1
|
Ekemen S, Bilir E, Soultan HEA, Zafar S, Demir F, Tabandeh B, Toprak S, Yapicier O, Coban C. The Programmed Cell Death Ligand 1 and Lipocalin 2 Expressions in Primary Breast Cancer and Their Associations with Molecular Subtypes and Prognostic Factors. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:1-13. [PMID: 38192518 PMCID: PMC10771776 DOI: 10.2147/bctt.s444077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Purpose Breast cancers exhibit molecular heterogeneity, leading to diverse clinical outcomes and therapeutic responses. Immune checkpoint inhibitors targeting PD-L1 have shown promise in various malignancies, including breast cancer. Lipocalin 2 (LCN2) has also been associated with tumor aggressiveness and prognostic potential in breast cancers. However, the expression of PD-L1 and LCN2 in breast cancer subtypes and their prognostic implications remains poorly investigated. Methods A retrospective analysis of 89 primary breast cancer cases was conducted to assess PD-L1 and LCN2 expressions using immunohistochemistry. Cases were classified into four different molecular subtypes based on ER, PR, HER2, and Ki-67 status. Associations between PD-L1 and LCN2 expressions and various prognostic factors were examined. Results Although low expression of LCN2 (Allred score of <3) was observed even in normal breast tissue, LCN2 expression with increasing Allred score (≥3) positively correlated with the histological grade, high Ki-67 proliferation index, and ER/PR negativity. Significant elevations of LCN2 and PD-L1 expressions were observed in triple-negative and HER2-positive breast cancers. Conclusion The results of the study highlight the association of LCN2 with known prognostic factors and molecular subtypes. To identify potential immunotherapy recipients, it would be useful to evaluate LCN2 as well as PD-L1 immune targets in different subgroups of breast cancer patients. Further studies with larger patient numbers are warranted to validate these observations and establish standardized scoring criteria for LCN2 expression assessment.
Collapse
Affiliation(s)
- Suheyla Ekemen
- Vocational School of Health Services, Acibadem University, Istanbul, Turkey
- Division of Malaria Immunology, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
| | - Ebru Bilir
- Residency Program, Bahcesehir University School of Medicine, Istanbul, Turkey
| | | | - Sadia Zafar
- Residency Program, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Figen Demir
- Department of Public Health, Acibadem University School of Medicine, Istanbul, Turkey
| | - Babek Tabandeh
- Department of General Surgery, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Sadik Toprak
- Department of Forensic Medicine, Istanbul University School of Medicine, Istanbul, Turkey
| | - Ozlem Yapicier
- Department of Pathology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
- International Vaccine Design Center, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Loick P, Mohammad GH, Cassimjee I, Chandrashekar A, Lapolla P, Carrington A, Vera-Aviles M, Handa A, Lee R, Lakhal-Littleton S. Protective Role for Smooth Muscle Cell Hepcidin in Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2023; 43:713-725. [PMID: 36951059 PMCID: PMC10125116 DOI: 10.1161/atvbaha.123.319224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Hepcidin is a liver-derived hormone that controls systemic iron homeostasis, by inhibiting the iron exporter ferroportin in the gut and spleen, respective sites of iron absorption and recycling. Hepcidin is also expressed ectopically in the context of cardiovascular disease. However, the precise role of ectopic hepcidin in underlying pathophysiology is unknown. In patients with abdominal aortic aneurysm (AAA), hepcidin is markedly induced in smooth muscle cells (SMCs) of the aneurysm wall and inversely correlated with the expression of LCN2 (lipocalin-2), a protein implicated in AAA pathology. In addition, plasma hepcidin levels were inversely correlated with aneurysm growth, suggesting hepcidin has a potential disease-modifying role. METHODS To probe the role of SMC-derived hepcidin in the setting of AAA, we applied AngII (Angiotensin-II)-induced AAA model to mice harbouring an inducible, SMC-specific deletion of hepcidin. To determine whether SMC-derived hepcidin acted cell-autonomously, we also used mice harboring an inducible SMC-specific knock-in of hepcidin-resistant ferroportinC326Y. The involvement of LCN2 was established using a LCN2-neutralizing antibody. RESULTS Mice with SMC-specific deletion of hepcidin or knock-in of hepcidin-resistant ferroportinC326Y had a heightened AAA phenotype compared with controls. In both models, SMCs exhibited raised ferroportin expression and reduced iron retention, accompanied by failure to suppress LCN2, impaired autophagy in SMCs, and greater aortic neutrophil infiltration. Pretreatment with LCN2-neutralizing antibody restored autophagy, reduced neutrophil infiltration, and prevented the heightened AAA phenotype. Finally, plasma hepcidin levels were consistently lower in mice with SMC-specific deletion of hepcidin than in controls, indicating that SMC-derived hepcidin contributes to the circulating pool in AAA. CONCLUSIONS Hepcidin elevation in SMCs plays a protective role in the setting of AAA. These findings are the first demonstration of a protective rather than deleterious role for hepcidin in cardiovascular disease. They highlight the need to further explore the prognostic and therapeutic value of hepcidin outside disorders of iron homeostasis.
Collapse
Affiliation(s)
- Paul Loick
- Department of Anesthesiology, Intensive Care and Pain Medicine, Universitätsklinikum Münster, Germany (P. Loick)
| | - Goran Hamid Mohammad
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| | - Ismail Cassimjee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Anirudh Chandrashekar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Alison Carrington
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| | - Mayra Vera-Aviles
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, United Kingdom (I.C., A. Chandrashekar, P. Lapolla, A.H., R.L.)
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom (G.H.M., A. Carrington, M.V.-A., S.L.-L.)
| |
Collapse
|
3
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
4
|
Dertli R, Biyik M, Yolacan R, Karakarcayildiz A, Keskin M, Kayar Y, Asil M. May Neutrophil Gelatinase-Associated Lipocalin (NGAL) Level Predict Mortality in Patients with Hepatocellular Carcinoma (HCC)? J Gastrointest Cancer 2021; 51:932-938. [PMID: 31729643 DOI: 10.1007/s12029-019-00323-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) ranks fifth among the common cancers worldwide. Hepatocarcinogenesis is a multiple-phases process, which involves changes in cellular genomes including high cell proliferation.In this study, we aimed to evaluate the relationship of NGAL level at the time of diagnosis with mortality in patients diagnosed with HCC. MATERIAL AND METHODS A total of 35 patients who developed HCC on the ground of HBV(+) and 30 healthy subjects were included in the study. Barcelona Clinic Liver Cancer (BCLC), Okuda staging system, and Milan criteria were used for staging of the patients with HCC. RESULTS The mean age of all patients was 59.54 ± 11.57 years. Seventeen (48.6%) HCC patients died during 1-year follow-up. Survival of the patients who met the Milan criteria was longer (log-rank (Mantel-Cox) test, χ2 = 5.353, p = 0.021). Kaplan-Meier curve was drawn for NGAL cut-off value, mortality was found to be higher in patients with a NGAL level higher than 217.50 (log-rank (Mantel-Cox) test, χ2 = 15.540, p < 0.001). CONCLUSION In this study, we found that high levels of NGAL at the time of diagnosis were associated with poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Ramazan Dertli
- Department of Internal Medicine, Division of Gastroenterology, Van Education and Research Hospital, Van, Turkey.
| | - Murat Biyik
- Meram School of Medicine, Department of Internal Medicine, Division of Gastroenterology, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Ramazan Yolacan
- Meram School of Medicine, Department of Internal Medicine, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Ahmet Karakarcayildiz
- Meram School of Medicine, Department of Internal Medicine, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Muharrem Keskin
- Meram School of Medicine, Department of Internal Medicine, Division of Gastroenterology, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Yusuf Kayar
- Department of Internal Medicine, Division of Gastroenterology, Van Education and Research Hospital, Van, Turkey
| | - Mehmet Asil
- Meram School of Medicine, Department of Internal Medicine, Division of Gastroenterology, Necmettin Erbakan University, Meram, Konya, Turkey
| |
Collapse
|
5
|
Roy R, Stephens AJ, Daisy C, Merritt L, Newcomb CW, Yang J, Dagher A, Curatolo A, Sachdev M, McNeish B, Landis R, van Bokhoven A, El-Hayek A, Froehlich J, Pontari MA, Zurakowski D, Lee RS, Moses MA. Association of Longitudinal Changes in Symptoms and Urinary Biomarkers in Patients with Urological Chronic Pelvic Pain Syndrome: A MAPP Research Network Study. J Urol 2020; 205:514-523. [PMID: 33026902 DOI: 10.1097/ju.0000000000001391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE We analyzed a series of novel noninvasive urinary biomarkers for their ability to objectively monitor the longitudinal clinical status of patients with urological chronic pelvic pain syndrome. MATERIALS AND METHODS Baseline, 6 and 12-month urine samples were collected (216) and used to quantify vascular endothelial growth factor, vascular endothelial growth factor (VEGF) receptor 1 (R1), neutrophil gelatinase associated lipocalin (NGAL), matrix metalloproteinase-2, matrix metalloproteinase (MMP)-9, and MMP-9/NGAL complex by enzyme-linked immunosorbent assays. Patient symptom changes were classified as improved, stable or worse using a functional clustering algorithm. Proportional odds models were used to evaluate the association between symptom change and urinary biomarkers. RESULTS Across all sampled participants, longitudinal decreases in normalized VEGF concentration (pg/μg) were associated with pain severity improvement, and decreases in MMP-9, NGAL and VEGF-R1 concentration (pg/ml) as well as NGAL normalized concentration were associated with improved urinary symptoms. Longitudinal decreases in normalized VEGF-R1 were associated with pain improvement in patients with moderate widespreadness, no bladder symptoms and no painful filling. Lower baseline normalized VEGF-R1 concentration was associated with pain improvement in patients with pelvic pain only. Higher baseline MMP-9/NGAL levels were associated with pain and urinary improvement across all participants. Moreover, longitudinal increases in MMP-2 concentration was associated with improved pain in men and patients with painful filling. CONCLUSIONS Our results suggest these urinary biomarkers may be useful in monitoring urological chronic pelvic pain syndrome symptom changes with respect to both urinary severity and pain severity. With further testing, they may represent objective biological measures of urological chronic pelvic pain syndrome progression and/or resolution while also providing insight into the pathophysiology of urological chronic pelvic pain syndrome.
Collapse
Affiliation(s)
- Roopali Roy
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Alisa J Stephens
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cassandra Daisy
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Lauren Merritt
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Craig W Newcomb
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiang Yang
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Adelle Dagher
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Adam Curatolo
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Monisha Sachdev
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Brendan McNeish
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Richard Landis
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew El-Hayek
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - John Froehlich
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Michel A Pontari
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - David Zurakowski
- Department of Surgery, Harvard Medical School, Boston, Massachusetts.,Department of Anesthesia, Boston Children's Hospital, Boston, Massachusetts
| | - Richard S Lee
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Ducy P. Bone Regulation of Insulin Secretion and Glucose Homeostasis. Endocrinology 2020; 161:5895464. [PMID: 32822470 DOI: 10.1210/endocr/bqaa149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Abstract
For centuries our image of the skeleton has been one of an inert structure playing a supporting role for muscles and a protective role for inner organs like the brain. Cell biology and physiology modified this view in the 20st century by defining the constant interplay between bone-forming and bone resorbing cells that take place during bone growth and remodeling, therefore demonstrating that bone is as alive as any other tissues in the body. During the past 40 years human and, most important, mouse genetics, have allowed not only the refinement of this notion by identifying the many genes and regulatory networks responsible for the crosstalk existing between bone cells, but have redefined the role of bone by showing that its influence goes way beyond its own physiology. Among its newly identified functions is the regulation of energy metabolism by 2 bone-derived hormones, osteocalcin and lipocalin-2. Their biology and respective roles in this process are the topic of this review.
Collapse
Affiliation(s)
- Patricia Ducy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
7
|
Meurer SK, Tezcan O, Lammers T, Weiskirchen R. Differential regulation of Lipocalin 2 (LCN2) in doxorubicin-resistant 4T1 triple negative breast cancer cells. Cell Signal 2020; 74:109731. [DOI: 10.1016/j.cellsig.2020.109731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
|
8
|
Lipocalin2 Induced by Bacterial Flagellin Protects Mice against Cyclophosphamide Mediated Neutropenic Sepsis. Microorganisms 2020; 8:microorganisms8050646. [PMID: 32365611 PMCID: PMC7284693 DOI: 10.3390/microorganisms8050646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Neutropenic sepsis is a fatal consequence of chemotherapy, and septic complications are the principal cause of mortality. Chemotherapy-induced neutropenia leads to the formation of microscopic ulcers in the gastrointestinal epithelium that function as a portal of entry for intraluminal bacteria, which translocate across the intestinal mucosal barrier and gain access to systemic sites, causing septicemia. A cyclophosphamide-induced mouse model was developed to mimic the pathophysiologic sequence of events that occurs in patients with neutropenic sepsis. The TLR5 agonist bacterial flagellin derived from Vibrio vulnificus extended the survival of cyclophosphamide-treated mice by reducing the bacterial load in internal organs. The protective effect of flagellin was mediated by the antimicrobial protein lipocalin 2 (Lcn2), which is induced by TLR5-NF-κB activation in hepatocytes. Lcn2 sequestered iron from infecting bacteria, particularly siderophore enterobactin-dependent members of the Enterobacteriaceae family, thereby limiting their proliferation. Lcn2 should be considered for the treatment of neutropenic sepsis and gastrointestinal damage during chemotherapy to prevent or minimize the adverse effects of cancer chemotherapy.
Collapse
|
9
|
Gumpper K, Dangel AW, Pita-Grisanti V, Krishna SG, Lara LF, Mace T, Papachristou GI, Conwell DL, Hart PA, Cruz-Monserrate Z. Lipocalin-2 expression and function in pancreatic diseases. Pancreatology 2020; 20:419-424. [PMID: 31932215 PMCID: PMC7160010 DOI: 10.1016/j.pan.2020.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Lipocalin-2 (LCN2) is a secreted molecule, expressed in various cell types, that is involved in the progression of numerous diseases and disorders. The biological functions and expression levels of LCN2 in diseases including pancreatic cancer, pancreatitis (acute and chronic), and diabetes mellitus, suggest the potential role of LCN2 as a biomarker and/or therapeutic target. However, findings on the role of LCN2 in pancreatic diseases have been contradictory. In pancreatic cancer and pancreatitis, LCN2 has been identified as a potential biomarker; increased expression levels in various biological specimens correlate with the presence of the disease and may be able to differentiate cancer and chronic pancreatitis from healthy subjects. LCN2 is also known to be an adipokine; it is upregulated in obesity and is a common co-factor in the development of pancreatic diseases. Emerging research suggests LCN2 is elevated in type 2 diabetes mellitus, but the exact role of LCN2 in this disease is not clear. In this review, we summarize research on LCN2 as it relates to pancreatic diseases, highlighting the discrepancies in the literature. By explaining and clarifying the role of LCN2 in these disorders, we aim to promote research in developing novel diagnostic and treatment strategies to reduce the burden of pancreatic diseases.
Collapse
Affiliation(s)
- Kristyn Gumpper
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Andrew William Dangel
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Valentina Pita-Grisanti
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Luis F. Lara
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Thomas Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Georgios I. Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Darwin L. Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
10
|
Jin T, Liu M, Liu Y, Li Y, Xu Z, He H, Liu J, Zhang Y, Ke Y. Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis. Front Oncol 2020; 10:170. [PMID: 32154171 PMCID: PMC7047435 DOI: 10.3389/fonc.2020.00170] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Glioma is the most common malignant tumor of the central nervous system, and often displays invasive growth. Recently, circular RNA (circRNA), which is a novel non-coding type of RNA, has been shown to play a vital role in glioma tumorigenesis. However, the functions and mechanism of lipocalin-2 (Lcn2)-derived circular RNA (hsa_circ_0088732) in glioma progression remain unclear. Methods: We evaluated hsa_circ_0088732 expression by fluorescence in situ hybridization (FISH), Sanger sequencing, and PCR assays. Cell apoptosis was evaluated by flow cytometry and Hoechst 33258 staining. Transwell migration and invasion assays were performed to measure cell metastasis and viability. In addition, the target miRNA of hsa_circ_0088732 and the target gene of miR-661 were predicted by a bioinformatics analysis, and the interactions were verified by dual-luciferase reporter assays. RAB3D expression was analyzed by an immunochemistry assay, and E-cadherin, N-cadherin, and vimentin protein expression were examined by western blot assays. A mouse xenograft model was developed and used to analyze the effects of hsa_circ_0088732 on glioma growth in vivo. Results: We verified that hsa_circ_0088732 is circular and highly expressed in glioma tissues. Knockdown of hsa_circ_0088732 induced glioma cell apoptosis and inhibited glioma cell migration, invasion, and epithelial-mesenchymal transition (EMT). We found that hsa_circ_0088732 negatively regulated miR-661 by targeting miR-661, and RAB3D was a target gene of miR-661. In addition, inhibition of miR-661 promoted glioma cell metastasis and suppressed cell apoptosis. Knockdown of RAB3D induced cell apoptosis and suppressed cell metastasis. Moreover, hsa_circ_0088732 accelerated glioma progression through its effects on the miR-661/RAB3D axis. Finally, results from a mouse xenograft model confirmed that knockdown of hsa_circ_0088732 induced miR-661 expression, resulting in suppression of RAB3D expression and inhibition of tumor growth in vivo. Conclusion: We demonstrated that hsa_circ_0088732 facilitated glioma progression by sponging miR-661 to increase RAB3D expression. This study provides a theoretical basis for understanding the development and occurrence of glioma, as well as for the development of targeted drugs.
Collapse
Affiliation(s)
- Tao Jin
- The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Mingfa Liu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Yan Liu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Yuanzhi Li
- Department of Neurosurgery, Affiliated Hengyang Hospital of Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Zhennan Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Haoqi He
- The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Liu
- The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxuan Zhang
- The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiquan Ke
- The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Jovanovic I, Zivkovic M, Djuric T, Stojkovic L, Jesic S, Stankovic A. Perimatrix of middle ear cholesteatoma: A granulation tissue with a specific transcriptomic signature. Laryngoscope 2019; 130:E220-E227. [PMID: 31132150 DOI: 10.1002/lary.28084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/13/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVES/HYPOTHESIS To establish comprehensive transcriptomic profiles of cholesteatoma perimatrix tissue and granulation tissue from chronic otitis media (COM) that did not develop cholesteatoma, which can indicate molecular pathways involved in the cholesteatoma perimatrix pathology and invasiveness. STUDY DESIGN Retrospective Case Series. METHODS Transcriptome data were obtained from cholesteatoma perimatrix tissue and COM granulation tissue by an Illumina iScan microarray. Differentially expressed genes (DEGs) were subsequently analyzed using both bioinformatical functional annotation and network analysis. Expression of candidate genes (MMP9 and LCN2) was validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) on a larger group of samples. RESULTS Analysis of the transcriptome led to the identification of 169 differentially expressed genes between investigated tissues. Bioinformatic analysis suggested that most significant biological processes involving DEGs were previously described in cholesteatoma pathology. Network analysis identified ERBB2, TFAP2A, and TP63 as major hubs of the DEGs molecular network. Furthermore, it was observed that the cellular component most significantly enriched in DEGs was extracellular space containing 47 DEGs. Using qRT-PCR, it was confirmed that mRNA levels of the major extracellular hub (MMP9) are increased, whereas its interacting molecule (LCN2) mRNA levels were decreased in cholesteatoma perimatrix tissue compared to COM granulation tissue. CONCLUSIONS The current study approach offers an overall look at molecular mechanisms that describe the cholesteatoma entity by focusing exclusively on the perimatrix processes in comparison to COM granulation tissue. The observed differences in gene expression between cholesteatoma perimatrix and COM granulation tissue could suggest novel markers potentially influenced by the perimatrix-matrix molecular interplay, which is not present in COM without cholesteatoma. LEVEL OF EVIDENCE NA Laryngoscope, 130:E220-E227, 2020.
Collapse
Affiliation(s)
- Ivan Jovanovic
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Zivkovic
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Tamara Djuric
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Stojkovic
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Snezana Jesic
- Medical Faculty, University of Belgrade, Belgrade, Serbia.,Clinic for Otorhinolaryngology and Maxillofacial Surgery, Clinical Centre of Serbia, Belgrade, Serbia
| | - Aleksandra Stankovic
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Yang L, Chen L, Lu X, Tan A, Chen Y, Li Y, Peng X, Yuan S, Cai D, Yu Y. Peri-ovarian adipose tissue contributes to intraovarian control during folliculogenesis in mice. Reproduction 2018; 156:133-144. [DOI: 10.1530/rep-18-0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/29/2018] [Indexed: 12/30/2022]
Abstract
Peri-ovarian adipose tissue (POAT) is a kind of intra-abdominal white adipose tissue that is present surrounding the ovaries in rodents. Recent studies demonstrated that POAT-deficient mice displayed a phenotype of delayed antral follicular development, for which decreases in serum estrogen, serum FSH and FSHR levels were responsible. However, folliculogenesis is regulated by endocrine signals and also modulated by a number of locally produced intraovarian factors whose acts are both autocrine and paracrine. Here, we used a model of surgical removal of POAT unilaterally and contralateral ovaries as controls, as both were under the same endocrine control, to assess the paracrine effect of the POAT on folliculogenesis. Surgical removal of unilateral POAT resulted in delayed antral follicular development and the increased number of atretic follicles, accompanied by decreased levels of intraovarian adipokines and growth factors, lipid accumulation and steroidogenic enzyme expression. POAT-deficient ovaries displayed compensatory increased expressions of intraovarian genes, such as Vegf and Adpn for angiogenesis, Acc, Fasn, and Gapdh involved in lipogenesis and Fshr in response to FSH stimulation. Furthermore, we demonstrated that removal of POAT promoted follicular apoptosis, caused retention of cytoplasmic YAP and inhibited PTEN-AKT-mTOR activation. These alterations were observed only in the POAT-deficient ovaries but not in the contralateral ovaries (with POAT), which suggests that a paracrine interaction between POAT and ovaries is important for normal folliculogenesis.
Collapse
|
13
|
Doerner J, Chalmers SA, Friedman A, Putterman C. Fn14 deficiency protects lupus-prone mice from histological lupus erythematosus-like skin inflammation induced by ultraviolet light. Exp Dermatol 2018; 25:969-976. [PMID: 27305603 DOI: 10.1111/exd.13108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
The cytokine TNF-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 are involved in cell survival and cytokine production. The TWEAK/Fn14 pathway plays a role in the pathogenesis of spontaneous cutaneous lesions in the MRL/lpr lupus strain; however, the role of TWEAK/Fn14 in disease induced by ultraviolet B (UVB) irradiation has not been explored. MRL/lpr Fn14 knockout (KO) was compared to MRL/lpr Fn14 wild-type (WT) mice following exposure to UVB. We found that irradiated MRL/lpr KO mice had significantly attenuated cutaneous disease when compared to their WT counterparts. There were also fewer infiltrating immune cells (CD3+ , IBA-1+ and NGAL+ ) in the UVB-exposed skin of MRL/lpr Fn14KO mice, as compared to Fn14WT. Furthermore, we identified several macrophage-derived proinflammatory chemokines with elevated expression in MRL/lpr mice after UV exposure. Depletion of macrophages, using a CSF-1R inhibitor, was found to be protective against the development of skin lesions after UVB exposure. In combination with the phenotype of the MRL/lpr Fn14KO mice, these findings indicate a critical role for Fn14 and recruited macrophages in UVB-triggered cutaneous lupus. Our data strongly suggest that TWEAK/Fn14 signalling is important in the pathogenesis of UVB-induced cutaneous disease manifestations in the MRL/lpr model of lupus and further support this pathway as a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Jessica Doerner
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samantha A Chalmers
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam Friedman
- Department of Dermatology, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
14
|
Nam Dia long, a Vietnamese folk formula, induces apoptosis in MCF-7 cells through various mechanisms of action. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:522. [PMID: 29202775 PMCID: PMC5716261 DOI: 10.1186/s12906-017-2027-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022]
Abstract
Background The holistic approach of traditional medicine renders the identification of its mechanisms of action difficult. Microarray technology provides an efficient way to analyze the complex genome-wide gene expression of cells treated with mixtures of medicinal ingredients. We performed transcriptional profiling of MCF-7 cells treated with Nam Dia Long (NDL), a Vietnamese traditional formula, to explore the mechanism of action underlying the apoptosis inducing effect of this formula reported in a previous study. Methods MCF-7 cells were treated with aqueous extracts of NDL at the IC50 concentration for 24, 36 and 48 h. Total RNAs at 24 h and 48 h were subsequently extracted, reverse transcribed and submitted to microarray expression profiling using the Human HT-12 v4.0 Expression Bead Chip (Illumina). Functional analyses were performed using the Database for Annotation, Visualization and Integrated Discovery and the Ingenuity Pathways Analysis. The expression level from selected genes at the three time points were assessed by quantitative real-time RT-PCR and Western blot. Results Fifty-four and 601 genes were differentially expressed at 24 and 48 h of NDL treatment, respectively. Genes with altered expression at 24 h were mostly involved in cell responses to xenobiotic stress whereas genes differentially expressed at 48 h were related to endoplasmic reticulum stress, DNA damage and cell cycle control. Apoptosis of NDL treated MCF-7 cells resulted from a combination of different mechanisms including the intrinsic and extrinsic pathways, cell cycle arrest- and oxidative stress-related cell death. Conclusion NDL elicited a two-stage response in MCF-7 treated cells with apoptosis as the ultimate result. The various mechanisms inducing apoptosis reflected the complexity of the formula composition. Electronic supplementary material The online version of this article (10.1186/s12906-017-2027-2) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Dagher A, Curatolo A, Sachdev M, Stephens AJ, Mullins C, Landis JR, van Bokhoven A, El-Hayek A, Froehlich JW, Briscoe AC, Roy R, Yang J, Pontari MA, Zurakowski D, Lee RS, Moses MA. Identification of novel non-invasive biomarkers of urinary chronic pelvic pain syndrome: findings from the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network. BJU Int 2017; 120:130-142. [PMID: 28263447 PMCID: PMC5951631 DOI: 10.1111/bju.13832] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To examine a series of candidate markers for urological chronic pelvic pain syndrome (UCPPS), selected based on their proposed involvement in underlying biological processes so as to provide new insights into pathophysiology and suggest targets for expanded clinical and mechanistic studies. METHODS Baseline urine samples from Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study participants with UCPPS (n = 259), positive controls (PCs; chronic pain without pelvic pain, n = 107) and healthy controls (HCs, n = 125) were analysed for the presence of proteins that are suggested in the literature to be associated with UCPPS. Matrix metalloproteinase (MMP)-2, MMP-9, MMP-9/neutrophil gelatinase-associated lipocalin (NGAL) complex (also known as Lipocalin 2), vascular endothelial growth factor (VEGF), VEGF receptor 1 (VEGF-R1) and NGAL were assayed and quantitated using mono-specific enzyme-linked immunosorbent assays for each protein. Log-transformed concentration (pg/mL or ng/mL) and concentration normalized to total protein (pg/μg) values were compared among the UCPPS, PC and HC groups within sex using the Student's t-test, with P values adjusted for multiple comparisons. Multivariable logistic regression and receiver-operating characteristic curves assessed the utility of the biomarkers in distinguishing participants with UCPPS and control participants. Associations of protein with symptom severity were assessed by linear regression. RESULTS Significantly higher normalized concentrations (pg/μg) of VEGF, VEGF-R1 and MMP-9 in men and VEGF concentration (pg/mL) in women were associated with UCPPS vs HC. These proteins provided only marginal discrimination between UCPPS participants and HCs. In men with UCCPS, pain severity was significantly positively associated with concentrations of MMP-9 and MMP-9/NGAL complex, and urinary severity was significantly positively associated with MMP-9, MMP-9/NGAL complex and VEGF-R1. In women with UCPPS, pain and urinary symptom severity were associated with increased normalized concentrations of MMP-9/NGAL complex, while pain severity alone was associated with increased normalized concentrations of VEGF, and urinary severity alone was associated with increased normalized concentrations of MMP-2. Pain severity in women with UCPPS was significantly positively associated with concentrations of all biomarkers except NGAL, and urinary severity with all concentrations except VEGF-R1. CONCLUSION Altered levels of MMP-9, MMP-9/NGAL complex and VEGF-R1 in men, and all biomarkers in women, were associated with clinical symptoms of UCPPS. None of the evaluated candidate markers usefully discriminated UCPPS patients from controls. Elevated VEGF, MMP-9 and VEGF-R1 levels in men and VEGF levels in women may provide potential new insights into the pathophysiology of UCPPS.
Collapse
Affiliation(s)
- Adelle Dagher
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Adam Curatolo
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Monisha Sachdev
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Alisa J Stephens
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chris Mullins
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J Richard Landis
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew El-Hayek
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - John W Froehlich
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
| | - Andrew C Briscoe
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
| | - Roopali Roy
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jiang Yang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Michel A Pontari
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - David Zurakowski
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Boston Children's Hospital, Boston, MA, USA
| | - Richard S Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Boire A, Zou Y, Shieh J, Macalinao DG, Pentsova E, Massagué J. Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell 2017; 168:1101-1113.e13. [PMID: 28283064 DOI: 10.1016/j.cell.2017.02.025] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/22/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
We molecularly dissected leptomeningeal metastasis, or spread of cancer to the cerebrospinal fluid (CSF), which is a frequent and fatal condition mediated by unknown mechanisms. We selected lung and breast cancer cell lines for the ability to infiltrate and grow in CSF, a remarkably acellular, mitogen-poor metastasis microenvironment. Complement component 3 (C3) was upregulated in four leptomeningeal metastatic models and proved necessary for cancer growth within the leptomeningeal space. In human disease, cancer cells within the CSF produced C3 in correlation with clinical course. C3 expression in primary tumors was predictive of leptomeningeal relapse. Mechanistically, we found that cancer-cell-derived C3 activates the C3a receptor in the choroid plexus epithelium to disrupt the blood-CSF barrier. This effect allows plasma components, including amphiregulin, and other mitogens to enter the CSF and promote cancer cell growth. Pharmacologic interference with C3 signaling proved therapeutically beneficial in suppressing leptomeningeal metastasis in these preclinical models.
Collapse
Affiliation(s)
- Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason Shieh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elena Pentsova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
17
|
Ku AT, Shaver TM, Rao AS, Howard JM, Rodriguez CN, Miao Q, Garcia G, Le D, Yang D, Borowiak M, Cohen DN, Chitsazzadeh V, Diwan AH, Tsai KY, Nguyen H. TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2. eLife 2017; 6:e23242. [PMID: 28467300 PMCID: PMC5438253 DOI: 10.7554/elife.23242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/29/2017] [Indexed: 12/14/2022] Open
Abstract
The transcription factor TCF7L1 is an embryonic stem cell signature gene that is upregulated in multiple aggressive cancer types, but its role in skin tumorigenesis has not yet been defined. Here we document TCF7L1 upregulation in skin squamous cell carcinoma (SCC) and demonstrate that TCF7L1 overexpression increases tumor incidence, tumor multiplicity, and malignant progression in the chemically induced mouse model of skin SCC. Additionally, we show that downregulation of TCF7L1 and its paralogue TCF7L2 reduces tumor growth in a xenograft model of human skin SCC. Using separation-of-function mutants, we show that TCF7L1 promotes tumor growth, enhances cell migration, and overrides oncogenic RAS-induced senescence independently of its interaction with β-catenin. Through transcriptome profiling and combined gain- and loss-of-function studies, we identified LCN2 as a major downstream effector of TCF7L1 that drives tumor growth. Our findings establish a tumor-promoting role for TCF7L1 in skin and elucidate the mechanisms underlying its tumorigenic capacity.
Collapse
Affiliation(s)
- Amy T Ku
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, United States
| | - Timothy M Shaver
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Ajay S Rao
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Jeffrey M Howard
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Christine N Rodriguez
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Qi Miao
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Gloria Garcia
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Diep Le
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
| | - Diane Yang
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | - Malgorzata Borowiak
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
- McNair Medical Institute, Baylor College of Medicine, Houston, United States
| | - Daniel N Cohen
- Department of Pathology and Immunology, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, United States
| | - Vida Chitsazzadeh
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Abdul H Diwan
- Department of Dermatology, Baylor College of Medicine, Houston, United States
| | - Kenneth Y Tsai
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, United States
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, United States
| | - Hoang Nguyen
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
- Department of Dermatology, Baylor College of Medicine, Houston, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, United States
| |
Collapse
|
18
|
Hmmier A, O'Brien ME, Lynch V, Clynes M, Morgan R, Dowling P. Proteomic analysis of bronchoalveolar lavage fluid (BALF) from lung cancer patients using label-free mass spectrometry. BBA CLINICAL 2017; 7:97-104. [PMID: 28331811 PMCID: PMC5357681 DOI: 10.1016/j.bbacli.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/08/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality in both men and women throughout the world. The need to detect lung cancer at an early, potentially curable stage, is essential and may reduce mortality by 20%. The aim of this study was to identify distinct proteomic profiles in bronchoalveolar fluid (BALF) and plasma that are able to discriminate individuals with benign disease from those with non-small cell lung cancer (NSCLC). METHODS Using label-free mass spectrometry analysis of BALF during discovery-phase analysis, a significant number of proteins were found to have different abundance levels when comparing control to adenocarcinoma (AD) or squamous cell lung carcinoma (SqCC). Validation of candidate biomarkers identified in BALF was performed in a larger cohort of plasma samples by detection with enzyme-linked immunoassay. RESULTS Four proteins (Cystatin-C, TIMP-1, Lipocalin-2 and HSP70/HSPA1A) were selected as a representative group from discovery phase mass spectrometry BALF analysis. Plasma levels of TIMP-1, Lipocalin-2 and Cystatin-C were found to be significantly elevated in AD and SqCC compared to control. CONCLUSION The results presented in this study indicate that BALF is an important proximal biofluid for the discovery and identification of candidate lung cancer biomarkers. GENERAL SIGNIFICANCE There is good correlation between the trend of protein abundance levels in BALF and that of plasma which validates this approach to develop a blood biomarker to aid lung cancer diagnosis, particularly in the era of lung cancer screening. The protein signatures identified also provide insight into the molecular mechanisms associated with lung malignancy.
Collapse
Affiliation(s)
- Abduladim Hmmier
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; BioNano Integration Research Group, Biotechnology Research Centre, Tripoli, Libya
| | | | - Vincent Lynch
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Ross Morgan
- Department of Respiratory Medicine, Beaumont Hospital, Dublin 9, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
19
|
Marth CD, Firestone SM, Glenton LY, Browning GF, Young ND, Krekeler N. Oestrous cycle-dependent equine uterine immune response to induced infectious endometritis. Vet Res 2016; 47:110. [PMID: 27825391 PMCID: PMC5101692 DOI: 10.1186/s13567-016-0398-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Infectious endometritis is a major cause of reduced pregnancy rates in horses. The objectives of this study were to establish a timeline of the innate immune response in the uterus of healthy horses and to investigate the oestrous cycle effect on this. Endometrial biopsies were collected from five horses before and at 3, 12, 24, 48 and 72 h after inoculation of Escherichia coli, once in oestrus and once in dioestrus. They were analysed by quantitative real-time PCR, microbiology and histology. Neutrophil numbers increased from very low levels in the absence of inflammation to severe neutrophilia 3 h after inoculation. The concentrations of mRNAs for Toll-like receptor (TLR)2, TLR4, NOD-like receptor NLRC5, tissue inhibitor of metallopeptidases 1 (TIMP1) and chemokines CCL2, CXCL9, CXCL10 and CXCL11 were all increased 3 h after inoculation of E. coli compared to levels detected prior to inoculation. Chemokine mRNA levels remained elevated for 48 h. Concentrations of mRNAs for the antimicrobial peptides equine β-defensin 1 (EBD1), lysozyme, secretory leukoprotease inhibitor (SLPI), lipocalin 2 (LCN2), lactoferrin and uteroferrin were increased between 3 and 12 h post inoculation. The gene for secreted phospholipase A2 (sPLA2) was expressed constitutively. P19 uterocalin mRNA levels were higher in dioestrus than in oestrus over the first 24 h of inflammation. Neutrophils and many innate immune genes responded rapidly to the introduction of E. coli into the uterus, while the oestrous cycle stage had only a relatively minor effect on the response to E. coli. This study has delineated a useful model of innate immunity in infectious endometritis of healthy animals.
Collapse
Affiliation(s)
- Christina D Marth
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia. .,Translational Research and Animal Clinical Trial Study Group, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia.
| | - Simon M Firestone
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Y Glenton
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Translational Research and Animal Clinical Trial Study Group, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Natali Krekeler
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Translational Research and Animal Clinical Trial Study Group, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
20
|
Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends Mol Med 2016; 22:1077-1090. [PMID: 27825668 DOI: 10.1016/j.molmed.2016.10.005] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/28/2022]
Abstract
Iron is an essential nutrient for life. During infection, a fierce battle of iron acquisition occurs between the host and bacterial pathogens. Bacteria acquire iron by secreting siderophores, small ferric iron-binding molecules. In response, host immune cells secrete lipocalin 2 (also known as siderocalin), a siderophore-binding protein, to prevent bacterial reuptake of iron-loaded siderophores. To counter this threat, some bacteria can produce lipocalin 2-resistant siderophores. This review discusses the recently described molecular mechanisms of siderophore iron trafficking between host and bacteria, highlighting the therapeutic potential of exploiting pathogen siderophore machinery for the treatment of antibiotic-resistant bacterial infections. Because the latter reflect a persistent problem in hospital settings, siderophore-targeting or siderophore-based compounds represent a promising avenue to combat such infections.
Collapse
Affiliation(s)
- Briana R Wilson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7633, USA
| | - Alexander R Bogdan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7633, USA
| | - Masaki Miyazawa
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7633, USA
| | - Kazunori Hashimoto
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7633, USA
| | - Yoshiaki Tsuji
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7633, USA.
| |
Collapse
|
21
|
Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Izaguirre M, Hernández-Lizoain JL, Baixauli J, Martí P, Valentí V, Moncada R, Silva C, Salvador J, Frühbeck G. Increased Obesity-Associated Circulating Levels of the Extracellular Matrix Proteins Osteopontin, Chitinase-3 Like-1 and Tenascin C Are Associated with Colon Cancer. PLoS One 2016; 11:e0162189. [PMID: 27612200 PMCID: PMC5017763 DOI: 10.1371/journal.pone.0162189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Excess adipose tissue represents a major risk factor for the development of colon cancer with inflammation and extracellular matrix (ECM) remodeling being proposed as plausible mechanisms. The aim of this study was to investigate whether obesity can influence circulating levels of inflammation-related extracellular matrix proteins in patients with colon cancer (CC), promoting a microenvironment favorable for tumor growth. METHODS Serum samples obtained from 79 subjects [26 lean (LN) and 53 obese (OB)] were used in the study. Enrolled subjects were further subclassified according to the established diagnostic protocol for CC (44 without CC and 35 with CC). Anthropometric measurements as well as circulating metabolites and hormones were determined. Circulating concentrations of the ECM proteins osteopontin (OPN), chitinase-3-like protein 1 (YKL-40), tenascin C (TNC) and lipocalin-2 (LCN-2) were determined by ELISA. RESULTS Significant differences in circulating OPN, YKL-40 and TNC concentrations between the experimental groups were observed, being significantly increased due to obesity (P<0.01) and colon cancer (P<0.05). LCN-2 levels were affected by obesity (P<0.05), but no differences were detected regarding the presence or not of CC. A positive association (P<0.05) with different inflammatory markers was also detected. CONCLUSIONS To our knowledge, we herein show for the first time that obese patients with CC exhibit increased circulating levels of OPN, YKL-40 and TNC providing further evidence for the influence of obesity on CC development via ECM proteins, representing promising diagnostic biomarkers or target molecules for therapeutics.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
| | - Maitane Izaguirre
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | | | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pablo Martí
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
22
|
Interleukin-1β, lipocalin 2 and nitric oxide synthase 2 are mechano-responsive mediators of mouse and human endothelial cell-osteoblast crosstalk. Sci Rep 2016; 6:29880. [PMID: 27430980 PMCID: PMC4949438 DOI: 10.1038/srep29880] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/23/2016] [Indexed: 01/11/2023] Open
Abstract
Endothelial cells are spatially close to osteoblasts and regulate osteogenesis. Moreover, they are sensitive to mechanical stimuli, therefore we hypothesized that they are implicated in the regulation of bone metabolism during unloading. Conditioned media from endothelial cells (EC-CM) subjected to simulated microgravity (0.08g and 0.008g) increased osteoblast proliferation and decreased their differentiation compared to unit gravity (1g) EC-CM. Microgravity-EC-CM increased the expression of osteoblast Rankl and subsequent osteoclastogenesis, and induced the osteoblast de-differentiating factor, Lipocalin 2 (Lcn2), whose downregulation recovered osteoblast activity, decreased Rankl expression and reduced osteoclastogenesis. Microgravity-EC-CM enhanced osteoblast NO-Synthase2 (NOS2) and CycloOXygenase2 (COX2) expression. Inhibition of NOS2 or NO signaling reduced osteoblast proliferation and rescued their differentiation. Nuclear translocation of the Lcn2/NOS2 transcription factor, NF-κB, occurred in microgravity-EC-CM-treated osteoblasts and in microgravity-treated endothelial cells, alongside high expression of the NF-κB activator, IL-1β. IL-1β depletion and NF-κB inhibition reduced osteoblast proliferation and rescued differentiation. Lcn2 and NOS2 were incremented in ex vivo calvarias cultured in microgravity-EC-CM, and in vivo tibias and calvarias injected with microgravity-EC-CM. Furthermore, tibias of botulin A toxin-treated and tail-suspended mice, which featured unloading and decreased bone mass, showed higher expression of IL-1β, Lcn2 and Nos2, suggesting their pathophysiologic involvement in endothelial cell-osteoblast crosstalk.
Collapse
|
23
|
Chiang KC, Yeh TS, Chen SC, Pang JHS, Yeh CN, Hsu JT, Chen LW, Kuo SF, Takano M, Kittaka A, Chen TC, Sun CC, Juang HH. The Vitamin D Analog, MART-10, Attenuates Triple Negative Breast Cancer Cells Metastatic Potential. Int J Mol Sci 2016; 17:ijms17040606. [PMID: 27110769 PMCID: PMC4849057 DOI: 10.3390/ijms17040606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/24/2022] Open
Abstract
Regarding breast cancer treatment, triple negative breast cancer (TNBC) is a difficult issue. Most TNBC patients die of cancer metastasis. Thus, to develop a new regimen to attenuate TNBC metastatic potential is urgently needed. MART-10 (19-nor-2α-(3-hydroxypropyl)-1α,25(OH)2D3), the newly-synthesized 1α,25(OH)2D3 analog, has been shown to be much more potent in cancer growth inhibition than 1α,25(OH)2D3 and be active in vivo without inducing obvious side effect. In this study, we demonstrated that both 1α,25(OH)2D3 and MART-10 could effectively repress TNBC cells migration and invasion with MART-10 more effective. MART-10 and 1α,25(OH)2D3 induced cadherin switching (upregulation of E-cadherin and downregulation of N-cadherin) and downregulated P-cadherin expression in MDA-MB-231 cells. The EMT(epithelial mesenchymal transition) process in MDA-MB-231 cells was repressed by MART-10 through inhibiting Zeb1, Zeb2, Slug, and Twist expression. LCN2, one kind of breast cancer metastasis stimulator, was also found for the first time to be repressed by 1α,25(OH)2D3 and MART-10 in breast cancer cells. Matrix metalloproteinase-9 (MMP-9) activity was also downregulated by MART-10. Furthermore, F-actin synthesis in MDA-MB-231 cells was attenuated as exposure to 1α,25(OH)2D3 and MART-10. Based on our result, we conclude that MART-10 could effectively inhibit TNBC cells metastatic potential and deserves further investigation as a new regimen to treat TNBC.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- General Surgery Department and Zebrafish Center, Chang Gung Memorial Hospital, Chang Gung University, Keelung 20401, Taiwan.
| | - Ta-Sen Yeh
- General Surgery Department, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 20401, Taiwan.
| | - Shin-Cheh Chen
- General Surgery Department, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 20401, Taiwan.
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 20401, Taiwan.
| | - Chun-Nan Yeh
- General Surgery Department, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 20401, Taiwan.
| | - Jun-Te Hsu
- General Surgery Department, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 20401, Taiwan.
| | - Li-Wei Chen
- Department of Gastroenterology, Chang Gung Memorial Hospital, Chang Gung University, Keelung 20401, Taiwan.
| | - Sheng-Fong Kuo
- Department of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chang Gung University, Keelung 20401, Taiwan.
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 13228, Japan.
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 13228, Japan.
| | - Tai C Chen
- Endocrine Core Lab, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Chang Gung University, Keelung 20401, Taiwan.
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan 20401, Taiwan.
- Urology Department, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 20401, Taiwan.
| |
Collapse
|
24
|
Dubuquoy L. Lipocalin 2 highlights the complex role of neutrophils in alcoholic liver disease. J Hepatol 2016; 64:770-2. [PMID: 26812070 DOI: 10.1016/j.jhep.2016.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Laurent Dubuquoy
- LIRIC - Lille Inflammation Research International Center, U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
25
|
Koh SA, Lee KH. HGF mediated upregulation of lipocalin 2 regulates MMP9 through nuclear factor-κB activation. Oncol Rep 2015; 34:2179-87. [PMID: 26259977 DOI: 10.3892/or.2015.4189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
Abstract
Lipocalin 2 (LCN2) is a member of lipocalin family that binds and transports a small lipophilic ligand, sharing a highly conserved tertiary structure and can be found as a monomer, homodimer, heterodimer with matrix metalloproteinase 9 (MMP9). The high molecule LCN2/MMP9 complex was found in several cancer types. Yet, the mechanisms of regulation between LCN2 with MMP9 in tumorigenesis is unclear. The aims of the present study were to identify the function of LCN2 associated with MMP9 in gastric cancer growth and metastasis. First, we confirmed that the expression level of LCN2 and MMP9 was upregulated by hepatocyte growth factor (HGF). To identify the association pathway of HGF-induced LCN2, the cells were treated with PI3-kinase inhibitor (LY294002), or MEK inhibitor (PD098059), or p38 inhibitor (SB203580) and then analyzed using western blotting. The HGF-mediated LCN2 protein level was decreased with LY294002. Also, the HGF-mediated MMP9 was decreased with LY294002. The role for LCN2 with HGF mediated MMP9 was determined by knockdown of LCN2. LCN2-sh RNA cells showed a decreased level of HGF-mediated MMP9. The HGF-mediated LCN2 protein level was decreased with treatment of the NFκB inhibitor. We confirmed the role of HGF-mediated LCN2. HGF-mediated cell proliferation and in vitro invasion was decreased in LCN2 knockdown cell. In conclusion, the present study showed that LCN2 upregulated MMP9 through PI3K/AKT/NFκB pathway in gastric cancer. LCN2 has a role in cell proliferation and cell invasion in gastric cancer, which may be a possible target for developing gastric cancer therapy.
Collapse
Affiliation(s)
- Sung Ae Koh
- Department of Hematology-Oncology, College of Medicine, Yeungnam University, Namgu, Daegu 705-703, Republic of Korea
| | - Kyung Hee Lee
- Department of Hematology-Oncology, College of Medicine, Yeungnam University, Namgu, Daegu 705-703, Republic of Korea
| |
Collapse
|
26
|
Ferreira AC, Dá Mesquita S, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F. From the periphery to the brain: Lipocalin-2, a friend or foe? Prog Neurobiol 2015; 131:120-36. [PMID: 26159707 DOI: 10.1016/j.pneurobio.2015.06.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/23/2015] [Accepted: 06/28/2015] [Indexed: 01/08/2023]
Abstract
Lipocalin-2 (LCN2) is an acute-phase protein that, by binding to iron-loaded siderophores, acts as a potent bacteriostatic agent in the iron-depletion strategy of the immune system to control pathogens. The recent identification of a mammalian siderophore also suggests a physiological role for LCN2 in iron homeostasis, specifically in iron delivery to cells via a transferrin-independent mechanism. LCN2 participates, as well, in a variety of cellular processes, including cell proliferation, cell differentiation and apoptosis, and has been mostly found up-regulated in various tissues and under inflammatory states, being its expression regulated by several inducers. In the central nervous system less is known about the processes involving LCN2, namely by which cells it is produced/secreted, and its impact on cell proliferation and death, or in neuronal plasticity and behaviour. Importantly, LCN2 recently emerged as a potential clinical biomarker in multiple sclerosis and in ageing-related cognitive decline. Still, there are conflicting views on the role of LCN2 in pathophysiological processes, with some studies pointing to its neurodeleterious effects, while others indicate neuroprotection. Herein, these various perspectives are reviewed and a comprehensive and cohesive view of the general function of LCN2, particularly in the brain, is provided.
Collapse
Affiliation(s)
- Ana C Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandro Dá Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana A Palha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
27
|
Chiang KC, Yeh CN, Lin KJ, Su LJ, Yen TC, Pang JHS, Kittaka A, Sun CC, Chen MF, Jan YY, Chen TC, Juang HH, Yeh TS. Chemopreventive and chemotherapeutic effect of dietary supplementation of vitamin D on cholangiocarcinoma in a Chemical-Induced animal model. Oncotarget 2015; 5:3849-61. [PMID: 24939880 PMCID: PMC4116525 DOI: 10.18632/oncotarget.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer. Vitamin D supplementation is getting popular due to its anti-tumor functions after conversion to its active form, 1α,25(OH)2D. Here, we show that dietary supplementation with 6 IU/g of vitamin D greatly suppressed ICC initiation and progression without apparent toxicity in a chemically induced rat model. Microarray analysis of rat ICC tissues showed vitamin D supplementation modulated the expressions of several unique genes, including lipocalin 2 (Lcn2), confirmed by RT-qPCR and immunohistochemical (IHC) staining. Further, 53 of 80 human ICC specimens (66%) exhibited high LCN2 expression and LCN2 knockdown in SNU308 cells decreased cell growth and migration, suggesting LCN2 be an oncogene in human ICC. As human ICC SNU1079 cells were treated by 1α,25(OH)2D3, LCN2 expression and cell proliferation were attenuated. The downregulation of LCN2 expression was blunted when vitamin D receptor (VDR) was knocked down, implicating that the in vivo Lcn2 downregulation is a direct consequence of vitamin D supplementation Our results support the prevailing concept that vitamin D status is negatively associated with cancer incidence and mortality and suggest LCN2 may be a potential target against ICC. Further studies of application of vitamin D or its analogs against ICC are warranted.
Collapse
Affiliation(s)
- Kun-Chun Chiang
- General Surgery Department, Chang Gung Memorial Hospital, Keelung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | - Tai C Chen
- Boston University School of Medicine, Boston, MA, USA
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan, R.O.C
| | - Ta-Sen Yeh
- General Surgery Department, Chang Gung Memorial Hospital, Linkoul, Taoyuan, Taiwan, ROC
| |
Collapse
|
28
|
Nikonorov AA, Skalnaya MG, Tinkov AA, Skalny AV. Mutual interaction between iron homeostasis and obesity pathogenesis. J Trace Elem Med Biol 2015; 30:207-14. [PMID: 24916791 DOI: 10.1016/j.jtemb.2014.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/15/2014] [Accepted: 05/14/2014] [Indexed: 02/08/2023]
Abstract
Obesity is identified as an important medical problem. One of the pathologic conditions observed in obesity is systemic iron deficiency and hypoferremia. Along with a large number of studies indicating disturbed iron homeostasis in obesity, recent data indicate a cause-effect relationship between iron status and obesity-related pathologies. The primary objective of the article is to consider two aspects of the iron-obesity interplay: (1) the mechanisms leading to impaired iron balance, and (2) the pathways of iron participation in obesity-related pathogenesis. While considering disturbance of iron homeostasis in obesity, a number of potential mechanisms of hypoferremia are proposed. At the same time, the inflammation of obesity and obesity-related hepcidin and lipocalin 2 hyperproduction seem to be the most probable reasons of obesity-related hypoferremia. Oversecretion of these proteins leads to iron sequestration in reticuloendothelial system cells. The latter also leads to increased adipose tissue iron content, thus producing preconditions for adverse effects of local iron overload. Being a redox-active metal, iron is capable of inducing oxidative stress as well as endoplasmic reticulum stress, inflammation and adipose tissue endocrine dysfunction. Iron-mediated mechanisms of toxicity may influence aspects of obesity pathogenesis possibly even leading to obesity aggravation. Thus, a mutual interaction between disturbance in iron homeostasis and obesity pathogenesis is proposed. All sides of this interaction should be considered to design new therapeutic approaches to the treatment of disturbed iron homeostasis in obesity.
Collapse
Affiliation(s)
- Alexandr A Nikonorov
- Department of Biochemistry, Orenburg State Medical Academy, Sovetskaya Street 6, Orenburg 460000, Russia.
| | - Margarita G Skalnaya
- Russian Society of Trace Elements in Medicine, Zemlyanoy Val Street 46, Moscow 105064, Russia
| | - Alexey A Tinkov
- Department of Biochemistry, Orenburg State Medical Academy, Sovetskaya Street 6, Orenburg 460000, Russia
| | - Anatoly V Skalny
- Russian Society of Trace Elements in Medicine, Zemlyanoy Val Street 46, Moscow 105064, Russia; Institute of Bioelementology (Russian Satellite Centre of Trace Element - Institute for UNESCO), Orenburg State University, Pobedy Avenue 13, Orenburg 460352, Russia
| |
Collapse
|
29
|
Liu F, Yang H, Chen H, Zhang M, Ma Q. High expression of neutrophil gelatinase-associated lipocalin (NGAL) in the kidney proximal tubules of diabetic rats. Adv Med Sci 2015; 60:133-8. [PMID: 25661178 DOI: 10.1016/j.advms.2015.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/13/2014] [Accepted: 01/07/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Recent evidence suggests that neutrophil gelatinase-associated lipocalin (NGAL) plays important roles in many physiological and pathological processes including diabetic nephropathy (DN), in which a markedly increasing in NGAL levels in patient's serum and urine has been reported. This study investigated the expression of NGAL in the kidney of diabetic rats. MATERIALS/METHODS Sixty-four Sprague Dawley rats were randomly divided into 2 groups: non-diabetic control groups and diabetic groups. Diabetes was induced by intraperitoneal injection of streptozotocin. Relevant indicators were separately evaluated 2, 4, 8 and 12 weeks after induction of diabetes. RESULTS In the diabetic groups, urinary NGAL values were markedly increased even before the appearance of pathological albuminuria. Moreover, diabetic rats showed significant upregulation of NGAL mRNA expression starting at week 2 (1.0±0.03 vs. 3.09±0.40, NGAL/β-actin, P<0.05), while the increase of NGAL protein expression appeared subsequently (0.58±0.03 vs. 0.65±0.01, NGAL/β-actin, P<0.05). At the end of week 12, kidney NGAL mRNA and protein levels were increased to 5.95-fold and 1.24-fold of the control groups, respectively. Observable ultrastructural alterations of renal tubules were not detected until week 4, while pathological changes gradually became apparent in the course of the study. Strong positive immunohistochemical staining of NGAL was visualized in the proximal tubular cells of diabetic rats at week 12. CONCLUSIONS High expression of NGAL in the kidney is associated with diabetic kidney injury in STZ rats, suggesting NGAL may play a role in tubular injury of DN.
Collapse
|
30
|
Akelma AZ, Kanburoglu MK, Cizmeci MN, Mete E, Catal F, Tufan N. Level of serum neutrophil gelatinase-associated lipocalin in childhood asthma. Allergol Immunopathol (Madr) 2015; 43:142-6. [PMID: 24637108 DOI: 10.1016/j.aller.2013.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND The role of neutrophil gelatinase-associated lipocalin (NGAL) in childhood asthma remains unknown. This study aimed to measure the serum levels of NGAL in children with asthma and to investigate the correlation between NGAL and transforming growth factor beta 1 (TGF-β1), a good indicator of airway remodeling in children with asthma. METHODS This prospective, cross-sectional study was conducted on 75 children. Serum NGAL and TGF-β1 concentrations were measured by the ELISA method. Complete blood count, high sensitive C reactive protein (hsCRP), eosinophil cationic protein (ECP), and total serum IgE were investigated in the study population. Atopy in the asthma group was investigated using a skin prick test and specific IgE measurements. RESULTS Forty-three asthmatic children and 32 healthy children were enrolled in the study. Total eosinophil numbers, white blood cell count, total serum IgE levels and ECP levels were significantly higher in the asthma group than in the control group (p<0.05). Similarly, serum TGF-β1 levels were significantly higher in children with asthma (p=0.012). The difference in NGAL levels between the groups was insignificant (p=0.268). NGAL levels did not show a significant correlation with total IgE, ECP, eosinophil numbers and TGF-β1 levels (p>0.05). CONCLUSION As a conclusion, while elevated TGF-β1 levels in children with asthma might be regarded as an indicator of airway remodeling, we did not find a similar prediction strength for NGAL. Further studies are required to better identify the role of NGAL in childhood asthma and to determine its potential use as a clinical marker.
Collapse
Affiliation(s)
- A Z Akelma
- Division of Pediatric Allergy, Department of Pediatrics, Turgut Ozal University Medical School, Ankara, Turkey.
| | - M K Kanburoglu
- Department of Pediatrics, Turgut Ozal University Medical School, Ankara, Turkey.
| | - M N Cizmeci
- Department of Pediatrics, Turgut Ozal University Medical School, Ankara, Turkey.
| | - E Mete
- Division of Pediatric Allergy, Department of Pediatrics, Pamukkale University Medical School, Ankara, Turkey.
| | - F Catal
- Division of Pediatric Allergy, Department of Pediatrics, Inonu University Medical School, Malatya, Turkey.
| | - N Tufan
- Department of Pediatrics, Turgut Ozal University Medical School, Ankara, Turkey.
| |
Collapse
|
31
|
Xu MJ, Feng D, Wu H, Wang H, Chan Y, Kolls J, Borregaard N, Porse B, Berger T, Mak TW, Cowland JB, Kong X, Gao B. Liver is the major source of elevated serum lipocalin-2 levels after bacterial infection or partial hepatectomy: a critical role for IL-6/STAT3. Hepatology 2015; 61:692-702. [PMID: 25234944 PMCID: PMC4303493 DOI: 10.1002/hep.27447] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Lipocalin-2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase-associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte-specific Lcn2 knockout (Lcn2(Hep-/-)) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2(Hep-/-) mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (∼ 62 ng/mL) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (∼ 6,000 ng/mL) postinfection and more than 60% post-PHx (∼ 700 ng/mL). Interestingly, both Lcn2(Hep-/-) and global Lcn2 knockout (Lcn2(-/-)) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli. These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with interleukin (IL)-6 stimulated hepatocytes to produce LCN2 in vitro and in vivo. Hepatocyte-specific ablation of the IL-6 receptor or Stat3, a major downstream effector of IL-6, markedly abrogated LCN2 elevation in vivo. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL-6. CONCLUSION Hepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL-6 activation of the STAT3 signaling pathway. Thus, hepatocyte-derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration.
Collapse
Affiliation(s)
- Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hailong Wu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvonne Chan
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jay Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Niels Borregaard
- Granulocyte Research Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Bo Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark,Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research, University Health Network, 620 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Tak W. Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, 620 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Jack B. Cowland
- Granulocyte Research Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Xiaoni Kong
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015; 49:135-56. [DOI: 10.1016/j.neubiorev.2014.12.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
33
|
Janas RM, Ochocińska A, Snitko R, Dudka D, Kierkuś J, Teisseyre M, Najberg E. Neutrophil gelatinase-associated lipocalin in blood in children with inflammatory bowel disease. J Gastroenterol Hepatol 2014; 29:1883-9. [PMID: 24720485 DOI: 10.1111/jgh.12597] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 12/09/2022]
Abstract
BACKGROUND Neutrophil gelatinase-associated lipocalin (NGAL) is a 25 kDa glycoprotein present in the bodily fluids and tissues. It is secreted by neutrophils, epithelial cells, hepatocytes and adipocytes, and its expression is highly increased in response to cellular stress. The role of NGAL in the pathophysiology of inflammatory bowel disease including Crohn's disease and ulcerative colitis in children has thus far not been studied. METHODS The following groups of children were included: (i) inflammatory bowel disease group, n = 36, aged from 1 to 18 years with Crohn's disease (n = 19) and ulcerative colitis (n = 17); (ii) control group, n = 126; and (iii) disease control group, n = 27, without inflammatory bowel disease, with a food and/or inhalant allergy. RESULTS Healthy children aged from 1 to 8 years exhibited lower NGAL level than those of 9 to 18 years old (39.0; 18.1-83.7 ng/mL vs 57.6; 28.7-107 ng/mL, P = 0.001). In the younger, but not in the older children, the serum NGAL level correlated with their age, r = 0.334, P = 0.001. In children with inflammatory bowel disease, serum NGAL level was higher (108; 37.3-245 ng/mL) than in healthy (42.0; 18.1-107 ng/mL) and allergic, noninflammatory bowel disease children (49.3; 19.3-107 ng/mL), P = 0.001. Serum NGAL levels in Crohn's disease and ulcerative colitis children did not correlate with age, gender, disease activity, and indices of the inflammation. CONCLUSION Serum NAGL levels are highly elevated in Crohn's disease and ulcerative colitis in children compared to the healthy control group. Systematic studies are needed to explain the role of this protein in the inflammatory bowel disease.
Collapse
Affiliation(s)
- Roman M Janas
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
34
|
Asimakopoulou A, Borkham-Kamphorst E, Henning M, Yagmur E, Gassler N, Liedtke C, Berger T, Mak TW, Weiskirchen R. Lipocalin-2 (LCN2) regulates PLIN5 expression and intracellular lipid droplet formation in the liver. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1513-24. [PMID: 25086218 DOI: 10.1016/j.bbalip.2014.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 01/14/2023]
Abstract
Lipocalin-2 (LCN2) belongs to the superfamily of lipocalins and plays critical roles in the control of cellular homeostasis during inflammation and in responses to cellular stress or injury. In the liver, LCN2 triggers protective effects following acute or chronic injury, and its expression is a reliable indicator of liver damage. However, little is known about LCN2's functions in the homeostasis and metabolism of hepatic lipids or in the development of steatosis. In this study, we fed wild type (WT) and LCN2-deficient (Lcn2(-/-)) mice a methionine- and choline-deficient (MCD) diet as a nutritional model of non-alcoholic steatohepatitis, and compared intrahepatic lipid accumulation, lipid droplet formation, mitochondrial content, and expression of the Perilipin proteins that regulate cellular lipid metabolism. We found that Lcn2(-/-) mice fed an MCD diet accumulated more lipids in the liver than WT controls, and that the basal expression of the lipid droplet coat protein Perilipin 5 (PLIN5, also known as OXPAT) was significantly reduced in these animals. Similarly, the overexpression of LCN2 and PLIN5 were also found in animals that were fed with a high fat diet. Furthermore, the loss of LCN2 and/or PLIN5 in hepatocytes prevented normal intracellular lipid droplet formation both in vitro and in vivo. Restoration of LCN2 in Lcn2(-/-) primary hepatocytes by either transfection or adenoviral vector infection induced PLIN5 expression and restored proper lipid droplet formation. Our data indicate that LCN2 is a key modulator of hepatic lipid homeostasis that controls the formation of intracellular lipid droplets by regulating PLIN5 expression. LCN2 may therefore represent a novel therapeutic drug target for the treatment of liver diseases associated with elevated fat accumulation and steatosis.
Collapse
Affiliation(s)
- Anastasia Asimakopoulou
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Erawan Borkham-Kamphorst
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Marc Henning
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Eray Yagmur
- MVZ Medical Laboratory Center, Dr. Stein and Partner, Mönchengladbach, Germany
| | - Nikolaus Gassler
- Institute of Pathology, RWTH University Hospital Aachen, Aachen, Germany
| | - Christian Liedtke
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada; Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
35
|
Abstract
In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell-matrix interactions and adhesion, the cell cycle, and the endothelin system.
Collapse
Affiliation(s)
- Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
36
|
Wozniak KL, Hole CR, Yano J, Fidel PL, Wormley FL. Characterization of IL-22 and antimicrobial peptide production in mice protected against pulmonary Cryptococcus neoformans infection. MICROBIOLOGY (READING, ENGLAND) 2014; 160:1440-1452. [PMID: 24760968 PMCID: PMC4076872 DOI: 10.1099/mic.0.073445-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/15/2014] [Indexed: 12/17/2022]
Abstract
Cryptococcus neoformans is a significant cause of fungal meningitis in patients with impaired T cell-mediated immunity (CMI). Experimental pulmonary infection with a C. neoformans strain engineered to produce IFN-γ, H99γ, results in the induction of Th1-type CMI, resolution of the acute infection, and protection against challenge with WT Cryptococcus. Given that individuals with suppressed CMI are highly susceptible to pulmonary C. neoformans infection, we sought to determine whether antimicrobial peptides were produced in mice inoculated with H99γ. Thus, we measured levels of antimicrobial peptides lipocalin-2, S100A8, S100A9, calprotectin (S100A8/A9 heterodimer), serum amyloid A-3 (SAA3), and their putative receptors Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end products (RAGE) in mice during primary and recall responses against C. neoformans infection. Results showed increased levels of IL-17A and IL-22, cytokines known to modulate antimicrobial peptide production. We also observed increased levels of lipocalin-2, S100A8, S100A9 and SAA3 as well as TLR4(+) and RAGE(+) macrophages and dendritic cells in mice inoculated with H99γ compared with WT H99. Similar results were observed in the lungs of H99γ-immunized, compared with heat-killed C. neoformans-immunized, mice following challenge with WT yeast. However, IL-22-deficient mice inoculated with H99γ demonstrated antimicrobial peptide production and no change in survival rates compared with WT mice. These studies demonstrate that protection against cryptococcosis is associated with increased production of antimicrobial peptides in the lungs of protected mice that are not solely in response to IL-17A and IL-22 production and may be coincidental rather than functional.
Collapse
Affiliation(s)
- Karen L. Wozniak
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Camaron R. Hole
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Junko Yano
- Department of Oral and Craniofacial Biology, Dental School, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Paul L. Fidel
- Department of Oral and Craniofacial Biology, Dental School, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Floyd L. Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
37
|
Tcf3 promotes cell migration and wound repair through regulation of lipocalin 2. Nat Commun 2014; 5:4088. [PMID: 24909826 PMCID: PMC4052366 DOI: 10.1038/ncomms5088] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/09/2014] [Indexed: 01/25/2023] Open
Abstract
Cell migration is an integral part of re-epithelialization during skin wound healing, a complex process involving molecular controls that are still largely unknown. Here we identify a novel role for Tcf3, an essential transcription factor regulating embryonic and adult skin stem cell functions, as a key effector of epidermal wound repair. We show that Tcf3 is upregulated in skin wounds and that Tcf3 overexpression accelerates keratinocyte migration and skin wound healing. We also identify Stat3 as an upstream regulator of Tcf3. We show that the pro-migration effects of Tcf3 are non-cell autonomous and occur independently of its ability to interact with β-catenin. Finally, we identify lipocalin-2 as the key secreted factor downstream of Tcf3 that promotes cell migration in vitro and wound healing in vivo. Our findings provide new insights into the molecular controls of wound-associated cell migration and identify potential therapeutic targets for the treatment of defective wound repair.
Collapse
|
38
|
Kim SH, Lee SH, Ahn KY, Lee DH, Suh YJ, Cho SG, Choi YJ, Lee DH, Lee SY, Hong SB, Kim YS, Jeon JY, Nam M. Effect of lifestyle modification on serum chemerin concentration and its association with insulin sensitivity in overweight and obese adults with type 2 diabetes. Clin Endocrinol (Oxf) 2014; 80:825-33. [PMID: 23682797 DOI: 10.1111/cen.12249] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Chemerin, a recently identified adipokine, has been linked to adiposity, insulin resistance, metabolic syndrome risk factors and inflammation. Here, we evaluated whether a 12-week lifestyle intervention in overweight and obese adults with type 2 diabetes could significantly affect the average blood glucose and serum chemerin levels over time. DESIGN Thirty-five overweight or obese subjects with type 2 diabetes were randomized to receive intensive lifestyle modification including supervised exercise sessions or usual care for 12 weeks. Anthropometric and clinical data were collected before the intervention and after 12 weeks. RESULTS Lifestyle intervention induced a significant decrease in HbA1c (-1·0 ± 0·5 vs 0·1 ± 0·6%, P < 0·001), BMI, total body fat content, serum lipocalin-2 and chemerin levels (-8·1 ± 21·6 vs + 8·2 ± 15·9 ng/ml, P = 0·021) and a significant increase in VO2 max after 12 weeks compared to the usual care group. Baseline chemerin levels were positively correlated with the homoeostasis model of assessment of insulin resistance (HOMA-IR), fasting insulin and the high-sensitivity C-reactive protein (hsCRP) and negatively correlated with insulin sensitivity index (ISI). Changes in the chemerin concentration during 12 weeks were independently negatively correlated with changes in ISI and positively correlated with changes in fasting plasma glucose, total cholesterol and lipocalin-2 levels. CONCLUSIONS A 12-week intensive lifestyle intervention significantly decreased serum chemerin level compared to usual care. Decrease in serum chemerin level was associated with improved insulin sensitivity, and this may be involved in the beneficial effects of lifestyle intervention in overweight and obese type 2 diabetic patients.
Collapse
Affiliation(s)
- So Hun Kim
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Long-term low-dose exposure of human urothelial cells to sodium arsenite activates lipocalin-2 via promoter hypomethylation. Arch Toxicol 2014; 88:1549-59. [PMID: 24570342 DOI: 10.1007/s00204-014-1214-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/11/2014] [Indexed: 01/18/2023]
Abstract
We previously reported that the sustained exposure of human urothelial cells (HUCs) to low-dose sodium arsenite induces changes in the gene expression profile and neoplastic transformation. In this study, we used the HumanMethylation27 BeadChip to analyze genome-wide methylation profiles and 5-aza-2'-deoxycytidine to examine the involvement of promoter methylation in gene expression. Because the expression of lipocalin-2 (LCN2) was highly enhanced by promoter hypomethylation in inorganic arsenic (iAs)-HUCs cells as well as bladder cancer tissues, we further showed that mutations at the binding sequences for NF-κB and C/EBP-α significantly reduced LCN2 promoter activity. By chromatin immunoprecipitation assay, we demonstrated the significantly increased binding of RelA (p65) and NF-κB1 (p50) to the hypomethylated promoter of LCN2 in the iAs-HUCs. Furthermore, we also demonstrated that LCN2 overexpression was crucial for the neoplastic characteristics of the iAs-HUCs, such as enhanced anchorage-independent growth, resistance to serum deprivation and activation of NF-κB signaling. In addition, our results indicated that enhanced NF-κB activity in iAs-HUCs was via LCN2-mediated increase in intracellular iron and reactive oxygen species levels. Taken together, our results show that sustained low-dose arsenic exposure results in epigenetic changes and enhanced oncogenic potential via LCN2 overexpression.
Collapse
|
40
|
Graphene-based immunoassay for human lipocalin-2. Anal Biochem 2014; 446:96-101. [DOI: 10.1016/j.ab.2013.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/09/2013] [Accepted: 10/15/2013] [Indexed: 02/02/2023]
|
41
|
Absence of intestinal PPARγ aggravates acute infectious colitis in mice through a lipocalin-2-dependent pathway. PLoS Pathog 2014; 10:e1003887. [PMID: 24465207 PMCID: PMC3900641 DOI: 10.1371/journal.ppat.1003887] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 12/04/2013] [Indexed: 12/22/2022] Open
Abstract
To be able to colonize its host, invading Salmonella enterica serovar Typhimurium must disrupt and severely affect host-microbiome homeostasis. Here we report that S. Typhimurium induces acute infectious colitis by inhibiting peroxisome proliferator-activated receptor gamma (PPARγ) expression in intestinal epithelial cells. Interestingly, this PPARγ down-regulation by S. Typhimurium is independent of TLR-4 signaling but triggers a marked elevation of host innate immune response genes, including that encoding the antimicrobial peptide lipocalin-2 (Lcn2). Accumulation of Lcn2 stabilizes the metalloproteinase MMP-9 via extracellular binding, which further aggravates the colitis. Remarkably, when exposed to S. Typhimurium, Lcn2-null mice exhibited a drastic reduction of the colitis and remained protected even at later stages of infection. Our data suggest a mechanism in which S. Typhimurium hijacks the control of host immune response genes such as those encoding PPARγ and Lcn2 to acquire residence in a host, which by evolution has established a symbiotic relation with its microbiome community to prevent pathogen invasion. Enteric pathogens like S. Typhimurium convert the host intestine into an inflamed environment in which they are well adapted to thrive. However, the precise strategy that this pathogen employs to achieve such favorable conditions for its survival remains unclear. Here, we uncovered a novel mechanism whereby S. Typhimurium inhibits the expression of the transcription factor PPARγ in the host intestine, surprisingly without TLR-4 involvement; this inhibition worsened the severity of the host's colitis. Subsequent detailed analysis revealed that colitis severity was coupled with elevated levels of antimicrobials like Lcn2, which stabilized the pro-inflammatory endopeptidase MMP-9 in the intestinal milieu. Combination of this escalated antimicrobial action together with enhanced protease activity disrupted the intestinal homeostasis, promoting an inflamed environment suitable for S. Typhimurium. Interestingly, using Lcn2 mutant mice we show that lack of Lcn2 effectively reduced tissue damage and the degree of inflammation, thus supporting a pivotal role of Lcn2 and MMP-9 in infectious colitis. Our data suggests a model whereby the pathogenesis of S. Typhimurium involves manipulation of the host innate immune and protease system, here illustrated by PPARγ, Lcn2 and MMP-9, to establish colonization and infection within the host.
Collapse
|
42
|
Clinical implications of aldo-keto reductase family 1 member C3 and its relationship with lipocalin 2 in cancer of the uterine cervix. Gynecol Oncol 2013; 132:474-82. [PMID: 24316309 DOI: 10.1016/j.ygyno.2013.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Over-expression of the aldo-keto reductase family 1 member C3 (AKR1C3) has been demonstrated in many human cancers. Lipocalin 2 (LCN2) is reported to inhibit cervical cancer metastasis but little is known regarding its relationship with AKR1C3 in the development and progression of uterine cervical cancer. This study aimed to investigate the involvement of AKR1C3 and its relationship with LCN2 in cervical cancer. METHODS The roles of AKR1C3 and LCN2 were investigated using the lentivirus shRNA system in SiHa and Caski cervical cancer cells. LCN2 and matrix metalloproteinase-2 (MMP-2) promoters were constructed to demonstrate transcriptional regulation by shAKR1C3 and shLCN2, respectively. The influences of metastatic phenotypes were analyzed by wound healing, Boyden chamber, and immunofluorescence assays. The activity of MMP-2 was determined by zymography assay. The impacts of AKR1C3 and LCN2 on patient prognosis were evaluated using tissue microarrays by Cox regression and Kaplan-Meier models. RESULTS Silencing of the AKR1C3 gene increased the expression of LCN2 and decreased the migratory and invasive abilities and changed the cytoskeleton of cervical cancer cells. When AKR1C3 was over-expressed, it decreased LCN2 promoter activity and LCN2 expression and increased cell migration. The mRNA level and enzyme activity of MMP-2 increased in silenced LCN2 cells. Positive AKR1C3 and negative LCN2 were correlated with higher recurrence and poorer survival of cervical cancer patients. CONCLUSIONS Silencing of AKR1C3 increases LCN2 expression and inhibits metastasis in cervical cancer. Both AKR1C3 and LCN2 serve as molecular targets for cancer therapy to improve the clinical outcome of cervical cancer patients.
Collapse
|
43
|
Hu M, Yin H, Mitra MS, Liang X, Ajmo JM, Nadra K, Chrast R, Finck BN, You M. Hepatic-specific lipin-1 deficiency exacerbates experimental alcohol-induced steatohepatitis in mice. Hepatology 2013; 58:1953-63. [PMID: 23787969 PMCID: PMC3835749 DOI: 10.1002/hep.26589] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022]
Abstract
UNLABELLED Lipin-1 regulates lipid metabolism by way of its function as an enzyme in the triglyceride synthesis pathway and as a transcriptional coregulatory protein and is highly up-regulated in alcoholic fatty liver disease. In the present study, using a liver-specific lipin-1-deficient (lipin-1LKO) mouse model, we aimed to investigate the functional role of lipin-1 in the development of alcoholic steatohepatitis and explore the underlying mechanisms. Alcoholic liver injury was achieved by pair feeding wild-type and lipin-1LKO mice with modified Lieber-DeCarli ethanol-containing low-fat diets for 4 weeks. Surprisingly, chronically ethanol-fed lipin-1LKO mice showed markedly greater hepatic triglyceride and cholesterol accumulation, and augmented elevation of serum liver enzymes accompanied by increased hepatic proinflammatory cytokine expression. Our studies further revealed that hepatic removal of lipin-1 in mice augmented ethanol-induced impairment of hepatic fatty acid oxidation and lipoprotein production, likely by way of deactivation of peroxisome proliferator-activated receptor γ coactivator-1 alpha, a prominent transcriptional regulator of lipid metabolism. CONCLUSIONS Liver-specific lipin-1 deficiency in mice exacerbates the development and progression of experimental alcohol-induced steatohepatitis. Pharmacological or nutritional modulation of hepatic lipin-1 may be beneficial for the prevention or treatment of human alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ming Hu
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| | - Huquan Yin
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| | - Mayurranjan S. Mitra
- Department of Medicine, Washington University School of Medicine, St.Louis, MO 63110, USA
| | - Xiaomei Liang
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| | - Joanne M. Ajmo
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| | - Karim Nadra
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine, St.Louis, MO 63110, USA
| | - Min You
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| |
Collapse
|
44
|
The bacteriostatic protein lipocalin 2 is induced in the central nervous system of mice with west Nile virus encephalitis. J Virol 2013; 88:679-89. [PMID: 24173226 DOI: 10.1128/jvi.02094-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lipocalin 2 (Lcn2) is a bacteriostatic factor produced during the innate immune response to bacterial infection. Whether Lcn2 has a function in viral infection is unknown. We investigated the regulation and function of Lcn2 in the central nervous system (CNS) of mice during West Nile virus (WNV) encephalitis. Lcn2 mRNA and protein were induced in the brain by day 5, and this induction increased further by day 7 postinfection but was delayed compared with the induction of the toll-like receptor 3 (TLR3) gene, retinoic acid-inducible gene 1 (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) gene. The Lcn2 mRNA and protein were both found at high levels in the choroid plexus, vascular endothelium, macrophage/microglia, and astrocytes. However, some neuronal subsets contained Lcn2 protein but no detectable mRNA. In Lcn2 knockout (KO) mice, with the exception of CXC motif chemokine 5 (CXCL5), which was significantly more downregulated than in wild-type (WT) mice, expression levels of a number of other host response genes were similar in the two genotypes. The brain from Lcn2 and WT mice with WNV encephalitis contained similar numbers of infiltrating macrophages, granulocytes, and T cells. Lcn2 KO and WT mice had no significant difference in tissue viral loads or survival after infection with different doses of WNV. We conclude that Lcn2 gene expression is induced to high levels in a time-dependent fashion in a variety of cells and regions of the CNS of mice with WNV encephalitis. The function of Lcn2 in the host response to WNV infection remains largely unknown, but our data indicate that it is dispensable as an antiviral or immunoregulatory factor in WNV encephalitis.
Collapse
|
45
|
Jang E, Kim JH, Lee S, Kim JH, Seo JW, Jin M, Lee MG, Jang IS, Lee WH, Suk K. Phenotypic Polarization of Activated Astrocytes: The Critical Role of Lipocalin-2 in the Classical Inflammatory Activation of Astrocytes. THE JOURNAL OF IMMUNOLOGY 2013; 191:5204-19. [DOI: 10.4049/jimmunol.1301637] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Bacteroides fragilis enterotoxin upregulates lipocalin-2 expression in intestinal epithelial cells. J Transl Med 2013; 93:384-96. [PMID: 23381626 DOI: 10.1038/labinvest.2013.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) produces an ≈ 20 kDa B. fragilis enterotoxin (BFT), which plays an essential role in mucosal inflammation. Lipocalin (Lcn)-2, a siderophore-binding antimicrobial protein, is critical for control of bacterial infection; however, expression of Lcn-2 in BFT-exposed intestinal epithelial cells has not been elucidated. In the present study, stimulation of human intestinal epithelial cells with BFT resulted in the upregulation of Lcn-2 expression that was a relatively late response of intestinal epithelial cells compared with human β-defensin (hBD)-2 expression. The upregulation of Lcn-2 was dependent on AP-1 but not on NF-κB signaling. Lcn-2 induction via AP-1 was regulated by mitogen-activated protein kinases (MAPKs) including ERK and p38. Lcn-2 was secreted from the apical and basolateral surfaces in BFT-treated cells. These results suggest that a signaling pathway involving MAPKs and AP-1 is required for Lcn-2 induction in intestinal epithelial cells exposed to BFT, after which the secreted Lcn-2 may facilitate antimicrobial activity within ETBF-infected mucosa.
Collapse
|
47
|
Kim BW, Koppula S, Hong SS, Jeon SB, Kwon JH, Hwang BY, Park EJ, Choi DK. Regulation of microglia activity by glaucocalyxin-A: attenuation of lipopolysaccharide-stimulated neuroinflammation through NF-κB and p38 MAPK signaling pathways. PLoS One 2013; 8:e55792. [PMID: 23393601 PMCID: PMC3564949 DOI: 10.1371/journal.pone.0055792] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/30/2012] [Indexed: 11/18/2022] Open
Abstract
Microglial cells are the resident macrophages and intrinsic arm of the central nervous system innate immune defense. Microglial cells become activated in response to injury, infection, environmental toxins, and other stimuli that threaten neuronal survival. Therefore, regulating microglial activation may have therapeutic benefits that lead to alleviating the progression of inflammatory-mediated neurodegeneration. In the present study, we investigated the effect of glaucocalyxin A (GLA) isolated from Rabdosia japonica on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated primary microglia and BV-2 cells. GLA significantly inhibited LPS-induced production of nitric oxide and reversed the morphological changes in primary microglia. Further, GLA suppressed expression of inducible nitric oxide synthase and cyclooxygenase-2 dose-dependently at the mRNA and protein levels. The production of proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1β (IL)-1β, and IL-6 were inhibited by suppressing their transcriptional activity. Furthermore, GLA suppressed nuclear factor-κB activation by blocking degradation of IκB-α and inhibited the induction of lipocalin-2 expression in LPS-stimulated BV-2 cells. Mechanistic study revealed that the inhibitory effects of GLA were accompanied by blocking the p38 mitogen activated protein kinase signaling pathway in activated microglia. In conclusion, given that microglial activation contributes to the pathogenesis of neurodegenerative diseases, GLA could be developed as a potential therapeutic agent for treating microglia-mediated neuroinflammatory diseases.
Collapse
Affiliation(s)
- Byung-Wook Kim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| | - Sushruta Koppula
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| | - Seong-Su Hong
- College of Pharmacy and Medical Research Center (CICT), Chungbuk National University, Cheongju, South Korea
| | - Sae-Bom Jeon
- Branches of Immune and Cell Therapy, National Cancer Center, Goyang, South Korea
| | - Ji-Hye Kwon
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| | - Bang-Yeon Hwang
- College of Pharmacy and Medical Research Center (CICT), Chungbuk National University, Cheongju, South Korea
| | - Eun-Jung Park
- Branches of Immune and Cell Therapy, National Cancer Center, Goyang, South Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
- * E-mail:
| |
Collapse
|
48
|
Meszaros E, Malemud CJ. Prospects for treating osteoarthritis: enzyme-protein interactions regulating matrix metalloproteinase activity. Ther Adv Chronic Dis 2013; 3:219-29. [PMID: 23342237 DOI: 10.1177/2040622312454157] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Primary osteoarthritis (OA) is a musculoskeletal disorder of unknown etiology. OA is characterized by an imbalance between anabolism and catabolism in, and altered homeostasis of articular cartilage. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motif are upregulated in OA joints. Extracellular matrix (ECM) proteins are critical for resistance to compressive forces and for maintaining the tensile properties of the tissue. Tissue inhibitor of metalloproteinases (TIMPs) is the endogenous inhibitor of MMPs, but in OA, TIMPs do not effectively neutralize MMP activity. Upregulation of MMP gene expression occurs in OA in a milieu of proinflammatory cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis factor α. Presently, the medical therapy of OA includes mainly nonsteroidal anti-inflammatory drugs and corticosteroids which dampen pain and inflammation but appear to have little effect on restoring joint function. Experimental interventions to restore the imbalance between anabolism and catabolism include small molecule inhibitors of MMP subtypes or inhibitors of the interaction between IL-1 and its receptor. Although these agents have some positive effects on reducing MMP subtype activity they have little efficacy at the clinical level. MMP-9 is one MMP subtype implicated in the degradation of articular cartilage ECM proteins. MMP-9 was found in OA synovial fluid as a complex with neutrophil gelatinase-associated lipocalin (NGAL) which protected MMP-9 from autodegradation. Suppressing NGAL synthesis or promoting NGAL degradation may result in reducing the activity of MMP-9. We also propose initiating a search for enzyme-protein interactions to dampen other MMP subtype activity which could suppress ECM protein breakdown.
Collapse
Affiliation(s)
- Evan Meszaros
- Division of Rheumatic Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | |
Collapse
|
49
|
Yang WC, Lin PM, Yang MY, Liu YC, Chang CS, Chou WC, Hsu JF, Huang CT, Cho SF, Yu WH, Lin SF. Higher lipocalin 2 expression may represent an independent favorable prognostic factor in cytogenetically normal acute myeloid leukemia. Leuk Lymphoma 2012; 54:1614-25. [PMID: 23150981 DOI: 10.3109/10428194.2012.749402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract Several molecular markers, such as NPM1, FLT3 and CEBPA, have been incorporated into both the World Health Organization and European LeukemiaNet classifications as routine assessments for the diagnosis and evaluation of prognostic significance in acute myeloid leukemia (AML). Lipocalin 2 (LCN2) is related to cancer development and is believed to be associated with the outcome of cytogenetically normal (CN)-AML. In the present study, we analyzed the prognostic effects and interactions of LCN2 expression (by molecular analysis, quantitative real-time polymerase chain reaction [qRT-PCR]) with neucleophosmin 1, fms-related tyrosine kinase 3 (FLT3) and CCAAT/enhancer-binding protein alpha mutations in 85 patients with CN-AML receiving intensive induction chemotherapy. Our results indicate that patients with higher LCN2 mRNA expression in the bone marrow (LCN2high), especially in combination with wild type FLT3-ITD, had better prognoses. FLT3-ITD compensated LCN2-overexpression-enhanced oxidative stress-induced apoptosis in cell line studies. In conclusion, LCN2high was associated with better prognosis, and FLT3 status had an adjuvant effect on overall survival.
Collapse
Affiliation(s)
- Wen-Chi Yang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Klenke C, Janowski S, Borck D, Widera D, Ebmeyer J, Kalinowski J, Leichtle A, Hofestädt R, Upile T, Kaltschmidt C, Kaltschmidt B, Sudhoff H. Identification of novel cholesteatoma-related gene expression signatures using full-genome microarrays. PLoS One 2012; 7:e52718. [PMID: 23285167 PMCID: PMC3527606 DOI: 10.1371/journal.pone.0052718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/20/2012] [Indexed: 01/30/2023] Open
Abstract
Background Cholesteatoma is a gradually expanding destructive epithelial lesion within the middle ear. It can cause extensive local tissue destruction in the temporal bone and can initially lead to the development of conductive hearing loss via ossicular erosion. As the disease progresses, sensorineural hearing loss, vertigo or facial palsy may occur. Cholesteatoma may promote the spread of infection through the tegmen of the middle ear and cause meningitis or intracranial infections with abscess formation. It must, therefore, be considered as a potentially life-threatening middle ear disease. Methods and Findings In this study, we investigated differentially expressed genes in human cholesteatomas in comparison to regular auditory canal skin using Whole Human Genome Microarrays containing 19,596 human genes. In addition to already described up-regulated mRNAs in cholesteatoma, such as MMP9, DEFB2 and KRT19, we identified 3558 new cholesteatoma-related transcripts. 811 genes appear to be significantly differentially up-regulated in cholesteatoma. 334 genes were down-regulated more than 2-fold. Significantly regulated genes with protein metabolism activity include matrix metalloproteinases as well as PI3, SERPINB3 and SERPINB4. Genes like SPP1, KRT6B, PRPH, SPRR1B and LAMC2 are known as genes with cell growth and/or maintenance activity. Transport activity genes and signal transduction genes are LCN2, GJB2 and CEACAM6. Three cell communication genes were identified; one CDH19 and two from the S100 family. Conclusions This study demonstrates that the expression profile of cholesteatoma is similar to a metastatic tumour and chronically inflamed tissue. Based on the investigated profiles we present novel protein-protein interaction and signal transduction networks, which include cholesteatoma-regulated transcripts and may be of great value for drug targeting and therapy development.
Collapse
Affiliation(s)
- Christin Klenke
- Department of Otolaryngology and Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|