similar to wolves from the Tibetan Plateau; hence, Korean wolf conservation programmes might not benefit from the inclusion of this specimen.
Collapse
Affiliation(s)
- Germán Hernández‐Alonso
- Section for Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Jazmín Ramos‐Madrigal
- Section for Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Xin Sun
- Section for Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | | | | | - Nuno F. Martins
- Section for Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Marta Maria Ciucani
- Section for Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Sarah S. T. Mak
- Section for Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Liam Thomas Lanigan
- Section for Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Cecilie G. Clausen
- Section for Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Jong Bhak
- Clinomics Inc.UlsanKorea
- Korean Genomics CenterUlsan National Institute of Science and TechnologyUlsanKorea
- Department of Biomedical Engineering, College of Information‐Bio Convergence EngineeringUlsan National Institute of Science and TechnologyUlsanKorea
- Personal Genomics InstituteGenome Research FoundationOsongKorea
| | - Sungwon Jeon
- Clinomics Inc.UlsanKorea
- Korean Genomics CenterUlsan National Institute of Science and TechnologyUlsanKorea
| | | | - Kyung Yeon Eo
- Department of Animal Health & WelfareSemyung UniversityJecheonKorea
| | - Seong‐Ho Cho
- Natural History MuseumKyungpook National UniversityGunwiKorea
| | - Bazartseren Boldgiv
- Laboratory of Ecological and Evolutionary SynthesisNational University of MongoliaUlaanbaatarMongolia
| | | | | | - Pavel A. Kosintsev
- Institute of Plant and Animal Ecology, Urals Branch of the Russian Academy of SciencesYekaterinburgRussia
- Ural Federal UniversityEkaterinburgRussia
| | - Hans K. Stenøien
- NTNU University MuseumNorwegian University of Science and TechnologyTrondheimNorway
| | - M. Thomas P. Gilbert
- Section for Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- University MuseumNorwegian University of Science and TechnologyTrondheimNorway
| | - Shyam Gopalakrishnan
- Section for Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary Hologenomics, The Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Bioinformatics, Department of Health TechnologyTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
20
|
L Rocha J, Silva P, Santos N, Nakamura M, Afonso S, Qninba A, Boratynski Z, Sudmant PH, Brito JC, Nielsen R, Godinho R. North African fox genomes show signatures of repeated introgression and adaptation to life in deserts. Nat Ecol Evol 2023; 7:1267-1286. [PMID: 37308700 PMCID: PMC10527534 DOI: 10.1038/s41559-023-02094-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Elucidating the evolutionary process of animal adaptation to deserts is key to understanding adaptive responses to climate change. Here we generated 82 individual whole genomes of four fox species (genus Vulpes) inhabiting the Sahara Desert at different evolutionary times. We show that adaptation of new colonizing species to a hot arid environment has probably been facilitated by introgression and trans-species polymorphisms shared with older desert resident species, including a putatively adaptive 25 Mb genomic region. Scans for signatures of selection implicated genes affecting temperature perception, non-renal water loss and heat production in the recent adaptation of North African red foxes (Vulpes vulpes), after divergence from Eurasian populations approximately 78 thousand years ago. In the extreme desert specialists, Rueppell's fox (V. rueppellii) and fennec (V. zerda), we identified repeated signatures of selection in genes affecting renal water homeostasis supported by gene expression and physiological differences. Our study provides insights into the mechanisms and genetic underpinnings of a natural experiment of repeated adaptation to extreme conditions.
Collapse
Affiliation(s)
- Joana L Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
| | - Pedro Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Mónia Nakamura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Abdeljebbar Qninba
- Laboratory of Geophysics and Natural Hazards, Geophysics, Natural Patrimony and Green Chemistry Research Center (GEOPAC), Institut Scientifique, Mohammed V University of Rabat, Rabat, Morocco
| | - Zbyszek Boratynski
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Peter H Sudmant
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - José C Brito
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
- Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa.
| |
Collapse
|
21
|
Martínez-Navarro B, Gossa T, Carotenuto F, Bartolini-Lucenti S, Palmqvist P, Asrat A, Figueirido B, Rook L, Niespolo EM, Renne PR, Herzlinger G, Hovers E. The earliest Ethiopian wolf: implications for the species evolution and its future survival. Commun Biol 2023; 6:530. [PMID: 37193884 DOI: 10.1038/s42003-023-04908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
In 2017, a hemimandible (MW5-B208), corresponding to the Ethiopian wolf (Canis simensis), was found in a stratigraphically-controlled and radio-isotopically-dated sequence of the Melka Wakena paleoanthropological site-complex, on the Southeastern Ethiopian Highlands, ~ 2300 m above sea level. The specimen is the first and unique Pleistocene fossil of this species. Our data provide an unambiguous minimum age of 1.6-1.4 Ma for the species' presence in Africa and constitutes the first empirical evidence that supports molecular interpretations. Currently, C. simensis is one of the most endangered carnivore species of Africa. Bioclimate niche modeling applied to the time frame indicated by the fossil suggests that the lineage of the Ethiopian wolf faced severe survival challenges in the past, with consecutive drastic geographic range contractions during warmer periods. These models help to describe future scenarios for the survival of the species. Projections ranging from most pessimistic to most optimistic future climatic scenarios indicate significant reduction of the already-deteriorating territories suitable for the Ethiopian Wolf, increasing the threat to the specie's future survival. Additionally, the recovery of the Melka Wakena fossil underscores the importance of work outside the East African Rift System in research of early human origins and associated biodiversity on the African continent.
Collapse
Affiliation(s)
- Bienvenido Martínez-Navarro
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007, Tarragona, Spain.
- Universitat Rovira i Virgili, Departament d'Història i Història de l'Art, Avinguda de Catalunya 35, 43002, Tarragona, Spain.
| | - Tegenu Gossa
- Human Evolution Research Center (HERC), The University of California at Berkeley, Berkeley, CA, USA.
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of History and Heritage Management, Arba Minch University, Arba Minch, Ethiopia.
| | - Francesco Carotenuto
- Department of Earth, Environment and Resource Sciences, University of Naples "Federico II", Naples, Italy
| | - Saverio Bartolini-Lucenti
- Earth Science Department, Paleo[Fab]Lab, University of Florence, Via G. La Pira 4, Firenze, 50121, Italy
- Institut Català de Paleontogia M. Crusafont, Universitat Autònoma de Barcelona, E-08193, Cerdanyola del Vallès, Spain
| | - Paul Palmqvist
- Departamento de Ecología y Geología, Universidad de Málaga, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain
| | - Asfawossen Asrat
- Department of Mining and Geological Engineering, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
- School of Earth Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Borja Figueirido
- Departamento de Ecología y Geología, Universidad de Málaga, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain
| | - Lorenzo Rook
- Earth Science Department, Paleo[Fab]Lab, University of Florence, Via G. La Pira 4, Firenze, 50121, Italy
| | - Elizabeth M Niespolo
- Department of Geosciences, Princeton University, Princeton, NJ, USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Berkeley Geochronology Center, Berkeley, CA, USA
| | - Paul R Renne
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Berkeley Geochronology Center, Berkeley, CA, USA
| | - Gadi Herzlinger
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Erella Hovers
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Institute of Human Origins, Arizona State University, Tempe, USA.
| |
Collapse
|
22
|
Barash A, Preiss-Bloom S, Machluf Y, Fabbri E, Malkinson D, Velli E, Mucci N, Barash A, Caniglia R, Dayan T, Dekel Y. Possible origins and implications of atypical morphologies and domestication-like traits in wild golden jackals (Canis aureus). Sci Rep 2023; 13:7388. [PMID: 37149712 PMCID: PMC10164184 DOI: 10.1038/s41598-023-34533-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
Deciphering the origins of phenotypic variations in natural animal populations is a challenging topic for evolutionary and conservation biologists. Atypical morphologies in mammals are usually attributed to interspecific hybridisation or de-novo mutations. Here we report the case of four golden jackals (Canis aureus), that were observed during a camera-trapping wildlife survey in Northern Israel, displaying anomalous morphological traits, such as white patches, an upturned tail, and long thick fur which resemble features of domesticated mammals. Another individual was culled under permit and was genetically and morphologically examined. Paternal and nuclear genetic profiles, as well as geometric morphometric data, identified this individual as a golden jackal rather than a recent dog/wolf-jackal hybrid. Its maternal haplotype suggested past introgression of African wolf (Canis lupaster) mitochondrial DNA, as previously documented in other jackals from Israel. When viewed in the context of the jackal as an overabundant species in Israel, the rural nature of the surveyed area, the abundance of anthropogenic waste, and molecular and morphological findings, the possibility of an individual presenting incipient stages of domestication should also be considered.
Collapse
Affiliation(s)
- Ayelet Barash
- School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
- Unit of Agrigenomics, Shamir Research Institute, University of Haifa, 1290000, Kazerin, Israel
| | - Shlomo Preiss-Bloom
- School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Yossy Machluf
- Unit of Agrigenomics, Shamir Research Institute, University of Haifa, 1290000, Kazerin, Israel
| | - Elena Fabbri
- Unit for Conservation Genetics (BIO‑CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Dan Malkinson
- Department of Geography and Environmental Studies, University of Haifa, 3498838, Haifa, Israel
| | - Edoardo Velli
- Unit for Conservation Genetics (BIO‑CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Nadia Mucci
- Unit for Conservation Genetics (BIO‑CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Alon Barash
- The Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold St, Safed, Israel
| | - Romolo Caniglia
- Unit for Conservation Genetics (BIO‑CGE), Italian Institute for Environmental Protection and Research (ISPRA), Via Cà Fornacetta 9, Ozzano dell'Emilia, 40064, Bologna, Italy.
| | - Tamar Dayan
- School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel.
| | - Yaron Dekel
- Unit of Agrigenomics, Shamir Research Institute, University of Haifa, 1290000, Kazerin, Israel.
- The Cheryl Spencer Department of Nursing and The Cheryl Spencer Institute of Nursing Research, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
23
|
Vilaça ST, Donaldson ME, Benazzo A, Wheeldon TJ, Vizzari MT, Bertorelle G, Patterson BR, Kyle CJ. Tracing Eastern Wolf Origins From Whole-Genome Data in Context of Extensive Hybridization. Mol Biol Evol 2023; 40:msad055. [PMID: 37046402 PMCID: PMC10098045 DOI: 10.1093/molbev/msad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Southeastern Canada is inhabited by an amalgam of hybridizing wolf-like canids, raising fundamental questions regarding their taxonomy, origins, and timing of hybridization events. Eastern wolves (Canis lycaon), specifically, have been the subject of significant controversy, being viewed as either a distinct taxonomic entity of conservation concern or a recent hybrid of coyotes (C. latrans) and grey wolves (C. lupus). Mitochondrial DNA analyses show some evidence of eastern wolves being North American evolved canids. In contrast, nuclear genome studies indicate eastern wolves are best described as a hybrid entity, but with unclear timing of hybridization events. To test hypotheses related to these competing findings we sequenced whole genomes of 25 individuals, representative of extant Canadian wolf-like canid types of known origin and levels of contemporary hybridization. Here we present data describing eastern wolves as a distinct taxonomic entity that evolved separately from grey wolves for the past ∼67,000 years with an admixture event with coyotes ∼37,000 years ago. We show that Great Lakes wolves originated as a product of admixture between grey wolves and eastern wolves after the last glaciation (∼8,000 years ago) while eastern coyotes originated as a product of admixture between "western" coyotes and eastern wolves during the last century. Eastern wolf nuclear genomes appear shaped by historical and contemporary gene flow with grey wolves and coyotes, yet evolutionary uniqueness remains among eastern wolves currently inhabiting a restricted range in southeastern Canada.
Collapse
Affiliation(s)
- Sibelle T Vilaça
- Environmental and Life Sciences Graduate Program, Trent University, Ontario, Canada
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Michael E Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Ontario, Canada
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Tyler J Wheeldon
- Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, Trent University, Ontario, Canada
| | - Maria Teresa Vizzari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Brent R Patterson
- Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, Trent University, Ontario, Canada
| | - Christopher J Kyle
- Environmental and Life Sciences Graduate Program, Trent University, Ontario, Canada
- Forensic Science Department, Trent University, Ontario, Canada
| |
Collapse
|
24
|
Marciszak A, Kropczyk A, Gornig W, Kot M, Nadachowski A, Lipecki G. History of Polish Canidae (Carnivora, Mammalia) and Their Biochronological Implications on the Eurasian Background. Genes (Basel) 2023; 14:genes14030539. [PMID: 36980812 PMCID: PMC10048199 DOI: 10.3390/genes14030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The remains of 12 canid species that date back ca. 4.9 myr have been found at 116 paleontological localities. Among these localities, eight are dated to the Pliocene age, 12 are dated to the Early Pleistocene age, 12 are from the Middle Pleistocene age, while the most numerous group includes 84 sites from the Late Pleistocene–Holocene age. Some, especially older forms such as Eucyon odessanus and Nyctereutes donnezani, have only been found at single sites, while the remains of species from the genus Lycaon, Canis and Vulpes have been recorded at numerous sites from the last 2 myr. Ancient canids such as Eucyon and Nyctereutes had already vanished from Poland in the Earliest Pleistocene, between 2.5 and 2.2 myr ago. Poland’s extant canid fauna is characterised by the presence of two new species, which spread into the territory due to a human introduction (Nyctereutes procyonoides) or natural expansion (Canis aureus). Research indicates a strong competition between dogs, especially between Lycaon, Canis and Cuon, with a strong lycaon-limiting effect on the wolf between 2.5 and 0.4 myr ago. After the extinction of Lycaon lycaonoides, Canis lupus evolved rapidly, increasing in number and size, and taking over the niche occupied by Lycaon. In order to reduce competition, the body size of Cuon alpinus gradually reduced, and it became an animal adapted to the forest, highland and mountain environments. Generally, the history of canids in Poland is similar to that known of Eurasia with some noteworthy events, such as the early occurrence of Canis cf. etruscus from Węże 2 (2.9–2.6 myr ago), Lycaon falconeri from Rębielice Królewskie 1A or one of the latest occurrences of L. lycaonoides from Draby 3 (430–370 kyr). Predominantly lowland or upland in the southern part and devoid of significant ecological barriers, Poland is also an important migration corridor in the East–West system. This 500–600 km wide corridor was the Asian gateway to Europe, from where species of an eastern origin penetrated the continent’s interior. In colder periods, it was in turn a region through which boreal species or those associated with the mammoth steppe retreated.
Collapse
Affiliation(s)
- Adrian Marciszak
- Department of Paleozoology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
- Correspondence:
| | - Aleksandra Kropczyk
- Department of Paleozoology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Wiktoria Gornig
- Department of Paleozoology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Małgorzata Kot
- Faculty of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warszawa, Poland
| | - Adam Nadachowski
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| | - Grzegorz Lipecki
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| |
Collapse
|
25
|
Mooney JA, Marsden CD, Yohannes A, Wayne RK, Lohmueller KE. Long-term Small Population Size, Deleterious Variation, and Altitude Adaptation in the Ethiopian Wolf, a Severely Endangered Canid. Mol Biol Evol 2023; 40:msac277. [PMID: 36585842 PMCID: PMC9847632 DOI: 10.1093/molbev/msac277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Ethiopian wolves, a canid species endemic to the Ethiopian Highlands, have been steadily declining in numbers for decades. Currently, out of 35 extant species, it is now one of the world's most endangered canids. Most conservation efforts have focused on preventing disease, monitoring movements and behavior, and assessing the geographic ranges of sub-populations. Here, we add an essential layer by determining the Ethiopian wolf's demographic and evolutionary history using high-coverage (∼40×) whole-genome sequencing from 10 Ethiopian wolves from the Bale Mountains. We observe exceptionally low diversity and enrichment of weakly deleterious variants in the Ethiopian wolves in comparison with two North American gray wolf populations and four dog breeds. These patterns are consequences of long-term small population size, rather than recent inbreeding. We infer the demographic history of the Ethiopian wolf and find it to be concordant with historic records and previous genetic analyses, suggesting Ethiopian wolves experienced a series of both ancient and recent bottlenecks, resulting in a census population size of fewer than 500 individuals and an estimated effective population size of approximately 100 individuals. Additionally, long-term small population size may have limited the accumulation of strongly deleterious recessive mutations. Finally, as the Ethiopian wolves have inhabited high-altitude areas for thousands of years, we searched for evidence of high-altitude adaptation, finding evidence of positive selection at a transcription factor in a hypoxia-response pathway [CREB-binding protein (CREBBP)]. Our findings are pertinent to continuing conservation efforts and understanding how demography influences the persistence of deleterious variation in small populations.
Collapse
Affiliation(s)
- Jazlyn A Mooney
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Clare D Marsden
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Abigail Yohannes
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert K Wayne
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Kirk E Lohmueller
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Home range, habitat use, and activity patterns of African wolves (Canis lupaster) in the Ethiopian highlands. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Zhang C, Mirarab S. Weighting by Gene Tree Uncertainty Improves Accuracy of Quartet-based Species Trees. Mol Biol Evol 2022; 39:6750035. [PMID: 36201617 PMCID: PMC9750496 DOI: 10.1093/molbev/msac215] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 01/07/2023] Open
Abstract
Phylogenomic analyses routinely estimate species trees using methods that account for gene tree discordance. However, the most scalable species tree inference methods, which summarize independently inferred gene trees to obtain a species tree, are sensitive to hard-to-avoid errors introduced in the gene tree estimation step. This dilemma has created much debate on the merits of concatenation versus summary methods and practical obstacles to using summary methods more widely and to the exclusion of concatenation. The most successful attempt at making summary methods resilient to noisy gene trees has been contracting low support branches from the gene trees. Unfortunately, this approach requires arbitrary thresholds and poses new challenges. Here, we introduce threshold-free weighting schemes for the quartet-based species tree inference, the metric used in the popular method ASTRAL. By reducing the impact of quartets with low support or long terminal branches (or both), weighting provides stronger theoretical guarantees and better empirical performance than the unweighted ASTRAL. Our simulations show that weighting improves accuracy across many conditions and reduces the gap with concatenation in conditions with low gene tree discordance and high noise. On empirical data, weighting improves congruence with concatenation and increases support. Together, our results show that weighting, enabled by a new optimization algorithm we introduce, improves the utility of summary methods and can reduce the incongruence often observed across analytical pipelines.
Collapse
Affiliation(s)
- Chao Zhang
- Bioinformatics and Systems Biology, UC San Diego, La Jolla, CA, USA
| | | |
Collapse
|
28
|
Daly KG, Arbuckle BS, Rossi C, Mattiangeli V, Lawlor PA, Mashkour M, Sauer E, Lesur J, Atici L, Erek CM, Bradley DG. A novel lineage of the Capra genus discovered in the Taurus Mountains of Turkey using ancient genomics. eLife 2022; 11:e82984. [PMID: 36190761 PMCID: PMC9529249 DOI: 10.7554/elife.82984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Direkli Cave, located in the Taurus Mountains of southern Turkey, was occupied by Late Epipaleolithic hunters-gatherers for the seasonal hunting and processing of game including large numbers of wild goats. We report genomic data from new and published Capra specimens from Direkli Cave and, supplemented with historic genomes from multiple Capra species, find a novel lineage best represented by a ~14,000 year old 2.59 X genome sequenced from specimen Direkli4. This newly discovered Capra lineage is a sister clade to the Caucasian tur species (Capra cylindricornis and Capra caucasica), both now limited to the Caucasus region. We identify genomic regions introgressed in domestic goats with high affinity to Direkli4, and find that West Eurasian domestic goats in the past, but not those today, appear enriched for Direkli4-specific alleles at a genome-wide level. This forgotten 'Taurasian tur' likely survived Late Pleistocene climatic change in a Taurus Mountain refuge and its genomic fate is unknown.
Collapse
Affiliation(s)
- Kevin G Daly
- Smurfit Institute of Genetics, Trinity College DublinDublinIreland
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Conor Rossi
- Smurfit Institute of Genetics, Trinity College DublinDublinIreland
| | | | - Phoebe A Lawlor
- Smurfit Institute of Genetics, Trinity College DublinDublinIreland
| | - Marjan Mashkour
- Centre National de Recherche Scientifique / Muséum national d'Histoire naturelle, Archéozoologie, ArchéobotaniqueParisFrance
- University of Tehran, Bioarchaeology Laboratory, (Central Laboratory), Archaeozoology sectionTehranIslamic Republic of Iran
| | - Eberhard Sauer
- School of History, Classics and Archaeology, University of EdinburghEdinburghUnited Kingdom
| | - Joséphine Lesur
- Centre National de Recherche Scientifique / Muséum national d'Histoire naturelle, Archéozoologie, ArchéobotaniqueParisFrance
| | - Levent Atici
- Department of Anthropology, University of Nevada, Las VegasLas VegasUnited States
| | - Cevdet Merih Erek
- Department of Archeology, Department of Prehistoric Archeology, Faculty of Letters, Ankara Hacı Bayram Veli UniversityAnkaraTurkey
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College DublinDublinIreland
| |
Collapse
|
29
|
Chavez DE, Gronau I, Hains T, Dikow RB, Frandsen PB, Figueiró HV, Garcez FS, Tchaicka L, de Paula RC, Rodrigues FHG, Jorge RSP, Lima ES, Songsasen N, Johnson WE, Eizirik E, Koepfli KP, Wayne RK. Comparative genomics uncovers the evolutionary history, demography, and molecular adaptations of South American canids. Proc Natl Acad Sci U S A 2022; 119:e2205986119. [PMID: 35969758 PMCID: PMC9407222 DOI: 10.1073/pnas.2205986119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
The remarkable radiation of South American (SA) canids produced 10 extant species distributed across diverse habitats, including disparate forms such as the short-legged, hypercarnivorous bush dog and the long-legged, largely frugivorous maned wolf. Despite considerable research spanning nearly two centuries, many aspects of their evolutionary history remain unknown. Here, we analyzed 31 whole genomes encompassing all extant SA canid species to assess phylogenetic relationships, interspecific hybridization, historical demography, current genetic diversity, and the molecular bases of adaptations in the bush dog and maned wolf. We found that SA canids originated from a single ancestor that colonized South America 3.9 to 3.5 Mya, followed by diversification east of the Andes and then a single colonization event and radiation of Lycalopex species west of the Andes. We detected extensive historical gene flow between recently diverged lineages and observed distinct patterns of genomic diversity and demographic history in SA canids, likely induced by past climatic cycles compounded by human-induced population declines. Genome-wide scans of selection showed that disparate limb proportions in the bush dog and maned wolf may derive from mutations in genes regulating chondrocyte proliferation and enlargement. Further, frugivory in the maned wolf may have been enabled by variants in genes associated with energy intake from short-chain fatty acids. In contrast, unique genetic variants detected in the bush dog may underlie interdigital webbing and dental adaptations for hypercarnivory. Our analyses shed light on the evolution of a unique carnivoran radiation and how it was shaped by South American topography and climate change.
Collapse
Affiliation(s)
- Daniel E. Chavez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
- Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Ilan Gronau
- Efi Arazi School of Computer Science, Reichman University, Herzliya 46150, Israel
| | - Taylor Hains
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637
| | - Rebecca B. Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560
| | - Paul B. Frandsen
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Henrique V. Figueiró
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Fabrício S. Garcez
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Ligia Tchaicka
- Rede de Biodiversidade e Biotecnologia da Amazônia, Curso de Pós-Graduação em Recursos Aquáticos e Pesca, Universidade Estadual do Maranhão, São Luis, 2016-8100, Brazil
| | - Rogério C. de Paula
- Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros, Instituto Chico Mendes de Conservação da Biodiversidade, 12952-011, Atibaia, Brazil
| | - Flávio H. G. Rodrigues
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rodrigo S. P. Jorge
- Centro Nacional de Avaliação da Biodiversidade e de Pesquisa e Conservação do Cerrado, Instituto Chico Mendes de Conservação da Biodiversidade, Brasilia, 70670-350, Brazil
| | - Edson S. Lima
- Private address, Nova Xavantina, MT, 78690-000, Brazil
| | - Nucharin Songsasen
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
| | - Warren E. Johnson
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
| | - Eduardo Eizirik
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
- Instituto Pró-Carnívoros, Atibaia, 12945-010, Brazil
- Instituto Nacional de Ciência e Tecnologia em Ecologia Evolução Conservação da Biodiverside, Universidade Federal de GoiásGoiânia, 74690-900, Brazil
| | - Klaus-Peter Koepfli
- Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630
| | - Robert K. Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| |
Collapse
|
30
|
Berhanu Y, Tassie N, Sintayehu DW. Predicting the current and future suitable habitats for endemic and endangered Ethiopian wolf using MaxEnt model. Heliyon 2022; 8:e10223. [PMID: 36033304 PMCID: PMC9404360 DOI: 10.1016/j.heliyon.2022.e10223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
The Ethiopian wolf, endemic to Ethiopia, is the most endangered species in the world. As flagship species, a wide range of studies has been conducted on the Ethiopian wolf. However, there is scanty information about the impact of climate change on this globally important species. Thus, this study aimed to predict the current and future suitable habitats of the species based on four Representative Concentration Pathway scenarios of IPCC for the years 2050 and 2070 by using the MaxEnt model. A total of 479 species occurrence records were obtained from the field survey and Global Biodiversity Information Facility. The 19 bioclimatic variables and altitude were downloaded from worldclim and extracted for the study area using GIS software. The Pearson correlation analysis was employed to detect correlation among variables and maintained 10 variables. The prediction potential of the model was evaluated and found excellent to predict the distribution of the species. The result depicted that suitable habitats for Ethiopian wolves will be badly affected by climate change. Currently, about 9.4% of the total landmass of Ethiopia is suitable for wolves. However, it will be lost in the forthcoming couple of decade under all scenarios of global climate change. Consequently, the Ethiopian wolf is highly suspected to be extinct globally in the mid of 21st century, unless corrective measures are done in time. Therefore, enhancing the adaptive capacity of species as well as genetic resource preservation and captive breeding is advisable.
Collapse
Affiliation(s)
- Yericho Berhanu
- Africa Center of Excellence for Climate Smart Agriculture and Biodiversity Conservation, Haramaya University, Ethiopia
- Department of Natural Resource Management, College of Agriculture and Natural Resources, Bonga University, Ethiopia
| | - Nega Tassie
- Department of Biology, College of Science, Bahir Dar University, Ethiopia
| | - Dejene W. Sintayehu
- Africa Center of Excellence for Climate Smart Agriculture and Biodiversity Conservation, Haramaya University, Ethiopia
- College of Agriculture and Environmental Sciences, Haramaya University, Ethiopia
| |
Collapse
|
31
|
Bergström A, Stanton DWG, Taron UH, Frantz L, Sinding MHS, Ersmark E, Pfrengle S, Cassatt-Johnstone M, Lebrasseur O, Girdland-Flink L, Fernandes DM, Ollivier M, Speidel L, Gopalakrishnan S, Westbury MV, Ramos-Madrigal J, Feuerborn TR, Reiter E, Gretzinger J, Münzel SC, Swali P, Conard NJ, Carøe C, Haile J, Linderholm A, Androsov S, Barnes I, Baumann C, Benecke N, Bocherens H, Brace S, Carden RF, Drucker DG, Fedorov S, Gasparik M, Germonpré M, Grigoriev S, Groves P, Hertwig ST, Ivanova VV, Janssens L, Jennings RP, Kasparov AK, Kirillova IV, Kurmaniyazov I, Kuzmin YV, Kosintsev PA, Lázničková-Galetová M, Leduc C, Nikolskiy P, Nussbaumer M, O'Drisceoil C, Orlando L, Outram A, Pavlova EY, Perri AR, Pilot M, Pitulko VV, Plotnikov VV, Protopopov AV, Rehazek A, Sablin M, Seguin-Orlando A, Storå J, Verjux C, Zaibert VF, Zazula G, Crombé P, Hansen AJ, Willerslev E, Leonard JA, Götherström A, Pinhasi R, Schuenemann VJ, Hofreiter M, Gilbert MTP, Shapiro B, Larson G, Krause J, Dalén L, Skoglund P. Grey wolf genomic history reveals a dual ancestry of dogs. Nature 2022; 607:313-320. [PMID: 35768506 PMCID: PMC9279150 DOI: 10.1038/s41586-022-04824-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/28/2022] [Indexed: 01/01/2023]
Abstract
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1–8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located. DNA from ancient wolves spanning 100,000 years sheds light on wolves’ evolutionary history and the genomic origin of dogs.
Collapse
Affiliation(s)
- Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| | - David W G Stanton
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden.,School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ulrike H Taron
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Laurent Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.,Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Mikkel-Holger S Sinding
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,The Qimmeq Project, University of Greenland, Nuuk, Greenland.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Erik Ersmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Saskia Pfrengle
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Molly Cassatt-Johnstone
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ophélie Lebrasseur
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Linus Girdland-Flink
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Morgane Ollivier
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)-UMR 6553, Rennes, France
| | - Leo Speidel
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.,Genetics Institute, University College London, London, UK
| | | | - Michael V Westbury
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Tatiana R Feuerborn
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,The Qimmeq Project, University of Greenland, Nuuk, Greenland.,Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Joscha Gretzinger
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Max Planck Institute for the Science of Human History, Jena, Germany
| | - Susanne C Münzel
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Pooja Swali
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Nicholas J Conard
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Christian Carøe
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - James Haile
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Anna Linderholm
- Centre for Palaeogenetics, Stockholm, Sweden.,The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.,Texas A&M University, College Station, TX, USA.,Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | | | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Chris Baumann
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland
| | | | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.,Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Ruth F Carden
- School of Archaeology, University College Dublin, Dublin, Ireland
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Sergey Fedorov
- North-Eastern Federal University, Yakutsk, Russian Federation
| | | | | | | | - Pam Groves
- University of Alaska, Fairbanks, AK, USA
| | - Stefan T Hertwig
- Naturhistorisches Museum Bern, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | | | - Richard P Jennings
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russian Federation
| | - Irina V Kirillova
- Ice Age Museum, Shidlovskiy National Alliance 'Ice Age', Moscow, Russian Federation
| | - Islam Kurmaniyazov
- Department of Archaeology, Ethnology and Museology, Al-Farabi Kazakh State University, Almaty, Kazakhstan
| | - Yaroslav V Kuzmin
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | | | | | | | - Pavel Nikolskiy
- Geological Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Cóilín O'Drisceoil
- National Monuments Service, Department of Housing, Local Government and Heritage, Dublin, Ireland
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR 5288, CNRS, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Alan Outram
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Elena Y Pavlova
- Arctic & Antarctic Research Institute, St Petersburg, Russian Federation
| | - Angela R Perri
- PaleoWest, Henderson, NV, USA.,Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Małgorzata Pilot
- Museum & Institute of Zoology, Polish Academy of Sciences, Gdańsk, Poland
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russian Federation
| | | | | | | | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR 5288, CNRS, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Jan Storå
- Stockholm University, Stockholm, Sweden
| | | | - Victor F Zaibert
- Institute of Archaeology and Steppe Civilizations, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Grant Zazula
- Yukon Palaeontology Program, Whitehorse, Yukon Territories, Canada.,Collections and Research, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | | | - Anders J Hansen
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden.,Stockholm University, Stockholm, Sweden
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Verena J Schuenemann
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - M Thomas P Gilbert
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,University Museum, NTNU, Trondheim, Norway
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
32
|
Rocha RG, Gonçalves J, Tarroso P, Monterroso P, Godinho R. Multiple Lines of Ecological Evidence Support Ancient Contact Between the African Wild Dog and the Dhole. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.803822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic tools have greatly enhanced our ability to uncover ancient interspecific gene flow, including cases involving allopatric lineages and/or lineages that have gone extinct. Recently, a genomic analysis revealed the unexpected gene flow between the African wild dog (Lycaon pictus) and the dhole (Cuon alpinus). The two species have currently highly disjunct and patchy distributions in Africa and Asia, respectively, which are remnants of a much wider past distribution. Yet, no reported evidence of their past contact has ever been documented. By hindcasting the past potential distribution of both species during the Last Glacial Maximum and the Last Interglacial, validating paleoclimatic reconstructions with fossil evidence, quantifying the intersection of their bioclimatic niches, and assessing interspecific compatibility, we investigate the location and favorable conditions for such contact and its ecological validity. We were able to identify the Levant region in Eastern Mediterranean during the Last Interglacial as the most suitable spatio-ecological context for the co-occurrence of the two canids, and to provide evidence of a highly significant overlap of the African wild dog niche with the wider niche of the dhole. These results, combined with ecologic traits, including key compatibility features such as cooperative breeding and hunting, provide consistent support for the potential co-occurrence of both canids. We suggest that the ranges of these canids came into contact multiple times during periods resembling the Last Interglacial, eventually facilitating gene flow between the African wild dog and the dhole in their post-divergence history. Our results are highly supportive of the key role of the Levant region in providing connectivity between African and Eurasian faunas and provide further impetus to combine different tools and approaches in advancing the understanding of species evolutionary histories.
Collapse
|
33
|
Paleogenomics reveals independent and hybrid origins of two morphologically distinct wolf lineages endemic to Japan. Curr Biol 2022; 32:2494-2504.e5. [DOI: 10.1016/j.cub.2022.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
|
34
|
Werhahn G, Senn H, Macdonald DW, Sillero-Zubiri C. The Diversity in the Genus Canis Challenges Conservation Biology: A Review of Available Data on Asian Wolves. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.782528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Taxa belonging to the Genus Canis can challenge taxonomists because species boundaries and distribution ranges are often gradual. Species delineation within Canis is currently not based on consistent criteria, and is hampered by geographical bias and lack of taxonomic research. But a consistent taxonomy is critical, given its importance for assigning legal protection, conservation priorities, and financial resources. We carried out a qualitative review of the major wolf lineages so far identified from Asia from historical to contemporary time and considered relevant morphological, ecological, and genetic evidence. We present full mitochondrial phylogenies and genetic distances between these lineages. This review aims to summarize the available data on contemporary Asian wolf lineages within the context of the larger phylogenetic Canis group and to work toward a taxonomy that is consistent within the Canidae. We found support for the presence and taxon eligibility of Holarctic gray, Himalayan/Tibetan, Indian, and Arabian wolves in Asia and recommend their recognition at the taxonomic levels consistent within the group.
Collapse
|
35
|
Natural and human-driven selection of a single non-coding body size variant in ancient and modern canids. Curr Biol 2022; 32:889-897.e9. [PMID: 35090588 PMCID: PMC8891063 DOI: 10.1016/j.cub.2021.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
Domestic dogs (Canis lupus familiaris) are the most variable-sized mammalian species on Earth, displaying a 40-fold size difference between breeds.1 Although dogs of variable size are found in the archeological record,2-4 the most dramatic shifts in body size are the result of selection over the last two centuries, as dog breeders selected and propagated phenotypic extremes within closed breeding populations.5 Analyses of over 200 domestic breeds have identified approximately 20 body size genes regulating insulin processing, fatty acid metabolism, TGFβ signaling, and skeletal formation.6-10 Of these, insulin-like growth factor 1 (IGF1) predominates, controlling approximately 15% of body size variation between breeds.8 The identification of a functional mutation associated with IGF1 has thus far proven elusive.6,10,11 Here, to identify and elucidate the role of an ancestral IGF1 allele in the propagation of modern canids, we analyzed 1,431 genome sequences from 13 species, including both ancient and modern canids, thus allowing us to define the evolutionary history of both ancestral and derived alleles at this locus. We identified a single variant in an antisense long non-coding RNA (IGF1-AS) that interacts with the IGF1 gene, creating a duplex. While the derived mutation predominates in both modern gray wolves and large domestic breeds, the ancestral allele, which predisposes to small size, was common in small-sized breeds and smaller wild canids. Our analyses demonstrate that this major regulator of canid body size nearly vanished in Pleistocene wolves, before its recent resurgence resulting from human-imposed selection for small-sized breed dogs.
Collapse
|
36
|
Cairns KM, Crowther MS, Nesbitt B, Letnic M. The myth of wild dogs in Australia: are there any out there? AUSTRALIAN MAMMALOGY 2022. [DOI: 10.1071/am20055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hybridisation between wild and domestic canids is a global conservation and management issue. In Australia, dingoes are a distinct lineage of wild-living canid with a controversial domestication status. They are mainland Australia’s apex terrestrial predator. There is ongoing concern that the identity of dingoes has been threatened from breeding with domestic dogs, and that feral dogs have established populations in rural Australia. We collate the results of microsatellite DNA testing from 5039 wild canids to explore patterns of domestic dog ancestry in dingoes and observations of feral domestic dogs across the continent. Only 31 feral dogs were detected, challenging the perception that feral dogs are widespread in Australia. First generation dingo × dog hybrids were similarly rare, with only 27 individuals identified. Spatial patterns of genetic ancestry across Australia identified that dingo populations in northern, western and central Australia were largely free from domestic dog introgression. Our findings challenge the perception that dingoes are virtually extinct in the wild and that feral dogs are common. A shift in terminology from wild dog to dingo would better reflect the identity of these wild canids and allow more nuanced debate about the balance between conservation and management of dingoes in Australia.
Collapse
|
37
|
Prassack KA, Walkup LC. Maybe So, Maybe Not: Canis lepophagus at Hagerman Fossil Beds National Monument, Idaho, USA. J MAMM EVOL 2022. [DOI: 10.1007/s10914-021-09591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA canid dentary is described from the Pliocene Glenns Ferry Formation at Hagerman Fossil Beds National Monument, south-central Idaho, USA. The specimen possesses traits in alliance with and measurements falling within or exceeding those of Canis lepophagus. The dentary, along with a tarsal IV (cuboid) and an exploded canine come from the base of the fossiliferous Sahara complex within the monument. Improved geochronologic control provided by new tephrochronologic mapping by the U.S. Geological Survey-National Park Service Hagerman Paleontology, Environments, and Tephrochronology Project supports an interpolated age of approximately 3.9 Ma, placing it in the early Blancan North American Land Mammal Age. It is conservatively referred to herein as Canis aff. C. lepophagus with the caveat that it is an early and robust example of that species. A smaller canid, initially assigned to Canis lepophagus and then to Canis ferox, is also known from Hagerman. Most specimens of Canis ferox, including the holotype, were recently reassigned to Eucyon ferox, but specimens from the Hagerman and Rexroad faunas were left as Canis sp. and possibly attributed to C. lepophagus. We agree that these smaller canids belong in Canis and not Eucyon but reject placing them within C. lepophagus; we refer to them here as Hagerman-Rexroad Canis. This study confirms the presence of two approximately coyote-sized canids at Hagerman and adds to the growing list of carnivorans now known from these fossil beds.
Collapse
|
38
|
Wang MS, Thakur M, Jhala Y, Wang S, Srinivas Y, Dai SS, Liu ZX, Chen HM, Green RE, Koepfli KP, Shapiro B. OUP accepted manuscript. Genome Biol Evol 2022; 14:6524629. [PMID: 35137061 PMCID: PMC8841465 DOI: 10.1093/gbe/evac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Corresponding authors: E-mails: ; ; ;
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yellapu Srinivas
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zheng-Xi Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Hong-Man Chen
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
- Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
- Corresponding authors: E-mails: ; ; ;
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, USA
- Corresponding authors: E-mails: ; ; ;
| |
Collapse
|
39
|
Krofel M, Hatlauf J, Bogdanowicz W, Campbell LAD, Godinho R, Jhala YV, Kitchener AC, Koepfli K, Moehlman P, Senn H, Sillero‐Zubiri C, Viranta S, Werhahn G, Alvares F. Towards resolving taxonomic uncertainties in wolf, dog and jackal lineages of Africa, Eurasia and Australasia. J Zool (1987) 2021. [DOI: 10.1111/jzo.12946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M. Krofel
- Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
| | - J. Hatlauf
- University of Natural Resources and Life Sciences Vienna, Department of Integrative Biology and Biodiversity Research Institute of Wildlife Biology and Game Management Vienna Austria
| | - W. Bogdanowicz
- Museum and Institute of Zoology Polish Academy of Sciences Warszawa Poland
| | - L. A. D. Campbell
- Department of Zoology Recanati‐Kaplan Centre; Tubney University of Oxford Wildlife Conservation Research Unit Oxfordshire UK
| | - R. Godinho
- InBIO Laboratório Associado, Campus de Vairão CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning, CIBIO Vairão Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| | - Y. V. Jhala
- Animal Ecology & Conservation Biology Wildlife Institute of India Dehradun India
| | - A. C. Kitchener
- Department of Natural Sciences National Museums Scotland Edinburgh UK
| | - K.‐P. Koepfli
- Smithsonian‐Mason School of Conservation George Mason University Front Royal VA USA
- Smithsonian Conservation Biology Institute Center for Species Survival National Zoological Park Front Royal VA USA
- Computer Technologies Laboratory ITMO University St. Petersburg Russia
| | - P. Moehlman
- IUCN/SSC Equid Specialist Group Tanzania Wildlife Research Institute (TAWIRI) EcoHealth Alliance and The Earth Institute Columbia University Arusha Tanzania
| | - H. Senn
- WildGenes Laboratory Conservation and Science Programmes Royal Zoological Society of Scotland, RZSS Edinburgh UK
| | - C. Sillero‐Zubiri
- Wildlife Conservation Research Unit, Zoology University of Oxford Tubney UK
- IUCN SSC Canid Specialist Group Oxford UK
- Born Free Foundation Horsham UK
| | - S. Viranta
- Faculty of Medicine University of Helsinki Helsinki Finland
| | - G. Werhahn
- IUCN SSC Canid Specialist Group Oxford UK
- Wildlife Conservation Research Unit, Zoology University of Oxford Tubney UK
| | - F. Alvares
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| |
Collapse
|
40
|
Hatlauf J, Krendl LM, Tintner J, Griesberger P, Heltai M, Markov G, Viranta S, Hackländer K. The canine counts! Significance of a craniodental measure to describe sexual dimorphism in canids: Golden jackals (Canis aureus) and African wolves (Canis lupaster). Mamm Biol 2021. [DOI: 10.1007/s42991-021-00133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractSexual dimorphism is a widespread phenomenon among mammals, including carnivorans. While sexual dimorphism in golden jackals (Canis aureus) has been analysed in the past, in the related and apparently convergent canid, the African wolf (Canis lupaster), it is poorly studied and showed to be relatively small. Previously, sexual size dimorphism (SSD) research in these species was mostly based on skull and body measurements. In our study, we also included dental measurements, namely the diameter of the canine. We used 11 measured sections of 104 adult specimens, comprising 61 golden jackal and 43 African wolf skulls. Data analyses were carried out through logistic regression and conditional inference trees (CIT). To compare the results of SSD to other species, sexual dimorphism indices (SDI) were calculated. Golden jackals and African wolves show significant sexual size dimorphism, both in cranial and dental size. The logistic regression revealed that the mesiodistal diameter of the upper canine is most effective in discerning the sexes. The difference in the calculated SDI of the canine diameter between the sexes amounted to 8.71 in golden jackals and 14.11 in African wolves, respectively—with regional diversity. Thus, the canine diameter is an important measure to investigate SSD as well as an easy tool to apply in the field.
Collapse
|
41
|
Chen ZH, Xu YX, Xie XL, Wang DF, Aguilar-Gómez D, Liu GJ, Li X, Esmailizadeh A, Rezaei V, Kantanen J, Ammosov I, Nosrati M, Periasamy K, Coltman DW, Lenstra JA, Nielsen R, Li MH. Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun Biol 2021; 4:1307. [PMID: 34795381 PMCID: PMC8602413 DOI: 10.1038/s42003-021-02817-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
The domestication and subsequent development of sheep are crucial events in the history of human civilization and the agricultural revolution. However, the impact of interspecific introgression on the genomic regions under domestication and subsequent selection remains unclear. Here, we analyze the whole genomes of domestic sheep and their wild relative species. We found introgression from wild sheep such as the snow sheep and its American relatives (bighorn and thinhorn sheep) into urial, Asiatic and European mouflons. We observed independent events of adaptive introgression from wild sheep into the Asiatic and European mouflons, as well as shared introgressed regions from both snow sheep and argali into Asiatic mouflon before or during the domestication process. We revealed European mouflons might arise through hybridization events between a now extinct sheep in Europe and feral domesticated sheep around 6000-5000 years BP. We also unveiled later introgressions from wild sheep to their sympatric domestic sheep after domestication. Several of the introgression events contain loci with candidate domestication genes (e.g., PAPPA2, NR6A1, SH3GL3, RFX3 and CAMK4), associated with morphological, immune, reproduction or production traits (wool/meat/milk). We also detected introgression events that introduced genes related to nervous response (NEURL1), neurogenesis (PRUNE2), hearing ability (USH2A), and placental viability (PAG11 and PAG3) into domestic sheep and their ancestral wild species from other wild species.
Collapse
Affiliation(s)
- Ze-Hui Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China ,grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ya-Xi Xu
- grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xing-Long Xie
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Dong-Feng Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Diana Aguilar-Gómez
- grid.47840.3f0000 0001 2181 7878Center for Computational Biology, University of California at Berkeley, Berkeley, CA 94720 USA
| | | | - Xin Li
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ali Esmailizadeh
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahideh Rezaei
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Juha Kantanen
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Innokentyi Ammosov
- grid.495192.2Laboratory of Reindeer Husbandry and Traditional Industries, Yakut Scientific Research Institute of Agriculture, The Sakha Republic (Yakutia), Yakutsk, Russia
| | - Maryam Nosrati
- grid.412462.70000 0000 8810 3346Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Kathiravan Periasamy
- grid.420221.70000 0004 0403 8399Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - David W. Coltman
- grid.17089.37Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9 Canada
| | - Johannes A. Lenstra
- grid.5477.10000000120346234Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720, USA. .,Department of Statistics, UC Berkeley, Berkeley, CA, 94707, USA. .,Globe Institute, University of Copenhagen, 1350, København K, Denmark.
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
42
|
Dziech A. Identification of Wolf-Dog Hybrids in Europe – An Overview of Genetic Studies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.760160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significant development of genetic tools during the last decades provided opportunities for more detailed analyses and deeper understanding of species hybridization. New genetic markers allowed for reliable identification of admixed individuals deriving from recent hybridization events (a few generations) and those originating from crossings up to 19 generations back. Implementation of microsatellites (STRs) together with Bayesian clustering provided abundant knowledge regarding presence of admixed individuals in numerous populations and helped understand the problematic nature of studying hybridization (i.a., defining a reliable thresholds for recognizing individuals as admixed or obtaining well-grounded results representing actual proportion of hybrids in a population). Nevertheless, their utilization is limited to recent crossbreeding events. Single Nucleotide Polymorphisms (SNPs) proved to be more sensible tools for admixture analyses furnishing more reliable knowledge, especially for older generation backcrosses. Small sets of Ancestry Informative Markers (AIMs) of both types of markers were effective enough to implement in monitoring programs, however, SNPs seem to be more appropriate because of their ability to identify admixed individuals up to 3rd generations. The main aim of this review is to summarize abundant knowledge regarding identification of wolf-dog hybrids in Europe and discuss the most relevant problems relating to the issue, together with advantages and disadvantages of implemented markers and approaches.
Collapse
|
43
|
Li Y, Wu DD. Finding unknown species in the genomes of extant species. J Genet Genomics 2021; 48:867-871. [PMID: 34509382 DOI: 10.1016/j.jgg.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022]
Abstract
Although many species have gone extinct, their genetic components might exist in extant species because of ancient hybridization. Via advances in genome sequencing and development of modern population genetics, one can find the legacy of unknown or extinct species in the context of available genomes from extant species. Such discovery can be used as a strategy to search for hidden species or fossils in conservation biology and archeology, gain novel insight into complex evolutionary history, and provide the new sources of genetic variation for breeding and trait improvement in agriculture.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan and School of Life Science & School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
44
|
Li J, Zhang Y, Ruhsam M, Milne RI, Wang Y, Wu D, Jia S, Tao T, Mao K. Seeing through the hedge: Phylogenomics of Thuja (Cupressaceae) reveals prominent incomplete lineage sorting and ancient introgression for Tertiary relict flora. Cladistics 2021; 38:187-203. [PMID: 34551153 DOI: 10.1111/cla.12491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/15/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
The Eastern Asia (EA) - North America (NA) disjunction is a well-known biogeographic pattern of the Tertiary relict flora; however, few studies have investigated the evolutionary history of this disjunction using a phylogenomic approach. Here, we used 2369 single copy nuclear genes and nearly full plastomes to reconstruct the evolutionary history of the small Tertiary relict genus Thuja, which consists of five disjunctly distributed species. The nuclear species tree strongly supported an EA clade Thuja standishii-Thuja sutchuenensis and a "disjunct clade", where western NA species T. plicata is sister to an EA-eastern NA disjunct Thuja occidentalis-Thuja koraiensis group. Our results suggested that the observed topological discordance among the gene trees as well as the cytonuclear discordance is mainly due to incomplete lineage sorting, probably facilitated by the fast diversification of Thuja around the Early Miocene and the large effective population sizes of ancestral lineages. Furthermore, approximately 20% of the T. sutchuenensis nuclear genome is derived from an unknown ancestral lineage of Thuja, which might explain the close resemblance of its cone morphology to that of an ancient fossil species. Overall, our study demonstrates that single genes may not resolve interspecific relationships for disjunct taxa, and that more reliable results will come from hundreds or thousands of loci, revealing a more complex evolutionary history. This will steadily improve our understanding of their origin and evolution.
Collapse
Affiliation(s)
- Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yujiao Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Richard Ian Milne
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Dayu Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Shiyu Jia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Tongzhou Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,College of Science, Tibet University, Lhasa, Xizang Autonomous Region, 850012, China
| |
Collapse
|
45
|
Crossey B, Chimimba C, du Plessis C, Ganswindt A, Hall G. African wild dogs (Lycaon pictus) show differences in diet composition across landscape types in Kruger National Park, South Africa. J Mammal 2021. [DOI: 10.1093/jmammal/gyab087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The Kruger National Park (KNP) is home to the last genetically viable, minimally managed population of African wild dogs (Lycaon pictus, wild dogs) in South Africa. Until 2004, this population remained stable, but since has been declining. In this study, we aimed to improve our understanding of the ecology of KNP wild dogs by estimating the relative contribution of different prey types to their diet across landscape types. Based on a Bayesian mixing model, we assessed wild dog diet and foraging preferences using stable isotope analysis. We sampled 73 individuals from 40 packs found in six different landscape types. In thickets, packs predominantly prey on small browsing and mixed-feeding species (accounting for ~73% of their diet), but occasionally hunt large grazers (~24%) and large browsers (~3%). In open landscape types where lions (Panthera leo) are more or less absent, such as in the Lowveld sour bushveld, wild dogs prey on large browsers and large grazers (~67%). Our results demonstrate that KNP wild dogs occupy a broader ecological niche than previously thought, with small browsers forming an integral part of their diet. We also present the first data describing differences in wild dog diet–tissue discrimination factors for tail hair and whiskers compared to respective stable nitrogen (δ15N) and carbon (δ13C) values obtained from feces of captive wild dogs, as well as from those of South Africa’s broader managed metapopulation. While these data should be considered preliminary, we suggest that until wild dog diet–tissue discrimination factors are calculated through a controlled feeding study, the discrimination factors calculated for the gray wolf (Canis lupus) should be used for wild dog-related isotope studies, rather than the often cited values for red foxes (Vulpes vulpes).
Collapse
Affiliation(s)
- Bruce Crossey
- Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Endocrine Research Laboratory, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Christian Chimimba
- Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- DSI-NRF Centre of Excellence for Invasion Biology (CIB), Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Cole du Plessis
- Carnivore Conservation Program, Endangered Wildlife Trust (EWT), Wierda Park, South Africa
| | - Andre Ganswindt
- Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Endocrine Research Laboratory, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Centre for Veterinary Wildlife Studies, University of Pretoria, Onderstepoort, South Africa
| | - Grant Hall
- Mammal Research Institute (MRI), Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- University of Pretoria Stable Isotope Laboratory, Mammal Research Institute (MRI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
46
|
Hennelly LM, Habib B, Modi S, Rueness EK, Gaubert P, Sacks BN. Ancient divergence of Indian and Tibetan wolves revealed by recombination-aware phylogenomics. Mol Ecol 2021; 30:6687-6700. [PMID: 34398980 DOI: 10.1111/mec.16127] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/24/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022]
Abstract
The grey wolf (Canis lupus) expanded its range across Holarctic regions during the late Pleistocene. Consequently, most grey wolves share recent (<100,000 years ago) maternal origins corresponding to a widespread Holarctic clade. However, two deeply divergent (200,000-700,000 years ago) mitochondrial clades are restricted, respectively, to the Indian subcontinent and the Tibetan Plateau, where remaining wolves are endangered. No genome-wide analysis had previously included wolves corresponding to the mitochondrial Indian clade or attempted to parse gene flow and phylogeny. We sequenced four Indian and two Tibetan wolves and included 31 additional canid genomes to resolve the phylogenomic history of grey wolves. Genomic analyses revealed Indian and Tibetan wolves to be distinct from each other and from broadly distributed wolf populations corresponding to the mitochondrial Holarctic clade. Despite gene flow, which was reflected disproportionately in high-recombination regions of the genome, analyses revealed Indian and Tibetan wolves to be basal to Holarctic grey wolves, in agreement with the mitochondrial phylogeny. In contrast to mitochondrial DNA, however, genomic findings suggest the possibility that the Indian wolf could be basal to the Tibetan wolf, a discordance potentially reflecting selection on the mitochondrial genome. Together, these findings imply that southern regions of Asia have been important centers for grey wolf evolution and that Indian and Tibetan wolves represent evolutionary significant units (ESUs). Further study is needed to assess whether these ESUs warrant recognition as distinct species. This question is especially urgent regarding the Indian wolf, which represents one of the world's most endangered wolf populations.
Collapse
Affiliation(s)
- Lauren M Hennelly
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Bilal Habib
- Department of Animal Ecology and Conservation, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Shrushti Modi
- Department of Animal Ecology and Conservation, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Eli K Rueness
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique (EDB), CNRS/UPS/IRD, Université Toulouse III Paul Sabatier - Bâtiment 4R1, Toulouse cedex 9, France
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
47
|
Grant PR, Grant BR. Morphological ghosts of introgression in Darwin's finch populations. Proc Natl Acad Sci U S A 2021; 118:e2107434118. [PMID: 34330836 PMCID: PMC8346875 DOI: 10.1073/pnas.2107434118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many species of plants, animals, and microorganisms exchange genes well after the point of evolutionary divergence at which taxonomists recognize them as species. Genomes contain signatures of past gene exchange and, in some cases, they reveal a legacy of lineages that no longer exist. But genomic data are not available for many organisms, and particularly problematic for reconstructing and interpreting evolutionary history are communities that have been depleted by extinctions. For these, morphology may substitute for genes, as exemplified by the history of Darwin's finches on the Galápagos islands of Floreana and San Cristóbal. Darwin and companions collected seven specimens of a uniquely large form of Geospiza magnirostris in 1835. The populations became extinct in the next few decades, partly due to destruction of Opuntia cactus by introduced goats, whereas Geospiza fortis has persisted to the present. We used measurements of large samples of G. fortis collected for museums in the period 1891 to 1906 to test for unusually large variances and skewed distributions of beak and body size resulting from introgression. We found strong evidence of hybridization on Floreana but not on San Cristóbal. The skew is in the direction of the absent G. magnirostris We estimate introgression influenced 6% of the frequency distribution that was eroded by selection after G. magnirostris became extinct on these islands. The genetic residuum of an extinct species in an extant one has implications for its future evolution, as well as for a conservation program of reintroductions in extinction-depleted communities.
Collapse
Affiliation(s)
- Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
48
|
The early hunting dog from Dmanisi with comments on the social behaviour in Canidae and hominins. Sci Rep 2021; 11:13501. [PMID: 34326360 PMCID: PMC8322302 DOI: 10.1038/s41598-021-92818-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The renowned site of Dmanisi in Georgia, southern Caucasus (ca. 1.8 Ma) yielded the earliest direct evidence of hominin presence out of Africa. In this paper, we report on the first record of a large-sized canid from this site, namely dentognathic remains, referable to a young adult individual that displays hypercarnivorous features (e.g., the reduction of the m1 metaconid and entoconid) that allow us to include these specimens in the hypodigm of the late Early Pleistocene species Canis (Xenocyon) lycaonoides. Much fossil evidence suggests that this species was a cooperative pack-hunter that, unlike other large-sized canids, was capable of social care toward kin and non-kin members of its group. This rather derived hypercarnivorous canid, which has an East Asian origin, shows one of its earliest records at Dmanisi in the Caucasus, at the gates of Europe. Interestingly, its dispersal from Asia to Europe and Africa followed a parallel route to that of hominins, but in the opposite direction. Hominins and hunting dogs, both recorded in Dmanisi at the beginning of their dispersal across the Old World, are the only two Early Pleistocene mammal species with proved altruistic behaviour towards their group members, an issue discussed over more than one century in evolutionary biology.
Collapse
|
49
|
McDonough MM, Ferguson AW, Dowler RC, Gompper ME, Maldonado JE. Phylogenomic systematics of the spotted skunks (Carnivora, Mephitidae, Spilogale): Additional species diversity and Pleistocene climate change as a major driver of diversification. Mol Phylogenet Evol 2021; 167:107266. [PMID: 34302947 DOI: 10.1016/j.ympev.2021.107266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/28/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Four species of spotted skunks (Carnivora, Mephitidae, Spilogale) are currently recognized: Spilogale angustifrons, S. gracilis, S. putorius, and S. pygmaea. Understanding species boundaries within this group is critical for effective conservation given that regional populations or subspecies (e.g., S. p. interrupta) have experienced significant population declines. Further, there may be currently unrecognized diversity within this genus as some taxa (e.g., S. angustifrons) and geographic regions (e.g., Central America) never have been assessed using DNA sequence data. We analyzed species limits and diversification patterns in spotted skunks using multilocus nuclear (ultraconserved elements) and mitochondrial (whole mitogenomes and single gene analysis) data sets from broad geographic sampling representing all currently recognized species and subspecies. We found a high degree of genetic divergence among Spilogale that reflects seven distinct species and eight unique mitochondrial lineages. Initial divergence between S. pygmaea and all other Spilogale occurred in the Early Pliocene (∼ 5.0 million years ago). Subsequent diversification of the remaining Spilogale into an "eastern" and a "western" lineage occurred during the Early Pleistocene (∼1.5 million years ago). These two lineages experienced temporally coincident patterns of diversification at ∼0.66 and ∼0.35 million years ago into two and ultimately three distinct evolutionary units, respectively. Diversification was confined almost entirely within the Pleistocene during a timeframe characterized by alternating glacial-interglacial cycles, with the origin of this diversity occurring in northeastern Mexico and the southwestern United States of America. Mitochondrial-nuclear discordance was recovered across three lineages in geographic regions consistent with secondary contact, including a distinct mitochondrial lineage confined to the Sonoran Desert. Our results have direct consequences for conservation of threatened populations, or species, as well as for our understanding of the evolution of delayed implantation in this enigmatic group of small carnivores.
Collapse
Affiliation(s)
- Molly M McDonough
- Chicago State University Department of Biological Sciences 9501 S. King Drive, WSC 290 Chicago, IL 60628-1598.
| | - Adam W Ferguson
- Gantz Family Collection Center Field Museum 1400 South Lake Shore Drive Chicago, IL 60605
| | - Robert C Dowler
- Department of Biology Angelo State University ASU Station 10890 San Angelo, TX 76909
| | - Matthew E Gompper
- Department of Fish, Wildlife, and Conservation Ecology New Mexico State University Las Cruces, NM 88003
| | - Jesús E Maldonado
- Center for Conservation Genomics Smithsonian Conservation Biology Institute National Zoological Park PO Box 37012 MRC 5503 Washington, DC 20013
| |
Collapse
|
50
|
Gelabert P, Sawyer S, Bergström A, Margaryan A, Collin TC, Meshveliani T, Belfer-Cohen A, Lordkipanidze D, Jakeli N, Matskevich Z, Bar-Oz G, Fernandes DM, Cheronet O, Özdoğan KT, Oberreiter V, Feeney RNM, Stahlschmidt MC, Skoglund P, Pinhasi R. Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment. Curr Biol 2021; 31:3564-3574.e9. [PMID: 34256019 PMCID: PMC8409484 DOI: 10.1016/j.cub.2021.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023]
Abstract
Cave sediments have been shown to preserve ancient DNA but so far have not yielded the genome-scale information of skeletal remains. We retrieved and analyzed human and mammalian nuclear and mitochondrial environmental "shotgun" genomes from a single 25,000-year-old Upper Paleolithic sediment sample from Satsurblia cave, western Georgia:first, a human environmental genome with substantial basal Eurasian ancestry, which was an ancestral component of the majority of post-Ice Age people in the Near East, North Africa, and parts of Europe; second, a wolf environmental genome that is basal to extant Eurasian wolves and dogs and represents a previously unknown, likely extinct, Caucasian lineage; and third, a European bison environmental genome that is basal to present-day populations, suggesting that population structure has been substantially reshaped since the Last Glacial Maximum. Our results provide new insights into the Late Pleistocene genetic histories of these three species and demonstrate that direct shotgun sequencing of sediment DNA, without target enrichment methods, can yield genome-wide data informative of ancestry and phylogenetic relationships.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ashot Margaryan
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas C Collin
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Tengiz Meshveliani
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Anna Belfer-Cohen
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lordkipanidze
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | - Nino Jakeli
- Georgian National Museum, Institute of Paleoanthropology and Paleobiology, Tbilisi, Georgia
| | | | - Guy Bar-Oz
- Zinman Institute of Archaeology, University of Haifa, Haifa, Israel
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Mareike C Stahlschmidt
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| |
Collapse
|