1
|
Chikhi S, Matton N, Sanna M, Blanchet S. Effects of one session of theta or high alpha neurofeedback on EEG activity and working memory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1065-1083. [PMID: 39322825 DOI: 10.3758/s13415-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Neurofeedback techniques provide participants immediate feedback on neuronal signals, enabling them to modulate their brain activity. This technique holds promise to unveil brain-behavior relationship and offers opportunities for neuroenhancement. Establishing causal relationships between modulated brain activity and behavioral improvements requires rigorous experimental designs, including appropriate control groups and large samples. Our primary objective was to examine whether a single neurofeedback session, designed to enhance working memory through the modulation of theta or high-alpha frequencies, elicits specific changes in electrophysiological and cognitive outcomes. Additionally, we explored predictors of successful neuromodulation. A total of 101 healthy adults were assigned to groups trained to increase frontal theta, parietal high alpha, or random frequencies (active control group). We measured resting-state EEG, working memory performance, and self-reported psychological states before and after one neurofeedback session. Although our analyses revealed improvements in electrophysiological and behavioral outcomes, these gains were not specific to the experimental groups. An increase in the frequency targeted by the training has been observed for the theta and high alpha groups, but training designed to increase randomly selected frequencies appears to induce more generalized neuromodulation compared with targeting a specific frequency. Among all the predictors of neuromodulation examined, resting theta and high alpha amplitudes predicted specifically the increase of those frequencies during the training. These results highlight the challenge of integrating a control group based on enhancing randomly selected frequency bands and suggest potential avenues for optimizing interventions (e.g., by including a control group trained in both up- and down-regulation).
Collapse
Affiliation(s)
- Samy Chikhi
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France.
- Integrative Neuroscience and Cognition Center, Université Paris Cité, F-75006, Paris, France.
| | - Nadine Matton
- CLLE - Cognition, Langues, Langage, Ergonomie, Université de Toulouse, Toulouse, France
- Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, Toulouse, France
| | - Marie Sanna
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| | - Sophie Blanchet
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| |
Collapse
|
2
|
Pagnotta MF, Riddle J, D'Esposito M. Multimodal neuroimaging of hierarchical cognitive control. Biol Psychol 2024:108896. [PMID: 39488242 DOI: 10.1016/j.biopsycho.2024.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Cognitive control enables us to translate our knowledge into actions, allowing us to flexibly adjust our behavior, according to environmental contexts, our internal goals, and future plans. Multimodal neuroimaging and neurostimulation techniques have proven essential for advancing our understanding of how cognitive control emerges from the coordination of distributed neuronal activities in the brain. In this review, we examine the literature on multimodal studies of cognitive control. We explore how these studies provide converging evidence for a novel, multiplexed model of cognitive control, in which neural oscillations support different levels of control processing along a functionally hierarchical organization of distinct frontoparietal networks.
Collapse
Affiliation(s)
- Mattia F Pagnotta
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Justin Riddle
- Department of Psychology, Florida State University, FL, USA; Program in Neuroscience, Florida State University, FL, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, CA, USA
| |
Collapse
|
3
|
Hallenbeck GE, Tardiff N, Sprague TC, Curtis CE. Prioritizing working memory resources depends on prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593696. [PMID: 39484604 PMCID: PMC11526854 DOI: 10.1101/2024.05.11.593696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
How the prefrontal cortex contributes to working memory remains controversial, as theories differ in their emphasis on its role in storing memories versus controlling their content. To adjudicate between these competing ideas, we tested how perturbations to the human (both sexes) lateral prefrontal cortex impact the storage and control aspects of working memory during a task that requires human subjects to allocate resources to memory items based on their behavioral priority. Our computational model made a strong prediction that disruption of this control process would counterintuitively improve memory for low-priority items. Remarkably, transcranial magnetic stimulation of retinotopically-defined superior precentral sulcus, but not intraparietal sulcus, unbalanced the prioritization of resources, improving memory for low-priority items as predicted by the model. Therefore, these results provide direct causal support for models in which the prefrontal cortex controls the allocation of resources that support working memory, rather than simply storing the features of memoranda. SIGNIFICANCE STATEMENT Although higher-order cognition depends on working memory, the resources that support our memory are severely limited in capacity. To mitigate this limitation, we allocate memory resources according to the behavioral relevance of items. Nonetheless, the neural basis of these abilities remain unclear. Here, we tested the hypothesis that a region in lateral prefrontal cortex controls prioritization in working memory. Indeed, perturbing this region with transcranial magnetic stimulation disrupted the prioritization of working memory resources. Our results provide causal evidence for the hypothesis that prefrontal cortex primarily controls the allocation of memory resources, rather than storing the contents of working memory.
Collapse
|
4
|
Wang JK, Sahu PP, Ku HL, Lo YH, Chen YR, Lin CY, Tseng P. Enhancing visual working memory in schizophrenia: effects of frontoparietal theta tACS in low-performing patients. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:97. [PMID: 39461954 PMCID: PMC11513152 DOI: 10.1038/s41537-024-00518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
Schizophrenia is a complex neuro-psychiatric disorder including positive symptoms, negative symptoms, and cognitive deficits. A key cognitive dysfunction in schizophrenia is a deficit in visual working memory (VWM). VWM involves three distinct stages: encoding, maintenance, and retrieval. The deficit in any one stage would produce the same symptom (i.e., poor VWM), although their causes are not the same. In this study, we used a retro-cue VWM task that provides helpful cues at different stages: early in maintenance (early cue), late in maintenance (late cue), or during retrieval (retrieval cue). This modification would help "tag" or identify the cognitive stage(s) most responsible for impaired VWM performance in schizophrenia. Additionally, we took advantage of this tagging feature and applied 6 Hz transcranial alternating current stimulation (tACS) over the right dorsolateral prefrontal cortex (DLPFC) and right posterior parietal cortex (PPC)-which has previously been shown to enhance VWM in low-performing healthy individuals-to examine whether tACS would improve a specific stage or all stages of VWM processing in schizophrenia. We observed that cues significantly enhanced performance in low-performing patients, who benefited equally from early and late maintenance cues, but not from retrieval cues. These low-performers also responded well to theta tACS in their overall VWM performance as opposed to a specific VWM stage. No improvement effect was observed in high-performing patients for both retro cue and tACS. Together, our data suggest that 1) low-performing patients' VWM deficits likely stem from poor memory consolidation rather than retrieval, 2) right frontoparietal theta tACS can improve low-performing patients' VWM performance, and 3) such facilitatory tACS effect is not selective of a specific VWM stage and thus is likely driven by an improvement in overall visual attention.
Collapse
Affiliation(s)
- Jiunn-Kae Wang
- Department of Psychiatry, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City, Taiwan
| | - Prangya Parimita Sahu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Lun Ku
- Department of Psychiatry, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hui Lo
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Ying-Ru Chen
- Department of Psychiatry, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Che-Yin Lin
- Department of Psychiatry, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Philip Tseng
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, New Taipei City, Taiwan.
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Strupp W. A new variant of the electromagnetic field theory of consciousness: approaches to empirical confirmation. Front Neurol 2024; 15:1420676. [PMID: 39494171 PMCID: PMC11527664 DOI: 10.3389/fneur.2024.1420676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024] Open
Abstract
There are various electromagnetic (EM) field theories of consciousness. They postulate an epineural EM field which, due to its binding properties, unifies the different neuronal information differences originating from various sensory and cognitive processes. Only through a real physical integration in space within this field could phenomenal consciousness arise. This would solve the binding problem mentioned in the philosophy of mind. On closer inspection, the electromagnetic interaction not only provides an explanation for the integrative property of the EM field, but also for the necessary differentiating contrasts of information. This article will take a closer look at the physical properties of a postulated EM field. It will also show how the problem of qualia in connection with emergentism could be solved by a new variant of EM field theory. If it can be clearly demonstrated that the postulated epineural EM field plays a decisive role in the origin of consciousness in addition to neuronal "wired" information processing, this also leaves less room for metaphysical assumptions that attempt to solve the binding problem. In experiments to prove the postulated epineural EM field by means of external electromagnetic manipulations, it can never be ruled out that these also have a direct effect on the "wired" neuronal signal processing. Therefore, on the way to proving the EM field theory of consciousness, an experimental method is needed that must ensure that external manipulations only affect the extensions of the EM field without directly influencing the neuronal network. A method will be discussed here that works with the shielding of EM fields instead of external electromagnetic stimuli.
Collapse
|
6
|
Liljefors J, Almeida R, Rane G, Lundström JN, Herman P, Lundqvist M. Distinct functions for beta and alpha bursts in gating of human working memory. Nat Commun 2024; 15:8950. [PMID: 39419974 PMCID: PMC11486900 DOI: 10.1038/s41467-024-53257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Multiple neural mechanisms underlying gating to working memory have been proposed with divergent results obtained in human and animal studies. Previous findings from non-human primates suggest prefrontal beta frequency bursts as a correlate of transient inhibition during selective encoding. Human studies instead suggest a similar role for sensory alpha power fluctuations. To cast light on these discrepancies we employed a sequential working memory task with distractors for human participants. In particular, we examined their whole-brain electrophysiological activity in both alpha and beta bands with the same single-trial burst analysis earlier performed on non-human primates. Our results reconcile earlier findings by demonstrating that both alpha and beta bursts in humans correlate with the filtering and control of memory items, but with region and task-specific differences between the two rhythms. Occipital beta burst patterns were selectively modulated during the transition from sensory processing to memory retention whereas prefrontal and parietal beta bursts tracked sequence order and were proactively upregulated prior to upcoming target encoding. Occipital alpha bursts instead increased during the actual presentation of unwanted sensory stimuli. Source reconstruction additionally suggested the involvement of striatal and thalamic alpha and beta. Thus, specific whole-brain burst patterns correlate with different aspects of working memory control.
Collapse
Affiliation(s)
- Johan Liljefors
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rita Almeida
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm University Brain Imaging Centre, Stockholm University, Stockholm, Sweden
| | - Gustaf Rane
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Pawel Herman
- School of Electrical Engineering and Computer Science, and Digital Futures, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Mikael Lundqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Magosso E, Borra D. The strength of anticipated distractors shapes EEG alpha and theta oscillations in a Working Memory task. Neuroimage 2024; 300:120835. [PMID: 39245399 DOI: 10.1016/j.neuroimage.2024.120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
Working Memory (WM) requires maintenance of task-relevant information and suppression of task-irrelevant/distracting information. Alpha and theta oscillations have been extensively investigated in relation to WM. However, studies that examine both theta and alpha bands in relation to distractors, encompassing not only power modulation but also connectivity modulation, remain scarce. Here, we depicted, at the EEG-source level, the increase in power and connectivity in theta and alpha bands induced by strong relative to weak distractors during a visual Sternberg-like WM task involving the encoding of verbal items. During retention, a strong or weak distractor was presented, predictable in time and nature. Analysis focused on the encoding and retention phases before distractor presentation. Theta and alpha power were computed in cortical regions of interest, and connectivity networks estimated via spectral Granger causality and synthetized using in/out degree indices. The following modulations were observed for strong vs. weak distractors. In theta band during encoding, the power in frontal regions increased, together with frontal-to-frontal and bottom-up occipital-to-temporal-to-frontal connectivity; even during retention, bottom-up theta connectivity increased. In alpha band during retention, but not during encoding, the power in temporal-occipital regions increased, together with top-down frontal-to-occipital and temporal-to-occipital connectivity. From our results, we postulate a proactive cooperation between theta and alpha mechanisms: the first would mediate enhancement of target representation both during encoding and retention, and the second would mediate increased inhibition of sensory areas during retention only, to suppress the processing of imminent distractor without interfering with the processing of ongoing target stimulus during encoding.
Collapse
Affiliation(s)
- Elisa Magosso
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, 47521, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, 40126, Italy.
| | - Davide Borra
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, 47521, Italy
| |
Collapse
|
8
|
Zhou DW, Conte MM, Curley WH, Spencer-Salmon CA, Chatelle C, Rosenthal ES, Bodien YG, Victor JD, Schiff ND, Brown EN, Edlow BL. Alpha coherence is a network signature of cognitive recovery from disorders of consciousness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24314953. [PMID: 39417105 PMCID: PMC11482980 DOI: 10.1101/2024.10.08.24314953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alpha (8-12 Hz) frequency band oscillations are among the most informative features in electroencephalographic (EEG) assessment of patients with disorders of consciousness (DoC). Because interareal alpha synchrony is thought to facilitate long-range communication in healthy brains, coherence measures of resting-state alpha oscillations may provide insights into a patient's capacity for higher-order cognition beyond channel-wise estimates of alpha power. In multi-channel EEG, global coherence methods may be used to augment standard spectral analysis methods by both estimating the strength and identifying the structure of coherent oscillatory networks. We performed global coherence analysis in 95 separate clinical EEG recordings (28 healthy controls and 33 patients with acute or chronic DoC, 25 of whom returned for follow-up) collected between two academic medical centers. We found that posterior alpha coherence is associated with recovery of higher-level cognition. We developed a measure of network organization, based on the distance between eigenvectors of the alpha cross-spectral matrix, that detects recovery of posterior alpha networks. In patients who have emerged from a minimally conscious state, we showed that coherence-based alpha networks are reconfigured prior to restoration of alpha power to resemble those seen in healthy controls. This alpha network measure performs well in classifying recovery from DoC (AUC = 0.78) compared to common representations of functional connectivity using the weighted phase lag index (AUC = 0.50 - 0.57). Lastly, we observed that activity within these alpha networks is suppressed during positive responses to task-based EEG command-following paradigms, supporting the potential utility of this biomarker to detect covert cognition. Our findings suggest that restored alpha networks may represent a sensitive early signature of cognitive recovery in patients with DoC. Therefore, network detection methods may augment the utility of EEG assessments for DoC.
Collapse
Affiliation(s)
- David W Zhou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mary M Conte
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - William H Curley
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Camille A Spencer-Salmon
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Camille Chatelle
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Eric S Rosenthal
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA
- Epilepsy Service and Division of Clinical Neurophysiology, Massachusetts General Hospital, Boston, MA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Department of Neurology, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Department of Neurology, New York Presbyterian Hospital, New York, NY, USA
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
9
|
Guha A, Popov T, Bartholomew ME, Reed AC, Diehl CK, Subotnik K, Ventura J, Nuechterlein KH, Miller GA, Yee CM. Task-based default mode network connectivity predicts cognitive impairment and negative symptoms in first-episode schizophrenia. Psychophysiology 2024; 61:e14627. [PMID: 38924105 PMCID: PMC11473237 DOI: 10.1111/psyp.14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024]
Abstract
Individuals diagnosed with schizophrenia (SZ) demonstrate difficulty distinguishing between internally and externally generated stimuli. These aberrations in "source monitoring" have been theorized as contributing to symptoms of the disorder, including hallucinations and delusions. Altered connectivity within the default mode network (DMN) of the brain has been proposed as a mechanism through which discrimination between self-generated and externally generated events is disrupted. Source monitoring abnormalities in SZ have additionally been linked to impairments in selective attention and inhibitory processing, which are reliably observed via the N100 component of the event-related brain potential elicited during an auditory paired-stimulus paradigm. Given overlapping constructs associated with DMN connectivity and N100 in SZ, the present investigation evaluated relationships between these measures of disorder-related dysfunction and sought to clarify the nature of task-based DMN function in SZ. DMN connectivity and N100 measures were assessed using EEG recorded from SZ during their first episode of illness (N = 52) and demographically matched healthy comparison participants (N = 25). SZ demonstrated less evoked theta-band connectivity within DMN following presentation of pairs of identical auditory stimuli than HC. Greater DMN connectivity among SZ was associated with better performance on measures of sustained attention (p = .03) and working memory (p = .09), as well as lower severity of negative symptoms, though it was not predictive of N100 measures. Together, present findings provide EEG evidence of lower task-based connectivity among first-episode SZ, reflecting disruptions of DMN functions that support cognitive processes. Attentional processes captured by N100 appear to be supported by different neural mechanisms.
Collapse
Affiliation(s)
- Anika Guha
- Department of Psychology, University of California, Los Angeles
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus
| | - Tzvetan Popov
- Department of Psychology, Methods of Plasticity Research, University of Zurich, Switzerland
- Department of Psychology, University of Konstanz, Germany
| | | | | | | | - Kenneth Subotnik
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Keith H. Nuechterlein
- Department of Psychology, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Gregory A. Miller
- Department of Psychology, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Cindy M. Yee
- Department of Psychology, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| |
Collapse
|
10
|
Adamovich T, Ismatullina V, Chipeeva N, Zakharov I, Feklicheva I, Malykh S. Task-specific topology of brain networks supporting working memory and inhibition. Hum Brain Mapp 2024; 45:e70024. [PMID: 39258339 PMCID: PMC11387957 DOI: 10.1002/hbm.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Network neuroscience explores the brain's connectome, demonstrating that dynamic neural networks support cognitive functions. This study investigates how distinct cognitive abilities-working memory and cognitive inhibitory control-are supported by unique brain network configurations constructed by estimating whole-brain networks using mutual information. The study involved 195 participants who completed the Sternberg Item Recognition task and Flanker tasks while undergoing electroencephalography recording. A mixed-effects linear model analyzed the influence of network metrics on cognitive performance, considering individual differences and task-specific dynamics. The findings indicate that working memory and cognitive inhibitory control are associated with different network attributes, with working memory relying on distributed networks and cognitive inhibitory control on more segregated ones. Our analysis suggests that both strong and weak connections contribute to cognitive processes, with weak connections potentially leading to a more stable and support networks of memory and cognitive inhibitory control. The findings indirectly support the network neuroscience theory of intelligence, suggesting different functional topology of networks inherent to various cognitive functions. Nevertheless, we propose that understanding individual variations in cognitive abilities requires recognizing both shared and unique processes within the brain's network dynamics.
Collapse
Affiliation(s)
- Timofey Adamovich
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Victoria Ismatullina
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Nadezhda Chipeeva
- Federal State Institution “National Medical Research Center for Children's Health” of the Ministry of Health of the Russian FederationMoscowRussia
| | - Ilya Zakharov
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | | | - Sergey Malykh
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| |
Collapse
|
11
|
Tian S, Cheng YA, Luo H. Rhythm Facilitates Auditory Working Memory via Beta-Band Encoding and Theta-Band Maintenance. Neurosci Bull 2024:10.1007/s12264-024-01289-w. [PMID: 39215886 DOI: 10.1007/s12264-024-01289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/04/2024] [Indexed: 09/04/2024] Open
Abstract
Rhythm, as a prominent characteristic of auditory experiences such as speech and music, is known to facilitate attention, yet its contribution to working memory (WM) remains unclear. Here, human participants temporarily retained a 12-tone sequence presented rhythmically or arrhythmically in WM and performed a pitch change-detection task. Behaviorally, while having comparable accuracy, rhythmic tone sequences showed a faster response time and lower response boundaries in decision-making. Electroencephalographic recordings revealed that rhythmic sequences elicited enhanced non-phase-locked beta-band (16 Hz-33 Hz) and theta-band (3 Hz-5 Hz) neural oscillations during sensory encoding and WM retention periods, respectively. Importantly, the two-stage neural signatures were correlated with each other and contributed to behavior. As beta-band and theta-band oscillations denote the engagement of motor systems and WM maintenance, respectively, our findings imply that rhythm facilitates auditory WM through intricate oscillation-based interactions between the motor and auditory systems that facilitate predictive attention to auditory sequences.
Collapse
Affiliation(s)
- Suizi Tian
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yu-Ang Cheng
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, 02912, USA
| | - Huan Luo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Hou W, Qin X, Li H, Wang Q, Ding Y, Chen X, Wang R, Dong F, Bo Q, Li X, Zhou F, Wang C. Interaction between BDNF Val66Met polymorphism and mismatch negativity for working memory capacity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:70. [PMID: 39174571 PMCID: PMC11341781 DOI: 10.1038/s41537-024-00493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Both the brain-derived neurotrophic factor (BDNF) valine (Val)/methionine (Met) polymorphism and mismatch negativity (MMN) amplitude are reportedly linked to working memory impairments in schizophrenia. However, there is evident scarcity of research aimed at exploring the relationships among the three factors. In this secondary analysis of a randomized, controlled, double-blind trial, we investigated these relationships. The trial assessed the efficacy of transcranial direct current stimulation for enhancing working memory in clinically stable schizophrenia patients, who were randomly divided into three groups: dorsolateral prefrontal cortex stimulation, posterior parietal cortex stimulation, and sham stimulation groups. Transcranial direct current stimulation was administered concurrently with a working memory task over five days. We assessed the BDNF genotype, MMN amplitude, working memory capacity, and interference control subdomains. These assessments were conducted at baseline with 54 patients and followed up post-intervention with 48 patients. Compared to BDNF Met-carriers, Val homozygotes exhibited fewer positive and general symptoms and increased working memory capacity at baseline. A correlation between MMN amplitude and working memory capacity was noted only in BDNF Val homozygotes. The correlations were significantly different in the two BDNF genotype groups. Furthermore, in the intervention group that showed significant improvement in MMN amplitude, BDNF Val homozygotes exhibited greater enhancement in working memory capacity than Met-carriers. This study provides in vivo evidence for the interaction between MMN and BDNF Val/Met polymorphism for working memory capacity. As MMN has been considered a biomarker of N-methyl-D-aspartate receptor (NMDAR) function, these data shed light on the complex interactions between BDNF and NMDAR in terms of working memory in schizophrenia.
Collapse
Affiliation(s)
- Wenpeng Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiangqin Qin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hang Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qi Wang
- Fengtai Mental Health Center, Beijing, China
| | - Yushen Ding
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiongying Chen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ru Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fang Dong
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qijing Bo
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xianbin Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fuchun Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Ong K, Schmidt F, Tosefsky K, Faran M, Sarica C, Honey CR, Vila-Rodriguez F, Lang S. Non-Motor Effects of Low-Frequency Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson's Disease: A Systematic Review. Stereotact Funct Neurosurg 2024:1-13. [PMID: 39089232 DOI: 10.1159/000540210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/28/2024] [Indexed: 08/03/2024]
Abstract
INTRODUCTION Deep brain stimulation of the subthalamic nucleus is an effective therapy for the motor symptoms of Parkinson's disease (PD). Typically, stimulation is applied at a high frequency (≥100 Hz) to alleviate motor symptoms. However, the effects on non-motor symptoms can be variable. Low-frequency oscillations are increasingly recognized as playing an important role in the non-motor functions of the subthalamic nucleus. Therefore, it has been hypothesized that low-frequency stimulation of the subthalamic nucleus (<100 Hz) may have a direct effect on these non-motor functions, thereby preferentially impacting non-motor symptoms of PD. Despite important therapeutic implications, the literature on this topic has not been summarized. METHOD To understand the current state of the field, we performed a comprehensive systematic review of the literature assessing the non-motor effects of low-frequency stimulation of the subthalamic nucleus in PD. We performed a supplementary meta-analysis to assess the effects of low- versus high-frequency stimulation on verbal fluency outcomes. RESULTS Our search returned 7,009 results, of which we screened 4,199 results. A total of 145 studies were further assessed for eligibility, and a total of 21 studies met our inclusion criteria, representing 297 patients. These studies were a mix of case reports and control trials. The four clinical outcomes measured were sleep, sensory perception, cognition, and mood. A supplementary meta-analysis of six studies investigating the impact of low-frequency stimulation on verbal fluency did not find any significant results when pooling across subgroups. CONCLUSION LFS of the STN may have benefits on a range of cognitive and affective symptoms in PD. However, current studies in this space are heterogeneous, and the effect sizes are small. Factors that impact outcomes can be divided into stimulation and patient factors. Future work should consider the interactions between stimulation location and stimulation frequency as well as how these interact depending on the specific non-motor phenotype.
Collapse
Affiliation(s)
- Kenneth Ong
- Faculty of Medicine, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada,
| | - Franziska Schmidt
- Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Kira Tosefsky
- Faculty of Medicine, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Muhammad Faran
- Faculty of Medicine, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Christopher R Honey
- Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fidel Vila-Rodriguez
- Division of Neuroscience and Translational Psychiatry, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan Lang
- Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Hall JD, Green JM, Chen YCA, Liu Y, Zhang H, Sundman MH, Chou YH. Exploring the potential of combining transcranial magnetic stimulation and electroencephalography to investigate mild cognitive impairment and Alzheimer's disease: a systematic review. GeroScience 2024; 46:3659-3693. [PMID: 38356029 PMCID: PMC11226590 DOI: 10.1007/s11357-024-01075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) and electroencephalography (EEG) are non-invasive techniques used for neuromodulation and recording brain electrical activity, respectively. The integration of TMS-EEG has emerged as a valuable tool for investigating the complex mechanisms involved in age-related disorders, such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). By systematically synthesizing TMS-EEG studies, this review aims to shed light on the neurophysiological mechanisms underlying MCI and AD, while also exploring the practical applications of TMS-EEG in clinical settings. PubMed, ScienceDirect, and PsychInfo were selected as the databases for this review. The 22 eligible studies included a total of 592 individuals with MCI or AD as well as 301 cognitively normal adults. TMS-EEG assessments unveiled specific patterns of corticospinal excitability, plasticity, and brain connectivity that distinguished individuals on the AD spectrum from cognitively normal older adults. Moreover, the TMS-induced EEG features were observed to be correlated with cognitive performance and the presence of AD pathological biomarkers. The comprehensive examination of the existing studies demonstrates that the combination of TMS and EEG has yielded valuable insights into the neurophysiology of MCI and AD. This integration shows great potential for early detection, monitoring disease progression, and anticipating response to treatment. Future research is of paramount importance to delve into the potential utilization of TMS-EEG for treatment optimization in individuals with MCI and AD.
Collapse
Affiliation(s)
- J D Hall
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Jacob M Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Yu-Chin A Chen
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Yilin Liu
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Hangbin Zhang
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Mark H Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA
| | - Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, 1230 N Cherry Ave., Tucson, AZ, USA.
- Evelyn F McKnight Brain Institute, Arizona Center On Aging, and BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
15
|
Wilken S, Böttcher A, Adelhöfer N, Raab M, Beste C, Hoffmann S. Neural oscillations guiding action during effects imagery. Behav Brain Res 2024; 469:115063. [PMID: 38777262 DOI: 10.1016/j.bbr.2024.115063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/02/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Goal-directed acting requires the integration of sensory information but can also be performed without direct sensory input. Examples of this can be found in sports and can be conceptualized by feedforward processes. There is, however, still a lack of understanding of the temporal neural dynamics and neuroanatomical structures involved in such processes. In the current study, we used EEG beamforming methods and examined 37 healthy participants in two well-controlled experiments varying the necessity of anticipatory processes during goal-directed action. We found that alpha and beta activity in the medial and posterior cingulate cortex enabled feedforward predictions about the position of an object based on the latest sensorimotor state. On this basis, theta band activity seems more related to sensorimotor representations, while beta band activity would be more involved in setting up the structure of the neural representations themselves. Alpha band activity in sensory cortices reflects an intensified gating of the anticipated perceptual consequences of the to-be-executed action. Together, the findings indicate that goal-directed acting through the anticipation of the predicted state of an effector is based on accompanying processes in multiple frequency bands in midcingulate and sensory brain regions.
Collapse
Affiliation(s)
- Saskia Wilken
- General Psychology: Judgment, Decision Making, & Action, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Adriana Böttcher
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
| | - Nico Adelhöfer
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Markus Raab
- Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany; School of Applied Sciences, London South Bank University, London, UK
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany; Shandong Normal University, Jinan, PR China
| | - Sven Hoffmann
- General Psychology: Judgment, Decision Making, & Action, Institute of Psychology, University of Hagen, Hagen, Germany.
| |
Collapse
|
16
|
Ross G, Radtke-Schuller S, Frohlich F. Ferret as a model system for studying the anatomy and function of the prefrontal cortex: A systematic review. Neurosci Biobehav Rev 2024; 162:105701. [PMID: 38718987 PMCID: PMC11162921 DOI: 10.1016/j.neubiorev.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
There is a lack of consensus on anatomical nomenclature, standards of documentation, and functional equivalence of the frontal cortex between species. There remains a major gap between human prefrontal function and interpretation of findings in the mouse brain that appears to lack several key prefrontal areas involved in cognition and psychiatric illnesses. The ferret is an emerging model organism that has gained traction as an intermediate model species for the study of top-down cognitive control and other higher-order brain functions. However, this research has yet to benefit from synthesis. Here, we provide a summary of all published research pertaining to the frontal and/or prefrontal cortex of the ferret across research scales. The targeted location within the ferret brain is summarized visually for each experiment, and the anatomical terminology used at time of publishing is compared to what would be the appropriate term to use presently. By doing so, we hope to improve clarity in the interpretation of both previous and future publications on the comparative study of frontal cortex.
Collapse
Affiliation(s)
- Grace Ross
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Stuyck H, Demeyer F, Bratanov C, Cleeremans A, Van den Bussche E. Insight and non-insight problem solving: A heart rate variability study. Q J Exp Psychol (Hove) 2024; 77:1462-1484. [PMID: 37688497 DOI: 10.1177/17470218231202519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Occasionally, problems are solved with a sudden Aha! moment (insight), while the mundane approach to solving problems is analytical (non-insight). At first glance, non-insight appears to depend on the availability and taxation of cognitive resources to execute the step-by-step approach, whereas insight does not, or to a lesser extent. However, this remains debated. To investigate the reliance of both solution types on cognitive resources, we assessed the involvement of the prefrontal cortex using vagally mediated heart rate variability (vmHRV) as an index. Participants (N = 68) solved 70 compound remote associates word puzzles solvable with insight and non-insight. Before, during, and after solving the word puzzles, we measured the vmHRV. Our results showed that resting-state vmHRV (trait) showed a negative association with behavioural performance for both solution types. This might reflect inter-individual differences in inhibitory control. As the solution search requires one to think of remote associations, inhibitory control might hamper rather than aid this process. Furthermore, we observed, for both solution types, a vmHRV increase from resting-state to solution search (state), lingering on in the post-task recovery period. This could mark the increase of prefrontal resources to promote an open-minded stance, essential for divergent thinking, which arguably is crucial for this task. Our findings suggest that, at a general level, both solution types share common aspects. However, a closer analysis of early and late solutions and puzzle difficulty suggested that metacognitive differentiation between insight and non-insight improved with higher trait vmHRV, and that a unique association between trait vmHRV and puzzle difficulty was present for each solution type.
Collapse
Affiliation(s)
- Hans Stuyck
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Center for Research in Cognition and Neurosciences, Faculty of Psychology and Education Sciences, Université libre de Bruxelles, Brussel, Belgium
| | - Febe Demeyer
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Christo Bratanov
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Axel Cleeremans
- Center for Research in Cognition and Neurosciences, Faculty of Psychology and Education Sciences, Université libre de Bruxelles, Brussel, Belgium
| | - Eva Van den Bussche
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Lahijanian M, Aghajan H, Vahabi Z. Auditory gamma-band entrainment enhances default mode network connectivity in dementia patients. Sci Rep 2024; 14:13153. [PMID: 38849418 PMCID: PMC11161471 DOI: 10.1038/s41598-024-63727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Dementia, and in particular Alzheimer's disease (AD), can be characterized by disrupted functional connectivity in the brain caused by beta-amyloid deposition in neural links. Non-pharmaceutical treatments for dementia have recently explored interventions involving the stimulation of neuronal populations in the gamma band. These interventions aim to restore brain network functionality by synchronizing rhythmic energy through various stimulation modalities. Entrainment, a newly proposed non-invasive sensory stimulation method, has shown promise in improving cognitive functions in dementia patients. This study investigates the effectiveness of entrainment in terms of promoting neural synchrony and spatial connectivity across the cortex. EEG signals were recorded during a 40 Hz auditory entrainment session conducted with a group of elderly participants with dementia. Phase locking value (PLV) between different intraregional and interregional sites was examined as an attribute of network synchronization, and connectivity of local and distant links were compared during the stimulation and rest trials. Our findings demonstrate enhanced neural synchrony between the frontal and parietal regions, which are key components of the brain's default mode network (DMN). The DMN operation is known to be impacted by dementia's progression, leading to reduced functional connectivity across the parieto-frontal pathways. Notably, entrainment alone significantly improves synchrony between these DMN components, suggesting its potential for restoring functional connectivity.
Collapse
Affiliation(s)
- Mojtaba Lahijanian
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamid Aghajan
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Zahra Vahabi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ding Y, Postle BR, van Ede F. Neural Signatures of Competition between Voluntary and Involuntary Influences over the Focus of Attention in Visual Working Memory. J Cogn Neurosci 2024; 36:815-827. [PMID: 38319683 DOI: 10.1162/jocn_a_02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Adaptive behavior relies on the selection and prioritization of relevant sensory inputs from the external environment as well as from among internal sensory representations held in working memory. Recent behavioral evidence suggests that the classic distinction between voluntary (goal-driven) and involuntary (stimulus-driven) influences over attentional allocation also applies to the selection of internal representations held in working memory. In the current EEG study, we set out to investigate the neural dynamics associated with the competition between voluntary and involuntary control over the focus of attention in visual working memory. We show that when voluntary and involuntary factors compete for the internal focus of attention, prioritization of the appropriate item is delayed-as reflected both in delayed gaze biases that track internal selection and in delayed neural beta (15-25 Hz) dynamics that track the planning for the upcoming memory-guided manual action. We further show how this competition is paralleled-possibly resolved-by an increase in frontal midline theta (4-8 Hz) activity that, moreover, predicts the speed of ensuing memory-guided behavior. Finally, because theta increased following retrocues that effectively reduced working-memory load, our data unveil how frontal theta activity during internal attentional focusing tracks demands on cognitive control over and above working-memory load. Together, these data yield new insight into the neural dynamics that govern the focus of attention in visual working memory, and disentangle the contributions of frontal midline theta activity to the processes of control versus retention in working memory.
Collapse
|
20
|
Kausel L, Zamorano F, Billeke P, Sutherland ME, Alliende MI, Larrain‐Valenzuela J, Soto‐Icaza P, Aboitiz F. Theta and alpha oscillations may underlie improved attention and working memory in musically trained children. Brain Behav 2024; 14:e3517. [PMID: 38702896 PMCID: PMC11069029 DOI: 10.1002/brb3.3517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Attention and working memory are key cognitive functions that allow us to select and maintain information in our mind for a short time, being essential for our daily life and, in particular, for learning and academic performance. It has been shown that musical training can improve working memory performance, but it is still unclear if and how the neural mechanisms of working memory and particularly attention are implicated in this process. In this work, we aimed to identify the oscillatory signature of bimodal attention and working memory that contributes to improved working memory in musically trained children. MATERIALS AND METHODS We recruited children with and without musical training and asked them to complete a bimodal (auditory/visual) attention and working memory task, whereas their brain activity was measured using electroencephalography. Behavioral, time-frequency, and source reconstruction analyses were made. RESULTS Results showed that, overall, musically trained children performed better on the task than children without musical training. When comparing musically trained children with children without musical training, we found modulations in the alpha band pre-stimuli onset and the beginning of stimuli onset in the frontal and parietal regions. These correlated with correct responses to the attended modality. Moreover, during the end phase of stimuli presentation, we found modulations correlating with correct responses independent of attention condition in the theta and alpha bands, in the left frontal and right parietal regions. CONCLUSIONS These results suggest that musically trained children have improved neuronal mechanisms for both attention allocation and memory encoding. Our results can be important for developing interventions for people with attention and working memory difficulties.
Collapse
Affiliation(s)
- Leonie Kausel
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de PsicologíaUniversidad Diego PortalesSantiagoChile
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| | - F. Zamorano
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de ImágenesClínica Alemanade SantiagoSantiagoChile
- Facultad de Ciencias para el Cuidado de la SaludUniversidad San SebastiánSantiagoChile
- Laboratorio de Psiquiatría TraslacionalDepartamento de PsiquiatríaFacultad de MedicinaUniversidad de ChileSantiagoChile
| | - P. Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
| | - M. E. Sutherland
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| | - M. I. Alliende
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| | - J. Larrain‐Valenzuela
- Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
| | - P. Soto‐Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
| | - F. Aboitiz
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
21
|
Zhang H, Hu Y, Li Y, Li D, Liu H, Li X, Song Y, Zhao C. Neurovascular coupling in the attention during visual working memory processes. iScience 2024; 27:109368. [PMID: 38510112 PMCID: PMC10951642 DOI: 10.1016/j.isci.2024.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/19/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Focusing attention in visual working memory (vWM) depends on the ability to filter distractors and expand the scope of targets. Although many properties of attention processes in vWM have been well documented, it remains unclear how the mechanisms of neurovascular coupling (NVC) function during attention processes in vWM. Here, we show simultaneous multimodal data that reveal the similar temporal and spatial features of attention processes during vWM. These similarities lead to common NVC outcomes across individuals. When filtering out distractors, the electroencephalography (EEG)-informed NVC displayed broader engagement across the frontoparietal network. A negative correlation may exist between behavioral metrics and EEG-informed NVC strength related to attention control. On a dynamic basis, NVC features exhibited higher discriminatory power in predicting behavior than other features alone. These results underscore how multimodal approaches can advance our understanding of the role of attention in vWM, and how NVC fluctuations are associated with actual behavior.
Collapse
Affiliation(s)
- Hao Zhang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Yiqing Hu
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yang Li
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Department of Applied Psychology, School of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Hanli Liu
- Department of Bioengineering, the University of Texas at Arlington, Arlington, TX, USA
| | - Xiaoli Li
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chenguang Zhao
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
22
|
Riddle J, McPherson T, Sheikh A, Shin H, Hadar E, Frohlich F. Internal Representations Are Prioritized by Frontoparietal Theta Connectivity and Suppressed by alpha Oscillation Dynamics: Evidence from Concurrent Transcranial Magnetic Stimulation EEG and Invasive EEG. J Neurosci 2024; 44:e1381232024. [PMID: 38395616 PMCID: PMC11007311 DOI: 10.1523/jneurosci.1381-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Control over internal representations requires the prioritization of relevant information and suppression of irrelevant information. The frontoparietal network exhibits prominent neural oscillations during these distinct cognitive processes. Yet, the causal role of this network-scale activity is unclear. Here, we targeted theta-frequency frontoparietal coherence and dynamic alpha oscillations in the posterior parietal cortex using online rhythmic transcranial magnetic stimulation (TMS) in women and men while they prioritized or suppressed internally maintained working memory (WM) representations. Using concurrent high-density EEG, we provided evidence that we acutely drove the targeted neural oscillation and TMS improved WM capacity only when the evoked activity corresponded with the desired cognitive process. To suppress an internal representation, we increased the amplitude of lateralized alpha oscillations in the posterior parietal cortex contralateral to the irrelevant visual field. For prioritization, we found that TMS to the prefrontal cortex increased theta-frequency connectivity in the prefrontoparietal network contralateral to the relevant visual field. To understand the spatial specificity of these effects, we administered the WM task to participants with implanted electrodes. We found that theta connectivity during prioritization was directed from the lateral prefrontal to the superior posterior parietal cortex. Together, these findings provide causal evidence in support of a model where a frontoparietal theta network prioritizes internally maintained representations and alpha oscillations in the posterior parietal cortex suppress irrelevant representations.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychology, Florida State University, Tallahassee, Florida 32304
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Trevor McPherson
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Neurosciences, University of California, San Diego, San Diego, California 92161
| | - Atif Sheikh
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Haewon Shin
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico 87106
| | - Eldad Hadar
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
23
|
Salehi N, Nahrgang S, Petershagen W, Dembek TA, Pedrosa D, Timmermann L, Weber I, Oehrn CR. Theta frequency deep brain stimulation in the subthalamic nucleus improves working memory in Parkinson's disease. Brain 2024; 147:1190-1196. [PMID: 38193320 DOI: 10.1093/brain/awad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Most research in Parkinson's disease focuses on improving motor symptoms. Yet, up to 80% of patients present with non-motor symptoms that often have a large impact on patients' quality of life. Impairment in working memory, a fundamental cognitive process, is common in Parkinson's disease. While deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms in Parkinson's disease, its impact on cognitive functions is less well studied. Here, we examine the effect of DBS in the theta, beta, low and high gamma frequency on working memory in 20 Parkinson's disease patients with bilateral STN-DBS. A linear mixed effects model demonstrates that STN-DBS in the theta frequency improves working memory performance. This effect is frequency-specific and was absent for beta and gamma frequency stimulation. Further, this effect is specific to cognitive performance, as theta frequency DBS did not affect motor function. A non-parametric cluster-based permutation analysis of whole-brain normative structural connectivity shows that working memory enhancement by theta frequency stimulation is associated with higher connectivity between the stimulated subthalamic area and the right middle frontal gyrus. Again, this association is frequency- and task-specific. These findings highlight the potential of theta frequency STN-DBS as a targeted intervention to improve working memory in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Narges Salehi
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Simone Nahrgang
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Wiebke Petershagen
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - David Pedrosa
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany
| | - Immo Weber
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Carina R Oehrn
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany
| |
Collapse
|
24
|
Whittaker HT, Khayyat L, Fortier-Lavallée J, Laverdière M, Bélanger C, Zatorre RJ, Albouy P. Information-based rhythmic transcranial magnetic stimulation to accelerate learning during auditory working memory training: a proof-of-concept study. Front Neurosci 2024; 18:1355565. [PMID: 38638697 PMCID: PMC11024337 DOI: 10.3389/fnins.2024.1355565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Rhythmic transcranial magnetic stimulation (rhTMS) has been shown to enhance auditory working memory manipulation, specifically by boosting theta oscillatory power in the dorsal auditory pathway during task performance. It remains unclear whether these enhancements (i) persist beyond the period of stimulation, (ii) if they can accelerate learning and (iii) if they would accumulate over several days of stimulation. In the present study, we investigated the lasting behavioral and electrophysiological effects of applying rhTMS over the left intraparietal sulcus (IPS) throughout the course of seven sessions of cognitive training on an auditory working memory task. Methods A limited sample of 14 neurologically healthy participants took part in the training protocol with an auditory working memory task while being stimulated with either theta (5 Hz) rhTMS or sham TMS. Electroencephalography (EEG) was recorded before, throughout five training sessions and after the end of training to assess to effects of rhTMS on behavioral performance and on oscillatory entrainment of the dorsal auditory network. Results We show that this combined approach enhances theta oscillatory activity within the fronto-parietal network and causes improvements in auditoryworking memory performance. We show that compared to individuals who received sham stimulation, cognitive training can be accelerated when combined with optimized rhTMS, and that task performance benefits can outlast the training period by ∼ 3 days. Furthermore, we show that there is increased theta oscillatory power within the recruited dorsal auditory network during training, and that sustained EEG changes can be observed ∼ 3 days following stimulation. Discussion The present study, while underpowered for definitive statistical analyses, serves to improve our understanding of the causal dynamic interactions supporting auditory working memory. Our results constitute an important proof of concept for the potential translational impact of non-invasive brain stimulation protocols and provide preliminary data for developing optimized rhTMS and training protocols that could be implemented in clinical populations.
Collapse
Affiliation(s)
- Heather T. Whittaker
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
| | - Lina Khayyat
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Megan Laverdière
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| | - Carole Bélanger
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| | - Robert J. Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
| | - Philippe Albouy
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| |
Collapse
|
25
|
Yu S, Konjusha A, Ziemssen T, Beste C. Inhibitory control in WM gate-opening: Insights from alpha desynchronization and norepinephrine activity under atDCS stimulation. Neuroimage 2024; 289:120541. [PMID: 38360384 DOI: 10.1016/j.neuroimage.2024.120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Our everyday activities require the maintenance and continuous updating of information in working memory (WM). To control this dynamic, WM gating mechanisms have been suggested to be in place, but the neurophysiological mechanisms behind these processes are far from being understood. This is especially the case when it comes to the role of oscillatory neural activity. In the current study we combined EEG recordings, and anodal transcranial direct current stimulation (atDCS) and pupil diameter recordings to triangulate neurophysiology, functional neuroanatomy and neurobiology. The results revealed that atDCS, compared to sham stimulation, affected the WM gate opening mechanism, but not the WM gate closing mechanism. The altered behavioral performance was associated with specific changes in alpha band activities (reflected by alpha desynchronization), indicating a role for inhibitory control during WM gate opening. Functionally, the left superior and inferior parietal cortices, were associated with these processes. The findings are the first to show a causal relevance of alpha desynchronization processes in WM gating processes. Notably, pupil diameter recordings as an indirect index of the norepinephrine (NE) system activity revealed that individuals with stronger inhibitory control (as indexed through alpha desynchronization) showed less pupil dilation, suggesting they needed less NE activity to support WM gate opening. However, when atDCS was applied, this connection disappeared. The study suggests a close link between inhibitory controlled WM gating in parietal cortices, alpha band dynamics and the NE system.
Collapse
Affiliation(s)
- Shijing Yu
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Cognitive Neurophysiology, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany.
| | - Anyla Konjusha
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Cognitive Neurophysiology, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Cognitive Neurophysiology, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany; Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
26
|
Chen YY, Fang WN, Bao HF, Guo BY. The Effect of Task Interruption on Working Memory Performance. HUMAN FACTORS 2024; 66:1132-1151. [PMID: 36451347 DOI: 10.1177/00187208221139017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE This study used electroencephalography to explore the behavioral and electrophysiological effects of task interruption on performance. BACKGROUND Task interruption is known to harm work performance, especially on working memory-related tasks. However, most studies pay little attention to cognitive processes by exploring brain activity and ignore the cumulative effect of sequential interruptions. METHOD Thirty-four healthy participants performed a spatial 2-back in three conditions: (1) interruptions with simple math questions, (2) suspensions with prolonged fixation cross, and (3) a pure 2-back. The measured outcomes comprise performance data, ERP amplitudes, EEG power, and subjective workload. RESULTS Work performance decreased in the resumption trials, and cumulative interruptions had a more destructive effect on performance. EEG results showed that the P2 and P3 amplitudes induced by the 2-back task significantly increased after interruptions; theta and alpha power increased after interruptions. The P3 amplitude and alpha power induced by interruptions were significantly higher than that induced by suspensions. CONCLUSION Behavioral data revealed the disruptive effect of interruptions on postinterruption performance and the cumulative effect of interruptions on accuracy. Changes in ERP amplitudes and EEG power indicate the mechanisms of attention reallocation and working memory during interruptions. Larger P3 amplitudes and alpha power after interruptions than after suspensions suggested the inhibition of irrelevant information. These results may support the memory for goals model and improve the understanding of the effects of interruption on working memory. APPLICATION Focusing upon the mechanisms at play during the interruption process can support interruption management to ensure work safety and efficiency.
Collapse
Affiliation(s)
- Yue-Yuan Chen
- State Key Laboratory of Rail Traffic Control and Safety, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, China
| | - Wei-Ning Fang
- State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
| | - Hai-Feng Bao
- State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
| | - Bei-Yuan Guo
- State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
27
|
Riddle J, Schooler JW. Hierarchical consciousness: the Nested Observer Windows model. Neurosci Conscious 2024; 2024:niae010. [PMID: 38504828 PMCID: PMC10949963 DOI: 10.1093/nc/niae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Foremost in our experience is the intuition that we possess a unified conscious experience. However, many observations run counter to this intuition: we experience paralyzing indecision when faced with two appealing behavioral choices, we simultaneously hold contradictory beliefs, and the content of our thought is often characterized by an internal debate. Here, we propose the Nested Observer Windows (NOW) Model, a framework for hierarchical consciousness wherein information processed across many spatiotemporal scales of the brain feeds into subjective experience. The model likens the mind to a hierarchy of nested mosaic tiles-where an image is composed of mosaic tiles, and each of these tiles is itself an image composed of mosaic tiles. Unitary consciousness exists at the apex of this nested hierarchy where perceptual constructs become fully integrated and complex behaviors are initiated via abstract commands. We define an observer window as a spatially and temporally constrained system within which information is integrated, e.g. in functional brain regions and neurons. Three principles from the signal analysis of electrical activity describe the nested hierarchy and generate testable predictions. First, nested observer windows disseminate information across spatiotemporal scales with cross-frequency coupling. Second, observer windows are characterized by a high degree of internal synchrony (with zero phase lag). Third, observer windows at the same spatiotemporal level share information with each other through coherence (with non-zero phase lag). The theoretical framework of the NOW Model accounts for a wide range of subjective experiences and a novel approach for integrating prominent theories of consciousness.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychology, Florida State University, 1107 W Call St, Tallahassee, FL 32304, USA
| | - Jonathan W Schooler
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Psychological & Brain Sciences, Santa Barbara, CA 93106, USA
| |
Collapse
|
28
|
Santo-Angles A, Temudo A, Babushkin V, Sreenivasan KK. Effective connectivity of working memory performance: a DCM study of MEG data. Front Hum Neurosci 2024; 18:1339728. [PMID: 38501039 PMCID: PMC10944968 DOI: 10.3389/fnhum.2024.1339728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Visual working memory (WM) engages several nodes of a large-scale network that includes frontal, parietal, and visual regions; however, little is understood about how these regions interact to support WM behavior. In particular, it is unclear whether network dynamics during WM maintenance primarily represent feedforward or feedback connections. This question has important implications for current debates about the relative roles of frontoparietal and visual regions in WM maintenance. In the current study, we investigated the network activity supporting WM using MEG data acquired while healthy subjects performed a multi-item delayed estimation WM task. We used computational modeling of behavior to discriminate correct responses (high accuracy trials) from two different types of incorrect responses (low accuracy and swap trials), and dynamic causal modeling of MEG data to measure effective connectivity. We observed behaviorally dependent changes in effective connectivity in a brain network comprising frontoparietal and early visual areas. In comparison with high accuracy trials, frontoparietal and frontooccipital networks showed disrupted signals depending on type of behavioral error. Low accuracy trials showed disrupted feedback signals during early portions of WM maintenance and disrupted feedforward signals during later portions of maintenance delay, while swap errors showed disrupted feedback signals during the whole delay period. These results support a distributed model of WM that emphasizes the role of visual regions in WM storage and where changes in large scale network configurations can have important consequences for memory-guided behavior.
Collapse
Affiliation(s)
- Aniol Santo-Angles
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ainsley Temudo
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vahan Babushkin
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kartik K. Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
29
|
Deng X, Chen X, Li Y, Zhang B, Xu W, Wang J, Zang Y, Dong Q, Chen C, Li J. Online and offline effects of parietal 10 Hz repetitive transcranial magnetic stimulation on working memory in healthy controls. Hum Brain Mapp 2024; 45:e26636. [PMID: 38488458 PMCID: PMC10941606 DOI: 10.1002/hbm.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024] Open
Abstract
Parietal alpha activity shows a specific pattern of phasic changes during working memory. It decreases during the encoding and recall phases but increases during the maintenance phase. This study tested whether online rTMS delivered to the parietal cortex during the maintenance phase of a working memory task would increase alpha activity and hence improve working memory. Then, 46 healthy volunteers were randomly assigned to two groups to receive 3-day parietal 10 Hz online rTMS (either real or sham, 3600 pulses in total) that were time-locked to the maintenance phase of a spatial span task (180 trials in total). Behavioral performance on another spatial span task and EEG signals during a change detection task were recorded on the day before the first rTMS (pretest) and the day after the last rTMS (posttest). We found that rTMS improved performance on both online and offline spatial span tasks. For the offline change detection task, rTMS enhanced alpha activity within the maintenance phase and improved interference control of working memory at both behavioral (K score) and neural (contralateral delay activity) levels. These results suggested that rTMS with alpha frequency time-locked to the maintenance phase is a promising way to boost working memory.
Collapse
Affiliation(s)
- Xinping Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental HealthCapital Medical UniversityBeijingChina
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Bofan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Wending Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Jue Wang
- Institute of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Yu‐Feng Zang
- Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina
- Center for Cognition and Brain DisordersHangzhou Normal University Affiliated HospitalHangzhouChina
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Chuansheng Chen
- Department of Psychological ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| |
Collapse
|
30
|
Ociepka M, Chinta SR, Basoń P, Chuderski A. No effects of the theta-frequency transcranial electrical stimulation for recall, attention control, and relation integration in working memory. Front Hum Neurosci 2024; 18:1354671. [PMID: 38439936 PMCID: PMC10910036 DOI: 10.3389/fnhum.2024.1354671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Recent studies have suggested that transcranial alternating current stimulation (tACS), and especially the theta-frequency tACS, can improve human performance on working memory tasks. However, evidence to date is mixed. Moreover, the two WM tasks applied most frequently, namely the n-back and change-detection tasks, might not constitute canonical measures of WM capacity. Method In a relatively large sample of young healthy participants (N = 62), we administered a more canonical WM task that required stimuli recall, as well as we applied two WM tasks tapping into other key WM functions: attention control (the antisaccade task) and relational integration (the graph mapping task). The participants performed these three tasks three times: during the left frontal 5.5-Hz and the left parietal 5.5-Hz tACS session as well as during the sham session, with a random order of sessions. Attentional vigilance and subjective experience were monitored. Results For each task administered, we observed significant gains in accuracy neither for the frontal tACS session nor for the parietal tACS session, as compared to the sham session. By contrast, the scores on each task positively inter-correlated across the three sessions. Discussion The results suggest that canonical measures of WM capacity are strongly stable in time and hardly affected by theta-frequency tACS. Either the tACS effects observed in the n-back and change detection tasks do not generalize onto other WM tasks, or the tACS method has limited effectiveness with regard to WM, and might require further methodological advancements.
Collapse
Affiliation(s)
- Michał Ociepka
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | | | - Paweł Basoń
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
31
|
Soto-Icaza P, Soto-Fernández P, Kausel L, Márquez-Rodríguez V, Carvajal-Paredes P, Martínez-Molina MP, Figueroa-Vargas A, Billeke P. Oscillatory activity underlying cognitive performance in children and adolescents with autism: a systematic review. Front Hum Neurosci 2024; 18:1320761. [PMID: 38384334 PMCID: PMC10879575 DOI: 10.3389/fnhum.2024.1320761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition that exhibits a widely heterogeneous range of social and cognitive symptoms. This feature has challenged a broad comprehension of this neurodevelopmental disorder and therapeutic efforts to address its difficulties. Current therapeutic strategies have focused primarily on treating behavioral symptoms rather than on brain psychophysiology. During the past years, the emergence of non-invasive brain stimulation techniques (NIBS) has opened alternatives to the design of potential combined treatments focused on the neurophysiopathology of neuropsychiatric disorders like ASD. Such interventions require identifying the key brain mechanisms underlying the symptomatology and cognitive features. Evidence has shown alterations in oscillatory features of the neural ensembles associated with cognitive functions in ASD. In this line, we elaborated a systematic revision of the evidence of alterations in brain oscillations that underlie key cognitive processes that have been shown to be affected in ASD during childhood and adolescence, namely, social cognition, attention, working memory, inhibitory control, and cognitive flexibility. This knowledge could contribute to developing therapies based on NIBS to improve these processes in populations with ASD.
Collapse
Affiliation(s)
- Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | | | - Leonie Kausel
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Víctor Márquez-Rodríguez
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Patricio Carvajal-Paredes
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - María Paz Martínez-Molina
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Alejandra Figueroa-Vargas
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience (LaNCE), Centro Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
32
|
Prochnow A, Zhou X, Ghorbani F, Wendiggensen P, Roessner V, Hommel B, Beste C. The temporal dynamics of how the brain structures natural scenes. Cortex 2024; 171:26-39. [PMID: 37977111 DOI: 10.1016/j.cortex.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Individuals organize the evolving stream of events in their environment by partitioning it into discrete units. Event segmentation theory (EST) provides a cognitive explanation for the process of this partitioning. Critically, the underlying time-resolved neural mechanisms are not understood, and thus a central conceptual aspect of how humans implement this central ability is missing. To gain better insight into the fundamental temporal dynamics of event segmentation, EEG oscillatory activity was measured while participants watched a narrative video and partitioned the movie into meaningful segments. Using EEG beamforming methods, we show that theta, alpha, and beta band activity in frontal, parietal, and occipital areas, as well as their interactions, reflect critical elements of the event segmentation process established by EST. In sum, we see a mechanistic temporal chain of processes that provides the neurophysiological basis for how the brain partitions and structures continuously evolving scenes and points to an integrated system that organizes the various subprocesses of event segmentation. This study thus integrates neurophysiology and cognitive theory to better understand how the human brain operates in rather variable and unpredictable situations. Therefore, it represents an important step toward studying neurophysiological dynamics in ecologically valid and naturalistic settings and, in doing so, addresses a critical gap in knowledge regarding the temporal dynamics of how the brain structures natural scenes.
Collapse
Affiliation(s)
- Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany.
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
33
|
Ericson J, Palva S, Palva M, Klingberg T. Strengthening of alpha synchronization is a neural correlate of cognitive transfer. Cereb Cortex 2024; 34:bhad527. [PMID: 38220577 PMCID: PMC10839847 DOI: 10.1093/cercor/bhad527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024] Open
Abstract
Cognitive training can lead to improvements in both task-specific strategies and general capacities, such as visuo-spatial working memory (VSWM). The latter emerge slowly and linearly throughout training, in contrast to strategy where changes typically occur within the first days of training. Changes in strategy and capacity have not been separated in prior neuroimaging studies. Here, we used a within-participants design with dense temporal sampling to capture the time dynamics of neural mechanisms associated with change in capacity. In four participants, neural activity was recorded with magnetoencephalography on seven occasions over two months of visuo-spatial working memory training. During scanning, the participants performed a trained visuo-spatial working memory task, a transfer task, and a control task. First, we extracted an individual visuo-spatial working memory-load-dependent synchronization network for each participant. Next, we identified linear changes over time in the network, congruent with the temporal dynamics of capacity change. Three out of four participants showed a gradual strengthening of alpha synchronization. Strengthening of the same connections was also found in the transfer task but not in the control task. This suggests that cognitive transfer occurs through slow, gradual strengthening of alpha synchronization between cortical regions that are vital for both the trained task and the transfer task.
Collapse
Affiliation(s)
- Julia Ericson
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Satu Palva
- Neuroscience Center, HilIFE-Helsinki Institute of Lifescience, University of Helsinki, 00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging (CCNi), School Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Matias Palva
- Neuroscience Center, HilIFE-Helsinki Institute of Lifescience, University of Helsinki, 00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging (CCNi), School Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, Scotland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, 00076 Aalto, Finland
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
34
|
Noda Y, Sakaue K, Wada M, Takano M, Nakajima S. Development of Artificial Intelligence for Determining Major Depressive Disorder Based on Resting-State EEG and Single-Pulse Transcranial Magnetic Stimulation-Evoked EEG Indices. J Pers Med 2024; 14:101. [PMID: 38248802 PMCID: PMC10817456 DOI: 10.3390/jpm14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Depression is the disorder with the greatest socioeconomic burdens. Its diagnosis is still based on an operational diagnosis derived from symptoms, and no objective diagnostic indicators exist. Thus, the present study aimed to develop an artificial intelligence (AI) model to aid in the diagnosis of depression from electroencephalography (EEG) data by applying machine learning to resting-state EEG and transcranial magnetic stimulation (TMS)-evoked EEG acquired from patients with depression and healthy controls. Resting-state EEG and single-pulse TMS-EEG were acquired from 60 patients and 60 healthy controls. Power spectrum analysis, phase synchronization analysis, and phase-amplitude coupling analysis were conducted on EEG data to extract feature candidates to apply different types of machine learning algorithms. Furthermore, to address the limitation of the sample size, dimensionality reduction was performed in a manner to increase the quality of information by featuring robust neurophysiological metrics that showed significant differences between the two groups. Then, nine different machine learning models were applied to the data. For the EEG data, we created models combining four modalities, including (1) resting-state EEG, (2) pre-stimulus TMS-EEG, (3) post-stimulus TMS-EEG, and (4) differences between pre- and post-stimulus TMS-EEG, and evaluated their performance. We found that the best estimation performance (a mean area under the curve of 0.922) was obtained using receiver operating characteristic curve analysis when linear discriminant analysis (LDA) was applied to the combination of the four feature sets. This study showed that by using TMS-EEG neurophysiological indices as features, it is possible to develop a depression decision-support AI algorithm that exhibits high discrimination accuracy.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kento Sakaue
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of DX Promotion, Teijin Limited, Tokyo 100-8585, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Teijin Pharma Limited, Tokyo 100-8585, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
35
|
Chen C, Liang Y, Xu S, Yi C, Li Y, Chen B, Yang L, Liu Q, Yao D, Li F, Xu P. The dynamic causality brain network reflects whether the working memory is solidified. Cereb Cortex 2024; 34:bhad467. [PMID: 38061696 DOI: 10.1093/cercor/bhad467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Working memory, which is foundational to higher cognitive function, is the "sketchpad of volitional control." Successful working memory is the inevitable outcome of the individual's active control and manipulation of thoughts and turning them into internal goals during which the causal brain processes information in real time. However, little is known about the dynamic causality among distributed brain regions behind thought control that underpins successful working memory. In our present study, given that correct responses and incorrect ones did not differ in either contralateral delay activity or alpha suppression, further rooting on the high-temporal-resolution EEG time-varying directed network analysis, we revealed that successful working memory depended on both much stronger top-down connections from the frontal to the temporal lobe and bottom-up linkages from the occipital to the temporal lobe, during the early maintenance period, as well as top-down flows from the frontal lobe to the central areas as the delay behavior approached. Additionally, the correlation between behavioral performance and casual interactions increased over time, especially as memory-guided delayed behavior approached. Notably, when using the network metrics as features, time-resolved multiple linear regression of overall behavioral accuracy was exactly achieved as delayed behavior approached. These results indicate that accurate memory depends on dynamic switching of causal network connections and shifting to more task-related patterns during which the appropriate intervention may help enhance memory.
Collapse
Affiliation(s)
- Chunli Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi Liang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Shiyun Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuqin Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Baodan Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Yang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiang Liu
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu 610000, China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fali Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
36
|
Bieth T, Ovando‐Tellez M, Lopez‐Persem A, Garcin B, Hugueville L, Lehongre K, Levy R, George N, Volle E. Time course of EEG power during creative problem-solving with insight or remote thinking. Hum Brain Mapp 2024; 45:e26547. [PMID: 38060194 PMCID: PMC10789201 DOI: 10.1002/hbm.26547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Problem-solving often requires creativity and is critical in everyday life. However, the neurocognitive mechanisms underlying creative problem-solving remain poorly understood. Two mechanisms have been highlighted: the formation of new connections among problem elements and insight solving, characterized by sudden realization of a solution. In this study, we investigated EEG activity during a modified version of the remote associates test, a classical insight problem task that requires finding a word connecting three unrelated words. This allowed us to explore the brain correlates associated with the semantic remoteness of connections (by varying the remoteness of the solution word across trials) and with insight solving (identified as a Eurêka moment reported by the participants). Semantic remoteness was associated with power increase in the alpha band (8-12 Hz) in a left parieto-temporal cluster, the beta band (13-30 Hz) in a right fronto-temporal cluster in the early phase of the task, and the theta band (3-7 Hz) in a bilateral frontal cluster just prior to participants' responses. Insight solving was associated with power increase preceding participants' responses in the alpha and gamma (31-60 Hz) bands in a left temporal cluster and the theta band in a frontal cluster. Source reconstructions revealed the brain regions associated with these clusters. Overall, our findings shed new light on some of the mechanisms involved in creative problem-solving.
Collapse
Affiliation(s)
- Théophile Bieth
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP‐HP, Hôpital de la Pitié Salpêtrière, DMU NeuroscienceParisFrance
| | - Marcela Ovando‐Tellez
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Alizée Lopez‐Persem
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Béatrice Garcin
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Department of NeurologyAvicenne Hospital, AP‐HPBobignyFrance
| | - Laurent Hugueville
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Institut du Cerveau—ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, Centre MEG‐EEG, CENIRParisFrance
| | - Katia Lehongre
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Richard Levy
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP‐HP, Hôpital de la Pitié Salpêtrière, DMU NeuroscienceParisFrance
| | - Nathalie George
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Institut du Cerveau—ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, Centre MEG‐EEG, CENIRParisFrance
| | - Emmanuelle Volle
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| |
Collapse
|
37
|
Charalambous E, Djebbara Z. On natural attunement: Shared rhythms between the brain and the environment. Neurosci Biobehav Rev 2023; 155:105438. [PMID: 37898445 DOI: 10.1016/j.neubiorev.2023.105438] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Rhythms exist both in the embodied brain and the built environment. Becoming attuned to the rhythms of the environment, such as repetitive columns, can greatly affect perception. Here, we explore how the built environment affects human cognition and behavior through the concept of natural attunement, often resulting from the coordination of a person's sensory and motor systems with the rhythmic elements of the environment. We argue that the built environment should not be reduced to mere states, representations, and single variables but instead be considered a bundle of highly related continuous signals with which we can resonate. Resonance and entrainment are dynamic processes observed when intrinsic frequencies of the oscillatory brain are influenced by the oscillations of an external signal. This allows visual rhythmic stimulations of the environment to affect the brain and body through neural entrainment, cross-frequency coupling, and phase resetting. We review how real-world architectural settings can affect neural dynamics, cognitive processes, and behavior in people, suggesting the crucial role of everyday rhythms in the brain-body-environment relationship.
Collapse
Affiliation(s)
| | - Zakaria Djebbara
- Aalborg University, Department of Architecture, Design, Media, and Technology, Denmark; Technical University of Berlin, Biological Psychology and Neuroergonomics, Germany.
| |
Collapse
|
38
|
Akimoto Y, Miyake K. Examination of distraction and discomfort caused by using glare monitors: a simultaneous electroencephalography and eye-tracking study. PeerJ 2023; 11:e15992. [PMID: 37727695 PMCID: PMC10506577 DOI: 10.7717/peerj.15992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Background Since the COVID-19 pandemic started, remote work and education and digital display use have become more prevalent. However, compared with printed material, digital displays cause more eye fatigue and may decrease task performance. For instance, the reflections on the monitor can cause discomfort or distraction, particularly when glare monitors are used with black backgrounds. Methods This study simultaneously uses electroencephalography (EEG) and an eye-tracker to measure the possible negative effects of using a glare monitor on the illegibility of sentences. Results The experiment results showed no difference in reading time and subjective illegibility rating between glare and non-glare monitors. However, with glare monitors, eye fixation when reading lasted longer. Further, EEG beta (15-20 Hz) power variations suggested that the participants were less engaged in the reading task when a glare monitor was used with a black background. Conclusions These results indicate that the negative effects of using a glare monitor are subtle but certainly present. They also show that physiological measures such as EEG and eye tracking can assess the subtle effects in an objective manner, even if behavioral measures such as subjective illegibility ratings or reading time may not show the differences.
Collapse
Affiliation(s)
- Yoritaka Akimoto
- Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Keito Miyake
- Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
39
|
Soleimani G, Nitsche MA, Bergmann TO, Towhidkhah F, Violante IR, Lorenz R, Kuplicki R, Tsuchiyagaito A, Mulyana B, Mayeli A, Ghobadi-Azbari P, Mosayebi-Samani M, Zilverstand A, Paulus MP, Bikson M, Ekhtiari H. Closing the loop between brain and electrical stimulation: towards precision neuromodulation treatments. Transl Psychiatry 2023; 13:279. [PMID: 37582922 PMCID: PMC10427701 DOI: 10.1038/s41398-023-02565-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
One of the most critical challenges in using noninvasive brain stimulation (NIBS) techniques for the treatment of psychiatric and neurologic disorders is inter- and intra-individual variability in response to NIBS. Response variations in previous findings suggest that the one-size-fits-all approach does not seem the most appropriate option for enhancing stimulation outcomes. While there is a growing body of evidence for the feasibility and effectiveness of individualized NIBS approaches, the optimal way to achieve this is yet to be determined. Transcranial electrical stimulation (tES) is one of the NIBS techniques showing promising results in modulating treatment outcomes in several psychiatric and neurologic disorders, but it faces the same challenge for individual optimization. With new computational and methodological advances, tES can be integrated with real-time functional magnetic resonance imaging (rtfMRI) to establish closed-loop tES-fMRI for individually optimized neuromodulation. Closed-loop tES-fMRI systems aim to optimize stimulation parameters based on minimizing differences between the model of the current brain state and the desired value to maximize the expected clinical outcome. The methodological space to optimize closed-loop tES fMRI for clinical applications includes (1) stimulation vs. data acquisition timing, (2) fMRI context (task-based or resting-state), (3) inherent brain oscillations, (4) dose-response function, (5) brain target trait and state and (6) optimization algorithm. Closed-loop tES-fMRI technology has several advantages over non-individualized or open-loop systems to reshape the future of neuromodulation with objective optimization in a clinically relevant context such as drug cue reactivity for substance use disorder considering both inter and intra-individual variations. Using multi-level brain and behavior measures as input and desired outcomes to individualize stimulation parameters provides a framework for designing personalized tES protocols in precision psychiatry.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Michael A Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Til Ole Bergmann
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK
| | - Romy Lorenz
- Department of Psychology, Stanford University, Stanford, CA, USA
- MRC CBU, University of Cambridge, Cambridge, UK
- Department of Neurophysics, MPI, Leipzig, Germany
| | | | | | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, USA
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, USA
| | - Ahmad Mayeli
- University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Hamed Ekhtiari
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| |
Collapse
|
40
|
Champion KP, Gozel O, Lankow BS, Ermentrout GB, Goldman MS. An oscillatory mechanism for multi-level storage in short-term memory. Commun Biol 2023; 6:829. [PMID: 37563448 PMCID: PMC10415352 DOI: 10.1038/s42003-023-05200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Oscillatory activity is commonly observed during the maintenance of information in short-term memory, but its role remains unclear. Non-oscillatory models of short-term memory storage are able to encode stimulus identity through their spatial patterns of activity, but are typically limited to either an all-or-none representation of stimulus amplitude or exhibit a biologically implausible exact-tuning condition. Here we demonstrate a simple mechanism by which oscillatory input enables a circuit to generate persistent or sequential activity that encodes information not only in the spatial pattern of activity, but also in the amplitude of activity. This is accomplished through a phase-locking phenomenon that permits many different amplitudes of persistent activity to be stored without requiring exact tuning of model parameters. Altogether, this work proposes a class of models for the storage of information in working memory, a potential role for brain oscillations, and a dynamical mechanism for maintaining multi-stable neural representations.
Collapse
Affiliation(s)
- Kathleen P Champion
- Department of Applied Mathematics, University of Washington, Seattle, WA, 98195, USA
| | - Olivia Gozel
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, 60637, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, 60637, USA
| | - Benjamin S Lankow
- Center for Neuroscience, University of California, Davis, Davis, CA, 95618, USA
| | - G Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Mark S Goldman
- Center for Neuroscience, University of California, Davis, Davis, CA, 95618, USA.
- Department of Neurobiology, Physiology, and Behavior, and Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA, 95618, USA.
| |
Collapse
|
41
|
Hunt T, Jones M. Fields or firings? Comparing the spike code and the electromagnetic field hypothesis. Front Psychol 2023; 14:1029715. [PMID: 37546464 PMCID: PMC10400444 DOI: 10.3389/fpsyg.2023.1029715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/09/2023] [Indexed: 08/08/2023] Open
Abstract
Where is consciousness? Neurobiological theories of consciousness look primarily to synaptic firing and "spike codes" as the physical substrate of consciousness, although the specific mechanisms of consciousness remain unknown. Synaptic firing results from electrochemical processes in neuron axons and dendrites. All neurons also produce electromagnetic (EM) fields due to various mechanisms, including the electric potential created by transmembrane ion flows, known as "local field potentials," but there are also more meso-scale and macro-scale EM fields present in the brain. The functional role of these EM fields has long been a source of debate. We suggest that these fields, in both their local and global forms, may be the primary seat of consciousness, working as a gestalt with synaptic firing and other aspects of neuroanatomy to produce the marvelous complexity of minds. We call this assertion the "electromagnetic field hypothesis." The neuroanatomy of the brain produces the local and global EM fields but these fields are not identical with the anatomy of the brain. These fields are produced by, but not identical with, the brain, in the same manner that twigs and leaves are produced by a tree's branches and trunk but are not the same as the branches and trunk. As such, the EM fields represent the more granular, both spatially and temporally, aspects of the brain's structure and functioning than the neuroanatomy of the brain. The brain's various EM fields seem to be more sensitive to small changes than the neuroanatomy of the brain. We discuss issues with the spike code approach as well as the various lines of evidence supporting our argument that the brain's EM fields may be the primary seat of consciousness. This evidence (which occupies most of the paper) suggests that oscillating neural EM fields may make firing in neural circuits oscillate, and these oscillating circuits may help unify and guide conscious cognition.
Collapse
Affiliation(s)
- Tam Hunt
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, United States
| | - Mostyn Jones
- Formerly of Washington and Jefferson College, Washington, PA, United States
| |
Collapse
|
42
|
Nakamura-Palacios EM, Falçoni Júnior AT, Anders QS, de Paula LDSP, Zottele MZ, Ronchete CF, Lirio PHC. Would frontal midline theta indicate cognitive changes induced by non-invasive brain stimulation? A mini review. Front Hum Neurosci 2023; 17:1116890. [PMID: 37520930 PMCID: PMC10375045 DOI: 10.3389/fnhum.2023.1116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
To the best of our knowledge, neurophysiological markers indicating changes induced by non-invasive brain stimulation (NIBS) on cognitive performance, especially one of the most investigated under these procedures, working memory (WM), are little known. Here, we will briefly introduce frontal midline theta (FM-theta) oscillation (4-8 Hz) as a possible indicator for NIBS effects on WM processing. Electrophysiological recordings of FM-theta oscillation seem to originate in the medial frontal cortex and the anterior cingulate cortex, but they may be driven more subcortically. FM-theta has been acknowledged to occur during memory and emotion processing, and it has been related to WM and sustained attention. It mainly occurs in the frontal region during a delay period, in which specific information previously shown is no longer perceived and must be manipulated to allow a later (delayed) response and observed in posterior regions during information maintenance. Most NIBS studies investigating effects on cognitive performance have used n-back tasks that mix manipulation and maintenance processes. Thus, if considering FM-theta as a potential neurophysiological indicator for NIBS effects on different WM components, adequate cognitive tasks should be considered to better address the complexity of WM processing. Future research should also evaluate the potential use of FM-theta as an index of the therapeutic effects of NIBS intervention on neuropsychiatric disorders, especially those involving the ventral medial prefrontal cortex and cognitive dysfunctions.
Collapse
Affiliation(s)
| | | | - Quézia Silva Anders
- Superior School of Sciences of the Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Brazil
| | | | | | | | | |
Collapse
|
43
|
Wu X, Gao Y, Shi C, Tong J, Ma D, Shen J, Yang J, Ji M. Complement C1q drives microglia-dependent synaptic loss and cognitive impairments in a mouse model of lipopolysaccharide-induced neuroinflammation. Neuropharmacology 2023; 237:109646. [PMID: 37356797 DOI: 10.1016/j.neuropharm.2023.109646] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Activated microglia and subsequent release of pro-inflammatory cytokines result in neuroinflammatory status which further damage neurological function including cognitive impairments in various neurological conditions. However, the underlying molecular mechanisms during these pathological processing remain unknown. In the current study, mice received intraperitoneal administrations of LPS (0.5 mg/kg, daily, Escherichia coli O55:B5) for seven consecutive days and their different cohorts were used for behavioral assessment with open field, Y maze, and novel object recognition test or for electrophysiology recordings of mEPSC, LFP or LTP in in vivo or ex vivo preparation. The hippocampus from some cohorts were harvested for immunostaining or Western blotting of c1q, Iba-1, CD68, PSD95 and dendritic spine density or for transcriptome and proteomics analysis. Repeated LPS injections induced an up-regulation of complement system protein c1q and distinct microglial phenotype with an enrichment of the complement-phagosome pathway. Microglial synaptic engulfment and profound synaptic loss were found. These pathological changes were accompanied with the significantly decreased excitatory synaptic transmission, disturbed theta oscillations, impaired hippocampal long-term potentiation, and cognitive impairments. Notably, neutralization of c1q signaling robustly prevented these changes. Collectively, our data provide evidence that activated microglia and complement cascade c1q signaling in the hippocampus may account for synaptic loss and cognitive impairments in a mouse model of neuroinflammation induced by repeated LPS injections. Our work implicates that complement system may be a therapeutic target for developing therapies to prevent or treat cognitive disorders related to neuroinflammation or other disease conditions including neurodegenerative disease per se.
Collapse
Affiliation(s)
- Xinmiao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuzhu Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cuina Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianhua Tong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Jinchun Shen
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Muhuo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
44
|
Bertaccini R, Ippolito G, Tarasi L, Zazio A, Stango A, Bortoletto M, Romei V. Rhythmic TMS as a Feasible Tool to Uncover the Oscillatory Signatures of Audiovisual Integration. Biomedicines 2023; 11:1746. [PMID: 37371840 DOI: 10.3390/biomedicines11061746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Multisensory integration is quintessential to adaptive behavior, with clinical populations showing significant impairments in this domain, most notably hallucinatory reports. Interestingly, altered cross-modal interactions have also been reported in healthy individuals when engaged in tasks such as the Sound-Induced Flash-Illusion (SIFI). The temporal dynamics of the SIFI have been recently tied to the speed of occipital alpha rhythms (IAF), with faster oscillations entailing reduced temporal windows within which the illusion is experienced. In this regard, entrainment-based protocols have not yet implemented rhythmic transcranial magnetic stimulation (rhTMS) to causally test for this relationship. It thus remains to be evaluated whether rhTMS-induced acoustic and somatosensory sensations may not specifically interfere with the illusion. Here, we addressed this issue by asking 27 volunteers to perform a SIFI paradigm under different Sham and active rhTMS protocols, delivered over the occipital pole at the IAF. Although TMS has been proven to act upon brain tissues excitability, results show that the SIFI occurred for both Sham and active rhTMS, with the illusory rate not being significantly different between baseline and stimulation conditions. This aligns with the discrete sampling hypothesis, for which alpha amplitude modulation, known to reflect changes in cortical excitability, should not account for changes in the illusory rate. Moreover, these findings highlight the viability of rhTMS-based interventions as a means to probe the neuroelectric signatures of illusory and hallucinatory audiovisual experiences, in healthy and neuropsychiatric populations.
Collapse
Affiliation(s)
- Riccardo Bertaccini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
- Neurophysiology Lab., IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Giuseppe Ippolito
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
| | - Agnese Zazio
- Neurophysiology Lab., IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Antonietta Stango
- Neurophysiology Lab., IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Marta Bortoletto
- Neurophysiology Lab., IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, 28015 Madrid, Spain
| |
Collapse
|
45
|
Li BZ, Nan W, Pun SH, Vai MI, Rosa A, Wan F. Modulating Individual Alpha Frequency through Short-Term Neurofeedback for Cognitive Enhancement in Healthy Young Adults. Brain Sci 2023; 13:926. [PMID: 37371404 DOI: 10.3390/brainsci13060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Human alpha oscillation (7-13 Hz) has been extensively studied over the years for its connection with cognition. The individual alpha frequency (IAF), defined as the frequency that provides the highest power in the alpha band, shows a positive correlation with cognitive processes. The modulation of alpha activities has been accomplished through various approaches aimed at improving cognitive performance. However, very few studies focused on the direct modulation of IAF by shifting the peak frequency, and the understanding of IAF modulation remains highly limited. In this study, IAFs of healthy young adults were up-regulated through short-term neurofeedback training using haptic feedback. The results suggest that IAFs have good trainability and are up-regulated, also that IAFs are correlated with the enhanced cognitive performance in mental rotation and n-back tests compared to sham-neurofeedback control. This study demonstrates the feasibility of self-regulating IAF for cognition enhancement and provides potential therapeutic benefits for cognitive-impaired patients.
Collapse
Grants
- 2020YFB1313502 The National Key Research and Development Program of China under Grant
- 2021ZD0201300 The National Key Research and Development Program of China under Grant
- SGDX20201103094002009 The Shenzhen-Hong Kong-Macau S&TProgram (Category C) of SZSTI
- MYRG2022-00111-IME The University of Macau
- MYRG2020-00098-FST The University of Macau
- MYRG2022-00197-FST The University of Macau
- 0144/2019/A3 The Science and Technology Development Fund, Macau SAR
- 0022/2020/AFJ The Science and Technology Development Fund, Macau SAR
- SKL-AMSV (FDCTfunded),SKL-AMSV-ADDITIONAL FUND, SKL-AMSV(UM)-2023-2025 The Science and Technology Development Fund, Macau SAR
- 0045/2019/AFJ The Science and Technology Development Fund, Macau SAR
- CP-017-2022 The Lingyange Semi-conductor Inc. Zhuhai City, Guandong, China
- CP-031-2022 The Lingyange Semi-conductor Inc. Zhuhai City, Guandong, China
- CP-003-2023 The Blue Ocean Smart System (Nanjing) Limited
- 2023A1515010844 The Guangdong Basic and Applied Basic Research Foundation
- 81901830 The National Natural Science Foundation of China
Collapse
Affiliation(s)
- Ben-Zheng Li
- State Key Laboratory of Analog and Mixed Signal Very-Large-Scale Integration (VLSI), University of Macau, Macau 999078, China
- Department of Electrical and Computer Engineering, Faculty of Science and Engineering, University of Macau, Macau 999078, China
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Electrical Engineering, University of Colorado Denver, Denver, CO 80204, USA
| | - Wenya Nan
- Department of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed Signal Very-Large-Scale Integration (VLSI), University of Macau, Macau 999078, China
| | - Mang I Vai
- State Key Laboratory of Analog and Mixed Signal Very-Large-Scale Integration (VLSI), University of Macau, Macau 999078, China
- Department of Electrical and Computer Engineering, Faculty of Science and Engineering, University of Macau, Macau 999078, China
| | - Agostinho Rosa
- LaSEEB-System and Robotics Institute, LarSys, 1049-001 Lisbon, Portugal
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Engineering, University of Macau, Macau 999078, China
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau 999078, China
| |
Collapse
|
46
|
Li R, Xu M, You J, Zhou X, Meng J, Xiao X, Jung TP, Ming D. Modulation of rhythmic visual stimulation on left-right attentional asymmetry. Front Neurosci 2023; 17:1156890. [PMID: 37250403 PMCID: PMC10213214 DOI: 10.3389/fnins.2023.1156890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The rhythmic visual stimulation (RVS)-induced oscillatory brain responses, namely steady-state visual evoked potentials (SSVEPs), have been widely used as a biomarker in studies of neural processing based on the assumption that they would not affect cognition. However, recent studies have suggested that the generation of SSVEPs might be attributed to neural entrainment and thus could impact brain functions. But their neural and behavioral effects are yet to be explored. No study has reported the SSVEP influence on functional cerebral asymmetry (FCA). We propose a novel lateralized visual discrimination paradigm to test the SSVEP effects on visuospatial selective attention by FCA analyses. Thirty-eight participants covertly shifted their attention to a target triangle appearing in either the lower-left or -right visual field (LVF or RVF), and judged its orientation. Meanwhile, participants were exposed to a series of task-independent RVSs at different frequencies, including 0 (no RVS), 10, 15, and 40-Hz. As a result, it showed that target discrimination accuracy and reaction time (RT) varied significantly across RVS frequency. Furthermore, attentional asymmetries differed for the 40-Hz condition relative to the 10-Hz condition as indexed by enhanced RT bias to the right visual field, and larger Pd EEG component for attentional suppression. Our results demonstrated that RVSs had frequency-specific effects on left-right attentional asymmetries in both behavior and neural activities. These findings provided new insights into the functional role of SSVEP on FCAs.
Collapse
Affiliation(s)
- Rong Li
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Minpeng Xu
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jia You
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xiaoyu Zhou
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Jiayuan Meng
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaolin Xiao
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Tzyy-Ping Jung
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Swartz Center for Computational Neuroscience, University of California San Diego, San Diego, CA, United States
| | - Dong Ming
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
47
|
Lui TKY, Obleser J, Wöstmann M. Slow neural oscillations explain temporal fluctuations in distractibility. Prog Neurobiol 2023; 226:102458. [PMID: 37088261 DOI: 10.1016/j.pneurobio.2023.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/06/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Human environments comprise various sources of distraction, which often occur unexpectedly in time. The proneness to distraction (i.e., distractibility) is posited to be independent of attentional sampling of targets, but its temporal dynamics and neurobiological basis are largely unknown. Brain oscillations in the theta band (3 - 8Hz) have been associated with fluctuating neural excitability, which is hypothesised here to explain rhythmic modulation of distractibility. In a pitch discrimination task (N = 30) with unexpected auditory distractors, we show that distractor-evoked neural responses in the electroencephalogram and perceptual susceptibility to distraction were co-modulated and cycled approximately 3 - 5 times per second. Pre-distractor neural phase in left inferior frontal and insular cortex regions explained fluctuating distractibility. Thus, human distractibility is not constant but fluctuates on a subsecond timescale. Furthermore, slow neural oscillations subserve the behavioural consequences of a hitherto largely unexplained but ever-increasing phenomenon in modern environments - distraction by unexpected sound.
Collapse
Affiliation(s)
- Troby Ka-Yan Lui
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Malte Wöstmann
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
48
|
Abdalaziz M, Redding ZV, Fiebelkorn IC. Rhythmic temporal coordination of neural activity prevents representational conflict during working memory. Curr Biol 2023; 33:1855-1863.e3. [PMID: 37100058 DOI: 10.1016/j.cub.2023.03.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023]
Abstract
Selective attention1 is characterized by alternating states associated with either attentional sampling or attentional shifting, helping to prevent functional conflicts by isolating function-specific neural activity in time.2,3,4,5 We hypothesized that such rhythmic temporal coordination might also help to prevent representational conflicts during working memory.6 Multiple items can be simultaneously held in working memory, and these items can be represented by overlapping neural populations.7,8,9 Traditional theories propose that the short-term storage of to-be-remembered items occurs through persistent neural activity,10,11,12 but when neurons are simultaneously representing multiple items, persistent activity creates a potential for representational conflicts. In comparison, more recent, "activity-silent" theories of working memory propose that synaptic changes also contribute to short-term storage of to-be-remembered items.13,14,15,16 Transient bursts in neural activity,17 rather than persistent activity, could serve to occasionally refresh these synaptic changes. Here, we used EEG and response times to test whether rhythmic temporal coordination helps to isolate neural activity associated with different to-be-remembered items, thereby helping to prevent representational conflicts. Consistent with this hypothesis, we report that the relative strength of different item representations alternates over time as a function of the frequency-specific phase. Although RTs were linked to theta (∼6 Hz) and beta (∼25 Hz) phases during a memory delay, the relative strength of item representations only alternated as a function of the beta phase. The present findings (1) are consistent with rhythmic temporal coordination being a general mechanism for preventing functional or representational conflicts during cognitive processes and (2) inform models describing the role of oscillatory dynamics in organizing working memory.13,18,19,20,21.
Collapse
Affiliation(s)
- Miral Abdalaziz
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Zach V Redding
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
49
|
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer JF, Durstewitz D, Leibold C, Diester I. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 2023; 111:1020-1036. [PMID: 37023708 DOI: 10.1016/j.neuron.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health & Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Christian Leibold
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ilka Diester
- Optophysiology - Optogenetics and Neurophysiology, IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
50
|
Li D, Hu Y, Qi M, Zhao C, Jensen O, Huang J, Song Y. Prioritizing flexible working memory representations through retrospective attentional strengthening. Neuroimage 2023; 269:119902. [PMID: 36708973 DOI: 10.1016/j.neuroimage.2023.119902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Previous work has proposed two potential benefits of retrospective attention on working memory (WM): target strengthening and non-target inhibition. It remains unknown which hypothesis contributes to the improved WM performance, yet the neural mechanisms responsible for this attentional benefit are unclear. Here, we recorded electroencephalography (EEG) signals while 33 participants performed a retrospective-cue WM task. Multivariate pattern classification analysis revealed that only representations of target features were enhanced by valid retrospective attention during retention, supporting the target strengthening hypothesis. Further univariate analysis found that mid-frontal theta inter-trial phase coherence (ITPC) and ERP components were modulated by valid retrospective attention and correlated with individual differences and moment-to-moment fluctuations on behavioral outcomes, suggesting that both trait- and state-level variability in attentional preparatory processes influence goal-directed behavior. Furthermore, task-irrelevant target spatial location could be decoded from EEG signals, indicating that enhanced spatial binding of target representation is vital to high WM precision. Importantly, frontoparietal theta-alpha phase-amplitude coupling was increased by valid retrospective attention and predicted the reduced random guessing rates. This long-range connection supported top-down information flow in the engagement of frontoparietal networks, which might organize attentional states to integrate target features. Altogether, these results provide neurophysiological bases that retrospective attention improves WM precision by enhancing flexible target representation and emphasize the critical role of the frontoparietal attentional network in the control of WM representations.
Collapse
Affiliation(s)
- Dongwei Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Yiqing Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mengdi Qi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chenguang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Jing Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China.
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|