1
|
Powell AM, Williams AE, Ables ET. Fusome morphogenesis is sufficient to promote female germline stem cell self-renewal in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642432. [PMID: 40161740 PMCID: PMC11952372 DOI: 10.1101/2025.03.10.642432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Many tissue-resident stem cells are retained through asymmetric cell division, a process that ensures stem cell self-renewal through each mitotic cell cycle. Asymmetric organelle distribution has been proposed as a mechanism by which stem cells are marked for long-term retention; however, it is not clear whether biased organelle localization is a cause or an effect of asymmetric division. In Drosophila females, an endoplasmic reticulum-like organelle called the fusome is continually regenerated in germline stem cells (GSCs) and associated with GSC division. Here, we report that the β-importin Tnpo-SR is essential for fusome regeneration. Depletion of Tnpo-SR disrupts cytoskeletal organization during interphase and nuclear membrane remodeling during mitosis. Tnpo-SR does not localize to microtubules, centrosomes, or the fusome, suggesting that its role in maintaining these processes is indirect. Despite this, we find that restoring fusome morphogenesis in Tnpo-SR -depleted GSCs is sufficient to rescue GSC maintenance and cell cycle progression. We conclude that Tnpo-SR functionally fusome regeneration to cell cycle progression, supporting the model that asymmetric rebuilding of fusome promotes maintenance of GSC identity and niche retention. Summary Statement Regeneration of the fusome, an ER-like organelle in Drosophila female germline stem cells, relies on Tnpo-SR-dependent reorganization of the microtubule network during interphase.
Collapse
Affiliation(s)
- Amanda M. Powell
- Department of Biology, East Carolina University, Greenville, NC, 27858
| | - Anna E. Williams
- Department of Biology, East Carolina University, Greenville, NC, 27858
- Current address: Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA, 30322
| | | |
Collapse
|
2
|
Price KL, Tharakan DM, Salvenmoser W, Ayers K, Mah J, Dunn C, Hobmayer B, Cooley L. Examination of germline and somatic intercellular bridges in Hydra vulgaris reveals insights into the evolutionarily conserved mechanism of intercellular bridge formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639158. [PMID: 40027827 PMCID: PMC11870534 DOI: 10.1101/2025.02.19.639158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Incomplete cytokinesis results in the formation of stable intercellular bridges that have been extensively studied in bilaterians, where they play essential roles in cell-cell communication and coordination of differentiation. However, little is known about their structure and molecular composition in non-bilaterian animals. This study characterizes germline and somatic intercellular bridges in the cnidarian Hydra vulgaris , providing insights into their evolutionary origins and functional significance. We identified key conserved components, including KIF23, F-actin, and phosphotyrosine. Notably, we observed microtubule localization within Hydra ring canals, suggesting previously unrecognized functions for this cytoskeletal component in intercellular bridge formation. Bioinformatic analyses confirmed the conserved expression of Kif23 and suggested its role as a molecular marker for identifying ring canal-associated components. EdU incorporation during DNA replication demonstrated that cells connected by ring canals exhibit synchronized cell cycles, which may be critical for the coordination of division and differentiation. Our findings reveal that the molecular and structural features of intercellular bridges in Hydra are conserved across evolutionary lineages, highlighting their ancient origins and functional significance in cellular connectivity. The presence of synchronized cell cycles in ring canal-connected cells underscores their role in promoting coordinated cellular behaviors, processes fundamental to multicellular organization. This study provides new perspectives on the evolution of incomplete cytokinesis and establishes a framework for comparative investigations into the diversity and conservation of intercellular bridge mechanisms across metazoans.
Collapse
Affiliation(s)
- Kari L. Price
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Dyuthi M. Tharakan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Willi Salvenmoser
- Institute of Zoology and Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Kathleen Ayers
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Jasmine Mah
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Casey Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Bert Hobmayer
- Institute of Zoology and Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
- Lead contact
| |
Collapse
|
3
|
Vasilev F, Mihajlović AI, Rémillard-Labrosse G, FitzHarris G. Long-lived cytokinetic bridges coordinate sister-cell elimination in mouse embryos. Dev Cell 2025:S1534-5807(25)00002-4. [PMID: 39862857 DOI: 10.1016/j.devcel.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Apoptosis is a key feature of preimplantation development, but whether it occurs in a cell-autonomous or coordinated manner was unknown. Here, we report that plasma membrane abscission, the final step of cell division, is profoundly delayed in early mouse embryos such that a cytokinetic bridge is maintained for the vast majority of the following interphase. Early embryos thus consist of many pairs of sister cells connected by stable cytokinetic bridges that allow them to share diffusible molecules. We show that apoptotic regulators are shared through cytokinetic bridges and that these bridges ensure that if one cell enters apoptosis, its sister cell does as well. Long-lived cytokinetic bridges are thus a previously unappreciated form of cell-cell communication within the mouse embryo that coordinate the clearance of pairs of cells with similar developmental histories.
Collapse
Affiliation(s)
- Filip Vasilev
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Aleksandar I Mihajlović
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | - Greg FitzHarris
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Department of Obstetrics and Gynaecology, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
4
|
Urbisz AZ, Schmelz RM, Małota K, Chajec Ł, Świątek P. Conservative character of the germ-line cyst organization within enchytraeids (Annelida: Clitellata) ovary - New proofs based on two Achaeta species. Micron 2025; 188:103732. [PMID: 39547002 DOI: 10.1016/j.micron.2024.103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Ovaries in a minute and mainly aquatic clitellates, collectively termed microdriles, are usually tiny paired gonads localized, depending on the family/subfamily, in segments VI, XI, XII, or XIII. Sometimes, two pairs of ovaries are present in consecutive segments, or ovaries are unpaired. Usually, accumulating yolk (vitellogenic) oocytes detach from ovaries and float in the coelom cavity. This study presents the microscopical analyses of unpaired ovaries found in two representatives of the genus Achaeta (family Enchytraeidae). The ovary is an inconspicuous organ composed of germ-line cysts uniting early meiotic cells. Cysts comprise 16 synchronously developing cells interconnected via cytoplasmic bridges to the central cytoplasmic mass, termed cytophore. Each interconnected cell has one bridge connecting it to the cytophore. Clustering germ cells are enveloped by elongated somatic cells. The developmental synchrony within cysts is lost when one cell per cyst forms prominent microvilli, gather vast amounts of nutrients (yolk), and becomes an oocyte. The remaining 15 cells do not form microvilli, grow slowly, and are regarded as nurse cells that supply the oocyte with organelles and probably macromolecules. Such cysts detach from the ovary and float freely in the segmental cavity. Nurse cells and vitellogenic oocyte are still connected to the ball-like cytophore. Vitellogenic oocytes gather vast amounts of reserve material, mainly protein spheres. Finally, oocytes lose contact with the cytophore, and nurse cells no longer accompany them. The ovary organization and oogenesis scenario observed in this study are broadly similar to that described for other enchytraeid species, such as Enchytraeus albidus and Grania postclitellochaeta, and have been classified as the "Enchytraeus" type of ovary. The obtained results show that despite the unpaired nature of the Achaeta ovary and some differences in ovary morphology and oogenesis between different enchytraeid taxa, the ovaries of these clitellates are consistently composed of 16-celled germ-line cysts equipped with cytophore. Moreover, the presence of cysts equipped with cytophore in the ovaries of the studied Achaeta specimens provides the subsequent evidence that the formation of such germ-line cysts is a conserved aspect of oogenesis within the Clitellata. This consistency in the ovarian and oogenic patterns underscores the evolutionary conservation of these reproductive traits within the Enchytraeidae and clitellate annelids.
Collapse
Affiliation(s)
- Anna Z Urbisz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, Katowice 40-007, Poland.
| | | | - Karol Małota
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, Katowice 40-007, Poland
| | - Łukasz Chajec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, Katowice 40-007, Poland
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, Katowice 40-007, Poland
| |
Collapse
|
5
|
Chen R, Zou J, Chen J, Wang L, Kang R, Tang D. Immune aging and infectious diseases. Chin Med J (Engl) 2024; 137:3010-3049. [PMID: 39679477 PMCID: PMC11706578 DOI: 10.1097/cm9.0000000000003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT The rise in global life expectancy has led to an increase in the older population, presenting significant challenges in managing infectious diseases. Aging affects the innate and adaptive immune systems, resulting in chronic low-grade inflammation (inflammaging) and immune function decline (immunosenescence). These changes would impair defense mechanisms, increase susceptibility to infections and reduce vaccine efficacy in older adults. Cellular senescence exacerbates these issues by releasing pro-inflammatory factors, further perpetuating chronic inflammation. Moreover, comorbidities, such as cardiovascular disease and diabetes, which are common in older adults, amplify immune dysfunction, while immunosuppressive medications further complicate responses to infections. This review explores the molecular and cellular mechanisms driving inflammaging and immunosenescence, focusing on genomic instability, telomere attrition, and mitochondrial dysfunction. Additionally, we discussed how aging-associated immune alterations influence responses to bacterial, viral, and parasitic infections and evaluated emerging antiaging strategies, aimed at mitigating these effects to improve health outcomes in the aging population.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ju Zou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Jiawang Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ling Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
6
|
Patel SA, Park S, Zhu D, Torr EE, Dureke AG, McIntyre A, Muzyka N, Severson J, Skop AR. Extracellular vesicles, including large translating vesicles called midbody remnants, are released during the cell cycle. Mol Biol Cell 2024; 35:ar155. [PMID: 39535882 PMCID: PMC11656471 DOI: 10.1091/mbc.e23-10-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in cell-cell communication, but the biogenesis of large EVs has remained elusive. Here, we show that the biogenesis of large EVs (>800 nm-2 µm) occurs predominantly through the completion of successful cytokinesis, and the majority of large EVs are midbody remnants (MBRs) with translation activity, and the unique marker MKLP1. Blocking the cell cycle or cytokinesis, genetically or chemically, significantly decreases MBRs and large (800 nm-2 µm), medium (500-800 nm), and small (<300 nm) EVs, suggesting that proliferative cells can also generate all sizes of EVs. The canonical EV markers including CD9, CD63, CD81 localize to the spindle midzone, midbody, and MBRs, suggesting that these markers are not specific for detecting EVs exclusively. Importantly, all commonly used EV isolation methods isolate MBRs, confounding previous EV research. Last, isolated MBRs maintain translation activity regardless of the isolation method. We propose a model for the biogenesis of EVs throughout the cell cycle and suggest that some large EVs are primarily generated from mitotic cells. The discovery of MBRs as a unique class of large, translating EVs has implications for using them as cancer diagnostic markers and for engineering them for therapeutic cargo delivery during mitosis.
Collapse
Affiliation(s)
- Smit A. Patel
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Sungjin Park
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Dantong Zhu
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | | | | | - Nadiya Muzyka
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | - Ahna R. Skop
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| |
Collapse
|
7
|
Li ZP, Moreau H, Petit JD, Moraes TS, Smokvarska M, Pérez-Sancho J, Petrel M, Decoeur F, Brocard L, Chambaud C, Grison MS, Paterlini A, Glavier M, Hoornaert L, Joshi AS, Gontier E, Prinz WA, Jaillais Y, Taly A, Campelo F, Caillaud MC, Bayer EM. Plant plasmodesmata bridges form through ER-dependent incomplete cytokinesis. Science 2024; 386:538-545. [PMID: 39480927 DOI: 10.1126/science.adn4630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/25/2024] [Indexed: 11/02/2024]
Abstract
Diverging from conventional cell division models, plant cells undergo incomplete division to generate plasmodesmata communication bridges between daughter cells. Although fundamental for plant multicellularity, the molecular events leading to bridge stabilization, as opposed to severing, remain unknown. Using electron tomography, we mapped the transition from cell plate fenestrae to plasmodesmata. We show that the endoplasmic reticulum (ER) connects daughter cells across fenestrae, and as the cell plate matures, fenestrae contract, causing the plasma membrane (PM) to mold around constricted ER tubes. The ER's presence prevents fenestrae fusion, forming plasmodesmata, whereas its absence results in closure. The ER-PM protein tethers MCTP3, MCTP4, and MCTP6 further stabilize nascent plasmodesmata during fenestrae contraction. Genetic deletion in Arabidopsis reduces plasmodesmata formation. Our findings reveal how plants undergo incomplete division to promote intercellular communication.
Collapse
Affiliation(s)
- Ziqiang P Li
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Hortense Moreau
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Jules D Petit
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Tatiana S Moraes
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Marija Smokvarska
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Jessica Pérez-Sancho
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Melina Petrel
- Bordeaux Imaging Center, UAR 3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Fanny Decoeur
- Bordeaux Imaging Center, UAR 3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, UAR 3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
- Bordeaux Imaging Center, UAR 3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Magali S Grison
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Andrea Paterlini
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Marie Glavier
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Lucie Hoornaert
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Amit S Joshi
- Department of Biochemistry and Cell and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Etienne Gontier
- Bordeaux Imaging Center, UAR 3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - William A Prinz
- Department of Cell Biology, Medical School, UT Southwestern Medical Center, University of Texas, Dallas, TX, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| |
Collapse
|
8
|
Chatterjee M, Gupta S, Nag S, Rehman I, Parashar D, Maitra A, Das K. Circulating Extracellular Vesicles: An Effective Biomarker for Cancer Progression. FRONT BIOSCI-LANDMRK 2024; 29:375. [PMID: 39614441 DOI: 10.31083/j.fbl2911375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Extracellular vesicles (EVs), the ubiquitous part of human biology, represent a small heterogenous, membrane-enclosed body that contains a diverse payload including genetic materials in the form of DNA, RNAs, small non-coding RNAs, etc. mostly mirroring their source of origin. Since, a vast majority of research has been conducted on how nucleic acids, proteins, lipids, and metabolites, associated with EVs can be effectively utilized to identify disease progression and therapeutic responses in cancer patients, EVs are increasingly being touted as valuable and reliable identifiers of cancer biomarkers in liquid biopsies. However, the lack of comprehensive clinical validation and effective standardization protocols severely limits its applications beyond the laboratories. The present review focuses on understanding the role of circulating EVs in different cancers and how they could potentially be treated as cancer biomarkers, typically due to the presence of bioactive molecules such as small non-coding RNAs, RNAs, DNA, proteins, etc., and their utilization for fine-tuning therapies. Here, we provide a brief general biology of EVs including their classification and subsequently discuss the source of circulatory EVs, the role of their associated payload as biomarkers, and how different cancers affect the level of circulatory EVs population.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, 281406 Mathura, India
| | - Sayoni Nag
- Department of Biotechnology, Brainware University, 700125 Barasat, India
| | - Ishita Rehman
- Department of Biotechnology, The Neotia University, 743368 Parganas, India
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| |
Collapse
|
9
|
Li ZP, Moreau H, Petit JD, Souza-Moraes T, Smokvarska M, Perez-Sancho J, Petrel M, Decoeur F, Brocard L, Chambaud C, Grison M, Paterlini A, Glavier M, Hoornaert L, Joshi AS, Gontier E, Prinz WA, Jaillais Y, Taly A, Campelo F, Caillaud MC, Bayer EM. Plant plasmodesmata bridges form through ER-dependent incomplete cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571296. [PMID: 39464151 PMCID: PMC11507753 DOI: 10.1101/2023.12.12.571296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Diverging from conventional cell division models, plant cells undergo incomplete division to generate plasmodesmata communication bridges between daughter cells. While fundamental for plant multicellularity, the molecular events leading to bridge stabilization, as opposed to severing, remain unknown. Using electron tomography, we mapped the transition from cell plate fenestrae to plasmodesmata. We show that the ER connects daughter cells across fenestrae, and as the cell plate matures, fenestrae contract, causing the PM to mold around constricted ER tubes. The ER's presence prevents fenestrae fusion, forming plasmodesmata, while its absence results in closure. The ER-PM tethers MCTP3, 4, and 6 further stabilize nascent plasmodesmata during fenestrae contraction. Genetic deletion in Arabidopsis reduces plasmodesmata formation. Our findings reveal how plants undergo incomplete division to promote intercellular communication. One-Sentence Summary The ER is important for stabilizing nascent plasmodesmata, a process integral to incomplete cytokinesis in plants.
Collapse
|
10
|
Mathieu J, Huynh JR. Incomplete divisions between sister germline cells require Usp8 function. C R Biol 2024; 347:109-117. [PMID: 39345214 DOI: 10.5802/crbiol.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
Cytokinetic abscission is the final step of cell division, resulting in two separate daughter cells. While abscission is typically complete across most cell types, germline cells, which produce sexual gametes, do not finish cytokinesis, maintaining connections between sister cells. These connections are essential for sharing cytoplasm as they differentiate into oocyte and sperm. First, we outline the molecular events of cytokinesis during both complete and delayed abscission, highlighting the role of the ESCRT-III proteins. We then focus on recent discoveries that reveal the molecular mechanisms blocking abscission in Drosophila germline cells. The enzyme Usp8 was identified as vital for ensuring incomplete cytokinesis through the regulation of ESCRT-III ubiquitination and localization. Finally, we explore how the processes of incomplete cytokinesis could hold evolutionary importance, suggesting additional studies into choanoflagellates to comprehend the origins of multicellularity.
Collapse
|
11
|
Trevorrow P, Chaigne A. Introducing our Associate Editorial Board: An interview with Agathe Chaigne, Utrecht University, The Netherlands. Cytoskeleton (Hoboken) 2024. [PMID: 39340322 DOI: 10.1002/cm.21929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Affiliation(s)
| | - Agathe Chaigne
- Cell Biology, Neurobiology and Biophysics Department, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| |
Collapse
|
12
|
Bayer EM, Benitez-Alfonso Y. Plasmodesmata: Channels Under Pressure. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:291-317. [PMID: 38424063 DOI: 10.1146/annurev-arplant-070623-093110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multicellularity has emerged multiple times in evolution, enabling groups of cells to share a living space and reducing the burden of solitary tasks. While unicellular organisms exhibit individuality and independence, cooperation among cells in multicellular organisms brings specialization and flexibility. However, multicellularity also necessitates intercellular dependence and relies on intercellular communication. In plants, this communication is facilitated by plasmodesmata: intercellular bridges that allow the direct (cytoplasm-to-cytoplasm) transfer of information between cells. Plasmodesmata transport essential molecules that regulate plant growth, development, and stress responses. They are embedded in the extracellular matrix but exhibit flexibility, adapting intercellular flux to meet the plant's needs.In this review, we delve into the formation and functionality of plasmodesmata and examine the capacity of the plant communication network to respond to developmental and environmental cues. We illustrate how environmental pressure shapes cellular interactions and aids the plant in adapting its growth.
Collapse
Affiliation(s)
- Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire (LBM), CNRS UMR5200, Université de Bordeaux, Villenave D'Ornon, France;
| | - Yoselin Benitez-Alfonso
- School of Biology, Centre for Plant Sciences, and Astbury Centre, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
13
|
Sun W, Yin Z, Liu P, Zhu M, Donoghue P. Developmental biology of Spiralicellula and the Ediacaran origin of crown metazoans. Proc Biol Sci 2024; 291:20240101. [PMID: 38808442 DOI: 10.1098/rspb.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
The early Ediacaran Weng'an biota (Doushantuo Formation, South China) provides a rare window onto the period of Earth history in which molecular timescales have inferred the initial phase of crown-metazoan diversification. Interpretation of the embryo-like fossils that dominate the biota remains contentious because they are morphologically simple and so difficult to constrain phylogenetically. Spiralicellula from the Weng'an biota is distinguished by spiral internal bodies, allied through development to Megasphaera or Helicoforamina and interpreted variously as metazoan embryos, encysting protists, or chlorophycean green algae. Here we show, using X-ray microtomography, that Spiralicellula has a single-layered outer envelope and no more than 32 internal cells, often preserving a nucleus and yolk granules. There is no correlation between the extent of spiral development and the number of component cells; rather, the spiral developed with each palintomic stage, associated with cell disaggregation and reorientation. Evidence for envelope thinning and cell loss was observed in all developmental stages, reflecting non-deterministic shedding of gametes or amoebae. The developmental biology of Spiralicellula is similar to Megasphaera and Helicoforamina, which otherwise exhibit more rounds of palintomy. We reject a crown-metazoan affinity for Spiralicellula and all other components of the Weng'an biota, diminishing the probability of crown-metazoan diversification before the early Ediacaran.
Collapse
Affiliation(s)
- Weichen Sun
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, People's Republic of China
| | - Pengju Liu
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, People's Republic of China
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
- Nanjing College, University of Chinese Academy of Sciences, Nanjing 211135, People's Republic of China
| | - Philip Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
14
|
Schreiber JM, Limpens E, de Keijzer J. Distributing Plant Developmental Regulatory Proteins via Plasmodesmata. PLANTS (BASEL, SWITZERLAND) 2024; 13:684. [PMID: 38475529 DOI: 10.3390/plants13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
During plant development, mobile proteins, including transcription factors, abundantly serve as messengers between cells to activate transcriptional signaling cascades in distal tissues. These proteins travel from cell to cell via nanoscopic tunnels in the cell wall known as plasmodesmata. Cellular control over this intercellular movement can occur at two likely interdependent levels. It involves regulation at the level of plasmodesmata density and structure as well as at the level of the cargo proteins that traverse these tunnels. In this review, we cover the dynamics of plasmodesmata formation and structure in a developmental context together with recent insights into the mechanisms that may control these aspects. Furthermore, we explore the processes involved in cargo-specific mechanisms that control the transport of proteins via plasmodesmata. Instead of a one-fits-all mechanism, a pluriform repertoire of mechanisms is encountered that controls the intercellular transport of proteins via plasmodesmata to control plant development.
Collapse
Affiliation(s)
- Joyce M Schreiber
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
15
|
Brubacher JL. Female Germline Cysts in Animals: Evolution and Function. Results Probl Cell Differ 2024; 71:23-46. [PMID: 37996671 DOI: 10.1007/978-3-031-37936-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Germline cysts are syncytia formed by incomplete cytokinesis of mitotic germline precursors (cystoblasts) in which the cystocytes are interconnected by cytoplasmic bridges, permitting the sharing of molecules and organelles. Among animals, such cysts are a nearly universal feature of spermatogenesis and are also often involved in oogenesis. Recent, elegant studies have demonstrated remarkable similarities in the oogenic cysts of mammals and insects, leading to proposals of widespread conservation of these features among animals. Unfortunately, such claims obscure the well-described diversity of female germline cysts in animals and ignore major taxa in which female germline cysts appear to be absent. In this review, I explore the phylogenetic patterns of oogenic cysts in the animal kingdom, with a focus on the hexapods as an informative example of a clade in which such cysts have been lost, regained, and modified in various ways. My aim is to build on the fascinating insights of recent comparative studies, by calling for a more nuanced view of evolutionary conservation. Female germline cysts in the Metazoa are an example of a phenomenon that-though essential for the continuance of many, diverse animal lineages-nevertheless exhibits intriguing patterns of evolutionary innovation, loss, and convergence.
Collapse
|
16
|
Płachno BJ, Kapusta M, Świątek P. Syncytia in Utricularia: Origin and Structure. Results Probl Cell Differ 2024; 71:143-155. [PMID: 37996677 DOI: 10.1007/978-3-031-37936-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In animals and plants, multinucleate cells (syncytia and coenocytes) are essential in ontogeny and reproduction. Fuso-morphogenesis is the formation of multinucleated syncytia by cell-cell fusion, but coenocytes are formed as a result of mitosis without cytokinesis. However, in plants, coenocytes are more widespread than true syncytia. Except for articulated laticifers, most plant syncytia have a trophic function. Here, we summarize the results of histological, histochemical, and ultrastructural analyses of syncytia in the Utricularia species from the Lentibulariaceae family. Utricularia syncytia, known only from a few species, are heterokaryotic because the syncytium possesses nuclei from two different sources: cells of maternal sporophytic nutritive tissue (placenta) and endosperm haustorium. Thus, syncytium contains both maternal and paternal genetic material. In species from section Utricularia, syncytia are highly active structures (with hypertrophied nuclei, cell wall ingrowths, and extensive cytoskeleton) that exist only during embryo development. They serve as an example of evolutionary unique trophic structures in the plant kingdom.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Kraków, Poland.
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
17
|
Carlton JG, Baum B. Roles of ESCRT-III polymers in cell division across the tree of life. Curr Opin Cell Biol 2023; 85:102274. [PMID: 37944425 PMCID: PMC7615534 DOI: 10.1016/j.ceb.2023.102274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Every cell becomes two through a carefully orchestrated process of division. Prior to division, contractile machinery must first be assembled at the cell midzone to ensure that the cut, when it is made, bisects the two separated copies of the genetic material. Second, this contractile machinery must be dynamically tethered to the limiting plasma membrane so as to bring the membrane with it as it constricts. Finally, the connecting membrane must be severed to generate two physically separate daughter cells. In several organisms across the tree of life, Endosomal Sorting Complex Required for Transport (ESCRT)-III family proteins aid cell division by forming composite polymers that function together with the Vps4 AAA-ATPase to constrict and cut the membrane tube connecting nascent daughter cells from the inside. In this review, we discuss unique features of ESCRT-III that enable it to play this role in division in many archaea and eukaryotes.
Collapse
Affiliation(s)
- Jeremy Graham Carlton
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, SE1 1UL, UK; Organelle Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
18
|
Lamża Ł. Diversity of 'simple' multicellular eukaryotes: 45 independent cases and six types of multicellularity. Biol Rev Camb Philos Soc 2023; 98:2188-2209. [PMID: 37475165 DOI: 10.1111/brv.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Multicellularity evolved multiple times in the history of life, with most reviewers agreeing that it appeared at least 20 times in eukaryotes. However, a specific list of multicellular eukaryotes with clear criteria for inclusion has not yet been published. Herein, an updated critical review of eukaryotic multicellularity is presented, based on current understanding of eukaryotic phylogeny and new discoveries in microbiology, phycology and mycology. As a result, 45 independent multicellular lineages are identified that fall into six distinct types. Functional criteria, as distinct from a purely topological definition of a cell, are introduced to bring uniformity and clarity to the existing definitions of terms such as colony, multicellularity, thallus or plasmodium. The category of clonal multicellularity is expanded to include: (i) septated multinucleated thalli found in Pseudofungi and early-branching Fungi such as Chytridiomycota and Blastocladiomycota; and (ii) multicellular reproductive structures formed by plasmotomy in intracellular parasites such as Phytomyxea. Furthermore, (iii) endogeneous budding, as found in Paramyxida, is described as a form of multicellularity. The best-known case of clonal multicellularity, i.e. (iv) non-separation of cells after cell division, as known from Metazoa and Ochrophyta, is also discussed. The category of aggregative multicellularity is expanded to include not only (v) pseudoplasmodial forms, such a sorocarp-forming Acrasida, but also (vi) meroplasmodial organisms, such as members of Variosea or Filoreta. A common set of topological, geometric, genetic and life-cycle criteria are presented that form a coherent, philosophically sound framework for discussing multicellularity. A possibility of a seventh type of multicellularity is discussed, that of multi-species superorganisms formed by protists with obligatory bacterial symbionts, such as some members of Oxymonada or Parabasalia. Its inclusion is dependent on the philosophical stance taken towards the concepts of individuality and organism in biology. Taxa that merit special attention are identified, such as colonial Centrohelea, and a new speculative form of multicellularity, possibly present in some reticulopodial amoebae, is briefly described. Because of insufficient phylogenetic and morphological data, not all lineages could be unequivocally identified, and the true total number of all multicellular eukaryotic lineages is therefore higher, likely close to a hundred.
Collapse
Affiliation(s)
- Łukasz Lamża
- Copernicus Center for Interdisciplinary Studies, Jagiellonian University, Szczepanska 1, Kraków, 31-011, Poland
| |
Collapse
|
19
|
Jung GI, Londoño-Vásquez D, Park S, Skop AR, Balboula AZ, Schindler K. An oocyte meiotic midbody cap is required for developmental competence in mice. Nat Commun 2023; 14:7419. [PMID: 37973997 PMCID: PMC10654508 DOI: 10.1038/s41467-023-43288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Embryo development depends upon maternally derived materials. Mammalian oocytes undergo extreme asymmetric cytokinesis events, producing one large egg and two small polar bodies. During cytokinesis in somatic cells, the midbody and subsequent assembly of the midbody remnant, a signaling organelle containing RNAs, transcription factors and translation machinery, is thought to influence cellular function or fate. The role of the midbody and midbody remnant in gametes, in particular, oocytes, remains unclear. Here, we examined the formation and function of meiotic midbodies (mMB) and mMB remnants using mouse oocytes and demonstrate that mMBs have a specialized cap structure that is orientated toward polar bodies. We show that that mMBs are translationally active, and that mMB caps are required to retain nascent proteins in eggs. We propose that this specialized mMB cap maintains genetic factors in eggs allowing for full developmental competency.
Collapse
Affiliation(s)
- Gyu Ik Jung
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | | | - Sungjin Park
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ahna R Skop
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ahmed Z Balboula
- Animal Sciences Research Center, University of Missouri, Columbia, MO, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
20
|
Smart M, Shvartsman SY, Nunley H. A model of replicating coupled oscillators generates naturally occurring cell networks. Development 2023; 150:dev202187. [PMID: 37823332 PMCID: PMC10690053 DOI: 10.1242/dev.202187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
When a founder cell and its progeny divide with incomplete cytokinesis, a network forms in which each intercellular bridge corresponds to a past mitotic event. Such networks are required for gamete production in many animals, and different species have evolved diverse final network topologies. Although mechanisms regulating network assembly have been identified in particular organisms, we lack a quantitative framework to understand network assembly and inter-species variability. Motivated by cell networks responsible for oocyte production in invertebrates, where the final topology is typically invariant within each species, we devised a mathematical model for generating cell networks, in which each node is an oscillator and, after a full cycle, the node produces a daughter to which it remains connected. These cell cycle oscillations are transient and coupled via diffusion over the edges of the network. By variation of three biologically motivated parameters, our model generates nearly all such networks currently reported across invertebrates. Furthermore, small parameter variations can rationalize cases of intra-species variation. Because cell networks outside of the ovary often form less deterministically, we propose model generalizations to account for sources of stochasticity.
Collapse
Affiliation(s)
- Matthew Smart
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Stanislav Y. Shvartsman
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Hayden Nunley
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
21
|
Ros-Rocher N, Brunet T. What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Anim Cogn 2023; 26:1767-1782. [PMID: 37067637 PMCID: PMC10770216 DOI: 10.1007/s10071-023-01776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Thibaut Brunet
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
22
|
Diak N, Śliwińska MA, Student S, Świątek P. The three-dimensional conformation and activity of mitochondria in syncytial male germ line-cysts of medicinal leeches. Cell Tissue Res 2023; 394:325-342. [PMID: 37642734 PMCID: PMC10638204 DOI: 10.1007/s00441-023-03825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
We studied the spatial conformation and activity of mitochondria in the developing syncytial male germline cysts during spermatogenesis of the medicinal leeches using light, fluorescent, transmission electron microscopy, and serial block-face scanning electron microscopy. In cysts with spermatogonia and spermatocytes, mitochondria form networks and are in a dynamic hyperfusion state, while in cysts with spermatids, a single huge mitochondrion is observed. As spermiogenesis progresses, this huge mitochondrion is finally located in the future midpiece. The highest activity, in terms of membrane potential, of the mitochondria in H. medicinalis germline cysts was observed in cysts with spermatocytes; the lowest was in cysts with late elongated spermatids.
Collapse
Affiliation(s)
- Natalia Diak
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland.
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Małgorzata Alicja Śliwińska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Sebastian Student
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100, Gliwice, Poland
- Silesian University of Technology, Biotechnology Center, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Piotr Świątek
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
23
|
Park S, Dahn R, Kurt E, Presle A, VanDenHeuvel K, Moravec C, Jambhekar A, Olukoga O, Shepherd J, Echard A, Blower M, Skop AR. The mammalian midbody and midbody remnant are assembly sites for RNA and localized translation. Dev Cell 2023; 58:1917-1932.e6. [PMID: 37552987 PMCID: PMC10592306 DOI: 10.1016/j.devcel.2023.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Long ignored as a vestigial remnant of cytokinesis, the mammalian midbody (MB) is released post-abscission inside large extracellular vesicles called MB remnants (MBRs). Recent evidence suggests that MBRs can modulate cell proliferation and cell fate decisions. Here, we demonstrate that the MB matrix is the site of ribonucleoprotein assembly and is enriched in mRNAs that encode proteins involved in cell fate, oncogenesis, and pluripotency, which we are calling the MB granule. Both MBs and post-abscission MBRs are sites of spatiotemporally regulated translation, which is initiated when nascent daughter cells re-enter G1 and continues after extracellular release. MKLP1 and ARC are necessary for the localization and translation of RNA in the MB dark zone, whereas ESCRT-III is necessary to maintain translation levels in the MB. Our work reveals a unique translation event that occurs during abscission and within a large extracellular vesicle.
Collapse
Affiliation(s)
- Sungjin Park
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Randall Dahn
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Elif Kurt
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Adrien Presle
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Kathryn VanDenHeuvel
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara Moravec
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Olushola Olukoga
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason Shepherd
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Arnaud Echard
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Michael Blower
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Ahna R Skop
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
24
|
Schindler K, Jung GI, Londoño-Vásquez D, Park S, Skop A, Balboula A. An oocyte meiotic midbody cap is required for developmental competence in mice. RESEARCH SQUARE 2023:rs.3.rs-3399188. [PMID: 37886573 PMCID: PMC10602078 DOI: 10.21203/rs.3.rs-3399188/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Embryo development depends upon maternally derived materials. Mammalian oocytes undergo extreme asymmetric cytokinesis events, producing one large egg and two small polar bodies (PB). During cytokinesis in somatic cells, the midbody (MB) and subsequent assembly of the midbody remnant (MBR), a signaling organelle containing RNAs, transcription factors and translation machinery, is thought to influence cellular function or fate. The role of the MB and MBR in gametes, in particular, oocytes, remains unclear. Here, we examined the formation and function of meiotic MBs (mMB) and mMB remnants (mMBRs) using mouse oocytes and demonstrate that mMBs have a specialized meiotic mMB cap structure that is orientated toward PBs. We show that that mMBs are translationally active, and that mMB caps are required to retain nascent proteins in eggs. We propose that this specialized mMB cap maintains genetic factors in eggs allowing for full developmental competency.
Collapse
|
25
|
Świątek P, Thounaojam RS, Singh TB, James S, Gajda Ł, Małota K, Raś D, Urbisz AZ. Ovary organization and ultrastructure in six species of Amynthas and Metaphire earthworms (Annelida, Crassiclitellata, Megascolecidae). ZOOLOGY 2023; 160:126109. [PMID: 37586295 DOI: 10.1016/j.zool.2023.126109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Ovaries in earthworms belonging to the family Megascolecidae are paired structures attached to the septum in the anterior part of the XIII segment. They are fan to rosette shaped with numerous rows of growing oocytes, known as egg strings, radiating from the ovary center towards the segmental cavity. The histological and ultrastructural ovary organization in megascolecids and the course of oogenesis remain unknown. The paper presents the results of light and electron microscopy analyses of ovaries in six megascolecid species, three from the genus Amynthas and three from Metaphire. Both parthenogenetic and sexually reproducing species were included in the study. The organization and ultrastructure of ovaries in all studied species are broadly similar. Considering the histological organization of ovaries, they could be divided into two zones. Zone I (proximal, close to the connection with the septum) is tightly packed with germline and somatic cells. Germ cells are interconnected via intercellular bridges and thin strands of the central cytoplasm (known as cytophore) and form syncytial cysts. Cysts unite oogonia, early meiotic cells (till diplotene), and clustering cells develop synchronously. During diplotene, interconnected cells lose developmental synchrony; most probably, one cell per cyst grows faster than others, detaches from the cysts, and becomes an oocyte. The remaining cells grow slightly and are still interconnected via the thin and reticular cytophore; these cells are considered nurse cells. Zone II has a form of egg strings where growing oocytes are isolated one from another by thin somatic cells and form short cords. We present the ultrastructural details of germline and somatic cells. We propose the term "Amynthas" type of ovaries for this ovary organization. We suppose that such ovaries are characteristic of other megascolecids and related families.
Collapse
Affiliation(s)
- Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Rojen Singh Thounaojam
- Department of Life Sciences (Zoology), Manipur University, Canchipur 795003, Manipur, India
| | - Th Binoy Singh
- Department of Life Sciences (Zoology), Manipur University, Canchipur 795003, Manipur, India
| | - Samuel James
- Regenerative Organic Agriculture Department, Maharishi International University, Fairfield, IA 52557, USA
| | - Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Karol Małota
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Dominika Raś
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Anna Z Urbisz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
26
|
Brunet T. Cell contractility in early animal evolution. Curr Biol 2023; 33:R966-R985. [PMID: 37751712 DOI: 10.1016/j.cub.2023.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Tissue deformation mediated by collective cell contractility is a signature characteristic of animals. In most animals, fast and reversible contractions of muscle cells mediate behavior, while slow and irreversible contractions of epithelial or mesenchymal cells play a key role in morphogenesis. Animal tissue contractility relies on the activity of the actin/myosin II complex (together referred to as 'actomyosin'), an ancient and versatile molecular machinery that performs a broad range of functions in development and physiology. This review synthesizes emerging insights from morphological and molecular studies into the evolutionary history of animal contractile tissue. The most ancient functions of actomyosin are cell crawling and cytokinesis, which are found in a wide variety of unicellular eukaryotes and in individual metazoan cells. Another contractile functional module, apical constriction, is universal in metazoans and shared with choanoflagellates, their closest known living relatives. The evolution of animal contractile tissue involved two key innovations: firstly, the ability to coordinate and integrate actomyosin assembly across multiple cells, notably to generate supracellular cables, which ensure tissue integrity but also allow coordinated morphogenesis and movements at the organism scale; and secondly, the evolution of dedicated contractile cell types for adult movement, belonging to two broad categories respectively defined by the expression of the fast (striated-type) and slow (smooth/non-muscle-type) myosin II paralogs. Both contractile cell types ancestrally resembled generic contractile epithelial or mesenchymal cells and might have played a versatile role in both behavior and morphogenesis. Modern animal contractile cells span a continuum between unspecialized contractile epithelia (which underlie behavior in modern placozoans), epithelia with supracellular actomyosin cables (found in modern sponges), epitheliomuscular tissues (with a concentration of actomyosin cables in basal processes, for example in sea anemones), and specialized muscle tissue that has lost most or all epithelial properties (as in ctenophores, jellyfish and bilaterians). Recent studies in a broad range of metazoans have begun to reveal the molecular basis of these transitions, powered by the elaboration of the contractile apparatus and the evolution of 'core regulatory complexes' of transcription factors specifying contractile cell identity.
Collapse
Affiliation(s)
- Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
27
|
Wegner L, Porth ML, Ehlers K. Multicellularity and the Need for Communication-A Systematic Overview on (Algal) Plasmodesmata and Other Types of Symplasmic Cell Connections. PLANTS (BASEL, SWITZERLAND) 2023; 12:3342. [PMID: 37765506 PMCID: PMC10536634 DOI: 10.3390/plants12183342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
In the evolution of eukaryotes, the transition from unicellular to simple multicellular organisms has happened multiple times. For the development of complex multicellularity, characterized by sophisticated body plans and division of labor between specialized cells, symplasmic intercellular communication is supposed to be indispensable. We review the diversity of symplasmic connectivity among the eukaryotes and distinguish between distinct types of non-plasmodesmatal connections, plasmodesmata-like structures, and 'canonical' plasmodesmata on the basis of developmental, structural, and functional criteria. Focusing on the occurrence of plasmodesmata (-like) structures in extant taxa of fungi, brown algae (Phaeophyceae), green algae (Chlorophyta), and streptophyte algae, we present a detailed critical update on the available literature which is adapted to the present classification of these taxa and may serve as a tool for future work. From the data, we conclude that, actually, development of complex multicellularity correlates with symplasmic connectivity in many algal taxa, but there might be alternative routes. Furthermore, we deduce a four-step process towards the evolution of canonical plasmodesmata and demonstrate similarity of plasmodesmata in streptophyte algae and land plants with respect to the occurrence of an ER component. Finally, we discuss the urgent need for functional investigations and molecular work on cell connections in algal organisms.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| | | | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| |
Collapse
|
28
|
Derdak A, Jędrzejowska I, Mąkol J. An overview of chelicerate ovaries, with special reference to mites - myths and facts. Micron 2023; 167:103417. [PMID: 36773594 DOI: 10.1016/j.micron.2023.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/23/2023]
Abstract
In arthropods of the subphylum Chelicerata a panoistic ovary, in which all germline cells differentiate into oocytes, prevails. Among the chelicerates, mites are believed to show a great variety of the structure of the female gonads. In general, the knowledge of the ovarian structure in mites is fragmentary and patchy. In both evolutionary lines, Acariformes and Parasitiformes, apart from the panoistic ovary, the meroistic ovary, in which the oocytes grow supported by their sibling cells, the nurse cells, occurs. The presence of the meroistic ovary is considered an apomorphic state. Previous studies revealed a various structure of the meroistic ovary in different mite taxa, and the differences came down, inter alia, to a different number and location of the nurse cells in relation to the oocytes. Here we provide a comprehensive review of the structure of the Chelicerata ovary, with special reference to the mite ovary. We also provide our preliminary results of the analysis of ovarian structure in two representatives of terrestrial Parasitengona (Acariformes), Allothrombium fuliginosum (Trombidiidae) and Erythraeus cinereus (Erythraeidae), performed using light, confocal and electron transmission microscopy. The analyses allowed for verification of data published before. In A. fuliginosum we showed the presence of the nurse cells in the ovarian wall, so the ovary should be classified as meroistic. In meroistic ovary of E. cinereus we found that each oocyte is connected to several mononucleated nurse cells. The verification of literature data and broadening the knowledge of the structure of the female gonad in mites, will result in estimating the usefulness of the ovary traits in phylogenetic analyses and will provide the basis for inference about the directions of evolutionary changes of female gonad at lower systematic levels.
Collapse
Affiliation(s)
- Anna Derdak
- Department of Animal Developmental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland,.
| | - Izabela Jędrzejowska
- Department of Animal Developmental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Joanna Mąkol
- Department of Invertebrate Systematics and Ecology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland
| |
Collapse
|
29
|
di Pietro F, Osswald M, De Las Heras JM, Cristo I, López-Gay J, Wang Z, Pelletier S, Gaugué I, Leroy A, Martin C, Morais-de-Sá E, Bellaïche Y. Systematic analysis of RhoGEF/GAP localizations uncovers regulators of mechanosensing and junction formation during epithelial cell division. Curr Biol 2023; 33:858-874.e7. [PMID: 36917931 PMCID: PMC10017266 DOI: 10.1016/j.cub.2023.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023]
Abstract
Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José M De Las Heras
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Inês Cristo
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Jesús López-Gay
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Zhimin Wang
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Isabelle Gaugué
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Adrien Leroy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Charlotte Martin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
30
|
Price KL, Tharakan DM, Cooley L. Evolutionarily conserved midbody remodeling precedes ring canal formation during gametogenesis. Dev Cell 2023; 58:474-488.e5. [PMID: 36898376 PMCID: PMC10059090 DOI: 10.1016/j.devcel.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023]
Abstract
How canonical cytokinesis is altered during germ cell division to produce stable intercellular bridges, called "ring canals," is poorly understood. Here, using time-lapse imaging in Drosophila, we observe that ring canal formation occurs through extensive remodeling of the germ cell midbody, a structure classically associated with its function in recruiting abscission-regulating proteins in complete cytokinesis. Germ cell midbody cores reorganize and join the midbody ring rather than being discarded, and this transition is accompanied by changes in centralspindlin dynamics. The midbody-to-ring canal transformation is conserved in the Drosophila male and female germlines and during mouse and Hydra spermatogenesis. In Drosophila, ring canal formation depends on Citron kinase function to stabilize the midbody, similar to its role during somatic cell cytokinesis. Our results provide important insights into the broader functions of incomplete cytokinesis events across biological systems, such as those observed during development and disease states.
Collapse
Affiliation(s)
- Kari L Price
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Dyuthi M Tharakan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
Świątek P, Novo M, Marchán DF, Gajda Ł, Małota K, Urbisz AZ. Ovary micromorphology in hormogastrid earthworms with a particular emphasis on the organization of the germline cysts. ZOOLOGY 2023; 158:126081. [PMID: 36871333 DOI: 10.1016/j.zool.2023.126081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
There is a gap in our knowledge of microorganization and the functioning of ovaries in earthworms (Crassiclitellata) and allied taxa. Recent analyses of ovaries in microdriles and leech-like taxa revealed that they are composed of syncytial germline cysts accompanied by somatic cells. Although the pattern of cyst organization is conserved across Clitellata - each cell is connected via one intercellular bridge (ring canal) to the central and anuclear cytoplasmic mass termed the cytophore - this system shows high evolutionary plasticity. In Crassiclitellata, only the gross morphology of ovaries and their segmental localization is well known, whereas ultrastructural data are limited to lumbricids like Dendrobaena veneta. Here we present the first report about ovarian histology and ultrastructure in Hormogastridae, a small family of earthworms inhabiting the western parts of the Mediterranean sea basin. We analyzed three species from three different genera and showed that the pattern of ovary organization is the same within this taxon. Ovaries are cone-like, with a broad part connected to the septum and a narrow distal end forming an egg string. Ovaries are composed of numerous cysts uniting a small number of cells, eight in Carpetania matritensis. There is a gradient of cysts development along the long ovary axis, and three zones can be distinguished. In zone I, cysts develop in complete synchrony and unite oogonia and early meiotic cells (till diplotene). Then (zone II), the synchrony is lost, and one cell (prospective oocyte) grows faster than the rest (prospective nurse cells). In zone III, oocytes pass the growth phase and gather nutrients; at this time, their contact with the cytophore is lost. Nurse cells grow slightly, eventually die via apoptosis, and are removed by coelomocytes. The most characteristic feature of hormogastrid germ cysts is the inconspicuous cytophore in the form of thread-like thin cytoplasmic strands (reticular cytophore). We found that the ovary organization in studied hormogastrids is very similar to that described for D. veneta and propose the term "Dendrobaena" type of ovaries. We expect the same microorganization of ovaries will be found in other hormogastrids and lumbricids.
Collapse
Affiliation(s)
- Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Marta Novo
- Departmento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Nováis, 12, 28040 Madrid, Spain
| | - Daniel Fernández Marchán
- Departmento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Nováis, 12, 28040 Madrid, Spain; UMR, CEFE, CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | - Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Karol Małota
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Anna Z Urbisz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
32
|
Diegmiller R, Imran Alsous J, Li D, Yamashita YM, Shvartsman SY. Fusome topology and inheritance during insect gametogenesis. PLoS Comput Biol 2023; 19:e1010875. [PMID: 36821548 PMCID: PMC9949678 DOI: 10.1371/journal.pcbi.1010875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/16/2023] [Indexed: 02/24/2023] Open
Abstract
From insects to mammals, oocytes and sperm develop within germline cysts comprising cells connected by intercellular bridges (ICBs). In numerous insects, formation of the cyst is accompanied by growth of the fusome-a membranous organelle that permeates the cyst. Fusome composition and function are best understood in Drosophila melanogaster: during oogenesis, the fusome dictates cyst topology and size and facilitates oocyte selection, while during spermatogenesis, the fusome synchronizes the cyst's response to DNA damage. Despite its distinct and sex-specific roles during insect gametogenesis, elucidating fusome growth and inheritance in females and its structure and connectivity in males has remained challenging. Here, we take advantage of advances in three-dimensional (3D) confocal microscopy and computational image processing tools to reconstruct the topology, growth, and distribution of the fusome in both sexes. In females, our experimental findings inform a theoretical model for fusome assembly and inheritance and suggest that oocyte selection proceeds through an 'equivalency with a bias' mechanism. In males, we find that cell divisions can deviate from the maximally branched pattern observed in females, leading to greater topological variability. Our work consolidates existing disjointed experimental observations and contributes a readily generalizable computational approach for quantitative studies of gametogenesis within and across species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Jasmin Imran Alsous
- Flatiron Institute, Simons Foundation, New York, New York, United States of America
| | - Duojia Li
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Flatiron Institute, Simons Foundation, New York, New York, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
33
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 485] [Impact Index Per Article: 161.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
34
|
Bayer EM. Divide and connect: divorce by mutual consent, keeping in touch by desideratum. C R Biol 2022; 345:7-14. [PMID: 36847461 DOI: 10.5802/crbiol.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022]
Abstract
Cell division is fundamental for living organisms, sustaining their growth and development. During cell division a single mother cell will duplicate its genome and organelles, and give rise to two independent entities that will eventually split apart in a tightly regulated process called abscission or the final-cut. In multicellular organisms, newly born daughter cells split apart while they simultaneously need to maintain contact for intercellular communication. In this mini-review, I discuss this fascinating paradox of how cells across kingdoms combine the need to divide with the need to connect.
Collapse
|
35
|
Aguilera A, Distéfano A, Jauzein C, Correa-Aragunde N, Martinez D, Martin MV, Sueldo DJ. Do photosynthetic cells communicate with each other during cell death? From cyanobacteria to vascular plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7219-7242. [PMID: 36179088 DOI: 10.1093/jxb/erac363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
As in metazoans, life in oxygenic photosynthetic organisms relies on the accurate regulation of cell death. During development and in response to the environment, photosynthetic cells activate and execute cell death pathways that culminate in the death of a specific group of cells, a process known as regulated cell death (RCD). RCD control is instrumental, as its misregulation can lead to growth penalties and even the death of the entire organism. Intracellular molecules released during cell demise may act as 'survival' or 'death' signals and control the propagation of cell death to surrounding cells, even in unicellular organisms. This review explores different signals involved in cell-cell communication and systemic signalling in photosynthetic organisms, in particular Ca2+, reactive oxygen species, lipid derivates, nitric oxide, and eATP. We discuss their possible mode-of-action as either 'survival' or 'death' molecules and their potential role in determining cell fate in neighbouring cells. By comparing the knowledge available across the taxonomic spectrum of this coherent phylogenetic group, from cyanobacteria to vascular plants, we aim at contributing to the identification of conserved mechanisms that control cell death propagation in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Cécile Jauzein
- Ifremer, Centre de Brest, DYNECO-Pelagos, F-29280 Plouzané, France
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Dana Martinez
- Instituto de Fisiología Vegetal (INFIVE-CONICET), Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Universidad Nacional de Mar del Plata,7600 Mar del Plata, Argentina
| | - Daniela J Sueldo
- Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
36
|
Gerhold AR, Labbé JC, Singh R. Uncoupling cell division and cytokinesis during germline development in metazoans. Front Cell Dev Biol 2022; 10:1001689. [PMID: 36407108 PMCID: PMC9669650 DOI: 10.3389/fcell.2022.1001689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The canonical eukaryotic cell cycle ends with cytokinesis, which physically divides the mother cell in two and allows the cycle to resume in the newly individualized daughter cells. However, during germline development in nearly all metazoans, dividing germ cells undergo incomplete cytokinesis and germ cells stay connected by intercellular bridges which allow the exchange of cytoplasm and organelles between cells. The near ubiquity of incomplete cytokinesis in animal germ lines suggests that this is an ancient feature that is fundamental for the development and function of this tissue. While cytokinesis has been studied for several decades, the mechanisms that enable regulated incomplete cytokinesis in germ cells are only beginning to emerge. Here we review the current knowledge on the regulation of germ cell intercellular bridge formation, focusing on findings made using mouse, Drosophila melanogaster and Caenorhabditis elegans as experimental systems.
Collapse
Affiliation(s)
- Abigail R. Gerhold
- Department of Biology, McGill University, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Succ. Centre-ville, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Ramya Singh
- Department of Biology, McGill University, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
| |
Collapse
|
37
|
Singh J, Imran Alsous J, Garikipati K, Shvartsman SY. Mechanics of stabilized intercellular bridges. Biophys J 2022; 121:3162-3171. [PMID: 35778841 PMCID: PMC9463629 DOI: 10.1016/j.bpj.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022] Open
Abstract
Numerous engineered and natural systems form through reinforcement and stabilization of a deformed configuration that was generated by a transient force. An important class of such structures arises during gametogenesis, when a dividing cell undergoes incomplete cytokinesis, giving rise to daughter cells that remain connected through a stabilized intercellular bridge (ICB). ICBs can form through arrest of the contractile cytokinetic furrow and its subsequent stabilization. Despite knowledge of the molecular components, the mechanics underlying robust ICB assembly and the interplay between ring contractility and stiffening are poorly understood. Here, we report joint experimental and theoretical work that explores the physics underlying robust ICB assembly. We develop a continuum mechanics model that reveals the minimal requirements for the formation of stable ICBs, and validate the model's equilibrium predictions through a tabletop experimental analog. With insight into the equilibrium states, we turn to the dynamics: we demonstrate that contractility and stiffening are in dynamic competition and that the time intervals of their action must overlap to ensure assembly of ICBs of biologically observed proportions. Our results highlight a mechanism in which deformation and remodeling are tightly coordinated-one that is applicable to several mechanics-based applications and is a common theme in biological systems spanning several length scales.
Collapse
Affiliation(s)
- Jaspreet Singh
- Center for Computational Biology, Flatiron Institute, New York, New York
| | | | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, Michigan.
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|