1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Jamali S, Bagur S, Bremont E, Van Kerkoerle T, Dehaene S, Bathellier B. Parallel mechanisms signal a hierarchy of sequence structure violations in the auditory cortex. eLife 2024; 13:RP102702. [PMID: 39636091 PMCID: PMC11620744 DOI: 10.7554/elife.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The brain predicts regularities in sensory inputs at multiple complexity levels, with neuronal mechanisms that remain elusive. Here, we monitored auditory cortex activity during the local-global paradigm, a protocol nesting different regularity levels in sound sequences. We observed that mice encode local predictions based on stimulus occurrence and stimulus transition probabilities, because auditory responses are boosted upon prediction violation. This boosting was due to both short-term adaptation and an adaptation-independent surprise mechanism resisting anesthesia. In parallel, and only in wakefulness, VIP interneurons responded to the omission of the locally expected sound repeat at the sequence ending, thus providing a chunking signal potentially useful for establishing global sequence structure. When this global structure was violated, by either shortening the sequence or ending it with a locally expected but globally unexpected sound transition, activity slightly increased in VIP and PV neurons, respectively. Hence, distinct cellular mechanisms predict different regularity levels in sound sequences.
Collapse
Affiliation(s)
- Sara Jamali
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnectParisFrance
| | - Sophie Bagur
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnectParisFrance
| | - Enora Bremont
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnectParisFrance
| | - Timo Van Kerkoerle
- Université Paris Saclay, INSERM, CEA, Cognitive Neuroimaging Unit, NeuroSpin CenterParisFrance
- Collège de France, PSL UniversityParisFrance
| | - Stanislas Dehaene
- Université Paris Saclay, INSERM, CEA, Cognitive Neuroimaging Unit, NeuroSpin CenterParisFrance
- Collège de France, PSL UniversityParisFrance
| | - Brice Bathellier
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnectParisFrance
| |
Collapse
|
3
|
Tsukano H, Garcia MM, Dandu PR, Kato HK. Predictive filtering of sensory response via orbitofrontal top-down input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613562. [PMID: 39345607 PMCID: PMC11429993 DOI: 10.1101/2024.09.17.613562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Habituation is a crucial sensory filtering mechanism whose dysregulation can lead to a continuously intense world in disorders with sensory overload. While habituation is considered to require top-down predictive signaling to suppress irrelevant inputs, the exact brain loci storing the internal predictive model and the circuit mechanisms of sensory filtering remain unclear. We found that daily neural habituation in the primary auditory cortex (A1) was reversed by inactivation of the orbitofrontal cortex (OFC). Top-down projections from the ventrolateral OFC, but not other frontal areas, carried predictive signals that grew with daily sound experience and suppressed A1 via somatostatin-expressing inhibitory neurons. Thus, prediction signals from the OFC cancel out behaviorally irrelevant anticipated stimuli by generating their "negative images" in sensory cortices.
Collapse
Affiliation(s)
- Hiroaki Tsukano
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Michellee M. Garcia
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Pranathi R. Dandu
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Hiroyuki K. Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear; Boston, 02114, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School; Boston, 02114, USA
| |
Collapse
|
4
|
Furutachi S, Franklin AD, Aldea AM, Mrsic-Flogel TD, Hofer SB. Cooperative thalamocortical circuit mechanism for sensory prediction errors. Nature 2024; 633:398-406. [PMID: 39198646 PMCID: PMC11390482 DOI: 10.1038/s41586-024-07851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
The brain functions as a prediction machine, utilizing an internal model of the world to anticipate sensations and the outcomes of our actions. Discrepancies between expected and actual events, referred to as prediction errors, are leveraged to update the internal model and guide our attention towards unexpected events1-10. Despite the importance of prediction-error signals for various neural computations across the brain, surprisingly little is known about the neural circuit mechanisms responsible for their implementation. Here we describe a thalamocortical disinhibitory circuit that is required for generating sensory prediction-error signals in mouse primary visual cortex (V1). We show that violating animals' predictions by an unexpected visual stimulus preferentially boosts responses of the layer 2/3 V1 neurons that are most selective for that stimulus. Prediction errors specifically amplify the unexpected visual input, rather than representing non-specific surprise or difference signals about how the visual input deviates from the animal's predictions. This selective amplification is implemented by a cooperative mechanism requiring thalamic input from the pulvinar and cortical vasoactive-intestinal-peptide-expressing (VIP) inhibitory interneurons. In response to prediction errors, VIP neurons inhibit a specific subpopulation of somatostatin-expressing inhibitory interneurons that gate excitatory pulvinar input to V1, resulting in specific pulvinar-driven response amplification of the most stimulus-selective neurons in V1. Therefore, the brain prioritizes unpredicted sensory information by selectively increasing the salience of unpredicted sensory features through the synergistic interaction of thalamic input and neocortical disinhibitory circuits.
Collapse
Affiliation(s)
- Shohei Furutachi
- Sainsbury Wellcome Centre, University College London, London, UK.
| | | | - Andreea M Aldea
- Sainsbury Wellcome Centre, University College London, London, UK
| | | | - Sonja B Hofer
- Sainsbury Wellcome Centre, University College London, London, UK.
| |
Collapse
|
5
|
Harmon TC, Madlon-Kay S, Pearson J, Mooney R. Vocalization modulates the mouse auditory cortex even in the absence of hearing. Cell Rep 2024; 43:114611. [PMID: 39116205 PMCID: PMC11720499 DOI: 10.1016/j.celrep.2024.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Vocal communication depends on distinguishing self-generated vocalizations from other sounds. Vocal motor corollary discharge (CD) signals are thought to support this ability by adaptively suppressing auditory cortical responses to auditory feedback. One challenge is that vocalizations, especially those produced during courtship and other social interactions, are accompanied by other movements and are emitted during a state of heightened arousal, factors that could potentially modulate auditory cortical activity. Here, we monitor auditory cortical activity, ultrasonic vocalizations (USVs), and other non-vocal courtship behaviors in a head-fixed male mouse while he interacts with a female mouse. This approach reveals a vocalization-specific signature in the auditory cortex that suppresses the activity of USV playback-excited neurons, emerges before vocal onset, and scales with USV band power. Notably, this vocal modulatory signature is also present in the auditory cortex of congenitally deaf mice, revealing an adaptive vocal CD signal that manifests independently of auditory feedback or auditory experience.
Collapse
Affiliation(s)
- Thomas C Harmon
- Department of Neurobiology, Duke University, Durham, NC 27710, USA.
| | - Seth Madlon-Kay
- Department of Neurobiology, Duke University, Durham, NC 27710, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| | - John Pearson
- Department of Neurobiology, Duke University, Durham, NC 27710, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA; Department of Biostatistics & Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
6
|
Wang B, Audette NJ, Schneider DM, Aljadeff J. Desegregation of neuronal predictive processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606684. [PMID: 39149380 PMCID: PMC11326200 DOI: 10.1101/2024.08.05.606684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Neural circuits construct internal 'world-models' to guide behavior. The predictive processing framework posits that neural activity signaling sensory predictions and concurrently computing prediction-errors is a signature of those internal models. Here, to understand how the brain generates predictions for complex sensorimotor signals, we investigate the emergence of high-dimensional, multi-modal predictive representations in recurrent networks. We find that robust predictive processing arises in a network with loose excitatory/inhibitory balance. Contrary to previous proposals of functionally specialized cell-types, the network exhibits desegregation of stimulus and prediction-error representations. We confirmed these model predictions by experimentally probing predictive-coding circuits using a rich stimulus-set to violate learned expectations. When constrained by data, our model further reveals and makes concrete testable experimental predictions for the distinct functional roles of excitatory and inhibitory neurons, and of neurons in different layers along a laminar hierarchy, in computing multi-modal predictions. These results together imply that in natural conditions, neural representations of internal models are highly distributed, yet structured to allow flexible readout of behaviorally-relevant information. The generality of our model advances the understanding of computation of internal models across species, by incorporating different types of predictive computations into a unified framework.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - David M Schneider
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Johnatan Aljadeff
- Department of Neurobiology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
7
|
Holey BE, Schneider DM. Sensation and expectation are embedded in mouse motor cortical activity. Cell Rep 2024; 43:114396. [PMID: 38923464 PMCID: PMC11304474 DOI: 10.1016/j.celrep.2024.114396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
During behavior, the motor cortex sends copies of motor-related signals to sensory cortices. Here, we combine closed-loop behavior with large-scale physiology, projection-pattern-specific recordings, and circuit perturbations to show that neurons in mouse secondary motor cortex (M2) encode sensation and are influenced by expectation. When a movement unexpectedly produces a sound, M2 becomes dominated by sound-evoked activity. Sound responses in M2 are inherited partially from the auditory cortex and are routed back to the auditory cortex, providing a path for the reciprocal exchange of sensory-motor information during behavior. When the acoustic consequences of a movement become predictable, M2 responses to self-generated sounds are selectively gated off. These changes in single-cell responses are reflected in population dynamics, which are influenced by both sensation and expectation. Together, these findings reveal the embedding of sensory and expectation signals in motor cortical activity.
Collapse
Affiliation(s)
- Brooke E Holey
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Medical Center, New York, NY 10016, USA
| | - David M Schneider
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
8
|
Rao RPN. A sensory-motor theory of the neocortex. Nat Neurosci 2024; 27:1221-1235. [PMID: 38937581 DOI: 10.1038/s41593-024-01673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/26/2024] [Indexed: 06/29/2024]
Abstract
Recent neurophysiological and neuroanatomical studies suggest a close interaction between sensory and motor processes across the neocortex. Here, I propose that the neocortex implements active predictive coding (APC): each cortical area estimates both latent sensory states and actions (including potentially abstract actions internal to the cortex), and the cortex as a whole predicts the consequences of actions at multiple hierarchical levels. Feedback from higher areas modulates the dynamics of state and action networks in lower areas. I show how the same APC architecture can explain (1) how we recognize an object and its parts using eye movements, (2) why perception seems stable despite eye movements, (3) how we learn compositional representations, for example, part-whole hierarchies, (4) how complex actions can be planned using simpler actions, and (5) how we form episodic memories of sensory-motor experiences and learn abstract concepts such as a family tree. I postulate a mapping of the APC model to the laminar architecture of the cortex and suggest possible roles for cortico-cortical and cortico-subcortical pathways.
Collapse
Affiliation(s)
- Rajesh P N Rao
- Center for Neurotechnology, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Drieu C, Zhu Z, Wang Z, Fuller K, Wang A, Elnozahy S, Kuchibhotla K. Rapid emergence of latent knowledge in the sensory cortex drives learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597946. [PMID: 38915657 PMCID: PMC11195094 DOI: 10.1101/2024.06.10.597946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Rapid learning confers significant advantages to animals in ecological environments. Despite the need for speed, animals appear to only slowly learn to associate rewarded actions with predictive cues1-4. This slow learning is thought to be supported by a gradual expansion of predictive cue representation in the sensory cortex2,5. However, evidence is growing that animals learn more rapidly than classical performance measures suggest6-8, challenging the prevailing model of sensory cortical plasticity. Here, we investigated the relationship between learning and sensory cortical representations. We trained mice on an auditory go/no-go task that dissociated the rapid acquisition of task contingencies (learning) from its slower expression (performance)7. Optogenetic silencing demonstrated that the auditory cortex (AC) drives both rapid learning and slower performance gains but becomes dispensable at expert. Rather than enhancement or expansion of cue representations9, two-photon calcium imaging of AC excitatory neurons throughout learning revealed two higher-order signals that were causal to learning and performance. First, a reward prediction (RP) signal emerged rapidly within tens of trials, was present after action-related errors only early in training, and faded at expert levels. Strikingly, silencing at the time of the RP signal impaired rapid learning, suggesting it serves an associative and teaching role. Second, a distinct cell ensemble encoded and controlled licking suppression that drove the slower performance improvements. These two ensembles were spatially clustered but uncoupled from underlying sensory representations, indicating a higher-order functional segregation within AC. Our results reveal that the sensory cortex manifests higher-order computations that separably drive rapid learning and slower performance improvements, reshaping our understanding of the fundamental role of the sensory cortex.
Collapse
Affiliation(s)
- Céline Drieu
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA
| | - Ziyi Zhu
- Department of Neuroscience, School of Medicine, Johns Hopkins University, MD, USA
| | - Ziyun Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kylie Fuller
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Aaron Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Present address: Sainsbury Wellcome Centre, London, UK
| | - Kishore Kuchibhotla
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, MD, USA
| |
Collapse
|
10
|
Steinfeld R, Tacão-Monteiro A, Renart A. Differential representation of sensory information and behavioral choice across layers of the mouse auditory cortex. Curr Biol 2024; 34:2200-2211.e6. [PMID: 38733991 DOI: 10.1016/j.cub.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
The activity of neurons in sensory areas sometimes covaries with upcoming choices in decision-making tasks. However, the prevalence, causal origin, and functional role of choice-related activity remain controversial. Understanding the circuit-logic of decision signals in sensory areas will require understanding their laminar specificity, but simultaneous recordings of neural activity across the cortical layers in forced-choice discrimination tasks have not yet been performed. Here, we describe neural activity from such recordings in the auditory cortex of mice during a frequency discrimination task with delayed report, which, as we show, requires the auditory cortex. Stimulus-related information was widely distributed across layers but disappeared very quickly after stimulus offset. Choice selectivity emerged toward the end of the delay period-suggesting a top-down origin-but only in the deep layers. Early stimulus-selective and late choice-selective deep neural ensembles were correlated, suggesting that the choice-selective signal fed back to the auditory cortex is not just action specific but develops as a consequence of the sensory-motor contingency imposed by the task.
Collapse
Affiliation(s)
- Raphael Steinfeld
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| | - André Tacão-Monteiro
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Alfonso Renart
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
11
|
Thomas ER, Haarsma J, Nicholson J, Yon D, Kok P, Press C. Predictions and errors are distinctly represented across V1 layers. Curr Biol 2024; 34:2265-2271.e4. [PMID: 38697110 DOI: 10.1016/j.cub.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 05/04/2024]
Abstract
Popular accounts of mind and brain propose that the brain continuously forms predictions about future sensory inputs and combines predictions with inputs to determine what we perceive.1,2,3,4,5,6 Under "predictive processing" schemes, such integration is supported by the hierarchical organization of the cortex, whereby feedback connections communicate predictions from higher-level deep layers to agranular (superficial and deep) lower-level layers.7,8,9,10 Predictions are compared with input to compute the "prediction error," which is transmitted up the hierarchy from superficial layers of lower cortical regions to the middle layers of higher areas, to update higher-level predictions until errors are reconciled.11,12,13,14,15 In the primary visual cortex (V1), predictions have thereby been proposed to influence representations in deep layers while error signals may be computed in superficial layers. Despite the framework's popularity, there is little evidence for these functional distinctions because, to our knowledge, unexpected sensory events have not previously been presented in human laminar paradigms to contrast against expected events. To this end, this 7T fMRI study contrasted V1 responses to expected (75% likely) and unexpected (25%) Gabor orientations. Multivariate decoding analyses revealed an interaction between expectation and layer, such that expected events could be decoded with comparable accuracy across layers, while unexpected events could only be decoded in superficial laminae. Although these results are in line with these accounts that have been popular for decades, such distinctions have not previously been demonstrated in humans. We discuss how both prediction and error processes may operate together to shape our unitary perceptual experiences.
Collapse
Affiliation(s)
- Emily R Thomas
- Neuroscience Institute, New York University Medical Center, 435 East 30(th) Street, New York 10016, USA; Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.
| | - Joost Haarsma
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| | - Jessica Nicholson
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Daniel Yon
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Peter Kok
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| | - Clare Press
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK; Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H 0AP, UK.
| |
Collapse
|
12
|
Zobeiri OA, Cullen KE. Cerebellar Purkinje cells in male macaques combine sensory and motor information to predict the sensory consequences of active self-motion. Nat Commun 2024; 15:4003. [PMID: 38734715 PMCID: PMC11088633 DOI: 10.1038/s41467-024-48376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Accurate perception and behavior rely on distinguishing sensory signals arising from unexpected events from those originating from our own voluntary actions. In the vestibular system, sensory input that is the consequence of active self-motion is canceled early at the first central stage of processing to ensure postural and perceptual stability. However, the source of the required cancellation signal was unknown. Here, we show that the cerebellum combines sensory and motor-related information to predict the sensory consequences of active self-motion. Recordings during attempted but unrealized head movements in two male rhesus monkeys, revealed that the motor-related signals encoded by anterior vermis Purkinje cells explain their altered sensitivity to active versus passive self-motion. Further, a model combining responses from ~40 Purkinje cells accounted for the cancellation observed in early vestibular pathways. These findings establish how cerebellar Purkinje cells predict sensory outcomes of self-movements, resolving a long-standing issue of sensory signal suppression during self-motion.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Kilteni K, Ehrsson HH. Dynamic changes in somatosensory and cerebellar activity mediate temporal recalibration of self-touch. Commun Biol 2024; 7:522. [PMID: 38702520 PMCID: PMC11068753 DOI: 10.1038/s42003-024-06188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
An organism's ability to accurately anticipate the sensations caused by its own actions is crucial for a wide range of behavioral, perceptual, and cognitive functions. Notably, the sensorimotor expectations produced when touching one's own body attenuate such sensations, making them feel weaker and less ticklish and rendering them easily distinguishable from potentially harmful touches of external origin. How the brain learns and keeps these action-related sensory expectations updated is unclear. Here we employ psychophysics and functional magnetic resonance imaging to pinpoint the behavioral and neural substrates of dynamic recalibration of expected temporal delays in self-touch. Our psychophysical results reveal that self-touches are less attenuated after systematic exposure to delayed self-generated touches, while responses in the contralateral somatosensory cortex that normally distinguish between delayed and nondelayed self-generated touches become indistinguishable. During the exposure, the ipsilateral anterior cerebellum shows increased activity, supporting its proposed role in recalibrating sensorimotor predictions. Moreover, responses in the cingulate areas gradually increase, suggesting that as delay adaptation progresses, the nondelayed self-touches trigger activity related to cognitive conflict. Together, our results show that sensorimotor predictions in the simplest act of touching one's own body are upheld by a sophisticated and flexible neural mechanism that maintains them accurate in time.
Collapse
Affiliation(s)
- Konstantina Kilteni
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Clayton KK, Stecyk KS, Guo AA, Chambers AR, Chen K, Hancock KE, Polley DB. Sound elicits stereotyped facial movements that provide a sensitive index of hearing abilities in mice. Curr Biol 2024; 34:1605-1620.e5. [PMID: 38492568 PMCID: PMC11043000 DOI: 10.1016/j.cub.2024.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
Sound elicits rapid movements of muscles in the face, ears, and eyes that protect the body from injury and trigger brain-wide internal state changes. Here, we performed quantitative facial videography from mice resting atop a piezoelectric force plate and observed that broadband sounds elicited rapid and stereotyped facial twitches. Facial motion energy (FME) adjacent to the whisker array was 30 dB more sensitive than the acoustic startle reflex and offered greater inter-trial and inter-animal reliability than sound-evoked pupil dilations or movement of other facial and body regions. FME tracked the low-frequency envelope of broadband sounds, providing a means to study behavioral discrimination of complex auditory stimuli, such as speech phonemes in noise. Approximately 25% of layer 5-6 units in the auditory cortex (ACtx) exhibited firing rate changes during facial movements. However, FME facilitation during ACtx photoinhibition indicated that sound-evoked facial movements were mediated by a midbrain pathway and modulated by descending corticofugal input. FME and auditory brainstem response (ABR) thresholds were closely aligned after noise-induced sensorineural hearing loss, yet FME growth slopes were disproportionately steep at spared frequencies, reflecting a central plasticity that matched commensurate changes in ABR wave 4. Sound-evoked facial movements were also hypersensitive in Ptchd1 knockout mice, highlighting the use of FME for identifying sensory hyper-reactivity phenotypes after adult-onset hyperacusis and inherited deficiencies in autism risk genes. These findings present a sensitive and integrative measure of hearing while also highlighting that even low-intensity broadband sounds can elicit a complex mixture of auditory, motor, and reafferent somatosensory neural activity.
Collapse
Affiliation(s)
- Kameron K Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA.
| | - Kamryn S Stecyk
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Anna A Guo
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Anna R Chambers
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Ke Chen
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Morandell K, Yin A, Triana Del Rio R, Schneider DM. Movement-Related Modulation in Mouse Auditory Cortex Is Widespread Yet Locally Diverse. J Neurosci 2024; 44:e1227232024. [PMID: 38286628 PMCID: PMC10941236 DOI: 10.1523/jneurosci.1227-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Neurons in the mouse auditory cortex are strongly influenced by behavior, including both suppression and enhancement of sound-evoked responses during movement. The mouse auditory cortex comprises multiple fields with different roles in sound processing and distinct connectivity to movement-related centers of the brain. Here, we asked whether movement-related modulation in male mice might differ across auditory cortical fields, thereby contributing to the heterogeneity of movement-related modulation at the single-cell level. We used wide-field calcium imaging to identify distinct cortical fields and cellular-resolution two-photon calcium imaging to visualize the activity of layer 2/3 excitatory neurons within each field. We measured each neuron's responses to three sound categories (pure tones, chirps, and amplitude-modulated white noise) as mice rested and ran on a non-motorized treadmill. We found that individual neurons in each cortical field typically respond to just one sound category. Some neurons are only active during rest and others during locomotion, and those that are responsive across conditions retain their sound-category tuning. The effects of locomotion on sound-evoked responses vary at the single-cell level, with both suppression and enhancement of neural responses, and the net modulatory effect of locomotion is largely conserved across cortical fields. Movement-related modulation in auditory cortex also reflects more complex behavioral patterns, including instantaneous running speed and nonlocomotor movements such as grooming and postural adjustments, with similar patterns seen across all auditory cortical fields. Our findings underscore the complexity of movement-related modulation throughout the mouse auditory cortex and indicate that movement-related modulation is a widespread phenomenon.
Collapse
Affiliation(s)
- Karin Morandell
- Center for Neural Science, New York University, New York, New York 10012
| | - Audrey Yin
- Center for Neural Science, New York University, New York, New York 10012
| | | | - David M Schneider
- Center for Neural Science, New York University, New York, New York 10012
| |
Collapse
|
16
|
Zhou W, Schneider DM. Learning within a sensory-motor circuit links action to expected outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579532. [PMID: 38370770 PMCID: PMC10871315 DOI: 10.1101/2024.02.08.579532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The cortex integrates sound- and movement-related signals to predict the acoustic consequences of behavior and detect violations from expectations. Although expectation- and prediction-related activity has been observed in the auditory cortex of humans, monkeys, and mice during vocal and non-vocal acoustic behaviors, the specific cortical circuitry required for forming memories, recalling expectations, and making predictions remains unknown. By combining closed-loop behavior, electrophysiological recordings, longitudinal pharmacology, and targeted optogenetic circuit activation, we identify a cortical locus for the emergence of expectation and error signals. Movement-related expectation signals and sound-related error signals emerge in parallel in the auditory cortex and are concentrated in largely distinct neurons, consistent with a compartmentalization of different prediction-related computations. On a trial-by-trial basis, expectation and error signals are correlated in auditory cortex, consistent with a local circuit implementation of an internal model. Silencing the auditory cortex during motor-sensory learning prevents the emergence of expectation signals and error signals, revealing the auditory cortex as a necessary node for learning to make predictions. Prediction-like signals can be experimentally induced in the auditory cortex, even in the absence of behavioral experience, by pairing optogenetic motor cortical activation with sound playback, indicating that cortical circuits are sufficient for movement-like predictive processing. Finally, motor-sensory experience realigns the manifold dimensions in which auditory cortical populations encode movement and sound, consistent with predictive processing. These findings show that prediction-related signals reshape auditory cortex dynamics during behavior and reveal a cortical locus for the emergence of expectation and error.
Collapse
Affiliation(s)
- WenXi Zhou
- Center for Neural Science, New York University, New York, NY, 10012
| | | |
Collapse
|
17
|
Han S, Helmchen F. Behavior-relevant top-down cross-modal predictions in mouse neocortex. Nat Neurosci 2024; 27:298-308. [PMID: 38177341 DOI: 10.1038/s41593-023-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Animals adapt to a constantly changing world by predicting their environment and the consequences of their actions. The predictive coding hypothesis proposes that the brain generates predictions and continuously compares them with sensory inputs to guide behavior. However, how the brain reconciles conflicting top-down predictions and bottom-up sensory information remains unclear. To address this question, we simultaneously imaged neuronal populations in the mouse somatosensory barrel cortex and posterior parietal cortex during an auditory-cued texture discrimination task. In mice that had learned the task with fixed tone-texture matching, the presentation of mismatched pairing induced conflicts between tone-based texture predictions and actual texture inputs. When decisions were based on the predicted rather than the actual texture, top-down information flow was dominant and texture representations in both areas were modified, whereas dominant bottom-up information flow led to correct representations and behavioral choice. Our findings provide evidence for hierarchical predictive coding in the mouse neocortex.
Collapse
Affiliation(s)
- Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Job X, Kilteni K. Action does not enhance but attenuates predicted touch. eLife 2023; 12:e90912. [PMID: 38099521 PMCID: PMC10723797 DOI: 10.7554/elife.90912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
Dominant motor control theories propose that the brain predicts and attenuates the somatosensory consequences of actions, referred to as somatosensory attenuation. Support comes from psychophysical and neuroimaging studies showing that touch applied on a passive hand elicits attenuated perceptual and neural responses if it is actively generated by one's other hand, compared to an identical touch from an external origin. However, recent experimental findings have challenged this view by providing psychophysical evidence that the perceived intensity of touch on the passive hand is enhanced if the active hand does not receive touch simultaneously with the passive hand (somatosensory enhancement) and by further attributing attenuation to the double tactile stimulation of the hands upon contact. Here, we directly contrasted the hypotheses of the attenuation and enhancement models regarding how action influences somatosensory perception by manipulating whether the active hand contacts the passive hand. We further assessed somatosensory perception in the absence of any predictive cues in a condition that turned out to be essential for interpreting the experimental findings. In three pre-registered experiments, we demonstrate that action does not enhance the predicted touch (Experiment 1), that the previously reported 'enhancement' effects are driven by the reference condition used (Experiment 2), and that self-generated touch is robustly attenuated regardless of whether the two hands make contact (Experiment 3). Our results provide conclusive evidence that action does not enhance but attenuates predicted touch and prompt a reappraisal of recent experimental findings upon which theoretical frameworks proposing a perceptual enhancement by action prediction are based.
Collapse
Affiliation(s)
- Xavier Job
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Konstantina Kilteni
- Department of Neuroscience, Karolinska InstituteStockholmSweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
19
|
Rummell BP, Bikas S, Babl SS, Gogos JA, Sigurdsson T. Altered corollary discharge signaling in the auditory cortex of a mouse model of schizophrenia predisposition. Nat Commun 2023; 14:7388. [PMID: 37968289 PMCID: PMC10651874 DOI: 10.1038/s41467-023-42964-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
The ability to distinguish sensations that are self-generated from those caused by external events is disrupted in schizophrenia patients. However, the neural circuit abnormalities underlying this sensory impairment and its relationship to the risk factors for the disease is not well understood. To address this, we examined the processing of self-generated sounds in male Df(16)A+/- mice, which model one of the largest genetic risk factors for schizophrenia, the 22q11.2 microdeletion. We find that auditory cortical neurons in Df(16)A+/- mice fail to attenuate their responses to self-generated sounds, recapitulating deficits seen in schizophrenia patients. Notably, the auditory cortex of Df(16)A+/- mice displayed weaker motor-related signals and received fewer inputs from the motor cortex, suggesting an anatomical basis underlying the sensory deficit. These results provide insights into the mechanisms by which a major genetic risk factor for schizophrenia disrupts the top-down processing of sensory information.
Collapse
Affiliation(s)
- Brian P Rummell
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany
| | - Solmaz Bikas
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
| | - Susanne S Babl
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
| | - Joseph A Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, USA
- Departments of Physiology, Neuroscience and Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
20
|
Audette NJ, Schneider DM. Stimulus-Specific Prediction Error Neurons in Mouse Auditory Cortex. J Neurosci 2023; 43:7119-7129. [PMID: 37699716 PMCID: PMC10601367 DOI: 10.1523/jneurosci.0512-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Comparing expectation with experience is an important neural computation performed throughout the brain and is a hallmark of predictive processing. Experiments that alter the sensory outcome of an animal's behavior reveal enhanced neural responses to unexpected self-generated stimuli, indicating that populations of neurons in sensory cortex may reflect prediction errors (PEs), mismatches between expectation and experience. However, enhanced neural responses to self-generated stimuli could also arise through nonpredictive mechanisms, such as the movement-based facilitation of a neuron's inherent sound responses. If sensory prediction error neurons exist in sensory cortex, it is unknown whether they manifest as general error responses, or respond with specificity to errors in distinct stimulus dimensions. To answer these questions, we trained mice of either sex to expect the outcome of a simple sound-generating behavior and recorded auditory cortex activity as mice heard either the expected sound or sounds that deviated from expectation in one of multiple distinct dimensions. Our data reveal that the auditory cortex learns to suppress responses to self-generated sounds along multiple acoustic dimensions simultaneously. We identify a distinct population of auditory cortex neurons that are not responsive to passive sounds or to the expected sound but that encode prediction errors. These prediction error neurons are abundant only in animals with a learned motor-sensory expectation, and encode one or two specific violations rather than a generic error signal. Together, these findings reveal that cortical predictions about self-generated sounds have specificity in multiple simultaneous dimensions and that cortical prediction error neurons encode specific violations from expectation.SIGNIFICANCE STATEMENT Audette et. al record neural activity in the auditory cortex while mice perform a sound-generating forelimb movement and measure neural responses to sounds that violate an animal's expectation in different ways. They find that predictions about self-generated sounds are highly specific across multiple stimulus dimensions and that a population of typically nonsound-responsive neurons respond to sounds that violate an animal's expectation in a specific way. These results identify specific prediction error (PE) signals in the mouse auditory cortex and suggest that errors may be calculated early in sensory processing.
Collapse
Affiliation(s)
- Nicholas J Audette
- Center for Neural Science, New York University, New York, New York 10003
| | - David M Schneider
- Center for Neural Science, New York University, New York, New York 10003
| |
Collapse
|
21
|
O'Toole SM, Oyibo HK, Keller GB. Molecularly targetable cell types in mouse visual cortex have distinguishable prediction error responses. Neuron 2023; 111:2918-2928.e8. [PMID: 37708892 DOI: 10.1016/j.neuron.2023.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Predictive processing postulates the existence of prediction error neurons in cortex. Neurons with both negative and positive prediction error response properties have been identified in layer 2/3 of visual cortex, but whether they correspond to transcriptionally defined subpopulations is unclear. Here we used the activity-dependent, photoconvertible marker CaMPARI2 to tag neurons in layer 2/3 of mouse visual cortex during stimuli and behaviors designed to evoke prediction errors. We performed single-cell RNA-sequencing on these populations and found that previously annotated Adamts2 and Rrad layer 2/3 transcriptional cell types were enriched when photolabeling during stimuli that drive negative or positive prediction error responses, respectively. Finally, we validated these results functionally by designing artificial promoters for use in AAV vectors to express genetically encoded calcium indicators. Thus, transcriptionally distinct cell types in layer 2/3 that can be targeted using AAV vectors exhibit distinguishable negative and positive prediction error responses.
Collapse
Affiliation(s)
- Sean M O'Toole
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hassana K Oyibo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Holey BE, Schneider DM. Sensation and expectation are embedded in mouse motor cortical activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557633. [PMID: 37745573 PMCID: PMC10515891 DOI: 10.1101/2023.09.13.557633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
During behavior, the motor cortex sends copies of motor-related signals to sensory cortices. It remains unclear whether these corollary discharge signals strictly encode movement or whether they also encode sensory experience and expectation. Here, we combine closed-loop behavior with large-scale physiology, projection-pattern specific recordings, and circuit perturbations to show that neurons in mouse secondary motor cortex (M2) encode sensation and are influenced by expectation. When a movement unexpectedly produces a sound, M2 becomes dominated by sound-evoked activity. Sound responses in M2 are inherited partially from the auditory cortex and are routed back to the auditory cortex, providing a path for the dynamic exchange of sensory-motor information during behavior. When the acoustic consequences of a movement become predictable, M2 responses to self-generated sounds are selectively gated off. These changes in single-cell responses are reflected in population dynamics, which are influenced by both sensation and expectation. Together, these findings reveal the rich embedding of sensory and expectation signals in motor cortical activity.
Collapse
Affiliation(s)
- Brooke E Holey
- Center for Neural Science, New York University
- Neuroscience Institute, NYU Medical Center
| | | |
Collapse
|
23
|
Vivaldo CA, Lee J, Shorkey M, Keerthy A, Rothschild G. Auditory cortex ensembles jointly encode sound and locomotion speed to support sound perception during movement. PLoS Biol 2023; 21:e3002277. [PMID: 37651461 PMCID: PMC10499203 DOI: 10.1371/journal.pbio.3002277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/13/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
The ability to process and act upon incoming sounds during locomotion is critical for survival and adaptive behavior. Despite the established role that the auditory cortex (AC) plays in behavior- and context-dependent sound processing, previous studies have found that auditory cortical activity is on average suppressed during locomotion as compared to immobility. While suppression of auditory cortical responses to self-generated sounds results from corollary discharge, which weakens responses to predictable sounds, the functional role of weaker responses to unpredictable external sounds during locomotion remains unclear. In particular, whether suppression of external sound-evoked responses during locomotion reflects reduced involvement of the AC in sound processing or whether it results from masking by an alternative neural computation in this state remains unresolved. Here, we tested the hypothesis that rather than simple inhibition, reduced sound-evoked responses during locomotion reflect a tradeoff with the emergence of explicit and reliable coding of locomotion velocity. To test this hypothesis, we first used neural inactivation in behaving mice and found that the AC plays a critical role in sound-guided behavior during locomotion. To investigate the nature of this processing, we used two-photon calcium imaging of local excitatory auditory cortical neural populations in awake mice. We found that locomotion had diverse influences on activity of different neurons, with a net suppression of baseline-subtracted sound-evoked responses and neural stimulus detection, consistent with previous studies. Importantly, we found that the net inhibitory effect of locomotion on baseline-subtracted sound-evoked responses was strongly shaped by elevated ongoing activity that compressed the response dynamic range, and that rather than reflecting enhanced "noise," this ongoing activity reliably encoded the animal's locomotion speed. Decoding analyses revealed that locomotion speed and sound are robustly co-encoded by auditory cortical ensemble activity. Finally, we found consistent patterns of joint coding of sound and locomotion speed in electrophysiologically recorded activity in freely moving rats. Together, our data suggest that rather than being suppressed by locomotion, auditory cortical ensembles explicitly encode it alongside sound information to support sound perception during locomotion.
Collapse
Affiliation(s)
- Carlos Arturo Vivaldo
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joonyeup Lee
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - MaryClaire Shorkey
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ajay Keerthy
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
24
|
Morandell K, Yin A, Del Rio RT, Schneider DM. Movement-related modulation in mouse auditory cortex is widespread yet locally diverse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547560. [PMID: 37461568 PMCID: PMC10349927 DOI: 10.1101/2023.07.03.547560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Neurons in the mouse auditory cortex are strongly influenced by behavior, including both suppression and enhancement of sound-evoked responses during movement. The mouse auditory cortex comprises multiple fields with different roles in sound processing and distinct connectivity to movement-related centers of the brain. Here, we asked whether movement-related modulation might differ across auditory cortical fields, thereby contributing to the heterogeneity of movement-related modulation at the single-cell level. We used wide-field calcium imaging to identify distinct cortical fields followed by cellular-resolution two-photon calcium imaging to visualize the activity of layer 2/3 excitatory neurons within each field. We measured each neuron's responses to three sound categories (pure tones, chirps, and amplitude modulated white noise) as mice rested and ran on a non-motorized treadmill. We found that individual neurons in each cortical field typically respond to just one sound category. Some neurons are only active during rest and others during locomotion, and those that are responsive across conditions retain their sound-category tuning. The effects of locomotion on sound-evoked responses vary at the single-cell level, with both suppression and enhancement of neural responses, and the net modulatory effect of locomotion is largely conserved across cortical fields. Movement-related modulation in auditory cortex also reflects more complex behavioral patterns, including instantaneous running speed and non-locomotor movements such as grooming and postural adjustments, with similar patterns seen across all auditory cortical fields. Our findings underscore the complexity of movement-related modulation throughout the mouse auditory cortex and indicate that movement-related modulation is a widespread phenomenon.
Collapse
Affiliation(s)
- Karin Morandell
- Center for Neural Science, New York University, New York, NY 10012
| | - Audrey Yin
- Center for Neural Science, New York University, New York, NY 10012
| | | | | |
Collapse
|
25
|
Price BH, Jensen CM, Khoudary AA, Gavornik JP. Expectation violations produce error signals in mouse V1. Cereb Cortex 2023; 33:8803-8820. [PMID: 37183176 PMCID: PMC10321125 DOI: 10.1093/cercor/bhad163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Repeated exposure to visual sequences changes the form of evoked activity in the primary visual cortex (V1). Predictive coding theory provides a potential explanation for this, namely that plasticity shapes cortical circuits to encode spatiotemporal predictions and that subsequent responses are modulated by the degree to which actual inputs match these expectations. Here we use a recently developed statistical modeling technique called Model-Based Targeted Dimensionality Reduction (MbTDR) to study visually evoked dynamics in mouse V1 in the context of an experimental paradigm called "sequence learning." We report that evoked spiking activity changed significantly with training, in a manner generally consistent with the predictive coding framework. Neural responses to expected stimuli were suppressed in a late window (100-150 ms) after stimulus onset following training, whereas responses to novel stimuli were not. Substituting a novel stimulus for a familiar one led to increases in firing that persisted for at least 300 ms. Omitting predictable stimuli in trained animals also led to increased firing at the expected time of stimulus onset. Finally, we show that spiking data can be used to accurately decode time within the sequence. Our findings are consistent with the idea that plasticity in early visual circuits is involved in coding spatiotemporal information.
Collapse
Affiliation(s)
- Byron H Price
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, MA 02215, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA
| | - Cambria M Jensen
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, MA 02215, USA
| | - Anthony A Khoudary
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jeffrey P Gavornik
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, MA 02215, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA
| |
Collapse
|
26
|
Audette NJ, Schneider DM. Stimulus-specific prediction error neurons in mouse auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523032. [PMID: 36711690 PMCID: PMC9881916 DOI: 10.1101/2023.01.06.523032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Comparing expectation with experience is an important neural computation performed throughout the brain and is a hallmark of predictive processing. Experiments that alter the sensory outcome of an animal's behavior reveal enhanced neural responses to unexpected self-generated stimuli, indicating that populations of neurons in sensory cortex may reflect prediction errors - mismatches between expectation and experience. However, enhanced neural responses to self-generated stimuli could also arise through non-predictive mechanisms, such as the movement-based facilitation of a neuron's inherent sound responses. If sensory prediction error neurons exist in sensory cortex, it is unknown whether they manifest as general error responses, or respond with specificity to errors in distinct stimulus dimensions. To answer these questions, we trained mice to expect the outcome of a simple sound-generating behavior and recorded auditory cortex activity as mice heard either the expected sound or sounds that deviated from expectation in one of multiple distinct dimensions. Our data reveal that the auditory cortex learns to suppress responses to self-generated sounds along multiple acoustic dimensions simultaneously. We identify a distinct population of auditory cortex neurons that are not responsive to passive sounds or to the expected sound but that explicitly encode prediction errors. These prediction error neurons are abundant only in animals with a learned motor-sensory expectation, and encode one or two specific violations rather than a generic error signal.
Collapse
Affiliation(s)
- Nicholas J Audette
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - David M Schneider
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| |
Collapse
|