1
|
Li Y, Ashuo A, Hao M, Li Y, Ye J, Liu J, Hua T, Fang Z, Li J, Yuan Z, Chen J. An extracellular humanized IFNAR immunocompetent mouse model for analyses of human interferon alpha and subtypes. Emerg Microbes Infect 2024; 13:2287681. [PMID: 37994664 PMCID: PMC10810641 DOI: 10.1080/22221751.2023.2287681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023]
Abstract
Type I interferons (IFN-Is) have key roles in immune defense and treatments for various diseases, including chronic hepatitis B virus (HBV) infection. All IFN-Is signal through a shared IFN-I heterodimeric receptor complex comprising IFN-α receptor 1 (IFNAR1) and IFNAR2 subunits, but differences in antiviral and immunomodulatory responses among IFN-I subtypes remain largely unknown. Because the IFN-IFNAR interactions are species-specific, mice exhibit weak responses to human IFN-I. To more fully characterize the actions of human IFN-α and its subtypes in vivo, a gene targeting strategy was employed to generate gene knock-in mice with extracellular-humanized IFNAR1/2 (IFNAR-hEC) in the C57BL/6N strain. IFNAR-hEC mice actively responded to human IFN-I, and endogenous mouse IFN-I signalling remained active in heterozygous mice (IfnarhEC/+). Analyses of IFNAR-hEC mice and isolated cells showed that human IFN-α2 and α14 subtypes exerted differential effect on the activation of JAK-STAT signalling and immune responses. Compared with IFN-α2, IFN-α14 induced greater activation of STAT1/2 and IFN-stimulated genes, synergistically elicited IFN-α and -γ signalling, and induced higher numbers of antigen-specific CD8+ T cells. Moreover, IFNAR-hEC mice with HBV replication displayed long-term viral suppression upon treatment with the clinically-used PEGylated hIFN-α2. These results indicate that IFNAR-hEC mice may be useful for elucidating antiviral and immunomodulatory functions of human IFN-Is and for conducting preclinical studies. A better understanding of the distinct activities of IFN-α subtypes can provide insights concerning the development of improved IFN-based therapy.
Collapse
Affiliation(s)
- Yumeng Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Asha Ashuo
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Menghan Hao
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, People’s Republic of China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Ting Hua
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Zhong Fang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, People’s Republic of China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Zoler E, Meyer T, Bellón JS, Mönnig M, Sun B, Piehler J, Schreiber G. Promiscuous Janus kinase binding to cytokine receptors modulates signaling efficiencies and contributes to cytokine pleiotropy. Sci Signal 2024; 17:eadl1892. [PMID: 39561221 DOI: 10.1126/scisignal.adl1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Janus kinases (JAKs) bind to class I and II cytokine receptors, activating signaling and regulating gene transcription through signal transducer and activator of transcription (STAT) proteins. Type I interferons (IFNs) require the JAK members TYK2 and JAK1, which bind to the receptor subunits IFNAR1 and IFNAR2, respectively. We investigated the role of JAKs in regulating IFNAR signaling activity. Synthetic IFNARs in which the extracellular domains of IFNAR1 and IFNAR2 are replaced with nanobodies had near-native type I IFN signaling, whereas the homomeric variant of IFNAR2 initiated much weaker signaling, despite harboring docking sites for JAKs and STATs. Cells with JAK1 and TYK2 knockout (KO) showed residual signaling, suggesting partial complementation by the remaining JAKs, particularly when they were overexpressed. Live-cell micropatterning experiments confirmed the promiscuous binding of JAK1, JAK2, and TYK2 to IFNAR1 and IFNAR2, and their recruitment correlated with their relative cellular abundances. However, each JAK had a different efficacy in inducing cross-phosphorylation and downstream signaling. JAK binding was also promiscuous for other cytokine receptors, including IFN-L1, IL-10Rβ, TPOR, and GHR, but not for EPOR, which activated different downstream signaling pathways. These findings suggest that competitive binding of JAKs to cytokine receptors together with the varying absolute and relative abundances of the JAKs in different cell types can account for the cell type-dependent signaling pleiotropy of cytokine receptors.
Collapse
Affiliation(s)
- Eyal Zoler
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Meyer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Mia Mönnig
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Boyue Sun
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Low ZX, Kanauchi O, Tiong V, Sahimin N, Lani R, Tsuji R, AbuBakar S, Hassandarvish P. The Antiviral Effects of Heat-Killed Lactococcus lactis Strain Plasma Against Dengue, Chikungunya, and Zika Viruses in Humans by Upregulating the IFN-α Signaling Pathway. Microorganisms 2024; 12:2304. [PMID: 39597693 PMCID: PMC11596828 DOI: 10.3390/microorganisms12112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
The growing risk of contracting viral infections due to high-density populations and ecological disruptions, such as climate change and increased population mobility, has highlighted the necessity for effective antiviral treatment and preventive measures against Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, there has been increasing attention on the use of probiotics as a potential antiviral option to reduce virus infections. The present study aimed to assess the immunomodulatory effects of heat-killed Lactococcus lactis strain plasma (LC-Plasma) on peripheral blood mononuclear cells (PBMCs) and its subsequent antiviral response against DENV, CHIKV, and ZIKV. To evaluate the immunomodulatory effects of LC-Plasma on PBMCs isolated from healthy individuals, PBMCs were cultured at a density of 2 × 105 cells/well and stimulated with 10 µg/mL of LC-Plasma. LC-plasma-stimulated PBMCs demonstrated elevated interferon-alpha (IFN-α) production and cluster of differentiation 86 (CD86) and human leukocyte antigen-DR isotype (HLA-DR) upregulation, potentially linked to plasmacytoid dendritic cell (pDC) activation. The replication of DENV, CHIKV, and ZIKV was dose-dependently inhibited when Huh-7 cells were stimulated with LC-Plasma-stimulated PBMC supernatant (LCP Sup). IFN-stimulated gene (ISG) expression, including IFN-stimulated gene 15 (ISG15), IFN-stimulated exonuclease gene 20 (ISG20), IFN-induced transmembrane protein 1 (IFITM-1), myxovirus resistance protein A (MxA), and radical S-adenosyl methionine domain-containing protein 2 (RSAD2), was significantly upregulated in LCP Sup-stimulated Huh-7 cells. Findings from this study indicate that LC-Plasma has the potential to induce IFN-α production, leading to an enhancement in the expression of ISGs and contributing to a broad-spectrum antiviral response. Thus, LC-Plasma may serve as a rational adjunctive treatment to ameliorate viral diseases, warranting future clinical trials.
Collapse
Affiliation(s)
- Zhao Xuan Low
- Tropical Infectious Disease Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.X.L.); (O.K.); (N.S.); (S.A.)
| | - Osamu Kanauchi
- Tropical Infectious Disease Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.X.L.); (O.K.); (N.S.); (S.A.)
- Institute of Health Sciences, Kirin Holdings Co., Ltd., 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Kanagawa, Japan;
| | - Vunjia Tiong
- Tropical Infectious Disease Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.X.L.); (O.K.); (N.S.); (S.A.)
| | - Norhidayu Sahimin
- Tropical Infectious Disease Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.X.L.); (O.K.); (N.S.); (S.A.)
| | - Rafidah Lani
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ryohei Tsuji
- Institute of Health Sciences, Kirin Holdings Co., Ltd., 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Kanagawa, Japan;
| | - Sazaly AbuBakar
- Tropical Infectious Disease Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.X.L.); (O.K.); (N.S.); (S.A.)
| | - Pouya Hassandarvish
- Tropical Infectious Disease Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Z.X.L.); (O.K.); (N.S.); (S.A.)
| |
Collapse
|
4
|
Lin AE, Mesev EV, Toettcher JE, Ploss A. Engineered chimeric receptors for dissecting interferon signaling. J Virol 2024; 98:e0168023. [PMID: 39291974 PMCID: PMC11495025 DOI: 10.1128/jvi.01680-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Though interferons (IFNs) were once heralded as panaceas to numerous diseases, how cells decode varying IFN stimuli and subsequently produce (in)appropriate signaling remain unclear. Our labs recently engineered novel erythropoietin receptor-IFN chimeric receptors, and we highlight their utility in two cases uncovering differential genetic determinants of type I (IFN-α/β) and type III (IFN-λ) IFN signaling. These and other types of synthetic (cytokine) receptors could be expanded to real-time signaling dynamics and in vivo studies.
Collapse
Affiliation(s)
- Aaron E. Lin
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Emily V. Mesev
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
5
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
6
|
Karakoese Z, Ingola M, Sitek B, Dittmer U, Sutter K. IFNα Subtypes in HIV Infection and Immunity. Viruses 2024; 16:364. [PMID: 38543729 PMCID: PMC10975235 DOI: 10.3390/v16030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Type I interferons (IFN), immediately triggered following most viral infections, play a pivotal role in direct antiviral immunity and act as a bridge between innate and adaptive immune responses. However, numerous viruses have evolved evasion strategies against IFN responses, prompting the exploration of therapeutic alternatives for viral infections. Within the type I IFN family, 12 IFNα subtypes exist, all binding to the same receptor but displaying significant variations in their biological activities. Currently, clinical treatments for chronic virus infections predominantly rely on a single IFNα subtype (IFNα2a/b). However, the efficacy of this therapeutic treatment is relatively limited, particularly in the context of Human Immunodeficiency Virus (HIV) infection. Recent investigations have delved into alternative IFNα subtypes, identifying certain subtypes as highly potent, and their antiviral and immunomodulatory properties have been extensively characterized. This review consolidates recent findings on the roles of individual IFNα subtypes during HIV and Simian Immunodeficiency Virus (SIV) infections. It encompasses their induction in the context of HIV/SIV infection, their antiretroviral activity, and the diverse regulation of the immune response against HIV by distinct IFNα subtypes. These insights may pave the way for innovative strategies in HIV cure or functional cure studies.
Collapse
Affiliation(s)
- Zehra Karakoese
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martha Ingola
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; (M.I.); (B.S.)
| | - Barbara Sitek
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; (M.I.); (B.S.)
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
7
|
Zhao Q, Liu H, Tang L, Wang F, Tolufashe G, Chang J, Guo JT. Mechanism of interferon alpha therapy for chronic hepatitis B and potential approaches to improve its therapeutic efficacy. Antiviral Res 2024; 221:105782. [PMID: 38110058 DOI: 10.1016/j.antiviral.2023.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Hepatitis B virus (HBV) chronically infects 296 million people worldwide and causes more than 820,000 deaths annually due to cirrhosis and hepatocellular carcinoma. Current standard-of-care medications for chronic hepatitis B (CHB) include nucleos(t)ide analogue (NA) viral DNA polymerase inhibitors and pegylated interferon alpha (PEG-IFN-α). NAs can efficiently suppress viral replication and improve liver pathology, but not eliminate or inactivate HBV covalently closed circular DNA (cccDNA). CCC DNA is the most stable HBV replication intermediate that exists as a minichromosome in the nucleus of infected hepatocyte to transcribe viral RNA and support viral protein translation and genome replication. Consequentially, a finite duration of NA therapy rarely achieves a sustained off-treatment suppression of viral replication and life-long NA treatment is most likely required. On the contrary, PEG-IFN-α has the benefit of finite treatment duration and achieves HBsAg seroclearance, the indication of durable immune control of HBV replication and functional cure of CHB, in approximately 5% of treated patients. However, the low antiviral efficacy and poor tolerability limit its use. Understanding how IFN-α suppresses HBV replication and regulates antiviral immune responses will help rational optimization of IFN therapy and development of novel immune modulators to improve the rate of functional cure. This review article highlights mechanistic insight on IFN control of HBV infection and recent progress in development of novel IFN regimens, small molecule IFN mimetics and combination therapy of PEG-IFN-α with new direct-acting antivirals and therapeutic vaccines to facilitate the functional cure of CHB.
Collapse
Affiliation(s)
- Qiong Zhao
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Hui Liu
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Liudi Tang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | | | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, United States.
| |
Collapse
|
8
|
Karakoese Z, Le-Trilling VTK, Schuhenn J, Francois S, Lu M, Liu J, Trilling M, Hoffmann D, Dittmer U, Sutter K. Targeted mutations in IFNα2 improve its antiviral activity against various viruses. mBio 2023; 14:e0235723. [PMID: 37874130 PMCID: PMC10746204 DOI: 10.1128/mbio.02357-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE The potency of interferon (IFN)α to restrict viruses was already discovered in 1957. However, until today, only IFNα2 out of the 12 distinct human IFNα subtypes has been therapeutically used against chronic viral infections. There is convincing evidence that other IFNα subtypes are far more efficient than IFNα2 against many viruses. In order to identify critical antiviral residues within the IFNα subtype sequence, we designed hybrid molecules based on the IFNα2 backbone with individual sequence motifs from the more potent subtypes IFNα6 and IFNα14. In different antiviral assays with HIV or HBV, residues binding to IFNAR1 as well as combinations of residues in the IFNAR1 binding region, the putative tunable anchor, and residues outside these regions were identified to be crucial for the antiviral activity of IFNα. Thus, we designed artificial IFNα molecules, based on the clinically approved IFNα2 backbone, but with highly improved antiviral activity against several viruses.
Collapse
Affiliation(s)
- Zehra Karakoese
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- University Hospital Essen, University of Duisburg-Essen, Institute for Translational HIV Research, Essen, Germany
| | | | - Jonas Schuhenn
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
| | - Sandra Francois
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
| | - Mengji Lu
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mirko Trilling
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel Hoffmann
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- University Hospital Essen, University of Duisburg-Essen, Institute for Translational HIV Research, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Kathrin Sutter
- University Hospital Essen, University of Duisburg-Essen, Institute for Virology, Essen, Germany
- University Hospital Essen, University of Duisburg-Essen, Institute for Translational HIV Research, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Pujantell M, Skenteris NT, Claussen JM, Grünhagel B, Thiele RJ, Altfeld M. Sex-dependent differences in type I IFN-induced natural killer cell activation. Front Immunol 2023; 14:1277967. [PMID: 38162640 PMCID: PMC10757368 DOI: 10.3389/fimmu.2023.1277967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Natural killer (NK) cells are important antiviral effector cells and also involved in tumor clearance. NK cells express IFNAR, rendering them responsive to Type I IFNs. To evaluate Type I IFN-mediated modulation of NK cell functions, individual Type I IFNs subtypes were assessed for their ability to activate NK cells. Different Type I IFN subtypes displayed a broad range in the capacity to induce and modulate NK cell activation and degranulation, measured by CD69 and CD107a expression in response to leukemia cell line K562. When including biological sex as a variable in the analysis, transwell co-cultures of NK cells with either male- or female-derived PBMCs or pDCs stimulated with the TLR7/8 agonist CL097 showed that NK cells were more activated by CL097-stimulated cells derived from females. These sex-specific differences were linked to higher CL097-induced IFNα production by pDCs derived from females, indicating an extrinsic sex-specific effect of Type I IFNs on NK cell function. Interestingly, in addition to the extrinsic effect, we also observed NK cell-intrinsic sex differences, as female NK cells displayed higher activation levels after IFNα-stimulation and after co-culture with CL097-stimulated pDCs, suggesting higher activation of IFNα-signaling transduction in female NK cells. Taken together, the results from these studies identify both extrinsic and intrinsic sex-specific differences in Type I IFN-dependent NK cell functions, contributing to a better understanding of sex-specific differences in innate immunity.
Collapse
Affiliation(s)
- Maria Pujantell
- Institute of Immunology, University Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | | | - Benjamin Grünhagel
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Rebecca-Jo Thiele
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
10
|
Mesev EV, Lin AE, Guare EG, Heller BL, Douam F, Adamson B, Toettcher JE, Ploss A. Membrane-proximal motifs encode differences in signaling strength between type I and III interferon receptors. Sci Signal 2023; 16:eadf5494. [PMID: 37816090 PMCID: PMC10939449 DOI: 10.1126/scisignal.adf5494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/09/2023] [Indexed: 10/12/2023]
Abstract
Interferons (IFNs) play crucial roles in antiviral defenses. Despite using the same Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling cascade, type I and III IFN receptors differ in the magnitude and dynamics of their signaling in terms of STAT phosphorylation, gene transcription, and antiviral responses. These differences are not due to ligand-binding affinity and receptor abundance. Here, we investigated the ability of the intracellular domains (ICDs) of IFN receptors to differentiate between type I and III IFN signaling. We engineered synthetic, heterodimeric type I and III IFN receptors that were stably expressed at similar amounts in human cells and responded to a common ligand. We found that our synthetic type I IFN receptors stimulated STAT phosphorylation and gene expression to greater extents than did the corresponding type III IFN receptors. Furthermore, we identified short "box motifs" within ICDs that bind to JAK1 that were sufficient to encode differences between the type I and III IFN receptors. Together, our results indicate that specific regions within the ICDs of IFN receptor subunits encode different downstream signaling strengths that enable type I and III IFN receptors to produce distinct signaling outcomes.
Collapse
Affiliation(s)
- Emily V. Mesev
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron E. Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emma G. Guare
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brigitte L. Heller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Florian Douam
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Center for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
de Andrade Vieira Alves F, Nunes PCG, Arruda LV, Salomão NG, Rabelo K. The Innate Immune Response in DENV- and CHIKV-Infected Placentas and the Consequences for the Fetuses: A Minireview. Viruses 2023; 15:1885. [PMID: 37766291 PMCID: PMC10535478 DOI: 10.3390/v15091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Dengue virus (DENV) and chikungunya (CHIKV) are arthropod-borne viruses belonging to the Flaviviridae and Togaviridae families, respectively. Infection by both viruses can lead to a mild indistinct fever or even lead to more severe forms of the diseases, which are characterized by a generalized inflammatory state and multiorgan involvement. Infected mothers are considered a high-risk group due to their immunosuppressed state and the possibility of vertical transmission. Thereby, infection by arboviruses during pregnancy portrays a major public health concern, especially in countries where epidemics of both diseases are regular and public health policies are left aside. Placental involvement during both infections has been already described and the presence of either DENV or CHIKV has been observed in constituent cells of the placenta. In spite of that, there is little knowledge regarding the intrinsic earlier immunological mechanisms that are developed by placental cells in response to infection by both arboviruses. Here, we approach some of the current information available in the literature about the exacerbated presence of cells involved in the innate immune defense of the placenta during DENV and CHIKV infections.
Collapse
Affiliation(s)
- Felipe de Andrade Vieira Alves
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro/UERJ, Rio de Janeiro 20550170, RJ, Brazil; (F.d.A.V.A.); (L.V.A.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
| | - Priscila Conrado Guerra Nunes
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil;
| | - Laíza Vianna Arruda
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro/UERJ, Rio de Janeiro 20550170, RJ, Brazil; (F.d.A.V.A.); (L.V.A.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
| | - Natália Gedeão Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil;
| | - Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro/UERJ, Rio de Janeiro 20550170, RJ, Brazil; (F.d.A.V.A.); (L.V.A.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040900, RJ, Brazil
| |
Collapse
|
12
|
Moreau TRJ, Bondet V, Rodero MP, Duffy D. Heterogeneity and functions of the 13 IFN-α subtypes - lucky for some? Eur J Immunol 2023; 53:e2250307. [PMID: 37367434 DOI: 10.1002/eji.202250307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Type I IFNs are critical for host responses to viral infection and are also implicated in the pathogenesis of multiple autoimmune diseases. Multiple subtypes exist within the type I IFN family, in particular 13 distinct IFN-α genes, which signal through the same heterodimer receptor that is ubiquitously expressed by mammalian cells. Both evolutionary genetic studies and functional antiviral assays strongly suggest differential functions and activity between the 13 IFN-α subtypes, yet we still lack a clear understanding of these different roles. This review summarizes the evidence from studies describing differential functions of IFN-α subtypes and highlights potential reasons for discrepancies between the reports. We examine both acute and chronic viral infection, as well as autoimmunity, and integrate a more recent awareness of the importance of anti-IFN-α autoantibodies in shaping the type I IFN responses in these different conditions.
Collapse
Affiliation(s)
- Thomas R J Moreau
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mathieu P Rodero
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
13
|
Wu X, Yang W, Cheng JG, Luo Y, Fu WL, Zhou L, Wu J, Wang Y, Zhong ZJ, Yang ZX, Yao XP, Ren MS, Li YM, Liu J, Ding H, Chen JN. Molecular cloning, prokaryotic expression and its application potential evaluation of interferon (IFN)-ω of forest musk deer. Sci Rep 2023; 13:10625. [PMID: 37391585 PMCID: PMC10313714 DOI: 10.1038/s41598-023-37437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
Forest musk deer (Moschus berezovskii) are currently a threatened species under conservation, and the development of captive populations is restricted by health problems. To evaluate the application potential of interferon (IFN)-ω in the prevention and control of forest musk deer disease, 5 forest musk deer IFN-ω (fmdIFNω) gene sequences were successfully obtained by homologous cloning method for the first time. FmdIFNω5 was selected and recombinant fmdIFNω protein (rIFNω) was successfully expressed by pGEX-6P-1 plasmid and E. coli expression system. The obtained protein was used to stimulate forest musk deer lung fibroblasts cells FMD-C1 to determine its regulatory effect on interferon-stimulated genes (ISGs). In addition, an indirect ELISA method based on anti-rIFNω serum was established to detect endogenous IFN-ω levels in 8 forest musk deer. The results showed that there were 18 amino acid differences among the 5 fmdIFNω subtypes, all of which had the basic structure to exert the activity of type I IFN and were close to Cervus elaphus IFN-ω in the phylogenetic tree. The protein expressed was 48 kDa, and the transcription levels of all ISGs were increased in FMD-C1 cells stimulated by rIFNω, and the amount of transcription accumulation was time-dependent. Meanwhile, Anti-rIFNω serum of mice could react with both rIFNω and forest musk deer serum, and the OD450nm value of forest musk deer serum with the most obvious symptoms was the highest, suggesting that the level of natural IFN-ω in different forest musk deer could be monitored by the rIFNω-based ELISA method. These results indicate that fmdIFNω has the potential as an antiviral drug and an early indication of innate immunity, which is of great significance for the prevention and control of forest musk deer diseases.
Collapse
Affiliation(s)
- Xi Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Wei Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Jian-Guo Cheng
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, 611830, Sichuan Province, China.
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China.
| | - Wen-Long Fu
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, 611830, Sichuan Province, China
| | - Lei Zhou
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, 611830, Sichuan Province, China
| | - Jie Wu
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, 611830, Sichuan Province, China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Zhi-Jun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Ze-Xiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Xue-Ping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Mei-Shen Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Yi-Meng Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Jie Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Hui Ding
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| | - Jia-Nan Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Sichuan Province, China
| |
Collapse
|
14
|
Barnes SA, Audsley KM, Newnes HV, Fernandez S, de Jong E, Waithman J, Foley B. Type I interferon subtypes differentially activate the anti-leukaemic function of natural killer cells. Front Immunol 2022; 13:1050718. [PMID: 36505400 PMCID: PMC9731670 DOI: 10.3389/fimmu.2022.1050718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Natural killer (NK) cells have an intrinsic ability to detect and eliminate leukaemic cells. Cellular therapies using cytokine-activated NK cells have emerged as promising treatments for patients with advanced leukaemia. However, not all patients respond to current NK cell therapies, and thus improvements in efficacy are required. Type I interferons (IFN-I) are a family of potent immunomodulatory cytokines with a known ability to modulate NK cell responses against cancer. Although the human IFN-I family comprises 16 distinct subtypes, only IFNα2 has been widely explored as an anti-cancer agent. Here, we investigated the individual immunomodulatory effects each IFNα subtype and IFNβ had on NK cell functionality to determine whether a particular subtype confers enhanced effector activity against leukaemia. Importantly, IFNα14 and IFNβ were identified as superior activators of NK cell effector function in vitro. To test the ability of these subtypes to enhance NK cell activity in vivo, IFN-I stimulation was overlaid onto a standard ex vivo expansion protocol to generate NK cells for adoptive cell therapy. Interestingly, infusion of NK cells pre-activated with IFNα14, but not IFNβ, significantly prolonged survival in a preclinical model of leukaemia compared to NK cells expanded without IFN-I. Collectively, these results highlight the diverse immunomodulatory potencies of individual IFN-I subtypes and support further investigation into the use of IFNα14 to favourably modulate NK cells against leukaemia.
Collapse
Affiliation(s)
- Samantha A. Barnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Katherine M. Audsley
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Sonia Fernandez
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Emma de Jong
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Bree Foley
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia,*Correspondence: Bree Foley,
| |
Collapse
|
15
|
Hasselbalch H, Skov V, Kjær L, Larsen MK, Knudsen TA, Lucijanić M, Kusec R. Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives. Cancers (Basel) 2022; 14:5495. [PMID: 36428587 PMCID: PMC9688061 DOI: 10.3390/cancers14225495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
About 30 years ago, the first clinical trials of the safety and efficacy of recombinant interferon-α2 (rIFN-α2) were performed. Since then, several single-arm studies have shown rIFN-α2 to be a highly potent anticancer agent against several cancer types. Unfortunately, however, a high toxicity profile in early studies with rIFN-α2 -among other reasons likely due to the high dosages being used-disqualified rIFN-α2, which was accordingly replaced with competitive drugs that might at first glance look more attractive to clinicians. Later, pegylated IFN-α2a (Pegasys) and pegylated IFN-α2b (PegIntron) were introduced, which have since been reported to be better tolerated due to reduced toxicity. Today, treatment with rIFN-α2 is virtually outdated in non-hematological cancers, where other immunotherapies-e.g., immune-checkpoint inhibitors-are routinely used in several cancer types and are being intensively investigated in others, either as monotherapy or in combination with immunomodulatory agents, although only rarely in combination with rIFN-α2. Within the hematological malignancies, rIFN-α2 has been used off-label for decades in patients with Philadelphia-negative chronic myeloproliferative neoplasms (MPNs)-i.e., essential thrombocythemia, polycythemia vera, and myelofibrosis-and in recent years rIFN-α2 has been revived with the marketing of ropeginterferon-α2b (Besremi) for the treatment of polycythemia vera patients. Additionally, rIFN-α2 has been revived for the treatment of chronic myelogenous leukemia in combination with tyrosine kinase inhibitors. Another rIFN formulation-recombinant interferon-β (rIFN-β)-has been used for decades in the treatment of multiple sclerosis but has never been studied as a potential agent to be used in patients with MPNs, although several studies and reviews have repeatedly described rIFN-β as an effective anticancer agent as well. In this paper, we describe the rationales and perspectives for launching studies on the safety and efficacy of rIFN-β in patients with MPNs.
Collapse
Affiliation(s)
- Hans Hasselbalch
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | | | - Trine A. Knudsen
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Marko Lucijanić
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Rajko Kusec
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Lee HS, Volpe SJ, Chang EH. The Role of Viruses in the Inception of Chronic Rhinosinusitis. Clin Exp Otorhinolaryngol 2022; 15:310-318. [PMID: 36455880 PMCID: PMC9723285 DOI: 10.21053/ceo.2022.01004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a complex inflammatory disorder that affects between 2% and 16% of adults in the United States, with estimated healthcare costs between 4 and 12 million USD. Viruses are a common etiologic factor for URIs, are frequently identified in the sinuses of patients with CRS, and trigger CRS exacerbations. Therefore, investigating the role of viruses provides an opportunity to identify their role in the pathogenesis of CRS. In this review, we identified the viruses frequently isolated in patients with CRS, as well as their associated immunologic responses and contributions to inflammation. Rhinovirus, parainfluenza virus, influenza virus, and respiratory syncytial virus are the viruses commonly found in patients with CRS. This information allows us to target pathways early in the pathogenesis of CRS, thereby playing a significant role in slowing the progression of this chronic disease.
Collapse
Affiliation(s)
- Hyeon Seung Lee
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Sophia J Volpe
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Eugene H Chang
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
17
|
Miltner N, Linkner TR, Ambrus V, Al-Muffti AS, Ahmad H, Mótyán JA, Benkő S, Tőzsér J, Mahdi M. Early suppression of antiviral host response and protocadherins by SARS-CoV-2 Spike protein in THP-1-derived macrophage-like cells. Front Immunol 2022; 13:999233. [PMID: 36341352 PMCID: PMC9634736 DOI: 10.3389/fimmu.2022.999233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19). The spike protein (S) of SARS-CoV-2 plays a crucial role in mediating viral infectivity; hence, in an extensive effort to curb the pandemic, many urgently approved vaccines rely on the expression of the S protein, aiming to induce a humoral and cellular response to protect against the infection. Given the very limited information about the effects of intracellular expression of the S protein in host cells, we aimed to characterize the early cellular transcriptomic changes induced by expression of the S protein in THP-1-derived macrophage-like cells. Results showed that a wide variety of genes were differentially expressed, products of which are mainly involved in cell adhesion, homeostasis, and most notably, antiviral and immune responses, depicted by significant downregulation of protocadherins and type I alpha interferons (IFNAs). While initially, the levels of IFNAs were higher in the medium of S protein expressing cells, the downregulation observed on the transcriptomic level might have been reflected by no further increase of IFNA cytokines beyond the 5 h time-point, compared to the mock control. Our study highlights the intrinsic pathogenic role of the S protein and sheds some light on the potential drawbacks of its utilization in the context of vaccination strategies.
Collapse
Affiliation(s)
- Noémi Miltner
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Richárd Linkner
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Viktor Ambrus
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Aya S. Al-Muffti
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Hala Ahmad
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János András Mótyán
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Mohamed Mahdi, ; József Tőzsér,
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Mohamed Mahdi, ; József Tőzsér,
| |
Collapse
|
18
|
Abstract
The lack of a human immunodeficiency virus (HIV) cure has heightened interest in immunotherapy. As such, type I interferons (IFNs), in particular, IFN alpha (IFN-α), have gained renewed attention. However, HIV pathogenesis is driven by sustained IFN-mediated immune activation, and the use of IFNs is rather controversial. The following questions therein remain: (i) which IFN-α subtype to use, (ii) at which regimen, and (iii) at what time point in HIV infection it might be beneficial. Here, we used IFN-α14 modified by PASylation for its long half-life in vivo to eventually treat HIV infection. We defined the IFN dosing regimen based on the maximum increase in interferon-stimulated gene (ISG) expression 6 h after its administration and a return to baseline of ubiquitin-specific protease 18 (USP18) prior to the next dose. Notably, USP18 is the major negative regulator of type I IFN signaling. HIV infection resulted in increased ISG expression levels in humanized mice. Intriguingly, high baseline ISG levels correlated with lower HIV load. No effect was observed on HIV replication when PASylated IFN-α14 was administered in the chronic phase. However, combined antiretroviral therapy (cART) restored responsiveness to IFN, and PASylated IFN-α14 administered during analytical cART interruption resulted in a transiently lower HIV burden than in the mock-treated mice. In conclusion, cART-mediated HIV suppression restored transient IFN responsiveness and provided a potential window for immunoenhancing therapies in the context of analytical cART interruption. IMPORTANCE cART is highly efficient in suppressing HIV replication in HIV-infected patients and has resulted in a dramatic reduction in morbidity and mortality in HIV-infected people, yet it does not cure HIV infection. In addition, cART has several disadvantages. Thus, the HIV research community is exploring novel ways to control HIV infection for longer periods without cART. Here, we explored novel, long-acting IFN-α14 for its efficacy to control HIV replication in HIV-infected humanized mice. We found that IFN-α14 had no effect on chronic HIV infection. However, when mice were treated first with cART, we observed a transiently restored responsiveness to INF and a transiently lower HIV burden after stopping cART. These data emphasize (i) the value of cART-mediated HIV suppression and immune reconstitution in creating a window of opportunity for exploring novel immunotherapies, (ii) the potential of IFNs for constraining HIV, and (iii) the value of humanized mice for exploring novel immunotherapies.
Collapse
|
19
|
Xie X, Karakoese Z, Ablikim D, Ickler J, Schuhenn J, Zeng X, Feng X, Yang X, Dittmer U, Yang D, Sutter K, Liu J. IFNα subtype-specific susceptibility of HBV in the course of chronic infection. Front Immunol 2022; 13:1017753. [PMID: 36311794 PMCID: PMC9616162 DOI: 10.3389/fimmu.2022.1017753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a major health problem worldwide and remains hard to be cured. Therapy with interferon (IFN) α is an important method for the clinical treatment of chronic hepatitis B. IFNα exhibits direct antiviral effects as well as immunomodulatory activities, which can induce sustained antiviral responses in part of the treated chronic hepatitis B patients. Numerous IFNα subtypes with high sequence identity between 76-96% exist which are characterized by diverse, non-redundant biological activities. Our previous studies have demonstrated that the clinically approved IFNα2 is not the most effective subtype for the anti-HBV treatment among all IFNα subtypes. So far very little is known about the IFNα subtype expression pattern during early HBV infection and the IFNα subtype-specific susceptibility during persistent HBV infection as well as its related cellular mechanism. Here we determined the Ifna subtype mRNA expression during acute and chronic HBV infection by using the well-established hydrodynamic injection (HDI) mouse model and we revealed a transient but strong expression of a panel of Ifna subtypes in the spleen of HBV persistent replication mice compared to HDI controls. Immunotherapy with distinct IFNα subtypes controlled chronic HBV infection. IFNα subtype-mediated antiviral response and immune activation were comprehensively analyzed in an AAV-HBV persistent infection murine model and murine IFNα2 was identified as the most effective subtype in suppression of HBV replication. Further analysis of the immune response revealed a strong immunomodulatory activity of murine IFNα2 on splenic and intrahepatic NK and T cell activation during persistent HBV infection. Taken together, our data provide IFNα subtype-specific differences in the antiviral and immunomodulatory effector responses and a strong expression of all IFNα subtypes in the spleen during persistent HBV infection in mice. This knowledge will support the development of novel immunotherapeutic strategies for chronic hepatitis B infection.
Collapse
Affiliation(s)
- Xiaohong Xie
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Zehra Karakoese
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dilhumare Ablikim
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Julia Ickler
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Jonas Schuhenn
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Kathrin Sutter
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Kathrin Sutter, ; Jia Liu,
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Kathrin Sutter, ; Jia Liu,
| |
Collapse
|
20
|
Zoellner N, Coesfeld N, De Vos FH, Denter J, Xu HC, Zimmer E, Knebel B, Al-Hasani H, Mossner S, Lang PA, Floss DM, Scheller J. Synthetic mimetics assigned a major role to IFNAR2 in type I interferon signaling. Front Microbiol 2022; 13:947169. [PMID: 36118237 PMCID: PMC9480868 DOI: 10.3389/fmicb.2022.947169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Type I interferons (IFNs) are potent inhibitors of viral replication. Here, we reformatted the natural murine and human type I interferon-α/β receptors IFNAR1 and IFNAR2 into fully synthetic biological switches. The transmembrane and intracellular domains of natural IFNAR1 and IFNAR2 were conserved, whereas the extracellular domains were exchanged by nanobodies directed against the fluorescent proteins Green fluorescent protein (GFP) and mCherry. Using this approach, multimeric single-binding GFP-mCherry ligands induced synthetic IFNAR1/IFNAR2 receptor complexes and initiated STAT1/2 mediated signal transduction via Jak1 and Tyk2. Homodimeric GFP and mCherry ligands showed that IFNAR2 but not IFNAR1 homodimers were sufficient to induce STAT1/2 signaling. Transcriptome analysis revealed that synthetic murine type I IFN signaling was highly comparable to IFNα4 signaling. Moreover, replication of vesicular stomatitis virus (VSV) in a cell culture-based viral infection model using MC57 cells was significantly inhibited after stimulation with synthetic ligands. Using intracellular deletion variants and point mutations, Y510 and Y335 in murine IFNAR2 were verified as unique phosphorylation sites for STAT1/2 activation, whereas the other tyrosine residues in IFNAR1 and IFNAR2 were not involved in STAT1/2 phosphorylation. Comparative analysis of synthetic human IFNARs supports this finding. In summary, our data showed that synthetic type I IFN signal transduction is originating from IFNAR2 rather than IFNAR1.
Collapse
Affiliation(s)
- Nele Zoellner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Noémi Coesfeld
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Frederik Henry De Vos
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Denter
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Haifeng C. Xu
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Elena Zimmer
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sofie Mossner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp A. Lang
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M. Floss
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
21
|
Chen J, Xu W, Li P, Song L, Jiang Y, Hao P, Gao Z, Zou W, Jin N, Li C. Antiviral Effect of pIFNLs against PEDV and VSV Infection in Different Cells. Int J Mol Sci 2022; 23:9661. [PMID: 36077060 PMCID: PMC9455898 DOI: 10.3390/ijms23179661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Type III and type I interferon have similar mechanisms of action, and their different receptors lead to different distributions in tissue. On mucosal surfaces, type III interferon exhibits strong antiviral activity. Porcine epidemic diarrhea virus (PEDV) is an economically important enteropathogenic coronavirus, which can cause a high incidence rate and mortality in piglets. Here, we demonstrate that porcine interferon lambda 1 (pIFNL1) and porcine interferon lambda 3 (pIFNL3) can inhibit the proliferation of vesicular stomatitis virus with an enhanced green fluorescent protein (VSV-EGFP) in different cells, and also show strong antiviral activity when PEDV infects Vero cells. Both forms of pIFNLs were shown to be better than porcine interferon alpha (pIFNα), the antiviral activity of pIFNL1 is lower than that of pIFNL3. Therefore, our results provide experimental evidence for the inhibition of PEDV infection by pIFNLs, which may provide a promising treatment for the prevention and treatment of Porcine epidemic diarrhea (PED) in piglets.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Peiheng Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Lina Song
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Wancheng Zou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Ningyi Jin
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| |
Collapse
|
22
|
Guo K, Barrett BS, Morrison JH, Mickens KL, Vladar EK, Hasenkrug KJ, Poeschla EM, Santiago ML. Interferon resistance of emerging SARS-CoV-2 variants. Proc Natl Acad Sci U S A 2022; 119:e2203760119. [PMID: 35867811 PMCID: PMC9371743 DOI: 10.1073/pnas.2203760119] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/26/2022] [Indexed: 01/08/2023] Open
Abstract
The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis, and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and five major variants of concern that include the B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1.617.2 (delta), and B.1.1.529 (omicron) lineages. Our data reveal that relative to ancestral isolates, SARS-CoV-2 variants of concern exhibited increased interferon resistance, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased transmissibility and/or lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.
Collapse
Affiliation(s)
- Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Bradley S. Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - James H. Morrison
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kaylee L. Mickens
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eszter K. Vladar
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kim J. Hasenkrug
- Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Eric M. Poeschla
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
23
|
Kalyuzhin OV, Ponezheva LO, Turapova AN, Nurtazina AY, Bykov AS, Karaulov AV. Interferons alpha and gamma, pidotimod, and tilorone in the treatment of acute respiratory infections in patients with allergic rhinitis: a prospective, cohort clinical and immunological study. BULLETIN OF SIBERIAN MEDICINE 2022; 21:48-59. [DOI: 10.20538/1682-0363-2022-2-48-59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Aim. To compare the clinical efficacy and influence on interferon (IFN) production / sensing of drugs with immunemediated antiviral effects, which potentiate type 1 (T1) immune responses, in the treatment of acute respiratory infections (ARI) in patients with allergic rhinitis.Materials and methods.146 ARI patients with remission of seasonal allergic rhinitis were divided into 4 cohorts. In addition to symptomatic therapy, patients received either 2,000 IU of IFNγ in each nasal passage 5 times a day; or rectal suppositories containing 106 IU of IFN-α2b and antioxidants (AO) twice a day, and a gel with IFN-α2b and AO intranasally 3 times a day; or 400 mg of pidotimod per os twice a day; or 125 mg of tilorone per os on days 1, 2, 4, and 6. The severity of ARI was determined daily as the sum of 10-point scores for 15 symptoms. Serum concentrations of IFNα and IFNγ and the ability of blood cells to produce these cytokines ex vivo spontaneously and upon stimulation with Newcastle disease virus or phytohemagglutinin were studied using enzyme-linked immunosorbent assay (ELISA). The proportions of circulating lymphocytes expressing type I IFN receptor subunit 2 (CD118) or IFNγ receptor α-chain (CD119) were determined by flow cytometry.Results. ARI symptoms in all cohorts generally regressed in a similar way. However, from day 5 of the treatment, pidotimod relieved symptoms more effectively than other drugs. In patients treated with tilorone, the regression of ARI manifestations was delayed in the first two to three days, followed by rapid symptom reduction. An initial decrease in the induced production of IFNγ was found in patients treated with pidotimod, and a tendency to a decrease in this parameter was noted in other cohorts. The induced production of IFNγ after the treatment in all groups did not differ from that in healthy donors. No significant changes and differences in the proportions of CD118+ and CD119+ lymphocytes were found between the cohorts, except for a decrease in the number of CD118+ cells after the treatment with tilorone. In patients treated with IFN-α2b + AO, the proportions of CD119+ and CD118+ lymphocytes tended to increase slightly.Conclusion. Drugs that promote the development of T1 over T2 immune responses are a useful option for treating ARI in patients with allergic rhinitis.
Collapse
Affiliation(s)
- O. V. Kalyuzhin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - L. O. Ponezheva
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - A. Yu. Nurtazina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. S. Bykov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. V. Karaulov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
24
|
Karakoese Z, Schwerdtfeger M, Karsten CB, Esser S, Dittmer U, Sutter K. Distinct Type I Interferon Subtypes Differentially Stimulate T Cell Responses in HIV-1-Infected Individuals. Front Immunol 2022; 13:936918. [PMID: 35911692 PMCID: PMC9326074 DOI: 10.3389/fimmu.2022.936918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022] Open
Abstract
The expression of type I interferons (IFNs) is one of the immediate host responses during most viral infections. The type I IFN family consists of numerous highly conserved IFNα subtypes, IFNβ, and some others. Although these IFNα subtypes were initially believed to act interchangeably, their discrete biological properties are nowadays widely accepted. Subtype-specific antiviral, immunomodulatory, and anti-proliferative activities were reported explained by differences in receptor affinity, downstream signaling events, and individual IFN-stimulated gene expression patterns. Type I IFNs and increased IFN signatures potentially linked to hyperimmune activation of T cells are critically discussed for chronic HIV (human immunodeficiency virus) infection. Here, we aimed to analyze the broad immunological effects of specific type I IFN subtypes (IFNα2, IFNα14, and IFNβ) on T and NK cell subsets during HIV-1 infection in vitro and ex vivo. Stimulation with IFNα14 and IFNβ significantly increased frequencies of degranulating (CD107a+) gut-derived CD4+ T cells and blood-derived T and NK cells. However, frequencies of IFNγ-expressing T cells were strongly reduced after stimulation with IFNα14 and IFNβ. Phosphorylation of downstream molecules was not only IFN subtype-specific; also, significant differences in STAT5 phosphorylation were observed in both healthy peripheral blood mononuclear cells (PBMCs) and PBMCs of HIV-infected individuals, but this effect was less pronounced in healthy gut-derived lamina propria mononuclear cells (LPMCs), assuming cell and tissue specific discrepancies. In conclusion, we observed distinct type I IFN subtype-specific potencies in stimulating T and NK cell responses during HIV-1-infection.
Collapse
Affiliation(s)
- Zehra Karakoese
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Mara Schwerdtfeger
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Christina B. Karsten
- Institute for Translational HIV Research, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Esser
- Institute for Translational HIV Research, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- Department of Dermatology and Venerology, University Medicine Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Ulf Dittmer, ; Kathrin Sutter,
| | - Kathrin Sutter
- Institute for Virology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Ulf Dittmer, ; Kathrin Sutter,
| |
Collapse
|
25
|
Chen X, Zhao Q, Xu Y, Wu Q, Zhang R, Du Q, Miao Y, Zuo Y, Zhang HG, Huang F, Ren T, He J, Qiao C, Li Y, Li S, Xu Y, Wu D, Yu Z, Lv H, Wang J, Zheng H, Yuan Y. E3 ubiquitin ligase MID1 ubiquitinates and degrades type-I interferon receptor 2. Immunology 2022; 167:398-412. [PMID: 35794827 DOI: 10.1111/imm.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Type I interferon (IFN-I) is a common biological molecule used for the treatment of viral diseases. However, the clinical antiviral efficacy of IFN-I needs to be greatly improved. In this study, IFN-I receptor 2 (IFNAR2) was revealed to undergo degradation at the protein level in cells treated with IFN-I for long periods of time. Further studies found a physical interaction between the E3 ubiquitin ligase Midline-1 (MID1) and IFNAR2. As a consequence, MID1 induced both K48-linked and K63-linked polyubiquitination of IFNAR2, which promoted IFNAR2 protein degradation in a lysosome-dependent manner. Conversely, knockdown of MID1 largely restricted IFN-I-induced degradation of IFNAR2. Importantly, MID1 regulated the strength of IFN-I signaling and IFN-I-induced antiviral activity. These findings reveal a regulatory mechanism of IFNAR2 ubiquitination and protein stability in IFN-I signaling, which could provide a potential target for improving the antiviral efficacy of IFN-I.
Collapse
Affiliation(s)
- Xiangjie Chen
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Qian Zhao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Ying Xu
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.,Department of Intensive Care Unit, Qinghai Provincial People's Hospital, Xining, China
| | - Qiuyu Wu
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qian Du
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yibo Zuo
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hong-Guang Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Fan Huang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Tengfei Ren
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jiuyi He
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yue Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shifeng Li
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhengyuan Yu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, Suzhou, China
| | - Jun Wang
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Cheng Y, Straube R, Alnaif AE, Huang L, Leil TA, Schmidt BJ. Virtual Populations for Quantitative Systems Pharmacology Models. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:129-179. [PMID: 35437722 DOI: 10.1007/978-1-0716-2265-0_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quantitative systems pharmacology (QSP) places an emphasis on dynamic systems modeling, incorporating considerations from systems biology modeling and pharmacodynamics. The goal of QSP is often to quantitatively predict the effects of clinical therapeutics, their combinations, and their doses on clinical biomarkers and endpoints. In order to achieve this goal, strategies for incorporating clinical data into model calibration are critical. Virtual population (VPop) approaches facilitate model calibration while faced with challenges encountered in QSP model application, including modeling a breadth of clinical therapies, biomarkers, endpoints, utilizing data of varying structure and source, capturing observed clinical variability, and simulating with models that may require more substantial computational time and resources than often found in pharmacometrics applications. VPops are frequently developed in a process that may involve parameterization of isolated pathway models, integration into a larger QSP model, incorporation of clinical data, calibration, and quantitative validation that the model with the accompanying, calibrated VPop is suitable to address the intended question or help with the intended decision. Here, we introduce previous strategies for developing VPops in the context of a variety of therapeutic and safety areas: metabolic disorders, drug-induced liver injury, autoimmune diseases, and cancer. We introduce methodological considerations, prior work for sensitivity analysis and VPop algorithm design, and potential areas for future advancement. Finally, we give a more detailed application example of a VPop calibration algorithm that illustrates recent progress and many of the methodological considerations. In conclusion, although methodologies have varied, VPop strategies have been successfully applied to give valid clinical insights and predictions with the assistance of carefully defined and designed calibration and validation strategies. While a uniform VPop approach for all potential QSP applications may be challenging given the heterogeneity in use considerations, we anticipate continued innovation will help to drive VPop application for more challenging cases of greater scale while developing new rigorous methodologies and metrics.
Collapse
Affiliation(s)
- Yougan Cheng
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA.,Daiichi Sankyo, Inc., Pennington, NJ, USA
| | - Ronny Straube
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA
| | - Abed E Alnaif
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA.,EMD Serono, Billerica, MA, USA
| | - Lu Huang
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA
| | - Tarek A Leil
- QSP and PBPK, Bristol Myers Squibb, Princeton, NJ, USA.,Daiichi Sankyo, Inc., Pennington, NJ, USA
| | | |
Collapse
|
27
|
Lodi L, Mastrolia MV, Bello F, Rossi GM, Angelotti ML, Crow YJ, Romagnani P, Vaglio A. Type I interferon-related kidney disorders. Kidney Int 2022; 101:1142-1159. [PMID: 35339535 DOI: 10.1016/j.kint.2022.02.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Type I interferon (IFN-I) mediates tissue damage in a wide range of kidney disorders, directly affecting the biology and function of several renal cell types including podocytes, mesangial, endothelial and parietal epithelial cells (PECs).Enhanced IFN-I signalling is observed in the context of viral infections, autoimmunity (e.g., systemic lupus erythematosus, SLE), and the type 1 interferonopathies (T1Is), rare monogenic disorders characterised by constitutive activation of the IFN-I pathway. All of these IFN I-related disorders can cause renal dysfunction, and share pathogenic and histopathological features. Collapsing glomerulopathy, a histopathological lesion characterised by podocyte loss, collapse of the vascular tuft and PEC proliferation, is commonly associated with viral infections, has been described in T1Is such as Aicardi-Goutières syndrome and STING-associated vasculopathy with onset in infancy (SAVI), and can also be induced by recombinant IFN-therapy. In all of these conditions, podocytes and PECs seem to be the primary target of IFN I-mediated damage. Additionally, immune-mediated glomerular injury is common to viral infections, SLE, and T1Is such as COPA syndrome and DNASE1L3 deficiency, diseases in which IFN-I apparently promotes immune-mediated kidney injury. Finally, kidney pathology primarily characterised by vascular lesions (e.g., thrombotic microangiopathy, vasculitis) is a hallmark of the T1I ADA2 deficiency as well as of SLE, viral infections and IFN-therapy.Defining the nosology, pathogenic mechanisms and histopathological patterns of IFN I-related kidney disorders has diagnostic and therapeutic implications, especially considering the likely near-term availability of novel drugs targeting the IFN-I pathway.
Collapse
Affiliation(s)
- Lorenzo Lodi
- Department of Health Sciences, University of Firenze; Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy
| | - Maria V Mastrolia
- Rheumatology Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy
| | - Federica Bello
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | | | - Maria L Angelotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - Paola Romagnani
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy; Nephrology and Dialysis Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy; Nephrology and Dialysis Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy.
| |
Collapse
|
28
|
Rout SS, Di Y, Dittmer U, Sutter K, Lavender KJ. Distinct effects of treatment with two different interferon-alpha subtypes on HIV-1-associated T-cell activation and dysfunction in humanized mice. AIDS 2022; 36:325-336. [PMID: 35084382 DOI: 10.1097/qad.0000000000003111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Interferon-alpha (IFN-α) has been associated with excessive immune activation and dysfunction during HIV-1 infection. However, evidence suggests specific IFN-α subtypes may be beneficial rather than detrimental. This study compared the effects of treatment with two different IFN-α subtypes on indicators of T-cell activation and dysfunction during HIV-1 infection. DESIGN Humanized mice were infected with HIV-1 for 5 weeks and then treated with two different IFN-α subtypes for an additional 3 weeks. Splenic T cells were assessed both immediately posttreatment and again 6 weeks after treatment cessation. METHODS HIV-1 infected triple-knockout bone marrow-liver-thymus mice received daily intraperitoneal injections of either IFN-α14 or the clinically approved subtype, IFN-α2. T cells were analysed directly ex vivo for indicators of activation and dysfunction or stimulated to determine their proliferative capacity and ability to produce functional mediators. RESULTS Unlike IFN-α2, IFN-α14 treatment reduced viremia and resulted in less activated CD4+ T cells and a lower naïve to effector CD8+ T-cell ratio. Despite exhibiting a reduced proliferative response, the frequency of CD8+ T cells from IFN-α14 treated mice that produced functional mediators and expressed markers of dysfunction was more similar to healthy controls than untreated and IFN-α2 treated mice. Frequencies of exhaustion marker expression remained higher in untreated and IFN-α2 treated mice 6 weeks posttreatment despite similar viral loads between groups at this timepoint. CONCLUSIONS Treatment with different IFN-α subtypes had distinctive effects on T cells during HIV-1 infection. IFN-α14 was associated with fewer indicators of T-cell dysfunction whereas IFN-α2 treatment had little impact.
Collapse
Affiliation(s)
- Saurav S Rout
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yunyun Di
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerry J Lavender
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
29
|
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, Sockolosky JT. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114112. [PMID: 35085624 DOI: 10.1016/j.addr.2022.114112] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Cytokines are a class of potent immunoregulatory proteins that are secreted in response to various stimuli and act locally to regulate many aspects of human physiology and disease. Cytokines play important roles in cancer initiation, progression, and elimination, and thus, there is a long clinical history associated with the use of recombinant cytokines to treat cancer. However, the use of cytokines as therapeutics has been limited by cytokine pleiotropy, complex biology, poor drug-like properties, and severe dose-limiting toxicities. Nevertheless, cytokines are crucial mediators of innate and adaptive antitumor immunity and have the potential to enhance immunotherapeutic approaches to treat cancer. Development of immune checkpoint inhibitors and combination immunotherapies has reinvigorated interest in cytokines as therapeutics, and a variety of engineering approaches are emerging to improve the safety and effectiveness of cytokine immunotherapy. In this review we highlight recent advances in cytokine biology and engineering for cancer immunotherapy.
Collapse
|
30
|
Differential interferon-α subtype induced immune signatures are associated with suppression of SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2022; 119:2111600119. [PMID: 35131898 PMCID: PMC8872780 DOI: 10.1073/pnas.2111600119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Type I interferons (IFN-I) exhibit various biological effects during viral infections, and they have been successfully used for clinical treatment of viral diseases. Humans express 12 IFNα subtypes, which strongly differ in their antiviral responses against different viruses. Here we analyzed the antiviral activity of all human IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Our data provide a systemic pattern of antiviral host effector responses mediated by high antiviral IFN-I, which could help to identify key cellular effectors targeted in novel therapeutic approaches against SARS-CoV-2 infection. Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2–infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.
Collapse
|
31
|
Hauptstein N, Meinel L, Lühmann T. Bioconjugation strategies and clinical implications of Interferon-bioconjugates. Eur J Pharm Biopharm 2022; 172:157-167. [PMID: 35149191 DOI: 10.1016/j.ejpb.2022.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 02/08/2023]
Abstract
Interferons (IFN) are immunomodulating, antiviral and antiproliferative cytokines for treatment of multiple indications, including cancer, hepatitis, and autoimmune disease. The first IFNs were discovered in 1957, first approved in 1986, and are nowadays listed in the WHO model list of essential Medicines. Three classes of IFNs are known; IFN-α2a and IFN-β belonging to type-I IFNs, IFN-γ a type-II IFN approved for some hereditary diseases and IFN-λs, which form the newest class of type-III IFNs. IFN-λs were discovered in the last decade with fascinating yet under discovered pharmaceutical potential. This article reviews available IFN drugs, their field and route of application, while also outlining available and future strategies for bioconjugation to further optimize pharmaceutical and clinical performances of all three available IFN classes.
Collapse
Affiliation(s)
- Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), DE-97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany.
| |
Collapse
|
32
|
Locke MC, Fox LE, Dunlap BF, Young AR, Monte K, Lenschow DJ. Interferon Alpha, but Not Interferon Beta, Acts Early To Control Chronic Chikungunya Virus Pathogenesis. J Virol 2022; 96:e0114321. [PMID: 34668781 PMCID: PMC8754211 DOI: 10.1128/jvi.01143-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus that causes both debilitating acute and chronic disease. Previous work has shown that type I interferons (IFNs) play a critical role in limiting CHIKV pathogenesis and that interferon alpha (IFN-α) and interferon beta (IFN-β) control acute CHIKV infection by distinct mechanisms. However, the role of type I IFNs, especially specific subtypes, during chronic CHIKV disease is unclear. To address this gap in knowledge, we evaluated chronic CHIKV pathogenesis in mice lacking IFN-α or IFN-β. We found that IFN-α was the dominant subtype that controls chronic disease. Despite detecting a varying type I IFN response throughout the course of disease, IFN-α acts within the first few days of infection to control the levels of persistent CHIKV RNA. In addition, using a novel CHIKV-3'-Cre tdTomato reporter system that fate maps CHIKV-infected cells, we showed that IFN-α limits the number of cells that survive CHIKV at sites of dissemination, particularly dermal fibroblasts and immune cells. Though myofibers play a significant role in CHIKV disease, they were not impacted by the loss of IFN-α. Our studies highlight that IFN-α and IFN-β play divergent roles during chronic CHIKV disease through events that occur early in infection and that not all cell types are equally dependent on type I IFNs for restricting viral persistence. IMPORTANCE Chikungunya virus (CHIKV) is a reemerging global pathogen with no effective vaccine or antiviral treatment for acute or chronic disease, and the mechanisms underlying chronic disease manifestations remain poorly defined. The significance of our research is in defining IFN-α, but not IFN-β, as an important host regulator of chronic CHIKV pathogenesis that acts within the first 48 hours of infection to limit persistent viral RNA and the number of cells that survive CHIKV infection 1 month post-infection. Loss of IFN-α had a greater impact on immune cells and dermal fibroblasts than myofibers, highlighting the need to delineate cell-specific responses to type I IFNs. Altogether, our work demonstrates that very early events of acute CHIKV infection influence chronic disease. Continued efforts to delineate early host-pathogen interactions may help stratify patients who are at risk for developing chronic CHIKV symptoms and identify therapeutics that may prevent progression to chronic disease altogether.
Collapse
Affiliation(s)
- Marissa C. Locke
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Lindsey E. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Bria F. Dunlap
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alissa R. Young
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kristen Monte
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Deborah J. Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
33
|
Guo K, Barrett BS, Mickens KL, Vladar EK, Morrison JH, Hasenkrug KJ, Poeschla EM, Santiago ML. Interferon Resistance of Emerging SARS-CoV-2 Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.20.436257. [PMID: 33758840 PMCID: PMC7986999 DOI: 10.1101/2021.03.20.436257] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and four major variants of concern. Our data reveal increased interferon resistance in emerging SARS-CoV-2 variants, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.
Collapse
Affiliation(s)
- Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Bradley S. Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Kaylee L. Mickens
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Ezster K. Vladar
- Division of Pulmonary Sciences and Critical Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - James H. Morrison
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Kim J. Hasenkrug
- Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Eric M. Poeschla
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| |
Collapse
|
34
|
Qiao X, Zong Y, Liu Z, Li Y, Wang J, Wang L, Song L. A novel CgIFNLP receptor involved in regulating ISG expression in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104206. [PMID: 34274363 DOI: 10.1016/j.dci.2021.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Interferons (IFNs) are the key coordinators of antiviral immunity by binding to their receptors to orchestrate a complex transcriptional network in vertebrates. Recently, the existence of molluscan IFN-like system has been certified by the identification of important components in IFN system, such as IFN-like protein (CgIFNLP) from oyster Crassostrea gigas. In the present study, a novel CgIFNLP receptor (designed CgIFNLPR-1) was identified from C. gigas. The open reading frame (ORF) of CgIFNLPR-1 cDNA was of 1962 bp encoding a peptide of 653 amino acid residues with five fibronectin type III (FNIII) domains and one transmembrane helix region. The mRNA transcripts of CgIFNLPR-1 were constitutively distributed in all the tested tissues, with the highest level in gonad. After Poly (I:C) stimulation, the mRNA expression of CgIFNLPR-1 in haemocytes was significantly up-regulated to the highest level at 48 h (4.54-fold of that in control group, p < 0.05). CgIFNLPR-1 protein was mainly distributed in the cytoplasm and membrane of oyster haemocytes. CgIFNLP and CgIFNLPR-1 were able to interact with each other in vitro. After the CgIFNLPR-1 was knocked down by RNAi, the mRNA expression of IFN-stimulated genes (ISGs), including CgMx, CgViperin and CgIFNIP-44, were significantly inhibited after Poly (I:C) stimulation, which was 0.17, 0.31 and 0.53-fold of that in EGFP group, respectively (p < 0.01). These findings suggested that CgIFNLPR-1 was a novel CgIFNLP receptor in the oyster to recognize CgIFNLP and regulate the expressions of CgISGs.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuanmei Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jihan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
35
|
Kirby D, Parmar B, Fathi S, Marwah S, Nayak CR, Cherepanov V, MacParland S, Feld JJ, Altan-Bonnet G, Zilman A. Determinants of Ligand Specificity and Functional Plasticity in Type I Interferon Signaling. Front Immunol 2021; 12:748423. [PMID: 34691060 PMCID: PMC8529159 DOI: 10.3389/fimmu.2021.748423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
The Type I Interferon family of cytokines all act through the same cell surface receptor and induce phosphorylation of the same subset of response regulators of the STAT family. Despite their shared receptor, different Type I Interferons have different functions during immune response to infection. In particular, they differ in the potency of their induced anti-viral and anti-proliferative responses in target cells. It remains not fully understood how these functional differences can arise in a ligand-specific manner both at the level of STAT phosphorylation and the downstream function. We use a minimal computational model of Type I Interferon signaling, focusing on Interferon-α and Interferon-β. We validate the model with quantitative experimental data to identify the key determinants of specificity and functional plasticity in Type I Interferon signaling. We investigate different mechanisms of signal discrimination, and how multiple system components such as binding affinity, receptor expression levels and their variability, receptor internalization, short-term negative feedback by SOCS1 protein, and differential receptor expression play together to ensure ligand specificity on the level of STAT phosphorylation. Based on these results, we propose phenomenological functional mappings from STAT activation to downstream anti-viral and anti-proliferative activity to investigate differential signal processing steps downstream of STAT phosphorylation. We find that the negative feedback by the protein USP18, which enhances differences in signaling between Interferons via ligand-dependent refractoriness, can give rise to functional plasticity in Interferon-α and Interferon-β signaling, and explore other factors that control functional plasticity. Beyond Type I Interferon signaling, our results have a broad applicability to questions of signaling specificity and functional plasticity in signaling systems with multiple ligands acting through a bottleneck of a small number of shared receptors.
Collapse
Affiliation(s)
- Duncan Kirby
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Baljyot Parmar
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Sepehr Fathi
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Sagar Marwah
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, ON, Canada
| | - Chitra R Nayak
- Department of Physics, University of Toronto, Toronto, ON, Canada.,Department of Physics, Tuskegee University, Tuskegee, AL, United States
| | - Vera Cherepanov
- Sandra Rotman Centre for Global Health, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sonya MacParland
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, ON, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, Canada
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, United States
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ON, Canada.,Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Ye J, Chen J. Interferon and Hepatitis B: Current and Future Perspectives. Front Immunol 2021; 12:733364. [PMID: 34557195 PMCID: PMC8452902 DOI: 10.3389/fimmu.2021.733364] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major health burden worldwide for which there is still no effective curative treatment. Interferon (IFN) consists of a group of cytokines with antiviral activity and immunoregulatory and antitumor effects, that play crucial roles in both innate and adaptive immune responses. IFN-α and its pegylated form have been used for over thirty years to treat chronic hepatitis B (CHB) with advantages of finite treatment duration and sustained virologic response, however, the efficacy is limited and side effects are common. Here, we summarize the status and unique advantages of IFN therapy against CHB, review the mechanisms of IFN-α action and factors affecting IFN response, and discuss the possible improvement of IFN-based therapy and the rationale of combinations with other antiviral agents in seeking an HBV cure.
Collapse
Affiliation(s)
- Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Research Unit of Cure of Chronic Hepatitis B Virus Infection, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
37
|
Optimal ligand discrimination by asymmetric dimerization and turnover of interferon receptors. Proc Natl Acad Sci U S A 2021; 118:2103939118. [PMID: 34507994 DOI: 10.1073/pnas.2103939118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
In multicellular organisms, antiviral defense mechanisms evoke a reliable collective immune response despite the noisy nature of biochemical communication between tissue cells. A molecular hub of this response, the interferon I receptor (IFNAR), discriminates between ligand types by their affinity regardless of concentration. To understand how ligand type can be decoded robustly by a single receptor, we frame ligand discrimination as an information-theoretic problem and systematically compare the major classes of receptor architectures: allosteric, homodimerizing, and heterodimerizing. We demonstrate that asymmetric heterodimers achieve the best discrimination power over the entire physiological range of local ligand concentrations. This design enables sensing of ligand presence and type, and it buffers against moderate concentration fluctuations. In addition, receptor turnover, which drives the receptor system out of thermodynamic equilibrium, allows alignment of activation points for ligands of different affinities and thereby makes ligand discrimination practically independent of concentration. IFNAR exhibits this optimal architecture, and our findings thus suggest that this specialized receptor can robustly decode digital messages carried by its different ligands.
Collapse
|
38
|
Musella M, Galassi C, Manduca N, Sistigu A. The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. BIOLOGY 2021; 10:856. [PMID: 34571733 PMCID: PMC8467547 DOI: 10.3390/biology10090856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Type I Interferons (IFNs) are key regulators of natural and therapy-induced host defense against viral infection and cancer. Several years of remarkable progress in the field of oncoimmunology have revealed the dual nature of these cytokines. Hence, Type I IFNs may trigger anti-tumoral responses, while leading immune dysfunction and disease progression. This dichotomy relies on the duration and intensity of the transduced signaling, the nature of the unleashed IFN stimulated genes, and the subset of responding cells. Here, we discuss the role of Type I IFNs in the evolving relationship between the host immune system and cancer, as we offer a view of the therapeutic strategies that exploit and require an intact Type I IFN signaling, and the role of these cytokines in inducing adaptive resistance. A deep understanding of the complex, yet highly regulated, network of Type I IFN triggered molecular pathways will help find a timely and immune"logical" way to exploit these cytokines for anticancer therapy.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Claudia Galassi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
39
|
Abstract
Type I interferons (IFNs) are a family of cytokines that represent a first line of defense against virus infections. The 12 different IFN-α subtypes share a receptor on target cells and trigger similar signaling cascades. Several studies have collectively shown that this apparent redundancy conceals qualitatively different responses induced by individual subtypes, which display different efficacies of inhibition of HIV replication. Some studies, however, provided evidence that the disparities are quantitative rather than qualitative. Since RNA expression analyses show a large but incomplete overlap of the genes induced, they may support both models. To explore if the IFN-α subtypes induce functionally relevant different anti-HIV activities, we have compared the efficacies of inhibition of all 12 subtypes on HIV spread and on specific steps of the viral replication cycle, including viral entry, reverse transcription, protein synthesis, and virus release. Finding different hierarchies of inhibition would validate the induction of qualitatively different responses. We found that while most subtypes similarly inhibit virus entry, they display distinctive potencies on other early steps of HIV replication. In addition, only some subtypes were able to target effectively the late steps. The extent of induction of known anti-HIV factors helps to explain some, but not all differences observed, confirming the participation of additional IFN-induced anti-HIV effectors. Our findings support the notion that different IFN-α subtypes can induce the expression of qualitatively different antiviral activities. IMPORTANCE The initial response against viruses relies in large part on type I interferons, which include 12 subtypes of IFN-α. These cytokines bind to a common receptor on the cell surface and trigger the expression of incompletely overlapping sets of genes. Whether the anti-HIV responses induced by IFN-α subtypes differ in the extent of expression or in the nature of the genes involved remains debated. Also, RNA expression profiles led to opposite conclusions, depending on the importance attributed to the induction of common or distinctive genes. To explore if relevant anti-HIV activities can be differently induced by the IFN-α subtypes, we compared their relative efficacies on specific steps of the replication cycle. We show that the hierarchy of IFN potencies depends on the step analyzed, supporting qualitatively different responses. This work will also prompt the search for novel IFN-induced anti-HIV factors acting on specific steps of the replication cycle.
Collapse
|
40
|
Mansouri S, Gogoi H, Pipkin M, Machuca TN, Emtiazjoo AM, Sharma AK, Jin L. In vivo reprogramming of pathogenic lung TNFR2 + cDC2s by IFNβ inhibits HDM-induced asthma. Sci Immunol 2021; 6:6/61/eabi8472. [PMID: 34244314 DOI: 10.1126/sciimmunol.abi8472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/21/2021] [Indexed: 01/28/2023]
Abstract
Asthma is a common inflammatory lung disease with no known cure. Previously, we uncovered a lung TNFR2+ conventional DC2 subset (cDC2s) that induces regulatory T cells (Tregs) maintaining lung tolerance at steady state but promotes TH2 response during house dust mite (HDM)-induced asthma. Lung IFNβ is essential for TNFR2+ cDC2s-mediated lung tolerance. Here, we showed that exogenous IFNβ reprogrammed TH2-promoting pathogenic TNFR2+ cDC2s back to tolerogenic DCs, alleviating eosinophilic asthma and preventing asthma exacerbation. Mechanistically, inhaled IFNβ, not IFNα, activated ERK2 signaling in pathogenic lung TNFR2+ cDC2s, leading to enhanced fatty acid oxidation (FAO) and lung Treg induction. Last, human IFNβ reprogrammed pathogenic human lung TNFR2+ cDC2s from patients with emphysema ex vivo. Thus, we identified an IFNβ-specific ERK2-FAO pathway that might be harnessed for DC therapy.
Collapse
Affiliation(s)
- Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mauricio Pipkin
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Tiago N Machuca
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Amir M Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ashish K Sharma
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
41
|
Abstract
Introduction: Innate immunity is armed with interferons (IFNs) that link innate immunity to adaptive immunity to generate long-term and protective immune responses against invading pathogens and tumors. However, regulation of IFN production is crucial because chronic IFN responses can have deleterious effects on both antitumor and antimicrobial immunity in addition to provoking autoinflammatory or autoimmune conditions.Areas covered: Here, we focus on the accumulated evidence on antimicrobial and antitumor activities of type I and II IFNs. We first summarize the intracellular and intercellular mechanisms regulating IFN production and signaling. Then, we discuss the mechanisms modulating the dual nature of IFNs for both antitumor and antimicrobial immune responses. Finally, we review the detrimental role of IFNs for induction of autoinflammation and autoimmunity.Expert opinion: The current evidence suggests that the dual role of IFNs for antimicrobial and antitumor immunity is dependent not only on the timing, administration route, and dose of IFNs but also on the type of pathogen/tumor. Therefore, we think that combinatorial therapies involving IFN-inducing adjuvants and immune-checkpoint blockers may offer therapeutic potential, especially for cancer, whereas infectious, autoinflammatory or autoimmune diseases require fine adjustment of timing, dose, and route of the administration for candidate IFN-based vaccines or immunotherapies.
Collapse
Affiliation(s)
- Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), Osaka, Japan
| |
Collapse
|
42
|
Yang L, Wang J, Hui P, Yarovinsky TO, Badeti S, Pham K, Liu C. Potential role of IFN-α in COVID-19 patients and its underlying treatment options. Appl Microbiol Biotechnol 2021; 105:4005-4015. [PMID: 33950278 PMCID: PMC8096625 DOI: 10.1007/s00253-021-11319-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease (COVID-19) caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly worldwide. Given that this contagious viral outbreak is still unfolding, it is urgent to understand the pathogenesis of SARS-CoV-2 infection and explore effective treatments to protect patients from developing a severe illness related to COVID-19. Recently, IFN-α has been considered a potential therapeutic strategy to treat COVID-19 disease, mainly because the innate immune system rapidly produces IFN-α as the first line of defense to combat viral infections. However, IFN-α can also play a role in immunoregulatory effects, causing pathogenic damage and uncontrolled inflammatory responses. There are 13 human IFN-α subtypes that bind to the same receptor and induce different interferon-stimulated gene (ISG) expression, regulating various antiviral and immunoregulatory effects. The varying degrees of inflammatory regulations may raise concerns about the possible side effects to enlarge the inflammatory responses, exacerbating the severity of infection. Thus, the analysis of various IFN-α subtype induction during SARS-CoV-2 infection is necessary in exploring the mechanism of COVID-19 pathogenesis. This review summarizes the current understanding of IFN-α in the pathogenesis of respiratory virus diseases and IFN-α based clinical intervention used in SARS-CoV-2 infection and other respiratory virus diseases. Besides, new ideas in selecting suitable IFN-α subtypes or combinations as drug candidates for viral infection treatment will also be discussed.Key Points• IFN-α plays an important role in anti-viral and immunoregulatory effects in COVID-19 patients caused by SARS-CoV-2.• The uncontrolled inflammation and disease severity correlated to the diversity of IFN-α subtype induction.• Selecting suitable IFN-α subtypes or combinations as drug candidates will be beneficial for the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Lei Yang
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Jianhui Wang
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Pei Hui
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Timur O Yarovinsky
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Saiaditya Badeti
- Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Kien Pham
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06511, USA.
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
43
|
Castro LS, Lobo GS, Pereira P, Freire MG, Neves MC, Pedro AQ. Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation. Vaccines (Basel) 2021; 9:328. [PMID: 33915863 PMCID: PMC8065594 DOI: 10.3390/vaccines9040328] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The advent of biopharmaceuticals in modern medicine brought enormous benefits to the treatment of numerous human diseases and improved the well-being of many people worldwide. First introduced in the market in the early 1980s, the number of approved biopharmaceutical products has been steadily increasing, with therapeutic proteins, antibodies, and their derivatives accounting for most of the generated revenues. The success of pharmaceutical biotechnology is closely linked with remarkable developments in DNA recombinant technology, which has enabled the production of proteins with high specificity. Among promising biopharmaceuticals are interferons, first described by Isaacs and Lindenmann in 1957 and approved for clinical use in humans nearly thirty years later. Interferons are secreted autocrine and paracrine proteins, which by regulating several biochemical pathways have a spectrum of clinical effectiveness against viral infections, malignant diseases, and multiple sclerosis. Given their relevance and sustained market share, this review provides an overview on the evolution of interferon manufacture, comprising their production, purification, and formulation stages. Remarkable developments achieved in the last decades are herein discussed in three main sections: (i) an upstream stage, including genetically engineered genes, vectors, and hosts, and optimization of culture conditions (culture media, induction temperature, type and concentration of inducer, induction regimens, and scale); (ii) a downstream stage, focusing on single- and multiple-step chromatography, and emerging alternatives (e.g., aqueous two-phase systems); and (iii) formulation and delivery, providing an overview of improved bioactivities and extended half-lives and targeted delivery to the site of action. This review ends with an outlook and foreseeable prospects for underdeveloped aspects of biopharma research involving human interferons.
Collapse
Affiliation(s)
- Leonor S. Castro
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Guilherme S. Lobo
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Patrícia Pereira
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal;
| | - Mara G. Freire
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Márcia C. Neves
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Augusto Q. Pedro
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| |
Collapse
|
44
|
de Weerd NA, Vivian JP, Lim SS, Huang SUS, Hertzog PJ. Structural integrity with functional plasticity: what type I IFN receptor polymorphisms reveal. J Leukoc Biol 2021; 108:909-924. [PMID: 33448473 DOI: 10.1002/jlb.2mr0420-152r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The type I IFNs activate an array of signaling pathways, which are initiated after IFNs bind their cognate receptors, IFNα/β receptor (IFNAR)1 and IFNAR2. These signals contribute to many aspects of human health including defense against pathogens, cancer immunosurveillance, and regulation of inflammation. How these cytokines interact with their receptors influences the quality of these signals. As such, the integrity of receptor structure is pivotal to maintaining human health and the response to immune stimuli. This review brings together genome wide association studies and clinical reports describing the association of nonsynonymous IFNAR1 and IFNAR2 polymorphisms with clinical disease, including altered susceptibility to viral and bacterial pathogens, autoimmune diseases, cancer, and adverse reactions to live-attenuated vaccines. We describe the amino acid substitutions or truncations induced by these polymorphisms and, using the knowledge of IFNAR conformational changes, IFNAR-IFN interfaces and overall structure-function relationship of the signaling complexes, we hypothesize the effect of these polymorphisms on receptor structure. That these predicted changes to IFNAR structure are associated with clinical manifestations of human disease, highlights the importance of IFNAR structural integrity to maintaining functional quality of these receptor-mediated responses. Type I IFNs are pivotal to innate immune responses and ultimately, to human health. Understanding the consequences of altered structure on the actions of these clinically significant cell receptors provides important information on the roles of IFNARs in health and disease.
Collapse
Affiliation(s)
- Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and Australian Research Council Centre for Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - San S Lim
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Stephanie U-Shane Huang
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| |
Collapse
|
45
|
Soday L, Potts M, Hunter LM, Ravenhill BJ, Houghton JW, Williamson JC, Antrobus R, Wills MR, Matheson NJ, Weekes MP. Comparative Cell Surface Proteomic Analysis of the Primary Human T Cell and Monocyte Responses to Type I Interferon. Front Immunol 2021; 12:600056. [PMID: 33628210 PMCID: PMC7897682 DOI: 10.3389/fimmu.2021.600056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
The cellular response to interferon (IFN) is essential for antiviral immunity, IFN-based therapy and IFN-related disease. The plasma membrane (PM) provides a critical interface between the cell and its environment, and is the initial portal of entry for viruses. Nonetheless, the effect of IFN on PM proteins is surprisingly poorly understood, and has not been systematically investigated in primary immune cells. Here, we use multiplexed proteomics to quantify IFNα2a-stimulated PM protein changes in primary human CD14+ monocytes and CD4+ T cells from five donors, quantifying 606 and 482 PM proteins respectively. Comparison of cell surface proteomes revealed a remarkable invariance between donors in the overall composition of the cell surface from each cell type, but a marked donor-to-donor variability in the effects of IFNα2a. Furthermore, whereas only 2.7% of quantified proteins were consistently upregulated by IFNα2a at the surface of CD4+ T cells, 6.8% of proteins were consistently upregulated in primary monocytes, suggesting that the magnitude of the IFNα2a response varies according to cell type. Among these differentially regulated proteins, we found the viral target Endothelin-converting enzyme 1 (ECE1) to be an IFNα2a-stimulated protein exclusively upregulated at the surface of CD4+ T cells. We therefore provide a comprehensive map of the cell surface of IFNα2a-stimulated primary human immune cells, including previously uncharacterized interferon stimulated genes (ISGs) and candidate antiviral factors.
Collapse
Affiliation(s)
- Lior Soday
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Martin Potts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Leah M. Hunter
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin J. Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jack W. Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James C. Williamson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Wittling MC, Cahalan SR, Levenson EA, Rabin RL. Shared and Unique Features of Human Interferon-Beta and Interferon-Alpha Subtypes. Front Immunol 2021; 11:605673. [PMID: 33542718 PMCID: PMC7850986 DOI: 10.3389/fimmu.2020.605673] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Type I interferons (IFN-I) were first discovered as an antiviral factor by Isaacs and Lindenmann in 1957, but they are now known to also modulate innate and adaptive immunity and suppress proliferation of cancer cells. While much has been revealed about IFN-I, it remains a mystery as to why there are 16 different IFN-I gene products, including IFNβ, IFNω, and 12 subtypes of IFNα. Here, we discuss shared and unique aspects of these IFN-I in the context of their evolution, expression patterns, and signaling through their shared heterodimeric receptor. We propose that rather than investigating responses to individual IFN-I, these contexts can serve as an alternative approach toward investigating roles for IFNα subtypes. Finally, we review uses of IFNα and IFNβ as therapeutic agents to suppress chronic viral infections or to treat multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | - Ronald L. Rabin
- Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
47
|
Gondim MVP, Sherrill-Mix S, Bibollet-Ruche F, Russell RM, Trimboli S, Smith AG, Li Y, Liu W, Avitto AN, DeVoto JC, Connell J, Fenton-May AE, Pellegrino P, Williams I, Papasavvas E, Lorenzi JCC, Salantes DB, Mampe F, Monroy MA, Cohen YZ, Heath S, Saag MS, Montaner LJ, Collman RG, Siliciano JM, Siliciano RF, Plenderleith LJ, Sharp PM, Caskey M, Nussenzweig MC, Shaw GM, Borrow P, Bar KJ, Hahn BH. Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption. Sci Transl Med 2021; 13:eabd8179. [PMID: 33441429 PMCID: PMC7923595 DOI: 10.1126/scitranslmed.abd8179] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/04/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their antiviral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally derived HIV-1 isolates from the plasma and CD4+ T cells of 26 individuals sampled longitudinally after transmission or after antiretroviral therapy (ART) and analytical treatment interruption. We determined the concentration of IFNα2 and IFNβ that reduced viral replication in vitro by 50% (IC50) and found consistent changes in the sensitivity of HIV-1 to IFN-I inhibition both across individuals and over time. Resistance of HIV-1 isolates to IFN-I was uniformly high during acute infection, decreased in all individuals in the first year after infection, was reacquired concomitant with CD4+ T cell loss, and remained elevated in individuals with accelerated disease. HIV-1 isolates obtained by viral outgrowth during suppressive ART were relatively IFN-I sensitive, resembling viruses circulating just before ART initiation. However, viruses that rebounded after treatment interruption displayed the highest degree of IFNα2 and IFNβ resistance observed at any time during the infection course. These findings indicate a dynamic interplay between host innate responses and the evolving HIV-1 quasispecies, with the relative contribution of IFN-I to HIV-1 control affected by both ART and analytical treatment interruption. Although elevated at transmission, host innate pressures are the highest during viral rebound, limiting the viruses that successfully become reactivated from latency to those that are IFN-I resistant.
Collapse
Affiliation(s)
- Marcos V P Gondim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronnie M Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexa N Avitto
- Gene Therapy Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia C DeVoto
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Pierre Pellegrino
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London, London WC1E 6JB, UK
| | - Ian Williams
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London, London WC1E 6JB, UK
| | | | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | | | - Felicity Mampe
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Alexandra Monroy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sonya Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael S Saag
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janet M Siliciano
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Marina Caskey
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Fox LE, Locke MC, Lenschow DJ. Context Is Key: Delineating the Unique Functions of IFNα and IFNβ in Disease. Front Immunol 2020; 11:606874. [PMID: 33408718 PMCID: PMC7779635 DOI: 10.3389/fimmu.2020.606874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) are critical effector cytokines of the immune system and were originally known for their important role in protecting against viral infections; however, they have more recently been shown to play protective or detrimental roles in many disease states. Type I IFNs consist of IFNα, IFNβ, IFNϵ, IFNκ, IFNω, and a few others, and they all signal through a shared receptor to exert a wide range of biological activities, including antiviral, antiproliferative, proapoptotic, and immunomodulatory effects. Though the individual type I IFN subtypes possess overlapping functions, there is growing appreciation that they also have unique properties. In this review, we summarize some of the mechanisms underlying differential expression of and signaling by type I IFNs, and we discuss examples of differential functions of IFNα and IFNβ in models of infectious disease, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Lindsey E. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Marissa C. Locke
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Deborah J. Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
49
|
Stanifer ML, Guo C, Doldan P, Boulant S. Importance of Type I and III Interferons at Respiratory and Intestinal Barrier Surfaces. Front Immunol 2020; 11:608645. [PMID: 33362795 PMCID: PMC7759678 DOI: 10.3389/fimmu.2020.608645] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Interferons (IFNs) constitute the first line of defense against microbial infections particularly against viruses. They provide antiviral properties to cells by inducing the expression of hundreds of genes known as interferon-stimulated genes (ISGs). The two most important IFNs that can be produced by virtually all cells in the body during intrinsic innate immune response belong to two distinct families: the type I and type III IFNs. The type I IFN receptor is ubiquitously expressed whereas the type III IFN receptor's expression is limited to epithelial cells and a subset of immune cells. While originally considered to be redundant, type III IFNs have now been shown to play a unique role in protecting mucosal surfaces against pathogen challenges. The mucosal specific functions of type III IFN do not solely rely on the restricted epithelial expression of its receptor but also on the distinct means by which type III IFN mediates its anti-pathogen functions compared to the type I IFN. In this review we first provide a general overview on IFNs and present the similarities and differences in the signal transduction pathways leading to the expression of either type I or type III IFNs. By highlighting the current state-of-knowledge of the two archetypical mucosal surfaces (e.g. the respiratory and intestinal epitheliums), we present the differences in the signaling cascades used by type I and type III IFNs to uniquely induce the expression of ISGs. We then discuss in detail the role of each IFN in controlling pathogen infections in intestinal and respiratory epithelial cells. Finally, we provide our perspective on novel concepts in the field of IFN (stochasticity, response heterogeneity, cellular polarization/differentiation and tissue microenvironment) that we believe have implications in driving the differences between type I and III IFNs and could explain the preferences for type III IFNs at mucosal surfaces.
Collapse
Affiliation(s)
- Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricio Doldan
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Research Group “Cellular polarity and viral infection”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
50
|
Mazewski C, Perez RE, Fish EN, Platanias LC. Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Front Immunol 2020; 11:606456. [PMID: 33329603 PMCID: PMC7719805 DOI: 10.3389/fimmu.2020.606456] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
For several decades there has been accumulating evidence implicating type I interferons (IFNs) as key elements of the immune response. Therapeutic approaches incorporating different recombinant type I IFN proteins have been successfully employed to treat a diverse group of diseases with significant and positive outcomes. The biological activities of type I IFNs are consequences of signaling events occurring in the cytoplasm and nucleus of cells. Biochemical events involving JAK/STAT proteins that control transcriptional activation of IFN-stimulated genes (ISGs) were the first to be identified and are referred to as "canonical" signaling. Subsequent identification of JAK/STAT-independent signaling pathways, critical for ISG transcription and/or mRNA translation, are denoted as "non-canonical" or "non-classical" pathways. In this review, we summarize these signaling cascades and discuss recent developments in the field, specifically as they relate to the biological and clinical implications of engagement of both canonical and non-canonical pathways.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|