1
|
Heath JA, Cooper N, Upchurch P, Mannion PD. Accounting for sampling heterogeneity suggests a low paleolatitude origin for dinosaurs. Curr Biol 2025:S0960-9822(24)01722-6. [PMID: 39855204 DOI: 10.1016/j.cub.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025]
Abstract
Dinosaurs dominated Mesozoic terrestrial ecosystems for ∼160 million years, but their biogeographic origin remains poorly understood. The earliest unequivocal dinosaur fossils appear in the Carnian (∼230 Ma) of southern South America and Africa, leading most authors to propose southwestern Gondwana as the likely center of origin. However, the high taxonomic and morphological diversity of these earliest assemblages suggests a more ancient evolutionary history that is currently unsampled. Phylogenetic uncertainty at the base of Dinosauria, combined with the subsequent appearance of dinosaurs throughout Laurasia in their early evolutionary history, further complicates this picture. Here, we estimate the distribution of early dinosaurs and their archosaurian relatives under a phylogenetic maximum likelihood framework, testing alternative topological arrangements and incorporating potential abiotic barriers to dispersal into our biogeographic models. For the first time, we include spatiotemporal sampling heterogeneity in these models, which frequently supports a low-latitude Gondwanan origin for dinosaurs. These results are best supported when silesaurids are constrained as early-diverging ornithischians, which is likely because this topology accounts for the otherwise substantial ornithischian ghost lineage, explaining the group's absence from the fossil record prior to the Early Jurassic. Our results suggest that the archosaur radiation also took place within low-latitude Gondwana following the end-Permian extinction before lineages dispersed across Pangaea into ecologically and climatically distinct provinces during the Late Triassic. Mesozoic terrestrial vertebrates are under-sampled at low paleolatitudes, and our findings suggest that heterogeneous sampling has hitherto obscured the true paleobiogeographic origin of dinosaurs and their kin.
Collapse
Affiliation(s)
- Joel A Heath
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK; Science Group, Natural History Museum London, Cromwell Road, London SW7 5BD, UK.
| | - Natalie Cooper
- Science Group, Natural History Museum London, Cromwell Road, London SW7 5BD, UK
| | - Paul Upchurch
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Philip D Mannion
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
2
|
Mannion PD. The spatiotemporal distribution of Mesozoic dinosaur diversity. Biol Lett 2024; 20:20240443. [PMID: 39660360 PMCID: PMC11632528 DOI: 10.1098/rsbl.2024.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Much of our view on Mesozoic dinosaur diversity is obscured by biases in the fossil record. In particular, spatiotemporal sampling heterogeneity affects identification of the timing and geographical location of radiations, the recognition of the latitudinal diversity gradient, as well as interpretation of purported extinctions, faunal turnovers and their drivers, including the Early Jurassic Jenkyns Event and across the Jurassic/Cretaceous boundary. The current distribution of sampling means it is impossible to robustly determine whether these 'events' were globally synchronous and geologically instantaneous or spatiotemporally staggered. Accounting for sampling heterogeneity is also paramount to reconciling notable differences in results based on sampling-standardized dinosaur species richness versus reconstructions of diversification rates, particularly with regards to the lead-up to the Cretaceous/Paleogene mass extinction. Incorporation of a greater proportion of stratigraphically well-resolved dinosaurs into analyses is also imperative and must include the substantial Mesozoic radiation of birds. Given the relative rarity of temporally successive, well-sampled spatial windows, it remains possible that dinosaur species richness and diversification rate showed little change after the clade's initial radiation until the Cretaceous/Paleogene boundary. However, better understanding of underlying sampling, combined with a holistic approach to reconstructing dinosaur diversity and diversification, is an important step in testing this hypothesis.
Collapse
Affiliation(s)
- Philip D. Mannion
- Department of Earth Sciences, University College London, LondonWC1E 6BT, UK
| |
Collapse
|
3
|
Chiarenza AA. The macroecology of Mesozoic dinosaurs. Biol Lett 2024; 20:20240392. [PMID: 39535111 PMCID: PMC11558851 DOI: 10.1098/rsbl.2024.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Dinosaurs thrived for over 160 million years in Mesozoic ecosystems, displaying diverse ecological and evolutionary adaptations. Their ecology was shaped by large-scale climatic and biogeographic changes, calling for a 'deep-time' macroecological investigation. These factors include temperature fluctuations and the break up of Pangaea, influencing species richness, ecological diversity and biogeographic history. Recent improvements in the dinosaur fossil record have enabled large-scale studies of their responses to tectonic, geographic and climatic shifts. Trends in species diversity, body size and reproductive traits can now be analysed using quantitative approaches like phylogenetic comparative methods, machine learning and Bayesian inference. These patterns sometimes align with, but also deviate from, first-order macroecological rules (e.g. species-area relationship, latitudinal biodiversity gradient, Bergmann's rule). Accurate reconstructions of palaeobiodiversity and niche partitioning require ongoing taxonomic revisions and detailed anatomical descriptions. Interdisciplinary research combining sedimentology, geochemistry and palaeoclimatology helps uncover the environmental conditions driving dinosaur adaptations. Fieldwork in under-sampled regions, particularly at latitudinal extremes, is crucial for understanding the spatial heterogeneity of dinosaur ecosystems across the planet. Open science initiatives and online databases play a key role in advancing this field, enriching our understanding of deep-time ecological processes, and offering new insights into dinosaur macroecology and its broader implications.
Collapse
|
4
|
Upchurch P, Chiarenza AA. A brief review of non-avian dinosaur biogeography: state-of-the-art and prospectus. Biol Lett 2024; 20:20240429. [PMID: 39471833 PMCID: PMC11529633 DOI: 10.1098/rsbl.2024.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 11/01/2024] Open
Abstract
Dinosaurs potentially originated in the mid-palaeolatitudes of Gondwana 245-235 million years ago (Ma) and may have been restricted to cooler, humid areas by low-latitude arid zones until climatic amelioration made northern dispersals feasible ca 215 Ma. However, this scenario is challenged by new Carnian Laurasian fossils and evidence that even the earliest dinosaurs had adaptations for arid conditions. After becoming globally distributed in the Early-Middle Jurassic (200-160 Ma), dinosaurs experienced vicariance driven by Pangaean fragmentation. Regional extinctions and trans-oceanic dispersals also played a role, and the formation of ephemeral land connections meant that older vicariance patterns were repeatedly overprinted by younger ones, creating a reticulate biogeographic history. Palaeoclimates shaped dispersal barriers and corridors, including filters that had differential effects on different types of dinosaurs. Dinosaurian biogeographic research faces many challenges, not the least of which is the patchiness of the fossil record. However, new fossils, extensive databasing and improved analytical methods help distinguish signal from noise and generate fresh perspectives. In the future, developing techniques for quantifying and ameliorating sampling biases and modelling the dispersal capacities of dinosaurs are likely to be two of the key components in our modern research programme.
Collapse
Affiliation(s)
- Paul Upchurch
- Department of Earth Sciences, University College London, Gower Street, LondonWC1E 6BT, UK
| | | |
Collapse
|
5
|
Chiarenza AA, Cantalapiedra JL, Jones LA, Gamboa S, Galván S, Farnsworth AJ, Valdes PJ, Sotelo G, Varela S. Early Jurassic origin of avian endothermy and thermophysiological diversity in dinosaurs. Curr Biol 2024; 34:2517-2527.e4. [PMID: 38754424 DOI: 10.1016/j.cub.2024.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
A fundamental question in dinosaur evolution is how they adapted to long-term climatic shifts during the Mesozoic and when they developed environmentally independent, avian-style acclimatization, becoming endothermic.1,2 The ability of warm-blooded dinosaurs to flourish in harsher environments, including cold, high-latitude regions,3,4 raises intriguing questions about the origins of key innovations shared with modern birds,5,6 indicating that the development of homeothermy (keeping constant body temperature) and endothermy (generating body heat) played a crucial role in their ecological diversification.7 Despite substantial evidence across scientific disciplines (anatomy,8 reproduction,9 energetics,10 biomechanics,10 osteohistology,11 palaeobiogeography,12 geochemistry,13,14 and soft tissues15,16,17), a consensus on dinosaur thermophysiology remains elusive.1,12,15,17,18,19 Differential thermophysiological strategies among terrestrial tetrapods allow endotherms (birds and mammals) to expand their latitudinal range (from the tropics to polar regions), owing to their reduced reliance on environmental temperature.20 By contrast, most reptilian lineages (squamates, turtles, and crocodilians) and amphibians are predominantly constrained by temperature in regions closer to the tropics.21 Determining when this macroecological pattern emerged in the avian lineage relies heavily on identifying the origin of these key physiological traits. Combining fossils with macroevolutionary and palaeoclimatic models, we unveil distinct evolutionary pathways in the main dinosaur lineages: ornithischians and theropods diversified across broader climatic landscapes, trending toward cooler niches. An Early Jurassic shift to colder climates in Theropoda suggests an early adoption of endothermy. Conversely, sauropodomorphs exhibited prolonged climatic conservatism associated with higher thermal conditions, emphasizing temperature, rather than plant productivity, as the primary driver of this pattern, suggesting poikilothermy with a stronger dependence on higher temperatures in sauropods.
Collapse
Affiliation(s)
- Alfio Alessandro Chiarenza
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; Department of Earth Sciences, University College London, Gower Place, London WC1E 6BS, UK.
| | - Juan L Cantalapiedra
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain; GloCEE Global Change Ecology and Evolution Research Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28801 Alcalá de Henares, Spain; Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invdralidenstraße 43, 10115 Berlin, Germany
| | - Lewis A Jones
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Sara Gamboa
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; Universidad Complutense de Madrid, Av. Séneca 2, 28040 Madrid, Spain
| | - Sofía Galván
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Alexander J Farnsworth
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Paul J Valdes
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Graciela Sotelo
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Sara Varela
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
6
|
Wilson LN, Gardner JD, Wilson JP, Farnsworth A, Perry ZR, Druckenmiller PS, Erickson GM, Organ CL. Global latitudinal gradients and the evolution of body size in dinosaurs and mammals. Nat Commun 2024; 15:2864. [PMID: 38580657 PMCID: PMC10997647 DOI: 10.1038/s41467-024-46843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
Global climate patterns fundamentally shape the distribution of species and ecosystems. For example, Bergmann's rule predicts that homeothermic animals, including birds and mammals, inhabiting cooler climates are generally larger than close relatives from warmer climates. The modern world, however, lacks the comparative data needed to evaluate such macroecological rules rigorously. Here, we test for Bergmann's rule in Mesozoic dinosaurs and mammaliaforms that radiated within relatively temperate global climate regimes. We develop a phylogenetic model that accounts for biases in the fossil record and allows for variable evolutionary dispersal rates. Our analysis also includes new fossil data from the extreme high-latitude Late Cretaceous Arctic Prince Creek Formation. We find no evidence for Bergmann's rule in Mesozoic dinosaurs or mammaliaforms, the ancestors of extant homeothermic birds and mammals. When our model is applied to thousands of extant dinosaur (bird) and mammal species, we find that body size evolution remains independent of latitude. A modest temperature effect is found in extant, but not in Mesozoic, birds, suggesting that body size evolution in modern birds was influenced by Bergmann's rule during Cenozoic climatic change. Our study provides a general approach for studying macroecological rules, highlighting the fossil record's power to address longstanding ecological principles.
Collapse
Affiliation(s)
- Lauren N Wilson
- University of Alaska Museum, 1962 Yukon Drive, Fairbanks, AK, 99775, USA.
- Department of Geosciences, University of Alaska, Fairbanks, AK, 99775, USA.
| | - Jacob D Gardner
- School of Biological Sciences, University of Reading, Reading, RG6 6EX, UK.
| | - John P Wilson
- Department of Earth Sciences, Montana State University, Bozeman, MT, 59715, USA
| | - Alex Farnsworth
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1RL, UK
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zackary R Perry
- University of Alaska Museum, 1962 Yukon Drive, Fairbanks, AK, 99775, USA
- Department of Geosciences, University of Alaska, Fairbanks, AK, 99775, USA
| | - Patrick S Druckenmiller
- University of Alaska Museum, 1962 Yukon Drive, Fairbanks, AK, 99775, USA
- Department of Geosciences, University of Alaska, Fairbanks, AK, 99775, USA
| | - Gregory M Erickson
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Chris L Organ
- School of Biological Sciences, University of Reading, Reading, RG6 6EX, UK.
- Department of Earth Sciences, Montana State University, Bozeman, MT, 59715, USA.
| |
Collapse
|
7
|
Button DJ, Zanno LE. Neuroanatomy of the late Cretaceous Thescelosaurus neglectus (Neornithischia: Thescelosauridae) reveals novel ecological specialisations within Dinosauria. Sci Rep 2023; 13:19224. [PMID: 37932280 PMCID: PMC10628235 DOI: 10.1038/s41598-023-45658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023] Open
Abstract
Ornithischian dinosaurs exhibited a diversity of ecologies, locomotory modes, and social structures, making them an ideal clade in which to study the evolution of neuroanatomy and behaviour. Here, we present a 3D digital reconstruction of the endocranial spaces of the latest Cretaceous neornithischian Thescelosaurus neglectus, in order to interpret the neuroanatomy and paleobiology of one of the last surviving non-avian dinosaurs. Results demonstrate that the brain of Thescelosaurus was relatively small compared to most other neornithischians, instead suggesting cognitive capabilities within the range of extant reptiles. Other traits include a narrow hearing range, with limited ability to distinguish high frequencies, paired with unusually well-developed olfactory lobes and anterior semicircular canals, indicating acute olfaction and vestibular sensitivity. This character combination, in conjunction with features of the postcranial anatomy, is consistent with specializations for burrowing behaviours in the clade, as evidenced by trace and skeletal fossil evidence in earlier-diverging thescelosaurids, although whether they reflect ecological adaptations or phylogenetic inheritance in T. neglectus itself is unclear. Nonetheless, our results provide the first evidence of neurological specializations to burrowing identified within Ornithischia, and non-avian dinosaurs more generally, expanding the range of ecological adaptations recognized within this major clade.
Collapse
Affiliation(s)
- David J Button
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Farlow JO, Coroian D, Currie PJ, Foster JR, Mallon JC, Therrien F. "Dragons" on the landscape: Modeling the abundance of large carnivorous dinosaurs of the Upper Jurassic Morrison Formation (USA) and the Upper Cretaceous Dinosaur Park Formation (Canada). Anat Rec (Hoboken) 2023; 306:1669-1696. [PMID: 35815600 DOI: 10.1002/ar.25024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
Counts of the number of skeletal specimens of "adult" megaherbivores and large theropods from the Morrison and Dinosaur Park formations-if not biased by taphonomic artifacts-suggest that the big meat-eaters were more abundant, relative to the number of big plant-eaters, than one would expect on the basis of the relative abundance of large carnivores and herbivores in modern mammalian faunas. Models of megaherbivore population density (number of individuals per square kilometer) that attempt to take into account ecosystem productivity, the size structure of megaherbivore populations, and individual megaherbivore energy requirements, when combined with values of the large theropod/megaherbivore abundance ratio, suggest that large theropods may have been more abundant on the landscape than estimates extrapolated from the population density versus body mass relationship of mammalian carnivores. Models of the meat production of megaherbivore populations and the meat requirements of "adult" large theropods suggest that herbivore productivity would have been insufficient to support the associated number of individuals of "adult" large theropods, unless the herbivore production/biomass ratio was substantially higher, and/or the large theropod meat requirement markedly lower, than expectations based on modern mammals. Alternatively, or in addition to one or both of these other factors, large theropods likely included dinosaurs other than megaherbivores as significant components of their diet.
Collapse
Affiliation(s)
- James O Farlow
- Department of Biological Sciences, Purdue University, Fort Wayne, Indiana, USA
| | - Dan Coroian
- Department of Mathematical Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John R Foster
- Utah Field House of Natural History State Park, Vernal, Utah, USA
| | - Jordan C Mallon
- Beaty Centre for Species Discovery and Palaeobiology Section, Canadian Museum of Nature, Ottawa, Ontario, Canada
- Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
9
|
Martínez-Navarro B, Gossa T, Carotenuto F, Bartolini-Lucenti S, Palmqvist P, Asrat A, Figueirido B, Rook L, Niespolo EM, Renne PR, Herzlinger G, Hovers E. The earliest Ethiopian wolf: implications for the species evolution and its future survival. Commun Biol 2023; 6:530. [PMID: 37193884 DOI: 10.1038/s42003-023-04908-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
In 2017, a hemimandible (MW5-B208), corresponding to the Ethiopian wolf (Canis simensis), was found in a stratigraphically-controlled and radio-isotopically-dated sequence of the Melka Wakena paleoanthropological site-complex, on the Southeastern Ethiopian Highlands, ~ 2300 m above sea level. The specimen is the first and unique Pleistocene fossil of this species. Our data provide an unambiguous minimum age of 1.6-1.4 Ma for the species' presence in Africa and constitutes the first empirical evidence that supports molecular interpretations. Currently, C. simensis is one of the most endangered carnivore species of Africa. Bioclimate niche modeling applied to the time frame indicated by the fossil suggests that the lineage of the Ethiopian wolf faced severe survival challenges in the past, with consecutive drastic geographic range contractions during warmer periods. These models help to describe future scenarios for the survival of the species. Projections ranging from most pessimistic to most optimistic future climatic scenarios indicate significant reduction of the already-deteriorating territories suitable for the Ethiopian Wolf, increasing the threat to the specie's future survival. Additionally, the recovery of the Melka Wakena fossil underscores the importance of work outside the East African Rift System in research of early human origins and associated biodiversity on the African continent.
Collapse
Affiliation(s)
- Bienvenido Martínez-Navarro
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007, Tarragona, Spain.
- Universitat Rovira i Virgili, Departament d'Història i Història de l'Art, Avinguda de Catalunya 35, 43002, Tarragona, Spain.
| | - Tegenu Gossa
- Human Evolution Research Center (HERC), The University of California at Berkeley, Berkeley, CA, USA.
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of History and Heritage Management, Arba Minch University, Arba Minch, Ethiopia.
| | - Francesco Carotenuto
- Department of Earth, Environment and Resource Sciences, University of Naples "Federico II", Naples, Italy
| | - Saverio Bartolini-Lucenti
- Earth Science Department, Paleo[Fab]Lab, University of Florence, Via G. La Pira 4, Firenze, 50121, Italy
- Institut Català de Paleontogia M. Crusafont, Universitat Autònoma de Barcelona, E-08193, Cerdanyola del Vallès, Spain
| | - Paul Palmqvist
- Departamento de Ecología y Geología, Universidad de Málaga, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain
| | - Asfawossen Asrat
- Department of Mining and Geological Engineering, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
- School of Earth Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Borja Figueirido
- Departamento de Ecología y Geología, Universidad de Málaga, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain
| | - Lorenzo Rook
- Earth Science Department, Paleo[Fab]Lab, University of Florence, Via G. La Pira 4, Firenze, 50121, Italy
| | - Elizabeth M Niespolo
- Department of Geosciences, Princeton University, Princeton, NJ, USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Berkeley Geochronology Center, Berkeley, CA, USA
| | - Paul R Renne
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Berkeley Geochronology Center, Berkeley, CA, USA
| | - Gadi Herzlinger
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Erella Hovers
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Institute of Human Origins, Arizona State University, Tempe, USA.
| |
Collapse
|
10
|
Dunne EM, Farnsworth A, Benson RBJ, Godoy PL, Greene SE, Valdes PJ, Lunt DJ, Butler RJ. Climatic controls on the ecological ascendancy of dinosaurs. Curr Biol 2023; 33:206-214.e4. [PMID: 36528026 DOI: 10.1016/j.cub.2022.11.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
The ascendancy of dinosaurs to become dominant components of terrestrial ecosystems was a pivotal event in the history of life, yet the drivers of their early evolution and biodiversity are poorly understood.1,2,3 During their early diversification in the Late Triassic, dinosaurs were initially rare and geographically restricted, only attaining wider distributions and greater abundance following the end-Triassic mass extinction event.4,5,6 This pattern is consistent with an opportunistic expansion model, initiated by the extinction of co-occurring groups such as aetosaurs, rauisuchians, and therapsids.4,7,8 However, this pattern could instead be a response to changes in global climatic distributions through the Triassic to Jurassic transition, especially given the increasing evidence that climate played a key role in constraining Triassic dinosaur distributions.7,9,10,11,12,13,14,15,16 Here, we test this hypothesis and elucidate how climate influenced early dinosaur distribution by quantitatively examining changes in dinosaur and tetrapod "climatic niche space" across the Triassic-Jurassic boundary. Statistical analyses show that Late Triassic sauropodomorph dinosaurs occupied a more restricted climatic niche space than other tetrapods and dinosaurs, being excluded from the hottest, low-latitude climate zones. A subsequent, earliest Jurassic expansion of sauropodomorph geographic distribution is linked to the expansion of their preferred climatic conditions. Evolutionary model-fitting analyses provide evidence for an important evolutionary shift from cooler to warmer climatic niches during the origin of Sauropoda. These results are consistent with the hypothesis that global abundance of sauropodomorph dinosaurs was facilitated by climatic change and provide support for the key role of climate in the ascendancy of dinosaurs.
Collapse
Affiliation(s)
- Emma M Dunne
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Alexander Farnsworth
- School of Geographical Sciences, University of Bristol, University Rd, Bristol, BS8 1SS, UK; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Lincui Road, Chaoyang District, Beijing 100101, China
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| | - Pedro L Godoy
- Department of Biology, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil; Department of Anatomical Sciences, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Sarah E Greene
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paul J Valdes
- School of Geographical Sciences, University of Bristol, University Rd, Bristol, BS8 1SS, UK
| | - Daniel J Lunt
- School of Geographical Sciences, University of Bristol, University Rd, Bristol, BS8 1SS, UK
| | - Richard J Butler
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
11
|
100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world. Curr Biol 2023; 33:109-121.e3. [PMID: 36549298 DOI: 10.1016/j.cub.2022.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Past responses to environmental change provide vital baseline data for estimating the potential resilience of extant taxa to future change. Here, we investigate the latitudinal range contraction that terrestrial and freshwater turtles (Testudinata) experienced from the Late Cretaceous to the Paleogene (100.5-23.03 mya) in response to major climatic changes. We apply ecological niche modeling (ENM) to reconstruct turtle niches, using ancient and modern distribution data, paleogeographic reconstructions, and the HadCM3L climate model to quantify their range shifts in the Cretaceous and late Eocene. We then use the insights provided by these models to infer their probable ecological responses to future climate scenarios at different representative concentration pathways (RCPs 4.5 and 8.5 for 2100), which project globally increased temperatures and spreading arid biomes at lower to mid-latitudes. We show that turtle ranges are predicted to expand poleward in the Northern Hemisphere, with decreased habitat suitability at lower latitudes, inverting a trend of latitudinal range contraction that has been prevalent since the Eocene. Trionychids and freshwater turtles can more easily track their niches than Testudinidae and other terrestrial groups. However, habitat destruction and fragmentation at higher latitudes will probably reduce the capability of turtles and tortoises to cope with future climate changes.
Collapse
|
12
|
Brodie JF, Mannion PD. The hierarchy of factors predicting the latitudinal diversity gradient. Trends Ecol Evol 2023; 38:15-23. [PMID: 36089412 DOI: 10.1016/j.tree.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
The numerous explanations for why Earth's biodiversity is concentrated at low latitudes fail to explain variation in the strength and even direction of the gradient through deep time. Consequently, we do not know if today's gradient is representative of what might be expected on other planets or is merely an idiosyncrasy of Earth's history. We propose a hierarchy of factors driving the latitudinal distribution of diversity: (i) over geologically long time spans, diversity is largely predicted by climate; (ii) when climatic gradients are shallow, diversity tracks habitat area; and (iii) historical contingencies linked to niche conservatism have geologically short-term, transient influence at most. Thus, latitudinal diversity gradients, although variable in strength and direction, are largely predictable on our planet and possibly others.
Collapse
Affiliation(s)
- Jedediah F Brodie
- Division of Biological Sciences & Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94 300 Kota Samarahan, Malaysia.
| | - Philip D Mannion
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
13
|
García-Girón J, Chiarenza AA, Alahuhta J, DeMar DG, Heino J, Mannion PD, Williamson TE, Wilson Mantilla GP, Brusatte SL. Shifts in food webs and niche stability shaped survivorship and extinction at the end-Cretaceous. SCIENCE ADVANCES 2022; 8:eadd5040. [PMID: 36475805 PMCID: PMC9728968 DOI: 10.1126/sciadv.add5040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
It has long been debated why groups such as non-avian dinosaurs became extinct whereas mammals and other lineages survived the Cretaceous/Paleogene mass extinction 66 million years ago. We used Markov networks, ecological niche partitioning, and Earth System models to reconstruct North American food webs and simulate ecospace occupancy before and after the extinction event. We find a shift in latest Cretaceous dinosaur faunas, as medium-sized species counterbalanced a loss of megaherbivores, but dinosaur niches were otherwise stable and static, potentially contributing to their demise. Smaller vertebrates, including mammals, followed a consistent trajectory of increasing trophic impact and relaxation of niche limits beginning in the latest Cretaceous and continuing after the mass extinction. Mammals did not simply proliferate after the extinction event; rather, their earlier ecological diversification might have helped them survive.
Collapse
Affiliation(s)
- Jorge García-Girón
- Geography Research Unit, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
- Department of Biodiversity and Environmental Management, University of León, Campus de Vegazana, 24007 León, Spain
| | - Alfio Alessandro Chiarenza
- Departamento de Ecoloxía e Bioloxía Animal, Grupo de Ecología Animal, Centro de Investigacion Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Janne Alahuhta
- Geography Research Unit, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - David G. DeMar
- Department of Biology, University of Washington and the Burke Museum of Natural History and Culture, Seattle, WA 98105, USA
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Jani Heino
- Geography Research Unit, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Philip D. Mannion
- Department of Earth Sciences, University College London, Gower Street, WC1E 6BT London, UK
| | | | - Gregory P. Wilson Mantilla
- Department of Biology, University of Washington and the Burke Museum of Natural History and Culture, Seattle, WA 98105, USA
| | - Stephen L. Brusatte
- School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, EH9 3FE Edinburgh, UK
| |
Collapse
|
14
|
Scleromochlus and the early evolution of Pterosauromorpha. Nature 2022; 610:313-318. [PMID: 36198797 DOI: 10.1038/s41586-022-05284-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
Pterosaurs, the first vertebrates to evolve powered flight, were key components of Mesozoic terrestrial ecosystems from their sudden appearance in the Late Triassic until their demise at the end of the Cretaceous1-6. However, the origin and early evolution of pterosaurs are poorly understood owing to a substantial stratigraphic and morphological gap between these reptiles and their closest relatives6, Lagerpetidae7. Scleromochlus taylori, a tiny reptile from the early Late Triassic of Scotland discovered over a century ago, was hypothesized to be a key taxon closely related to pterosaurs8, but its poor preservation has limited previous studies and resulted in controversy over its phylogenetic position, with some even doubting its identification as an archosaur9. Here we use microcomputed tomographic scans to provide the first accurate whole-skeletal reconstruction and a revised diagnosis of Scleromochlus, revealing new anatomical details that conclusively identify it as a close pterosaur relative1 within Pterosauromorpha (the lagerpetid + pterosaur clade). Scleromochlus is anatomically more similar to lagerpetids than to pterosaurs and retains numerous features that were probably present in very early diverging members of Avemetatarsalia (bird-line archosaurs). These results support the hypothesis that the first flying reptiles evolved from tiny, probably facultatively bipedal, cursorial ancestors1.
Collapse
|
15
|
Paleobiogeography: Why some sauropods liked it hot. Curr Biol 2022; 32:R120-R123. [DOI: 10.1016/j.cub.2021.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|