1
|
Sommer V, Seiler J, Sturm A, Köhnen S, Wagner A, Blut C, Rössler W, Goodwin SF, Grünewald B, Beye M. Dedicated developmental programing for group-supporting behaviors in eusocial honeybees. SCIENCE ADVANCES 2024; 10:eadp3953. [PMID: 39485851 PMCID: PMC11529710 DOI: 10.1126/sciadv.adp3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
The evolutionary changes from solitary to eusocial living in vertebrates and invertebrates are associated with the diversification of social interactions and the development of queen and worker castes. Despite strong innate patterns, our understanding of the mechanisms manifesting these sophisticated behaviors is still rudimentary. Here, we show that doublesex (dsx) manifests group-supporting behaviors in the honeybee (Apis mellifera) worker caste. Computer-based individual behavioral tracking of worker bees with biallelic stop mutations in colonies revealed that the dsx gene is required for the rate and duration of group-supporting behavior that scales the relationship between bees and their work. General sensorimotor functions remained unaffected. Unexpectedly, unlike in other insects, the dsx gene is required for the neuronal wiring of the mushroom body in which the gene is spatially restricted expressed. Together, our study establishes dedicated programming for group-supporting behaviors and provides insight into the connection between development in the neuronal circuitry and behaviors regulating the formation of a eusocial society.
Collapse
Affiliation(s)
- Vivien Sommer
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Jana Seiler
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Alina Sturm
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Sven Köhnen
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Anna Wagner
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Christina Blut
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Stephen F. Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Bernd Grünewald
- Honeybee Research Center Oberursel, Polytechnische Gesellschaft, Goethe-University Frankfurt am Main, Karl-von-Frisch-Weg 2, D-61440 Oberursel, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
2
|
Afkhami M. Neurobiology of egg-laying behavior in Drosophila: neural control of the female reproductive system. J Neurogenet 2024; 38:47-61. [PMID: 39250036 DOI: 10.1080/01677063.2024.2396352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Egg-laying is one of the key aspects of female reproductive behavior in insects. Egg-laying has been studied since the dawn of Drosophila melanogaster as a model organism. The female's internal state, hormones, and external factors, such as nutrition, light, and social environment, affect egg-laying output. However, only recently, neurobiological features of egg-laying behavior have been studied in detail. fruitless and doublesex, two key players in the sex determination pathway, have become focal points in identifying neurons of reproductive significance in both central and peripheral nervous systems. The reproductive tract and external terminalia house sensory neurons that carry the sensory information of egg maturation, mating and egg-laying. These sensory signals include the presence of male accessory gland products and mechanical stimuli. The abdominal neuromere houses neurons that receive information from the reproductive tract, including sex peptide abdominal ganglion neurons (SAGs), and send their information to the brain. In the brain, neuronal groups like aDNs and pC1 clusters modulate egg-laying decision-making, and other neurons like oviINs and oviDNs are necessary for egg-laying itself. Lastly, motor neurons involved in egg-laying, which are mostly octopaminergic, reside in the abdominal neuromere and orchestrate the muscle movements required for laying the egg. Egg-laying neuronal control is important in various evolutionary processes like cryptic female choice, and using different Drosophila species can provide intriguing avenues for the future of the field.
Collapse
Affiliation(s)
- Mehrnaz Afkhami
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
3
|
McLamb F, Feng Z, Vu JP, Griffin L, Vasquez MF, Bozinovic G. Lagging Brain Gene Expression Patterns of Drosophila melanogaster Young Adult Males Confound Comparisons Between Sexes. Mol Neurobiol 2024:10.1007/s12035-024-04427-7. [PMID: 39196495 DOI: 10.1007/s12035-024-04427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Many species, including fruit flies (Drosophila melanogaster), are sexually dimorphic. Phenotypic variation in morphology, physiology, and behavior can affect development, reproduction, health, and aging. Therefore, designating sex as a variable and sex-blocking should be considered when designing experiments. The brain regulates phenotypes throughout the lifespan by balancing survival and reproduction, and sex-specific development at each life stage is likely. Changes in morphology and physiology are governed by differential gene expression, a quantifiable molecular marker for age- and sex-specific variations. We assessed the fruit fly brain transcriptome at three adult ages for gene expression signatures of sex, age, and sex-by-age: 6698 genes were differentially expressed between sexes, with the most divergence at 3 days. Between ages, 31.1% of 6084 differentially expressed genes (1890 genes) share similar expression patterns from 3 to 7 days in females, and from 7 to 14 days in males. Most of these genes (90.5%, 1712) were upregulated and enriched for chemical stimulus detection and/or cilium regulation. Our data highlight an important delay in male brain gene regulation compared to females. Because significant delays in expression could confound comparisons between sexes, studies of sexual dimorphism at phenotypically comparable life stages rather than chronological age should be more biologically relevant.
Collapse
Affiliation(s)
- Flannery McLamb
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
| | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA
| | - Lindsey Griffin
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA.
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA.
- Center for Life in Extreme Environments, Portland State University, Portland, OR, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Hérault C, Pihl T, Hudry B. Cellular sex throughout the organism underlies somatic sexual differentiation. Nat Commun 2024; 15:6925. [PMID: 39138201 PMCID: PMC11322332 DOI: 10.1038/s41467-024-51228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Sex chromosomes underlie the development of male or female sex organs across species. While systemic signals derived from sex organs prominently contribute to sex-linked differences, it is unclear whether the intrinsic presence of sex chromosomes in somatic tissues has a specific function. Here, we use genetic tools to show that cellular sex is crucial for sexual differentiation throughout the body in Drosophila melanogaster. We reveal that every somatic cell converts the intrinsic presence of sex chromosomes into the active production of a sex determinant, a female specific serine- and arginine-rich (SR) splicing factor. This discovery dismisses the mosaic model which posits that only a subset of cells has the potential to sexually differentiate. Using cell-specific sex reversals, we show that this prevalence of cellular sex drives sex differences in organ size and body weight and is essential for fecundity. These findings demonstrate that cellular sex drives differentiation programs at an organismal scale and highlight the importance of cellular sex pathways in sex trait evolution.
Collapse
Affiliation(s)
- Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
5
|
Imoto K, Ishikawa Y, Aso Y, Funke J, Tanaka R, Kamikouchi A. Neural-circuit basis of song preference learning in fruit flies. iScience 2024; 27:110266. [PMID: 39040064 PMCID: PMC11260866 DOI: 10.1016/j.isci.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
As observed in human language learning and song learning in birds, the fruit fly Drosophila melanogaster changes its auditory behaviors according to prior sound experiences. This phenomenon, known as song preference learning in flies, requires GABAergic input to pC1 neurons in the brain, with these neurons playing a key role in mating behavior. The neural circuit basis of this GABAergic input, however, is not known. Here, we find that GABAergic neurons expressing the sex-determination gene doublesex are necessary for song preference learning. In the brain, only four doublesex-expressing GABAergic neurons exist per hemibrain, identified as pCd-2 neurons. pCd-2 neurons directly, and in many cases mutually, connect with pC1 neurons, suggesting the existence of reciprocal circuits between them. Moreover, GABAergic and dopaminergic inputs to doublesex-expressing GABAergic neurons are necessary for song preference learning. Together, this study provides a neural circuit model that underlies experience-dependent auditory plasticity at a single-cell resolution.
Collapse
Affiliation(s)
- Keisuke Imoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuki Ishikawa
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
6
|
Clements J, Goina C, Hubbard PM, Kawase T, Olbris DJ, Otsuna H, Svirskas R, Rokicki K. NeuronBridge: an intuitive web application for neuronal morphology search across large data sets. BMC Bioinformatics 2024; 25:114. [PMID: 38491365 PMCID: PMC10943809 DOI: 10.1186/s12859-024-05732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Neuroscience research in Drosophila is benefiting from large-scale connectomics efforts using electron microscopy (EM) to reveal all the neurons in a brain and their connections. To exploit this knowledge base, researchers relate a connectome's structure to neuronal function, often by studying individual neuron cell types. Vast libraries of fly driver lines expressing fluorescent reporter genes in sets of neurons have been created and imaged using confocal light microscopy (LM), enabling the targeting of neurons for experimentation. However, creating a fly line for driving gene expression within a single neuron found in an EM connectome remains a challenge, as it typically requires identifying a pair of driver lines where only the neuron of interest is expressed in both. This task and other emerging scientific workflows require finding similar neurons across large data sets imaged using different modalities. RESULTS Here, we present NeuronBridge, a web application for easily and rapidly finding putative morphological matches between large data sets of neurons imaged using different modalities. We describe the functionality and construction of the NeuronBridge service, including its user-friendly graphical user interface (GUI), extensible data model, serverless cloud architecture, and massively parallel image search engine. CONCLUSIONS NeuronBridge fills a critical gap in the Drosophila research workflow and is used by hundreds of neuroscience researchers around the world. We offer our software code, open APIs, and processed data sets for integration and reuse, and provide the application as a service at http://neuronbridge.janelia.org .
Collapse
Affiliation(s)
- Jody Clements
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Cristian Goina
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Philip M Hubbard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Takashi Kawase
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Robert Svirskas
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Konrad Rokicki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA.
| |
Collapse
|
7
|
Oliveira-Ferreira C, Gaspar M, Vasconcelos ML. Neuronal substrates of egg-laying behaviour at the abdominal ganglion of Drosophila melanogaster. Sci Rep 2023; 13:21941. [PMID: 38081887 PMCID: PMC10713638 DOI: 10.1038/s41598-023-48109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Egg-laying in Drosophila is the product of post-mating physiological and behavioural changes that culminate in a stereotyped sequence of actions. Egg-laying harbours a great potential as a paradigm to uncover how the appropriate motor circuits are organized and activated to generate behaviour. To study this programme, we first describe the different phases of the egg-laying programme and the specific actions associated with each phase. Using a combination of neuronal activation and silencing experiments, we identify neurons (OvAbg) in the abdominal ganglion as key players in egg-laying. To generate and functionally characterise subsets of OvAbg, we used an intersectional approach with neurotransmitter specific lines-VGlut, Cha and Gad1. We show that OvAbg/VGlut neurons promote initiation of egg deposition in a mating status dependent way. OvAbg/Cha neurons are required in exploration and egg deposition phases, though activation leads specifically to egg expulsion. Experiments with the OvAbg/Gad1 neurons show they participate in egg deposition. We further show a functional connection of OvAbg neurons with brain neurons. This study provides insight into the organization of neuronal circuits underlying complex motor behaviour.
Collapse
Affiliation(s)
| | - Miguel Gaspar
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | |
Collapse
|
8
|
Sato K, Yamamoto D. Molecular and cellular origins of behavioral sex differences: a tiny little fly tells a lot. Front Mol Neurosci 2023; 16:1284367. [PMID: 37928065 PMCID: PMC10622783 DOI: 10.3389/fnmol.2023.1284367] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Behavioral sex differences primarily derive from the sexually dimorphic organization of neural circuits that direct the behavior. In Drosophila melanogaster, the sex-determination genes fruitless (fru) and doublesex (dsx) play pivotal roles in producing the sexual dimorphism of neural circuits for behavior. Here we examine three neural groups expressing fru and/or dsx, i.e., the P1 cluster, aSP-f and aSP-g cluster pairs and aDN cluster, in which causal relationships between the dimorphic behavior and dimorphic neural characteristics are best illustrated. aSP-f, aSP-g and aDN clusters represent examples where fru or dsx switches cell-autonomously their neurite structures between the female-type and male-type. Processed sensory inputs impinging on these neurons may result in outputs that encode different valences, which culminate in the execution of distinct behavior according to the sex. In contrast, the P1 cluster is male-specific as its female counterpart undergoes dsx-driven cell death, which lowers the threshold for the induction of male-specific behaviors. We propose that the products of fru and dsx genes, as terminal selectors in sexually dimorphic neuronal wiring, induce and maintain the sex-typical chromatin state at postembryonic stages, orchestrating the transcription of effector genes that shape single neuron structures and govern cell survival and death.
Collapse
Affiliation(s)
- Kosei Sato
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Daisuke Yamamoto
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
9
|
Roemschied FA, Pacheco DA, Aragon MJ, Ireland EC, Li X, Thieringer K, Pang R, Murthy M. Flexible circuit mechanisms for context-dependent song sequencing. Nature 2023; 622:794-801. [PMID: 37821705 PMCID: PMC10600009 DOI: 10.1038/s41586-023-06632-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Sequenced behaviours, including locomotion, reaching and vocalization, are patterned differently in different contexts, enabling animals to adjust to their environments. How contextual information shapes neural activity to flexibly alter the patterning of actions is not fully understood. Previous work has indicated that this could be achieved via parallel motor circuits, with differing sensitivities to context1,2. Here we demonstrate that a single pathway operates in two regimes dependent on recent sensory history. We leverage the Drosophila song production system3 to investigate the role of several neuron types4-7 in song patterning near versus far from the female fly. Male flies sing 'simple' trains of only one mode far from the female fly but complex song sequences comprising alternations between modes when near her. We find that ventral nerve cord (VNC) circuits are shaped by mutual inhibition and rebound excitability8 between nodes driving the two song modes. Brief sensory input to a direct brain-to-VNC excitatory pathway drives simple song far from the female, whereas prolonged input enables complex song production via simultaneous recruitment of functional disinhibition of VNC circuitry. Thus, female proximity unlocks motor circuit dynamics in the correct context. We construct a compact circuit model to demonstrate that the identified mechanisms suffice to replicate natural song dynamics. These results highlight how canonical circuit motifs8,9 can be combined to enable circuit flexibility required for dynamic communication.
Collapse
Affiliation(s)
- Frederic A Roemschied
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- European Neuroscience Institute, Göttingen, Germany
| | - Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Harvard Medical School, Boston, MA, USA
| | - Max J Aragon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Elise C Ireland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Xinping Li
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kyle Thieringer
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Rich Pang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
10
|
Sizemore TR, Jonaitis J, Dacks AM. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat Commun 2023; 14:5280. [PMID: 37644052 PMCID: PMC10465596 DOI: 10.1038/s41467-023-41012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Sensory systems are dynamically adjusted according to the animal's ongoing needs by neuromodulators, such as neuropeptides. Neuropeptides are often widely-distributed throughout sensory networks, but it is unclear whether such neuropeptides uniformly modulate network activity. Here, we leverage the Drosophila antennal lobe (AL) to resolve whether myoinhibitory peptide (MIP) uniformly modulates AL processing. Despite being uniformly distributed across the AL, MIP decreases olfactory input to some glomeruli, while increasing olfactory input to other glomeruli. We reveal that a heterogeneous ensemble of local interneurons (LNs) are the sole source of AL MIP, and show that differential expression of the inhibitory MIP receptor across glomeruli allows MIP to act on distinct intraglomerular substrates. Our findings demonstrate how even a seemingly simple case of modulation can have complex consequences on network processing by acting non-uniformly within different components of the overall network.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale Science Building, Yale University, New Haven, CT, 06520-8103, USA.
| | - Julius Jonaitis
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew M Dacks
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
11
|
Álvarez-Ocaña R, Shahandeh MP, Ray V, Auer TO, Gompel N, Benton R. Odor-regulated oviposition behavior in an ecological specialist. Nat Commun 2023; 14:3041. [PMID: 37236992 DOI: 10.1038/s41467-023-38722-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Colonization of a novel ecological niche can require, or be driven by, evolution of an animal's behaviors promoting their reproductive success. We investigated the evolution and sensory basis of oviposition in Drosophila sechellia, a close relative of Drosophila melanogaster that exhibits extreme specialism for Morinda citrifolia noni fruit. D. sechellia produces fewer eggs than other drosophilids and lays these almost exclusively on noni substrates. We show that visual, textural and social cues do not explain this species-specific preference. By contrast, we find that loss of olfactory input in D. sechellia, but not D. melanogaster, essentially abolishes egg-laying, suggesting that olfaction gates gustatory-driven noni preference. Noni odors are detected by redundant olfactory pathways, but we discover a role for hexanoic acid and the cognate Ionotropic receptor 75b (Ir75b) in odor-evoked oviposition. Through receptor exchange in D. melanogaster, we provide evidence for a causal contribution of odor-tuning changes in Ir75b to the evolution of D. sechellia's oviposition behavior.
Collapse
Affiliation(s)
- Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Michael P Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Vijayaditya Ray
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Nicolas Gompel
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
12
|
Laturney M, Sterne GR, Scott K. Mating activates neuroendocrine pathways signaling hunger in Drosophila females. eLife 2023; 12:e85117. [PMID: 37184218 PMCID: PMC10229122 DOI: 10.7554/elife.85117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/13/2023] [Indexed: 05/16/2023] Open
Abstract
Mated females reallocate resources to offspring production, causing changes to nutritional requirements and challenges to energy homeostasis. Although observed across species, the neural and endocrine mechanisms that regulate the nutritional needs of mated females are not well understood. Here, we find that mated Drosophila melanogaster females increase sugar intake, which is regulated by the activity of sexually dimorphic insulin receptor (Lgr3) neurons. In virgins, Lgr3+ cells have reduced activity as they receive inhibitory input from active, female-specific pCd-2 cells, restricting sugar intake. During copulation, males deposit sex peptide into the female reproductive tract, which silences a three-tier mating status circuit and initiates the female postmating response. We show that pCd-2 neurons also become silenced after mating due to the direct synaptic input from the mating status circuit. Thus, in mated females pCd-2 inhibition is attenuated, activating downstream Lgr3+ neurons and promoting sugar intake. Together, this circuit transforms the mated signal into a long-term hunger signal. Our results demonstrate that the mating circuit alters nutrient sensing centers to increase feeding in mated females, providing a mechanism to increase intake in anticipation of the energetic costs associated with reproduction.
Collapse
Affiliation(s)
| | | | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
13
|
Sorkaç A, Moșneanu RA, Crown AM, Savaş D, Okoro AM, Memiş E, Talay M, Barnea G. retro-Tango enables versatile retrograde circuit tracing in Drosophila. eLife 2023; 12:e85041. [PMID: 37166114 PMCID: PMC10208638 DOI: 10.7554/elife.85041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/11/2023] [Indexed: 05/12/2023] Open
Abstract
Transsynaptic tracing methods are crucial tools in studying neural circuits. Although a couple of anterograde tracing methods and a targeted retrograde tool have been developed in Drosophila melanogaster, there is still need for an unbiased, user-friendly, and flexible retrograde tracing system. Here, we describe retro-Tango, a method for transsynaptic, retrograde circuit tracing and manipulation in Drosophila. In this genetically encoded system, a ligand-receptor interaction at the synapse triggers an intracellular signaling cascade that results in reporter gene expression in presynaptic neurons. Importantly, panneuronal expression of the elements of the cascade renders this method versatile, enabling its use not only to test hypotheses but also to generate them. We validate retro-Tango in various circuits and benchmark it by comparing our findings with the electron microscopy reconstruction of the Drosophila hemibrain. Our experiments establish retro-Tango as a key method for circuit tracing in neuroscience research.
Collapse
Affiliation(s)
- Altar Sorkaç
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Rareș A Moșneanu
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Anthony M Crown
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Doruk Savaş
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Angel M Okoro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Ezgi Memiş
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Mustafa Talay
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Gilad Barnea
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| |
Collapse
|
14
|
Shen P, Wan X, Wu F, Shi K, Li J, Gao H, Zhao L, Zhou C. Neural circuit mechanisms linking courtship and reward in Drosophila males. Curr Biol 2023; 33:2034-2050.e8. [PMID: 37160122 DOI: 10.1016/j.cub.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Courtship has evolved to achieve reproductive success in animal species. However, whether courtship itself has a positive value remains unclear. In the present work, we report that courtship is innately rewarding and can induce the expression of appetitive short-term memory (STM) and long-term memory (LTM) in Drosophila melanogaster males. Activation of male-specific P1 neurons is sufficient to mimic courtship-induced preference and memory performance. Surprisingly, P1 neurons functionally connect to a large proportion of dopaminergic neurons (DANs) in the protocerebral anterior medial (PAM) cluster. The acquisition of STM and LTM depends on two distinct subsets of PAM DANs that convey the courtship-reward signal to the restricted regions of the mushroom body (MB) γ and α/β lobes through two dopamine receptors, D1-like Dop1R1 and D2-like Dop2R. Furthermore, the retrieval of STM stored in the MB α'/β' lobes and LTM stored in the MB α/β lobe relies on two distinct MB output neurons. Finally, LTM consolidation requires two subsets of PAM DANs projecting to the MB α/β lobe and corresponding MB output neurons. Taken together, our findings demonstrate that courtship is a potent rewarding stimulus and reveal the underlying neural circuit mechanisms linking courtship and reward in Drosophila males.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolu Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hongjiang Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
15
|
Verschut TA, Ng R, Doubovetzky NP, Le Calvez G, Sneep JL, Minnaard AJ, Su CY, Carlsson MA, Wertheim B, Billeter JC. Aggregation pheromones have a non-linear effect on oviposition behavior in Drosophila melanogaster. Nat Commun 2023; 14:1544. [PMID: 36941252 PMCID: PMC10027874 DOI: 10.1038/s41467-023-37046-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Female fruit flies (Drosophila melanogaster) oviposit at communal sites where the larvae may cooperate or compete for resources depending on group size. This offers a model system to determine how females assess quantitative social information. We show that the concentration of pheromones found on a substrate increases linearly with the number of adult flies that have visited that site. Females prefer oviposition sites with pheromone concentrations corresponding to an intermediate number of previous visitors, whereas sites with low or high concentrations are unattractive. This dose-dependent decision is based on a blend of 11-cis-Vaccenyl Acetate (cVA) indicating the number of previous visitors and heptanal (a novel pheromone deriving from the oxidation of 7-Tricosene), which acts as a dose-independent co-factor. This response is mediated by detection of cVA by odorant receptor neurons Or67d and Or65a, and at least five different odorant receptor neurons for heptanal. Our results identify a mechanism allowing individuals to transform a linear increase of pheromones into a non-linear behavioral response.
Collapse
Affiliation(s)
- Thomas A Verschut
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Renny Ng
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicolas P Doubovetzky
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Guillaume Le Calvez
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan L Sneep
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mikael A Carlsson
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
16
|
Meissner GW, Nern A, Dorman Z, DePasquale GM, Forster K, Gibney T, Hausenfluck JH, He Y, Iyer NA, Jeter J, Johnson L, Johnston RM, Lee K, Melton B, Yarbrough B, Zugates CT, Clements J, Goina C, Otsuna H, Rokicki K, Svirskas RR, Aso Y, Card GM, Dickson BJ, Ehrhardt E, Goldammer J, Ito M, Kainmueller D, Korff W, Mais L, Minegishi R, Namiki S, Rubin GM, Sterne GR, Wolff T, Malkesman O. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. eLife 2023; 12:e80660. [PMID: 36820523 PMCID: PMC10030108 DOI: 10.7554/elife.80660] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Precise, repeatable genetic access to specific neurons via GAL4/UAS and related methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented using light microscopy of full GAL4 expression patterns, which generally lack the single-cell resolution required for reliable cell type identification. Here, we use stochastic GAL4 labeling with the MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are releasing aligned images of 74,000 such adult central nervous systems. An anticipated use of this resource is to bridge the gap between neurons identified by electron or light microscopy. Identifying individual neurons that make up each GAL4 expression pattern improves the prediction of split-GAL4 combinations targeting particular neurons. To this end, we have made the images searchable on the NeuronBridge website. We demonstrate the potential of NeuronBridge to rapidly and effectively identify neuron matches based on morphology across imaging modalities and datasets.
Collapse
Affiliation(s)
- Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Zachary Dorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gina M DePasquale
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kaitlyn Forster
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Theresa Gibney
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Yisheng He
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nirmala A Iyer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Jeter
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lauren Johnson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rebecca M Johnston
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelley Lee
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brian Melton
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brianna Yarbrough
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Cristian Goina
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Konrad Rokicki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Robert R Svirskas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jens Goldammer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dagmar Kainmueller
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lisa Mais
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gabriella R Sterne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Oz Malkesman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | |
Collapse
|
17
|
Galili DS, Jefferis GS, Costa M. Connectomics and the neural basis of behaviour. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100968. [PMID: 36113710 PMCID: PMC7614087 DOI: 10.1016/j.cois.2022.100968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Methods to acquire and process synaptic-resolution electron-microscopy datasets have progressed very rapidly, allowing production and annotation of larger, more complete connectomes. More accurate neuronal matching techniques are enriching cell type data with gene expression, neuron activity, behaviour and developmental information, providing ways to test hypotheses of circuit function. In a variety of behaviours such as learned and innate olfaction, navigation and sexual behaviour, connectomics has already revealed interconnected modules with a hierarchical structure, recurrence and integration of sensory streams. Comparing individual connectomes to determine which circuit features are robust and which are variable is one key research area; new work in comparative connectomics across development, experience, sex and species will establish strong links between neuronal connectivity and brain function.
Collapse
Affiliation(s)
- Dana S Galili
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gregory Sxe Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
18
|
Althaus V, Jahn S, Massah A, Stengl M, Homberg U. 3D-atlas of the brain of the cockroach Rhyparobia maderae. J Comp Neurol 2022; 530:3126-3156. [PMID: 36036660 DOI: 10.1002/cne.25396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/07/2022]
Abstract
The Madeira cockroach Rhyparobia maderae is a nocturnal insect and a prominent model organism for the study of circadian rhythms. Its master circadian clock, controlling circadian locomotor activity and sleep-wake cycles, is located in the accessory medulla of the optic lobe. For a better understanding of brain regions controlled by the circadian clock and brain organization of this insect in general, we created a three-dimensional (3D) reconstruction of all neuropils of the cerebral ganglia based on anti-synapsin and anti-γ-aminobutyric acid immunolabeling of whole mount brains. Forty-nine major neuropils were identified and three-dimensionally reconstructed. Single-cell dye fills complement the data and provide evidence for distinct subdivisions of certain brain areas. Most neuropils defined in the fruit fly Drosophila melanogaster could be distinguished in the cockroach as well. However, some neuropils identified in the fruit fly do not exist as distinct entities in the cockroach while others are lacking in the fruit fly. In addition to neuropils, major fiber systems, tracts, and commissures were reconstructed and served as important landmarks separating brain areas. Being a nocturnal insect, R. maderae is an important new species to the growing collection of 3D insect brain atlases and only the second hemimetabolous insect, for which a detailed 3D brain atlas is available. This atlas will be highly valuable for an evolutionary comparison of insect brain organization and will greatly facilitate addressing brain areas that are supervised by the circadian clock.
Collapse
Affiliation(s)
- Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Stefanie Jahn
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Azar Massah
- Faculty of Mathematics and Natural Sciences, Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Monika Stengl
- Faculty of Mathematics and Natural Sciences, Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| |
Collapse
|
19
|
Keesey IW. Sensory neuroecology and multimodal evolution across the genus Drosophila. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.932344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neural basis and genetic mechanisms for sensory evolution are increasingly being explored in depth across many closely related members of the Drosophila genus. This has, in part, been achieved due to the immense efforts toward adapting gene-editing technologies for additional, non-model species. Studies targeting both peripheral sensory variations, as well as interspecies divergence in coding or neural connectivity, have generated numerous, tangible examples of how and where the evolution of sensory-driven animal behavior has occurred. Here, we review and discuss studies that each aim to identify the neurobiological and genetic components of sensory system evolution to provide a comparative overview of the types of functional variations observed across both perceptual input and behavioral output. In addition, we examined the roles neuroecology and neuroevolution play in speciation events, such as courtship and intraspecies communication, as well as those aspects related to behavioral divergence in host navigation or egg-laying preferences. Through the investigation of comparative, large-scale trends and correlations across diverse, yet closely related species within this highly ecologically variable genus of flies, we can begin to describe the underlying pressures, mechanisms, and constraints that have guided sensory and nervous system evolution within the natural environments of these organisms.
Collapse
|
20
|
Casado-Navarro R, Serrano-Saiz E. DMRT Transcription Factors in the Control of Nervous System Sexual Differentiation. Front Neuroanat 2022; 16:937596. [PMID: 35958734 PMCID: PMC9361473 DOI: 10.3389/fnana.2022.937596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual phenotypic differences in the nervous system are one of the most prevalent features across the animal kingdom. The molecular mechanisms responsible for sexual dimorphism throughout metazoan nervous systems are extremely diverse, ranging from intrinsic cell autonomous mechanisms to gonad-dependent endocrine control of sexual traits, or even extrinsic environmental cues. In recent years, the DMRT ancient family of transcription factors has emerged as being central in the development of sex-specific differentiation in all animals in which they have been studied. In this review, we provide an overview of the function of Dmrt genes in nervous system sexual regulation from an evolutionary perspective.
Collapse
|
21
|
Cellular diversity and gene expression profiles in the male and female brain of Aedes aegypti. BMC Genomics 2022; 23:119. [PMID: 35144549 PMCID: PMC8832747 DOI: 10.1186/s12864-022-08327-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/18/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aedes aegypti is a medically-important mosquito vector that transmits arboviruses including yellow fever, dengue, chikungunya, and Zika viruses to humans. The mosquito exhibits typical sexually dimorphic behaviors such as courtship, mating, host seeking, bloodfeeding, and oviposition. All these behaviors are mainly regulated by the brain; however, little is known about the function and neuron composition of the mosquito brain. In this study, we generated an initial atlas of the adult male and female brain of Ae. aegypti using 10xGenomics based single-nucleus RNA sequencing. RESULTS We identified 35 brain cell clusters in male and female brains, and 15 of those clusters were assigned to known cell types. Identified cell types include glia (astrocytes), Kenyon cells, (ventral) projection neurons, monoaminergic neurons, medulla neurons, and proximal medulla neurons. In addition, the cell type compositions of male and female brains were compared to each other showing that they were quantitatively distinct, as 17 out of 35 cell clusters varied significantly in their cell type proportions. Overall, the transcriptomes from each cell cluster looked very similar between the male and female brain as only up to 25 genes were differentially expressed in these clusters. The sex determination factor Nix was highly expressed in neurons and glia of the male brain, whereas doublesex (dsx) was expressed in all neuron and glia cell clusters of the male and female brain. CONCLUSIONS An initial cell atlas of the brain of the mosquito Ae. aegypti has been generated showing that the cellular compositions of the male and female brains of this hematophagous insect differ significantly from each other. Although some of the rare brain cell types have not been detected in our single biological replicate, this study provides an important basis for the further development of a complete brain cell atlas as well as a better understanding of the neurobiology of the brains of male and female mosquitoes and their sexually dimorphic behaviors.
Collapse
|
22
|
Abstract
In this review, we highlight sources of alcohols in nature, as well as the behavioral and ecological roles that these fermentation cues play in the short lifespan of Drosophila melanogaster. With a focus on neuroethology, we describe the olfactory detection of alcohol as well as ensuing neural signaling within the brain of the fly. We proceed to explain the plethora of behaviors related to alcohol, including attraction, feeding, and oviposition, as well as general effects on aggression and courtship. All of these behaviors are shaped by physiological state and social contexts. In a comparative perspective, we also discuss inter- and intraspecies differences related to alcohol tolerance and metabolism. Lastly, we provide corollaries with other dipteran and coleopteran insect species that also have olfactory systems attuned to ethanol detection and describe ecological and evolutionary directions for further studies of the natural history of alcohol and the fly.
Collapse
Affiliation(s)
- Ian W Keesey
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA;
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|
23
|
Wat LW, Chowdhury ZS, Millington JW, Biswas P, Rideout EJ. Sex determination gene transformer regulates the male-female difference in Drosophila fat storage via the adipokinetic hormone pathway. eLife 2021; 10:e72350. [PMID: 34672260 PMCID: PMC8594944 DOI: 10.7554/elife.72350] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Sex differences in whole-body fat storage exist in many species. For example, Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference in fat storage remain incompletely understood. Here, we identify a key role for sex determination gene transformer (tra) in regulating the male-female difference in fat storage. Normally, a functional Tra protein is present only in females, where it promotes female sexual development. We show that loss of Tra in females reduced whole-body fat storage, whereas gain of Tra in males augmented fat storage. Tra's role in promoting fat storage was largely due to its function in neurons, specifically the Adipokinetic hormone (Akh)-producing cells (APCs). Our analysis of Akh pathway regulation revealed a male bias in APC activity and Akh pathway function, where this sex-biased regulation influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Importantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh pathway rescued Tra-dependent effects on fat storage. This identifies sex-specific regulation of Akh as one mechanism underlying the male-female difference in whole-body triglyceride levels, and provides important insight into the conserved mechanisms underlying sexual dimorphism in whole-body fat storage.
Collapse
Affiliation(s)
- Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Zahid S Chowdhury
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Jason W Millington
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British ColumbiaVancouverCanada
| |
Collapse
|
24
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
25
|
Sexual arousal gates visual processing during Drosophila courtship. Nature 2021; 595:549-553. [PMID: 34234348 DOI: 10.1038/s41586-021-03714-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Long-lasting internal arousal states motivate and pattern ongoing behaviour, enabling the temporary emergence of innate behavioural programs that serve the needs of an animal, such as fighting, feeding, and mating. However, how internal states shape sensory processing or behaviour remains unclear. In Drosophila, male flies perform a lengthy and elaborate courtship ritual that is triggered by the activation of sexually dimorphic P1 neurons1-5, during which they faithfully follow and sing to a female6,7. Here, by recording from males as they court a virtual 'female', we gain insight into how the salience of visual cues is transformed by a male's internal arousal state to give rise to persistent courtship pursuit. The gain of LC10a visual projection neurons is selectively increased during courtship, enhancing their sensitivity to moving targets. A concise network model indicates that visual signalling through the LC10a circuit, once amplified by P1-mediated arousal, almost fully specifies a male's tracking of a female. Furthermore, P1 neuron activity correlates with ongoing fluctuations in the intensity of a male's pursuit to continuously tune the gain of the LC10a pathway. Together, these results reveal how a male's internal state can dynamically modulate the propagation of visual signals through a high-fidelity visuomotor circuit to guide his moment-to-moment performance of courtship.
Collapse
|
26
|
Kelley DB, Bayer EA. Sexual dimorphism: Neural circuit switches in the Drosophila brain. Curr Biol 2021; 31:R297-R298. [PMID: 33756143 DOI: 10.1016/j.cub.2021.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sex-determining genes Double Sex and Fruitless are expressed in sexually differentiated neurons of the Drosophila brain. A tiny cluster of neurons, aDN cells, serves as a key circuit switch with sexually dimorphic properties: those of female flies respond to visual signals in males, while those of male flies respond to smell and humidity in females, supporting effective courtship and communal egg laying behaviors, respectively.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences, Columbia University, MC2432, 914 Fairchild, New York, NY 10025, USA.
| | - Emily A Bayer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| |
Collapse
|