1
|
Aswani SS, Jayan SG, Mohan MS, Aparna NS, Boban PT, Saja K. Chrysin downregulates the expression of ADAMTS-4 in foam cells. Mol Biol Rep 2024; 51:968. [PMID: 39249599 DOI: 10.1007/s11033-024-09896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Chrysin, a polyphenolic compound, possesses antioxidant and anti-inflammatory properties. In this study, we investigated the effect of chrysin on the expression of A disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), a protease enzyme involved in degrading extracellular matrix associated with atherosclerosis. METHODS AND RESULTS We have studied the cell viability by MTT assay and foam cell formation by oil red O staining. The mRNA and protein expression of ADAMTS-4 was studied using quantitative polymerase chain reaction (qPCR) and Western blotting, respectively. Our study showed that chrysin significantly downregulates the expression of ADAMTS-4 in foam cells. CONCLUSION Chrysin's ability to downregulate the expression of ADAMTS-4, a protease involved in degrading the extracellular matrix, bestows upon it a new therapeutic potential for managing atherosclerosis.
Collapse
Affiliation(s)
- S S Aswani
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Sreelekshmi G Jayan
- Department of Biotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Mithra S Mohan
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - N S Aparna
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - P T Boban
- Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - K Saja
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
2
|
Miceli G, Basso MG, Pintus C, Pennacchio AR, Cocciola E, Cuffaro M, Profita M, Rizzo G, Tuttolomondo A. Molecular Pathways of Vulnerable Carotid Plaques at Risk of Ischemic Stroke: A Narrative Review. Int J Mol Sci 2024; 25:4351. [PMID: 38673936 PMCID: PMC11050267 DOI: 10.3390/ijms25084351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The concept of vulnerable carotid plaques is pivotal in understanding the pathophysiology of ischemic stroke secondary to large-artery atherosclerosis. In macroscopic evaluation, vulnerable plaques are characterized by one or more of the following features: microcalcification; neovascularization; lipid-rich necrotic cores (LRNCs); intraplaque hemorrhage (IPH); thin fibrous caps; plaque surface ulceration; huge dimensions, suggesting stenosis; and plaque rupture. Recognizing these macroscopic characteristics is crucial for estimating the risk of cerebrovascular events, also in the case of non-significant (less than 50%) stenosis. Inflammatory biomarkers, such as cytokines and adhesion molecules, lipid-related markers like oxidized low-density lipoprotein (LDL), and proteolytic enzymes capable of degrading extracellular matrix components are among the key molecules that are scrutinized for their associative roles in plaque instability. Through their quantification and evaluation, these biomarkers reveal intricate molecular cross-talk governing plaque inflammation, rupture potential, and thrombogenicity. The current evidence demonstrates that plaque vulnerability phenotypes are multiple and heterogeneous and are associated with many highly complex molecular pathways that determine the activation of an immune-mediated cascade that culminates in thromboinflammation. This narrative review provides a comprehensive analysis of the current knowledge on molecular biomarkers expressed by symptomatic carotid plaques. It explores the association of these biomarkers with the structural and compositional attributes that characterize vulnerable plaques.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariagiovanna Cuffaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Martina Profita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (G.M.); (M.G.B.); (C.P.); (A.R.P.); (E.C.); (M.C.); (M.P.); (G.R.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
3
|
Konda M, Kitabatake M, Ouji-Sageshima N, Tonomura R, Furukawa R, Sonobe S, Terada-Ikeda C, Takeda M, Kawaguchi M, Ito T. A Disintegrin and Metalloproteinase with Thrombospondin Motifs 4 Regulates Pulmonary Vascular Hyperpermeability through Destruction of Glycocalyx in Acute Respiratory Distress Syndrome. Int J Mol Sci 2023; 24:16230. [PMID: 38003418 PMCID: PMC10671186 DOI: 10.3390/ijms242216230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) has no specific and effective treatment, and there is an urgent need to understand its pathogenesis. Therefore, based on the hypothesis that molecules whose expression is upregulated in injured pulmonary vascular endothelial cells (VECs) are involved in the pathogenesis of ARDS, we conducted a study to elucidate the molecular mechanisms and identify target factors for treatment. Primary human lung microvascular endothelial cells (HMVEC-Ls) were stimulated with lipopolysaccharide (LPS) or poly (I:C) and analyzed via a microarray to identify target genes for ARDS. We found that a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) was induced in murine lung VECs in an LPS-mediated ARDS model. Elevated ADAMTS4 was also observed by the immunostaining of lung samples from ARDS patients. The suppression of ADAMTS4 by siRNA in VECs ameliorated LPS-stimulated vascular permeability. The impairment of the cell surface expression of syndecan-1, a marker of the glycocalyx that is an extracellular matrix involved in vascular permeability, was dramatically inhibited by ADAMTS4 suppression. In addition, the suppression of ADAMTS4 protected against LPS-induced reductions in syndecan-1 and the adherens junction protein vascular endothelial cadherin. These results suggest that ADAMTS4 regulates VEC permeability in ARDS and may be a predictive marker and therapeutic target for ARDS.
Collapse
Affiliation(s)
- Makiko Konda
- Department of Immunology, Nara Medical University, Kashihara 6348521, Japan
- Department of Anesthesiology, Nara Medical University, Kashihara 6348521, Japan
| | | | | | - Rei Tonomura
- Department of Immunology, Nara Medical University, Kashihara 6348521, Japan
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara 6348521, Japan
| | - Ryutaro Furukawa
- Department of Immunology, Nara Medical University, Kashihara 6348521, Japan
| | - Shota Sonobe
- Department of Immunology, Nara Medical University, Kashihara 6348521, Japan
- Department of Anesthesiology, Nara Medical University, Kashihara 6348521, Japan
| | - Chiyoko Terada-Ikeda
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 6348521, Japan
| | - Maiko Takeda
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 6348521, Japan
| | - Masahiko Kawaguchi
- Department of Anesthesiology, Nara Medical University, Kashihara 6348521, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara 6348521, Japan
| |
Collapse
|
4
|
Buran T, Batır MB, Çam FS, Kasap E, Çöllü F, Çelebi HBG, Şahin M. Molecular analyses of ADAMTS-1, -4, -5, and IL-17 a cytokine relationship in patients with ulcerative colitis. BMC Gastroenterol 2023; 23:345. [PMID: 37798683 PMCID: PMC10552413 DOI: 10.1186/s12876-023-02985-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease that develops due to the impaired immune response in genetically susceptible individuals, and its etiopathogenesis is not fully elucidated. IL-17 A is a cytokine that is produced by a type of immune cell called Th17 cells and is involved in the immune response and inflammation. On the other hand, ADAMTS-1, -4, and - 5 are enzymes that are involved in the breakdown of extracellular matrix proteins, including proteoglycans, which are important components of the intestinal wall. This study aimed to evaluate the relationship between interleukin 17 (IL-17 A) cytokine, which plays a role in the pathogenesis of ulcerative colitis, and the inflammation-controlled a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-1, -4, and - 5 protein members. METHODS Bowel tissue samples and blood serum from 51 patients with UC and 51 healthy controls were included in this study. mRNA expression levels of the ADAMTS-1, -4, -5, and IL-17 A were analyzed by RT-qPCR, and immunohistochemical analyses were performed to evaluate ADAMTS-1, -4, -5, and IL-17 A proteins in tissue samples. In addition, ELISA analysis determined serum levels of the ADAMTS-1, -4, -5, and IL-17 A. RESULTS RT-qPCR results reveal that the expression of ADAMTS-1, -4, -5, and IL-17 A genes in the UC tissue samples were significantly high according to the control tissue samples. Also, ADAMTS-1, -4, -5, and IL-17 A proteins revealed enhanced expression pattern UC groups according to the control. Also, ADAMTS-1, -4, -5, and IL-17 A protein showed cytoplasmic localization patterns in both control and UC groups. The serum levels of ADAMTS-1,-5, and IL-17 A were significantly higher in UC samples than in the control group. CONCLUSIONS We observed a positive correlation between the ADAMTS-1, -5 and IL17A cytokine expression in UC samples. These results provide a new understanding of controlling crucial ADAMTS family protein members by IL-17 A cytokines with UC.
Collapse
Affiliation(s)
- Tahir Buran
- Department of Gastroenterology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey.
| | - Muhammet Burak Batır
- Department of Biology, Faculty of Arts and Sciences, Manisa Celal Bayar University, Manisa, Turkey
| | - Fethi Sırrı Çam
- Department of Medical Genetics, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Elmas Kasap
- Department of Gastroenterology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Fatih Çöllü
- Department of Biology, Faculty of Arts and Sciences, Manisa Celal Bayar University, Manisa, Turkey
| | | | - Mustafa Şahin
- Department of Internal Medicine, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
5
|
Analysis of the Genetic Relationship between Atherosclerosis and Non-Alcoholic Fatty Liver Disease through Biological Interaction Networks. Int J Mol Sci 2023; 24:ijms24044124. [PMID: 36835545 PMCID: PMC9966194 DOI: 10.3390/ijms24044124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) seems to have some molecular links with atherosclerosis (ATH); however, the molecular pathways which connect both pathologies remain unexplored to date. The identification of common factors is of great interest to explore some therapeutic strategies to improve the outcomes for those affected patients. Differentially expressed genes (DEGs) for NAFLD and ATH were extracted from the GSE89632 and GSE100927 datasets, and common up- and downregulated DEGs were identified. Subsequently, a protein-protein interaction (PPI) network based on the common DEGs was performed. Functional modules were identified, and the hub genes were extracted. Then, a Gene Ontology (GO) and pathway analysis of common DEGs was performed. DEGs analysis in NAFLD and ATH showed 21 genes that were regulated similarly in both pathologies. The common DEGs with high centrality scores were ADAMTS1 and CEBPA which appeared to be down- and up-regulated in both disorders, respectively. For the analysis of functional modules, two modules were identified. The first one was oriented to post-translational protein modification, where ADAMTS1 and ADAMTS4 were identified, and the second one mainly related to the immune response, where CSF3 was identified. These factors could be key proteins with an important role in the NAFLD/ATH axis.
Collapse
|
6
|
Differential Expression and Localization of ADAMTS Proteinases in Proliferative Diabetic Retinopathy. Molecules 2022; 27:molecules27185977. [PMID: 36144730 PMCID: PMC9506249 DOI: 10.3390/molecules27185977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
We analyzed the expression of ADAMTS proteinases ADAMTS-1, -2, -4, -5 and -13; their activating enzyme MMP-15; and the degradation products of proteoglycan substrates versican and biglycan in an ocular microenvironment of proliferative diabetic retinopathy (PDR) patients. Vitreous samples from PDR and nondiabetic patients, epiretinal fibrovascular membranes from PDR patients, rat retinas, retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied. The levels of ADAMTS proteinases and MMP-15 were increased in the vitreous from PDR patients. Both full-length and cleaved activation/degradation fragments of ADAMTS proteinases were identified. The amounts of versican and biglycan cleavage products were increased in vitreous from PDR patients. ADAMTS proteinases and MMP-15 were localized in endothelial cells, monocytes/macrophages and myofibroblasts in PDR membranes, and ADAMTS-4 was expressed in the highest number of stromal cells. The angiogenic activity of PDR membranes correlated significantly with levels of ADAMTS-1 and -4 cellular expression. ADAMTS proteinases and MMP-15 were expressed in rat retinas. ADAMTS-1 and -5 and MMP-15 levels were increased in diabetic rat retinas. HRMECs and Müller cells constitutively expressed ADAMTS proteinases but not MMP-15. The inhibition of NF-κB significantly attenuated the TNF-α-and-VEGF-induced upregulation of ADAMTS-1 and -4 in a culture medium of HRMECs and Müller cells. In conclusion, ADAMTS proteinases, MMP-15 and versican and biglycan cleavage products were increased in the ocular microenvironment of patients with PDR.
Collapse
|
7
|
Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022; 12:biom12091192. [PMID: 36139031 PMCID: PMC9496377 DOI: 10.3390/biom12091192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Vulnerable plaques have been a hot topic in the field of stroke and carotid atherosclerosis. Currently, risk stratification and intervention of carotid plaques are guided by the degree of luminal stenosis. Recently, it has been recognized that the vulnerability of plaques may contribute to the risk of stroke. Some classical interventions, such as carotid endarterectomy, significantly reduce the risk of stroke in symptomatic patients with severe carotid stenosis, while for asymptomatic patients, clinically silent plaques with rupture tendency may expose them to the risk of cerebrovascular events. Early identification of vulnerable plaques contributes to lowering the risk of cerebrovascular events. Previously, the identification of vulnerable plaques was commonly based on imaging technologies at the macroscopic level. Recently, some microscopic molecules pertaining to vulnerable plaques have emerged, and could be potential biomarkers or therapeutic targets. This review aimed to update the previous summarization of vulnerable plaques and identify vulnerable plaques at the microscopic and macroscopic levels.
Collapse
|
8
|
Li S, Tao W, Huang Z, Yan L, Chen B, Zeng C, Chen F. The Transcriptional Landscapes and Key Genes in Brain Arteriovenous Malformation Progression in a Venous Hypertension Rat Model Revealed by RNA Sequencing. J Inflamm Res 2022; 15:1381-1397. [PMID: 35250290 PMCID: PMC8893156 DOI: 10.2147/jir.s347754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 01/23/2023] Open
Abstract
Background Brain arteriovenous malformations (bAVM) are abnormal vascular lesions characterized by direct connections between arteries and veins without an intervening capillary bed. The primary goal for brain AVM treatment is to prevent rupture and hemorrhage; however, the underlying molecular mechanisms are still unknown. Methods We constructed venous hypertension (VH) rat model with end-to-end anastomosis of the proximal left common carotid artery and the left distal external jugular vein. Thirty-eight adult rats were randomly assigned to four groups: the 0-week (n=5), the 1-week VH group (n=12), the 3-week VH group (n=9), and the 6-week VH group (n=12). We measured the hemodynamics and diameter of the arterialized veins. An RNA sequencing of arterialized veins was conducted, followed by comprehensive bioinformatics analysis to identify key genes and biological pathways involved in VH progression. The candidate genes from RNA-Seq were validated by RT-qPCR and immunostaining in human tissues. Results We observed high-flow and low resistance characteristics in VH models. A total of 317 upregulated and 258 downregulated common genes were consistently differentially expressed during VH progression. Thirteen co-expression modules were obtained by WGCNA analysis, and 4 key modules were identified. Thirteen genes: Adamts8, Adamtsl3, Spon2, Adamtsl2, Chad, Itga7, Comp, Itga8, Bmp6, Fst, Smad6, Smad7, Grem1, and Nog with differential expressions were identified using the density of maximum neighborhood component (DMNC) algorithm in Cytohubba. The expression of five potential genes (Adamts8, Adamtsl3, Spon2, Adamtsl2, Itga8) were increased in RT-qPCR, while in human bAVM tissue, the protein levels of Adamtsl2 and Itga8 were significant elevated and Spon2 and Adamtsl3 were decreased. Conclusion The identified gene networks of Adamtsl3, Spon2, Adamtsl2, and Itga8 provided key genes for further intervention.
Collapse
Affiliation(s)
- Shifu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Wengui Tao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Zheng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Langchao Yan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Chudai Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Correspondence: Fenghua Chen, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People’s Republic of China, Email
| |
Collapse
|
9
|
Tan J, Li Z, Liu L, Liu H, Xue J. IL‐17 in intervertebral disc degeneration: mechanistic insights and therapeutic implications. Cell Biol Int 2022; 46:535-547. [PMID: 35066966 DOI: 10.1002/cbin.11767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Hua Tan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Ze‐Peng Li
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Lu‐Lu Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Hao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Jing‐Bo Xue
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| |
Collapse
|
10
|
Novak R, Hrkac S, Salai G, Bilandzic J, Mitar L, Grgurevic L. The Role of ADAMTS-4 in Atherosclerosis and Vessel Wall Abnormalities. J Vasc Res 2022; 59:69-77. [PMID: 35051931 DOI: 10.1159/000521498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
Extracellular matrix proteins are regulated by metzincin proteases, like the disintegrin metalloproteinases with thrombospondin motifs (ADAMTS) family members. This review focuses on the emerging role which ADAMTS-4 might play in vascular pathology, which has implications for atherosclerosis and vessel wall abnormalities, as well as for the resulting diseases, such as cardiovascular and cerebrovascular disease, aortic aneurysms, and dissections. Major substrates of ADAMTS-4 are proteoglycans expressed physiologically in smooth muscle cells of blood vessels. Good examples are versican and aggrecan, principal vessel wall proteoglycans that are targeted by ADAMTS-4, driving blood vessel atrophy, which is why this metzincin protease was implicated in the pathophysiology of vascular diseases with an atherosclerotic background. Despite emerging evidence, it is important not to exaggerate the role of ADAMTS-4 as it is likely only a small piece of the complex atherosclerosis puzzle and one that could be functionally redundant due to its high structural similarity to other ADAMTS family members. The therapeutic potential of inhibiting ADAMTS-4 to halt the progression of vascular disease after initialization of treatment is unlikely. However, it is not excluded that it might find a purpose as a biomarker of vascular disease, possibly as an indicator in a larger cytokine panel.
Collapse
Affiliation(s)
- Rudjer Novak
- Department of Proteomics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Stela Hrkac
- Department of Proteomics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Grgur Salai
- Department of Proteomics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Teaching Institute of Emergency Medicine of the City of Zagreb, Zagreb, Croatia
| | - Josko Bilandzic
- Department of Proteomics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Mitar
- Department of Proteomics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Lovorka Grgurevic
- Department of Proteomics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Anatomy, "Drago Perovic," School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
ADAM and ADAMTS disintegrin and metalloproteinases as major factors and molecular targets in vascular malfunction and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:255-363. [PMID: 35659374 PMCID: PMC9231755 DOI: 10.1016/bs.apha.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are two closely related families of proteolytic enzymes. ADAMs are largely membrane-bound enzymes that act as molecular scissors or sheddases of membrane-bound proteins, growth factors, cytokines, receptors and ligands, whereas ADAMTS are mainly secreted enzymes. ADAMs have a pro-domain, and a metalloproteinase, disintegrin, cysteine-rich and transmembrane domain. Similarly, ADAMTS family members have a pro-domain, and a metalloproteinase, disintegrin, and cysteine-rich domain, but instead of a transmembrane domain they have thrombospondin motifs. Most ADAMs and ADAMTS are activated by pro-protein convertases, and can be regulated by G-protein coupled receptor agonists, Ca2+ ionophores and protein kinase C. Activated ADAMs and ADAMTS participate in numerous vascular processes including angiogenesis, vascular smooth muscle cell proliferation and migration, vascular cell apoptosis, cell survival, tissue repair, and wound healing. ADAMs and ADAMTS also play a role in vascular malfunction and cardiovascular diseases such as hypertension, atherosclerosis, coronary artery disease, myocardial infarction, heart failure, peripheral artery disease, and vascular aneurysm. Decreased ADAMTS13 is involved in thrombotic thrombocytopenic purpura and microangiopathies. The activity of ADAMs and ADAMTS can be regulated by endogenous tissue inhibitors of metalloproteinases and other synthetic small molecule inhibitors. ADAMs and ADAMTS can be used as diagnostic biomarkers and molecular targets in cardiovascular disease, and modulators of ADAMs and ADAMTS activity may provide potential new approaches for the management of cardiovascular disorders.
Collapse
|
12
|
Wang W, Zhang H, Hou C, Liu Q, Yang S, Zhang Z, Yang W, Yang X. Internal modulation of proteolysis in vascular extracellular matrix remodeling: role of ADAM metallopeptidase with thrombospondin type 1 motif 5 in the development of intracranial aneurysm rupture. Aging (Albany NY) 2021; 13:12800-12816. [PMID: 33934089 PMCID: PMC8148490 DOI: 10.18632/aging.202948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Intracranial aneurysms (IAs) are common cerebrovascular diseases that carry a high mortality rate, and the mechanisms that contribute to IA formation and rupture have not been elucidated. ADAMTS-5 (ADAM Metallopeptidase with Thrombospondin Type 1 Motif 5) is a secreted proteinase involved in matrix degradation and ECM (extracellular matrix) remodeling processes, and we hypothesized that the dysregulation of ADAMTS-5 could play a role in the pathophysiology of IA. Immunofluorescence revealed that the ADAMTS-5 levels were decreased in human and murine IA samples. The administration of recombinant protein ADAMTS-5 significantly reduced the incidence of aneurysm rupture in the experimental model of IA. IA artery tissue was collected and utilized for histology, immunostaining, and specific gene expression analysis. Additionally, the IA arteries in ADAMTS-5-administered mice showed reduced elastic fiber destruction, proteoglycan accumulation, macrophage infiltration, inflammatory response, and apoptosis. To further verify the role of ADAMTS-5 in cerebral vessels, a specific ADAMTS-5 inhibitor was used on another model animal, zebrafish, and intracranial hemorrhage was observed in zebrafish embryos. In conclusion, our findings indicate that ADAMTS-5 is downregulated in human IA, and compensatory ADAMTS-5 administration inhibits IA development and rupture with potentially important implications for treating this cerebrovascular disease.
Collapse
Affiliation(s)
- Weihan Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Changkai Hou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanlei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuyuan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Zhang
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Tayman MA, Koyuncu İ, Köklü NÖ. Expression Levels of A Disintegrin-like Metalloproteinase with Thrombospondin Motifs-4 and -5 (ADAMTS-4 and ADAMTS-5) in Inflamed and Healthy Gingival Tissues. Comb Chem High Throughput Screen 2021; 23:168-176. [PMID: 32067610 DOI: 10.2174/1386207323666200218113000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/03/2019] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND ADAMTS (A disintegrin-like metalloproteinase with thrombospondin motifs) is a group of 19 zinc-dependent metalloproteases known to function in many pathological and physiological processes, such as adhesion, cell fusion, signaling, proteolysis and ECM degradation. OBJECTIVES The aim of this study was to demonstrate the levels of ADAMTS-4 and -5 in gingival tissues with Stage III-Grade B generalized periodontitis (SIII-GB), Stage III-Grade C generalized periodontitis (SIII-GC) and healthy-control (C) groups. METHODS The clinical measurements were recorded for each patient. A total of 63 gingival biopsy specimens were obtained from the C (n:20), SIII-GB (n:23) and SIII-GC (n:20) groups. Polymerase chain reaction (Rt-PCR) and immunohistochemical (IHC) examinations were used to determine gene and protein levels. RESULTS According to the results of all methods, ADAMTS-4 and -5 expressions existed in periodontitis and C groups (P> 0.05). Immunostaining for ADAMTS-4 was found to be higher in patients with periodontitis than for ADAMTS-5 (P>0.05). Gene expression levels for ADAMTS-4 and -5 seemed to be up-regulated in subjects diagnosed with periodontitis, but the results were not statistically significant (P>0.05). A positive correlation was observed between PPD and ADAMTS-4 mRNA in SIII-GC (p=0.035) and SIII-GB (p=0.015). A positive correlation was determined between ADAMTS-4 mRNA and ADAMTS-5 mRNA in SIII-GC (p=0.037) and SIII-GB (p=0.00). CONCLUSION ADAMTS expression may take part in both pathological and physiological processes in the periodontal tissues, and periodontal destruction may be the result of a complex interaction of several pathways with many participants, such as ADAMTS-4 and -5, thus facilitating the exaggeration of periodontal disease.
Collapse
Affiliation(s)
- Mahmure A Tayman
- Department of Periodontology, Faculty of Dentistry, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - İsmail Koyuncu
- Department of Biochemistry, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Nimet Ö Köklü
- Department of Pathology, Zekai Tahir Burak, Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
14
|
ADAMTS proteases and the tumor immune microenvironment: Lessons from substrates and pathologies. Matrix Biol Plus 2020; 9:100054. [PMID: 33718860 PMCID: PMC7930849 DOI: 10.1016/j.mbplus.2020.100054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The relationship of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteases with inflammatory processes was anticipated since their discovery. Although knowledge of these extracellular proteases in different contexts continues to grow, many questions remain unanswered. In this review, we summarize the most important studies of ADAMTSs and their substrates in inflammation and in the immune system of non-oncological disorders. In addition, we update the findings on cancer and highlight their emerging role in the tumor immune microenvironment. Although the overall functions of extracellular molecules are known to be modulated by proteolysis, specific activities attributed to intact proteins and cleaved fragments in the context of inflammation are still subject to debate. A better understanding of ADAMTS activities will help to elucidate their contribution to the immune phenotype and to open up new therapeutic and diagnostic possibilities.
Collapse
|
15
|
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS) family comprises 19 proteases that regulate the structure and function of extracellular proteins in the extracellular matrix and blood. The best characterized cardiovascular role is that of ADAMTS-13 in blood. Moderately low ADAMTS-13 levels increase the risk of ischeamic stroke and very low levels (less than 10%) can cause thrombotic thrombocytopenic purpura (TTP). Recombinant ADAMTS-13 is currently in clinical trials for treatment of TTP. Recently, new cardiovascular roles for ADAMTS proteases have been discovered. Several ADAMTS family members are important in the development of blood vessels and the heart, especially the valves. A number of studies have also investigated the potential role of ADAMTS-1, -4 and -5 in cardiovascular disease. They cleave proteoglycans such as versican, which represent major structural components of the arteries. ADAMTS-7 and -8 are attracting considerable interest owing to their implication in atherosclerosis and pulmonary arterial hypertension, respectively. Mutations in the ADAMTS19 gene cause progressive heart valve disease and missense variants in ADAMTS6 are associated with cardiac conduction. In this review, we discuss in detail the evidence for these and other cardiovascular roles of ADAMTS family members, their proteolytic substrates and the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Salvatore Santamaria
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Rens de Groot
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK.,Institute of Cardiovascular Science, University College London, 51 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
16
|
Genetic reduction of the extracellular matrix protein versican attenuates inflammatory cell infiltration and improves contractile function in dystrophic mdx diaphragm muscles. Sci Rep 2020; 10:11080. [PMID: 32632164 PMCID: PMC7338466 DOI: 10.1038/s41598-020-67464-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
There is a persistent, aberrant accumulation of V0/V1 versican in skeletal muscles from patients with Duchenne muscular dystrophy and in diaphragm muscles from mdx mice. Versican is a provisional matrix protein implicated in fibrosis and inflammation in various disease states, yet its role in the pathogenesis of muscular dystrophy is not known. Here, female mdx and male hdf mice (haploinsufficient for the versican allele) were bred. In the resulting F1 mdx-hdf male pups, V0/V1 versican expression in diaphragm muscles was decreased by 50% compared to mdx littermates at 20-26 weeks of age. In mdx-hdf mice, spontaneous physical activity increased by 17% and there was a concomitant decrease in total energy expenditure and whole-body glucose oxidation. Versican reduction improved the ex vivo strength and endurance of diaphragm muscle strips. These changes in diaphragm contractile properties in mdx-hdf mice were associated with decreased monocyte and macrophage infiltration and a reduction in the proportion of fibres expressing the slow type I myosin heavy chain isoform. Given the high metabolic cost of inflammation in dystrophy, an attenuated inflammatory response may contribute to the effects of versican reduction on whole-body metabolism. Altogether, versican reduction ameliorates the dystrophic pathology of mdx-hdf mice as evidenced by improved diaphragm contractile function and increased physical activity.
Collapse
|
17
|
Treatment of Dystrophic mdx Mice with an ADAMTS-5 Specific Monoclonal Antibody Increases the Ex Vivo Strength of Isolated Fast Twitch Hindlimb Muscles. Biomolecules 2020; 10:biom10030416. [PMID: 32156081 PMCID: PMC7175239 DOI: 10.3390/biom10030416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
Aberrant extracellular matrix synthesis and remodeling contributes to muscle degeneration and weakness in Duchenne muscular dystrophy (DMD). ADAMTS-5, a secreted metalloproteinase with catalytic activity against versican, is implicated in myogenesis and inflammation. Here, using the mdx mouse model of DMD, we report increased ADAMTS-5 expression in dystrophic hindlimb muscles, localized to regions of regeneration and inflammation. To investigate the pathophysiological significance of this, 4-week-old mdx mice were treated with an ADAMTS-5 monoclonal antibody (mAb) or IgG2c (IgG) isotype control for 3 weeks. ADAMTS-5 mAb treatment did not reduce versican processing, as protein levels of the cleaved versikine fragment did not differ between hindlimb muscles from ADAMTS-5 mAb or IgG treated mdx mice. Nonetheless, ADAMTS-5 blockade improved ex vivo strength of isolated fast extensor digitorum longus, but not slow soleus, muscles. The underpinning mechanism may include modulation of regenerative myogenesis, as ADAMTS-5 blockade reduced the number of recently repaired desmin positive myofibers without affecting the number of desmin positive muscle progenitor cells. Treatment with the ADAMTS-5 mAb did not significantly affect makers of muscle damage, inflammation, nor fiber size. Altogether, the positive effects of ADAMTS-5 blockade in dystrophic muscles are fiber-type-specific and independent of versican processing.
Collapse
|
18
|
Zhang Y, Liu L, Liang C, Zhou L, Tan L, Zong Y, Wu L, Liu T. Expression Profiles of Long Noncoding RNAs in Mice with High-Altitude Hypoxia-Induced Brain Injury Treated with Gymnadenia conopsea (L.) R. Br. Neuropsychiatr Dis Treat 2020; 16:1239-1248. [PMID: 32494143 PMCID: PMC7229793 DOI: 10.2147/ndt.s246504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The unique geographical environment at high altitudes may cause a series of diseases, such as acute altitude reaction, cerebral edema, and pulmonary edema. Gymnadenia conopsea (L.) R. Br. has been reported to have an effect on high-altitude hypoxia. However, the molecular mechanism, especially the expression of long noncoding RNAs (lncRNAs), is not yet clear. METHODS The expression profiles of lncRNAs in high-altitude hypoxia-induced brain injury mice treated with Gymnadenia conopsea (L.) R. Br. by using a microarray method. RESULTS A total of 226 differentially expressed lncRNAs, 126 significantly dysregulated mRNAs and 23 differentially expressed circRNAs were detected (>2.0-fold, p<0.05). The expression of selected lncRNAs, mRNAs and circRNAs was validated by qRT-PCR. KEGG analysis showed that the mRNAs coexpressed with lncRNAs were involved in inflammation and hypoxia pathways, including the HIF-1, PI3K-Akt, and NF-kappa B signaling pathways. The lncRNA-TF network analysis results indicated that the lncRNAs were regulated mostly by HMGA2, SRY, GATA4, SOX5, and ZBTB16. CONCLUSION This study is the first to report the expression profiles of lncRNAs, mRNAs and circRNAs in mice with high-altitude hypoxia-induced brain injury treated with Gymnadenia conopsea (L.) R. Br. and may improve the understanding of the molecular mechanism of Gymnadenia conopsea (L.) R. Br. in treating high altitude hypoxia-induced brain injury.
Collapse
Affiliation(s)
- Yongcang Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.,Medical College, Tibet University, Lhasa 850000, People's Republic of China
| | - Lan Liu
- Medical College, Tibet University, Lhasa 850000, People's Republic of China.,West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Cuiting Liang
- Medical College, Tibet University, Lhasa 850000, People's Republic of China
| | - Lingyu Zhou
- Medical College, Tibet University, Lhasa 850000, People's Republic of China
| | - Lixia Tan
- Medical College, Tibet University, Lhasa 850000, People's Republic of China
| | - Yonghua Zong
- Tibet Traditional Medicine University, Lhasa 850000, People's Republic of China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Tonghua Liu
- Tibet Traditional Medicine University, Lhasa 850000, People's Republic of China.,Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
19
|
Pro-atherogenic proteoglycanase ADAMTS-1 is down-regulated by lauric acid through PI3K and JNK signaling pathways in THP-1 derived macrophages. Mol Biol Rep 2019; 46:2631-2641. [DOI: 10.1007/s11033-019-04661-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
|
20
|
Kerforne T, Favreau F, Khalifeh T, Maiga S, Allain G, Thierry A, Dierick M, Baulier E, Steichen C, Hauet T. Hypercholesterolemia-induced increase in plasma oxidized LDL abrogated pro angiogenic response in kidney grafts. J Transl Med 2019; 17:26. [PMID: 30642356 PMCID: PMC6332834 DOI: 10.1186/s12967-018-1764-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/31/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Renal transplantation is increasingly associated with the presence of comorbidity factors such as dyslipidemia which could influence the graft outcome. We hypothesized that hypercholesterolemia could affect vascular repair processes and promote post-transplant renal vascular remodeling through the over-expression of the anti-angiogenic thrombospondin-1 interacting with vascular endothelial growth factor-A levels. METHODS We tested this hypothesis in vitro, in vivo and in a human cohort using (1) endothelial cells; (2) kidney auto-transplanted pig subjected (n = 5) or not (n = 6) to a diet enriched in cholesterol and (3) a renal transplanted patient cohort (16 patients). RESULTS Cells exposed to oxidized LDL showed reduced proliferation and an increased expression of thrombospondin-1. In pigs, 3 months after transplantation of kidney grafts, we observed a deregulation of the hypoxia inducible factor 1a-vascular endothelial growth factor-A axis induced in cholesterol-enriched diet animals concomitant with an overexpression of thrombospondin-1 and a decrease in cortical microvessel density promoting vascular remodeling. In patients, hypercholesterolemia was associated with decreased vascular endothelial growth factor-A plasma levels during early follow up after renal transplantation and increased chronic graft dysfunction. CONCLUSIONS These results support a potential mechanism through which a high fat-diet impedes vascular repair in kidney graft and suggest the value of controlling cholesterolemia in recipient even at the early stage of renal transplantation.
Collapse
Affiliation(s)
- Thomas Kerforne
- INSERM U1082 IRTOMIT, 2 rue de la Milétrie, CS90577, 86000 Poitiers, France
- Service d’Anesthésie-Réanimation, CHU de Poitiers, 86000 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86000 Poitiers, France
| | - Frédéric Favreau
- INSERM U1082 IRTOMIT, 2 rue de la Milétrie, CS90577, 86000 Poitiers, France
- Faculté de Médecine, EA 6309 “Maintenance Myélinique et Neuropathies Périphériques», Université de Limoges, 87000 Limoges, France
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, 87000 Limoges, France
| | - Tackwa Khalifeh
- INSERM U1082 IRTOMIT, 2 rue de la Milétrie, CS90577, 86000 Poitiers, France
- Service Medico-Chirurgical de Pediatrie, CHU de Poitiers, 86000 Poitiers, France
| | - Souleymane Maiga
- INSERM U1082 IRTOMIT, 2 rue de la Milétrie, CS90577, 86000 Poitiers, France
| | - Geraldine Allain
- INSERM U1082 IRTOMIT, 2 rue de la Milétrie, CS90577, 86000 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86000 Poitiers, France
- Service de Chirurgie Cardio-Thoracique, CHU de Poitiers, 86000 Poitiers, France
| | - Antoine Thierry
- INSERM U1082 IRTOMIT, 2 rue de la Milétrie, CS90577, 86000 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86000 Poitiers, France
- Service de Néphrologie et Transplantation, CHU de Poitiers, 86000 Poitiers, France
| | - Manuel Dierick
- UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Edouard Baulier
- INSERM U1082 IRTOMIT, 2 rue de la Milétrie, CS90577, 86000 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86000 Poitiers, France
- Service de Biochimie, CHU de Poitiers, Poitiers, 86000 France
| | - Clara Steichen
- INSERM U1082 IRTOMIT, 2 rue de la Milétrie, CS90577, 86000 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86000 Poitiers, France
| | - Thierry Hauet
- INSERM U1082 IRTOMIT, 2 rue de la Milétrie, CS90577, 86000 Poitiers, France
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86000 Poitiers, France
- Service de Biochimie, CHU de Poitiers, Poitiers, 86000 France
- IBiSA ‘Plate-Forme MOdélisation Préclinique-Innovations Chirurgicale et Technologique (MOPICT)’, Domaine Expérimental du Magneraud, 17700 Surgères, France
- FHU SUPORT ‘SUrvival oPtimization in ORgan Transplantation’, 86000 Poitiers, France
| |
Collapse
|
21
|
Lin Y, Chen H, Wang Y, Jin C, Lin X, Wang C, Lu Y, Chen Z, Wang JA, Xiang M. Association of serum ADAMTS7 levels and genetic variant rs1994016 with acute coronary syndrome in a Chinese population: A case control study. Atherosclerosis 2018; 275:312-318. [PMID: 29980058 DOI: 10.1016/j.atherosclerosis.2018.06.872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Acute coronary syndrome (ACS) is commonly caused by rupture or erosion of coronary atherosclerotic plaques and secondary thrombus formation. Metalloproteinase ADAMTS7 was found to play an important role in atherogenesis. This study aimed to explore the association of serum ADAMTS7 levels and rs1994016 polymorphism at ADAMTS7 locus with ACS in a Chinese population. METHODS 1881 patients who underwent coronary angiography were consecutively recruited. Among them, 426 patients were matched for case-controlled analysis. Serum ADAMTS7 levels were determined through enzyme-linked immunosorbent assay (ELISA) and rs1994016 polymorphism was detected by polymerase chain reaction (PCR). RESULTS Serum ADAMTS7 levels in patients with unstable angina pectoris were much higher than in non-atherosclerotic patients, however, no difference was found among non-atherosclerotic patients, the coronary atherosclerosis subgroup and stable angina pectoris subgroup. A higher serum ADAMTS7 level was found in the ACS group than in the non-ACS group (0.61 ± 0.04 vs. 0.47 ± 0.02 ng/mL, p = 0.002) and serum ADAMTS7 level was found to be an independent risk factor for ACS after adjusting for major confounding factors (OR:2.81, 95% CI:1.33-5.93, p = 0.007). ADAMTS7 rs1994016 CT/TT polymorphism was negatively associated with the risk of ACS (OR:0.40, 95% CI:0.22-0.71, p = 0.002). Meanwhile, crossover analysis revealed that in CT/TT homozygotes, ACS risk was reduced nearly 80% in patients with serum ADAMTS7 levels <0.594 ng/mL (Interaction p = 0.002). CONCLUSIONS Serum level of ADAMTS7 was positively associated and rs1994016 CT/TT genotype was negatively associated with the risk of ACS. Patients with lower serum ADAMTS7 level and rs1994016 CT/TT genotype are less likely to suffer from ACS in a Chinese population.
Collapse
Affiliation(s)
- Yan Lin
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Han Chen
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Yidong Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Chunna Jin
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Xiaoping Lin
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Cuncun Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Yi Lu
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Zexin Chen
- Cardiovascular Key Lab of Zhejiang Province, China
| | - Jian-An Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Meixiang Xiang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China.
| |
Collapse
|
22
|
Ozkaramanli Gur D, Guzel S, Akyuz A, Alpsoy S, Guler N. The role of novel cytokines in inflammation: Defining peripheral artery disease among patients with coronary artery disease. Vasc Med 2018; 23:428-436. [PMID: 29638194 DOI: 10.1177/1358863x18763096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Coronary artery disease (CAD) patients with concomitant peripheral artery disease (PAD) experience more extensive and calcified atherosclerosis, greater lesion progression and more common coronary events compared to patients with CAD only. To characterize the distinct features of this aggressive atherosclerotic disease, we studied novel cytokines that code different stages of atherogenesis. One hundred and eighty consecutive subjects (60 patients into each group of CAD+PAD, CAD and controls) were recruited among patients with stable angina pectoris scheduled for coronary angiography. An ankle-brachial index (ABI) ≤0.9 was determined as occlusive PAD. Fasting serum tumor necrosis factor (TNF)-like antigen 1A (TL1A) and its receptor death receptor 3 (DR3), NOGO-B (reticulon 4B) and its receptor NUS1, high-sensitivity C-reactive protein (hsCRP), A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 1, 4, 5 and interleukin (IL) 6 levels were determined. Serum hsCRP and DR3/TL1A concentrations were similar and higher than controls in the CAD and CAD+PAD groups. Levels of NOGO-B and its receptor NUS1 were increased and ADAMTS-5 was decreased in patients with CAD+PAD. Independent predictors of ABI in multivariate analysis were smoking (B = -0.13, p = 0.04), NUS1 (B = -0.88, p < 0.001), ADAMTS-5 (B = 0.63, p < 0.001) and SYNTAX score (B = -0.26, p < 0.001). Similarly, smoking (OR = 5.5, p = 0.019), SYNTAX score (OR = 1.2, p < 0.001), NUS1 (OR = 14.4, p < 0.001), ADAMTS-5 (OR = 1.1, p < 0.001) and age (OR = 1.1, p = 0.042) independently predicted the involvement of peripheral vasculature in logistic regression. The diagnostic performance of these cytokines to discriminate CAD+PAD were AUC 0.79 ( p < 0.001) for NUS1 and 0.37 ( p = 0.013) for ADAMTS-5. We report herein that circulating cytokines can give clues to the ongoing atherosclerotic process and the extent of vascular involvement in which distinct features of ADAMTS-5 and NUS1 make them promising cytokines for future research.
Collapse
Affiliation(s)
| | - Savas Guzel
- Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Aydin Akyuz
- Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Seref Alpsoy
- Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Niyazi Guler
- Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
23
|
Abstract
Atherosclerosis is a progressive disease of large arteries and a leading cause of cardiovascular diseases and stroke. Chronic inflammation, aberrant immune response, and disturbances to key enzymes involved with lipid metabolism are characteristic features of atherosclerosis. Apart from targeting the derangements in lipid metabolism, therapeutic modulation to regulate chronic inflammation and the immune system response may prove to be very promising strategies in the management of atherosclerosis. In recent years, various targets have been studied for the treatment of atherosclerosis. PCSK9, a serine protease, actively targets the LDL-R and causes lysosomal degradation, which leads to excessive accumulation of LDL-C. Regulatory T cells (Tregs) and Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) affects the adaptive and innate immune response, respectively, and thus, therapeutic intervention of either of these targets would directly modulate disease progression. Advanced atherosclerotic lesions are characterized by an accumulation of apoptotic cells. Cluster of differentiation-47 (CD47), an anti-phagocytic known as the "don't eat me" signaling molecule, inhibits efferocytosis, which causes accumulation of cell debris in plaque. ADAMTS and Notch signaling potentially affect the formation of neointima by modulation of extracellular matrix components such as macrophages and vascular smooth muscle cells. This review provides insights on the molecular targets for therapeutic intervention of atherosclerosis, their effect at various stages of atherosclerosis development, and the therapies that have been designed and currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Ankita Solanki
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
24
|
Relationship between ADAMTS4 and carotid atherosclerotic plaque vulnerability in humans. J Vasc Surg 2017; 67:1120-1126. [PMID: 29153440 DOI: 10.1016/j.jvs.2017.08.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/13/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Rupture of atherosclerotic plaques and the resulting thrombosis are vital causes of clinical ischemic events. Recent studies have shown that ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) is a pathogenic factor of plaque vulnerability in mice. However, the relationship between ADAMTS4 and carotid atherosclerotic vulnerable plaques in humans remains unclear. METHODS Forty-eight carotid atherosclerotic plaque specimens were obtained from 48 carotid artery stenosis inpatients undergoing carotid endarterectomy. We performed hematoxylin and eosin and Movat pentachrome staining for histologic characteristics; immunohistochemical staining for ADAMTS4, versican, and macrophages; and serologic tests for ADAMTS4. Patients were divided into stable and vulnerable groups on the basis of histologic characterization according to the classification criteria of the American Heart Association. Comparison between the groups was carried out using SPSS 17.0 (SPSS Inc, Chicago, Ill). RESULTS Expression of ADAMTS4 in the plaque and its serum concentration were significantly higher in the vulnerable group compared with the stable one (P = .004 and P = .021, respectively), whereas the expression of versican was lower in the vulnerable group than in the stable group (P = .015). Univariate analysis revealed that the incidence of symptomatic cerebral ischemic events and ADAMTS4 serum levels were statistically higher in the vulnerable group compared with the stable group (P = .021 and P = .029, respectively). Multivariate analysis showed that ADAMTS4 was an independent risk factor (odds ratio, 1.14; P = .038). CONCLUSIONS Our study revealed that ADAMTS4 expression was upregulated during carotid atherosclerotic plaque development. Serum levels of ADAMTS4 were associated with increased plaque vulnerability in both symptomatic and asymptomatic patients with carotid artery stenosis. ADAMTS4 may be a potential biomarker for plaque vulnerability.
Collapse
|
25
|
Qin W, Cao Y, Li L, Chen W, Chen X. Upregulation of ADAMTS‑7 and downregulation of COMP are associated with aortic aneurysm. Mol Med Rep 2017; 16:5459-5463. [PMID: 28849199 PMCID: PMC5647091 DOI: 10.3892/mmr.2017.7293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/29/2017] [Indexed: 01/17/2023] Open
Abstract
Aortic aneurysm (AA) remains a fatal condition with high rates of morbidity and mortality, and the associated underlying mechanism influencing its pathology remains to be elucidated. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-7 has previously been demonstrated to be involved in the pathogenesis of vascular atherosclerosis via degradation of cartilage oligomeric matrix protein (COMP). The ADAMTS-7/COMP pathway may therefore act as a potential therapeutic target for vascular disorders. To the best of the author's knowledge, the present study aimed to investigate for the first time, the expression of ADAMTS-7 and COMP in human AA. Human aortic aneurysm samples were collected from patients with AA (n=24), and ascending aorta control samples were harvested from dilated cardiomyopathy patients who underwent heart transplantation (n=18). Expression levels of ADAMTS-7 and matrix metalloproteinase-9 were significantly increased in the AA group, as detected by immunohistochemistry (P<0.05). The COMP protein level was markedly decreased in the AA group when compared with the control group, as demonstrated via immunohistochemistry and western blot analysis (P<0.05). The findings suggest that upregulation of ADAMTS-7 and downregulation of COMP are associated with induction of human AA. ADAMTS-7/COMP pathway may provide therefore act as a potential therapeutic target in human AA for efficient, optimal treatment interventions in the future.
Collapse
Affiliation(s)
- Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Liangpeng Li
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin Chen
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
26
|
Lemarchant S, Wojciechowski S, Vivien D, Koistinaho J. ADAMTS-4 in central nervous system pathologies. J Neurosci Res 2017; 95:1703-1711. [DOI: 10.1002/jnr.24021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Sighild Lemarchant
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Denis Vivien
- INSERM, INSERM UMR-S 919, “Serine Proteases and Pathophysiology of the Neurovascular Unit”; University of Caen Basse-Normandie; GIP Cyceron, Bd H. Becquerel, BP 5229 14074 Caen Cedex France
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| |
Collapse
|
27
|
Hara T, Yoshida E, Shinkai Y, Yamamoto C, Fujiwara Y, Kumagai Y, Kaji T. Biglycan Intensifies ALK5-Smad2/3 Signaling by TGF-β 1 and Downregulates Syndecan-4 in Cultured Vascular Endothelial Cells. J Cell Biochem 2017; 118:1087-1096. [PMID: 27585241 PMCID: PMC6221004 DOI: 10.1002/jcb.25721] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
Abstract
Proteoglycans are macromolecules that consist of a core protein and one or more glycosaminoglycan side chains. A small leucine‐rich dermatan sulfate proteoglycan, biglycan, is one of the predominant types of proteoglycans synthesized by vascular endothelial cells; however, the physiological functions of biglycan are not completely understood. In the present study, bovine aortic endothelial cells in culture were transfected with small interfering RNAs for biglycan, and the expression of other proteoglycans was examined. Transforming growth factor‐β1 signaling was also investigated, because the interaction of biglycan with cytokines has been reported. Biglycan was found to form a complex with either transforming growth factor‐β1 or the transforming growth factor‐β1 type I receptor, ALK5, and to intensify the phosphorylation of Smad2/3, resulting in a lower expression of the transmembrane heparan sulfate proteoglycan, syndecan‐4. This is the first report to clarify the function of biglycan as a regulatory molecule of the ALK5–Smad2/3 TGF‐β1 signaling pathway that mediates the suppression of syndecan‐4 expression in vascular endothelial cells. J. Cell. Biochem. 118: 1087–1096, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takato Hara
- Faculty of Pharmaceutical Sciences, Department of Environmental Health, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Eiko Yoshida
- Faculty of Pharmaceutical Sciences, Department of Environmental Health, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yasuhiro Shinkai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Chika Yamamoto
- Faculty of Pharmaceutical Sciences, Department of Environmental Health, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392, Japan
| | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical Sciences, Department of Environmental Health, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| |
Collapse
|
28
|
McMahon M, Ye S, Izzard L, Dlugolenski D, Tripp RA, Bean AGD, McCulloch DR, Stambas J. ADAMTS5 Is a Critical Regulator of Virus-Specific T Cell Immunity. PLoS Biol 2016; 14:e1002580. [PMID: 27855162 PMCID: PMC5113859 DOI: 10.1371/journal.pbio.1002580] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
The extracellular matrix (ECM) provides physical scaffolding for cellular constituents and initiates biochemical and biomechanical cues that are required for physiological activity of living tissues. The ECM enzyme ADAMTS5, a member of the ADAMTS (A Disintegrin-like and Metalloproteinase with Thrombospondin-1 motifs) protein family, cleaves large proteoglycans such as aggrecan, leading to the destruction of cartilage and osteoarthritis. However, its contribution to viral pathogenesis and immunity is currently undefined. Here, we use a combination of in vitro and in vivo models to show that ADAMTS5 enzymatic activity plays a key role in the development of influenza-specific immunity. Influenza virus infection of Adamts5-/- mice resulted in delayed virus clearance, compromised T cell migration and immunity and accumulation of versican, an ADAMTS5 proteoglycan substrate. Our research emphasises the importance of ADAMTS5 expression in the control of influenza virus infection and highlights the potential for development of ADAMTS5-based therapeutic strategies to reduce morbidity and mortality. The extracellular matrix enzyme ADAMTS5 enhances the clearance of viruses by facilitating migration of T lymphocytes to the periphery following influenza virus infection. Movement of immune cells is critical for effective clearance of pathogens. The response to influenza virus infection requires immune cell trafficking between the lung, mediastinal lymph node and other peripheral lymphoid organs such as the spleen. We set out to assess the contribution of a specific extracellular matrix enzyme, ADAMTS5, to migration of lymphocytes and overall pathogenesis following infection. In our studies, we demonstrate that mice lacking Adamts5 have fewer influenza-specific lymphocytes in the lung and spleen following infection. These observations correlated with an accumulation of influenza-specific lymphocytes in the mediastinal lymph node and increased virus titres. This work suggests that ADAMTS5 is necessary for immune cell migration to the periphery, where lymphocyte function is required to fight infection.
Collapse
Affiliation(s)
- Meagan McMahon
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Siying Ye
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Leonard Izzard
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | - Ralph A. Tripp
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Andrew G. D. Bean
- Australian Animal Health Laboratory, CSIRO, East Geelong, Victoria, Australia
| | | | - John Stambas
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
- * E-mail:
| |
Collapse
|
29
|
Lima MA, dos Santos L, Turri JA, Nonogaki S, Buim M, Lima JF, de Jesus Viana Pinheiro J, Bueno de Toledo Osório CA, Soares FA, Freitas VM. Prognostic Value of ADAMTS Proteases and Their Substrates in Epithelial Ovarian Cancer. Pathobiology 2016; 83:316-26. [DOI: 10.1159/000446244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/13/2016] [Indexed: 11/19/2022] Open
|
30
|
Lemarchant S, Dunghana H, Pomeshchik Y, Leinonen H, Kolosowska N, Korhonen P, Kanninen KM, García-Berrocoso T, Montaner J, Malm T, Koistinaho J. Anti-inflammatory effects of ADAMTS-4 in a mouse model of ischemic stroke. Glia 2016; 64:1492-507. [PMID: 27301579 DOI: 10.1002/glia.23017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022]
Abstract
ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs type 4) is a metalloprotease capable to degrade chondroitin sulfate proteoglycans leading to cartilage destruction during arthritis or to neuroplasticity during spinal cord injury (SCI). Although ADAMTS-4 is an inflammatory-regulated enzyme, its role during inflammation has never been investigated. The aim of this study was to investigate the role of ADAMTS-4 in neuroinflammation. First, we evidenced an increase of ADAMTS-4 expression in the ischemic brain hemisphere of mouse and human patients suffering from ischemic stroke. Then, we described that ADAMTS-4 has predominantly an anti-inflammatory effect in the CNS. Treatment of primary microglia or astrocyte cultures with low doses of a human recombinant ADAMTS-4 prior to LPS exposure decreased NO production and the synthesis/release of pro-inflammatory cytokines including NOS2, CCL2, TNF-α, IL-1β and MMP-9. Accordingly, when cell cultures were transfected with silencing siRNA targeting ADAMTS-4 prior to LPS exposure, the production of NO and the synthesis/release of pro-inflammatory cytokines were increased. Finally, the feasibility of ADAMTS-4 to modulate neuroinflammation was investigated in vivo after permanent middle cerebral artery occlusion in mice. Although ADAMTS-4 treatment did not influence the lesion volume, it decreased astrogliosis and macrophage infiltration, and increased the number of microglia expressing arginase-1, a marker of alternatively activated cells with inflammation inhibiting functions. Additionally, ADAMTS-4 increased the production of IL-10 and IL-6 in the peri-ischemic area. By having anti-inflammatory and neuroregenerative roles, ADAMTS-4 may represent an interesting target to treat acute CNS injuries, such as ischemic stroke, SCI or traumatic brain injury. GLIA 2016;64:1492-1507.
Collapse
Affiliation(s)
- Sighild Lemarchant
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Hiramani Dunghana
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Henri Leinonen
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Natalia Kolosowska
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Paula Korhonen
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Katja M Kanninen
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall D'Hebron Research Institute (VHIR), Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall D'Hebron Research Institute (VHIR), Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Tarja Malm
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| | - Jari Koistinaho
- Department of Neurobiology, a. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio University of Eastern Finland, Kuopio, P.O. Box 1627, Finland
| |
Collapse
|
31
|
Slebioda TJ, Bojarska-Junak A, Cyman M, Landowski P, Kaminska B, Celinski K, Kmiec Z. Expression of death receptor 3 on peripheral blood mononuclear cells differes in adult IBD patients and children with newly diagnosed IBD. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:165-169. [PMID: 27001939 DOI: 10.1002/cyto.b.21372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/01/2016] [Accepted: 03/14/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Interaction between TL1A and death receptor 3 (DR3) is associated with the pathogenesis of inflammatory bowel disease (IBD), although their role in the development of this disease remains not fully explained. Some studies showed elevated expression of TL1A and DR3 in inflamed intestinal tissue but currently there are no reports concerning expression of DR3 on peripheral blood mononuclear cells (PBMCs) of IBD patients which was the subject of our study. METHODS We performed flow cytometry analysis of DR3 expression on CD4(+), CD8(+), CD11c(+), CD14(+) or CD20(+) PBMCs of adults and children with IBD and healthy volunteers with respect to C-reactive protein (CRP) levels in blood. Blood samples were collected from pediatric patients before the beginning of therapy, whereas adults patients were undergoing anti-inflammatory IBD treatment and had much lower CRP levels. RESULTS With regard to appropriate healthy volunteers, children with IBD had elevated percentage of DR3-expressing CD4(+), CD8(+), CD11c(+) and CD20(+) PBMCs which, with the exception of DR3(+) CD11c(+) cells in children with ulcerative colitis, was correlated with CRP level in blood. Adult patients had increased frequency of DR3(+) CD8(+) and CD20(+) PBMCs and their CRP levels correlated only with DR3(+) CD8(+) cells. CONCLUSIONS In comparison to healthy volunteers, untreated children with IBD have higher percentage of DR3(+) PBMCs than adults with IBD undergoing anti-inflammatory treatment. In most of the investigated PBMCs populations, the frequency of DR3(+) cells is correlated with the level of CRP. We suggest anti-inflammatory treatment may lead to reduction in the frequency of DR3(+) PBMCs. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Tomasz J Slebioda
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | | | - Marta Cyman
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Landowski
- Clinic of Paediatrics, Gastroenterology, Hepatology and Paediatric Nutrition, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Kaminska
- Clinic of Paediatrics, Gastroenterology, Hepatology and Paediatric Nutrition, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Celinski
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Lublin, Poland
| | - Zbigniew Kmiec
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
32
|
Gao Y, Wu W, Yu C, Zhong F, Li G, Kong W, Zheng J. A disintegrin and metalloproteinase with thrombospondin motif 1 (ADAMTS1) expression increases in acute aortic dissection. SCIENCE CHINA-LIFE SCIENCES 2015; 59:59-67. [PMID: 26563155 DOI: 10.1007/s11427-015-4959-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/10/2015] [Indexed: 11/26/2022]
Abstract
Acute aortic dissection (AAD) is a life-threatening cardiovascular disease caused by progressive medial degeneration of the aortic wall. A disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) is a recently identified extracellular metalloproteinase participating in the development of vascular disease, such as atherosclerosis. In the present study, we found that ADAMTS1 was significantly elevated in blood samples from AAD patients compared with patients with acute myocardial infarction and healthy volunteers. Based on these findings, we established an AAD model by infusing angiotensin II in older mice. AAD was successfully developed in aorta tissues, with an incidence of 42% after 14 days in the angiotensin II group. Macrophage and neutrophil infiltration was observed in the media of the aorta, and ADAMTS1 overexpression was found in the aorta by Western blot and immunohistochemistry. Double immunofluorescence staining showed the expression of ADAMTS1 in macrophages and neutrophils. Consistent with the upregulation of ADAMTS1 in aortic dissection tissues, versican (a proteoglycan substrate of ADAMTS1) was degraded significantly more in these tissues than in control aortic tissues. These data suggest that the increased expression of ADAMTS1 protein in macrophages and neutrophils that infiltrated aortic tissues may promote the progression of AAD by degrading versican.
Collapse
Affiliation(s)
- Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenjing Wu
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Changan Yu
- Central Laboratory of Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Fangming Zhong
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Geng Li
- Central Laboratory of Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Kong
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
33
|
Human genome-wide expression analysis reorients the study of inflammatory mediators and biomechanics in osteoarthritis. Osteoarthritis Cartilage 2015; 23:1939-45. [PMID: 26521740 PMCID: PMC4630670 DOI: 10.1016/j.joca.2015.03.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/19/2015] [Accepted: 03/20/2015] [Indexed: 02/02/2023]
Abstract
A major objective of this article is to examine the research implications of recently available genome-wide expression profiles of cartilage from human osteoarthritis (OA) joints. We propose that, when viewed in the light of extensive earlier work, this novel data provides a unique opportunity to reorient the design of experimental systems toward clinical relevance. Specifically, in the area of cartilage explant biology, this will require a fresh evaluation of existing paradigms, so as to optimize the choices of tissue source, cytokine/growth factor/nutrient addition, and biomechanical environment for discovery. Within this context, we firstly discuss the literature on the nature and role of potential catabolic mediators in OA pathology, including data from human OA cartilage, animal models of OA, and ex vivo studies. Secondly, due to the number and breadth of studies on IL-1β in this area, a major focus of the article is a critical analysis of the design and interpretation of cartilage studies where IL-1β has been used as a model cytokine. Thirdly, the article provides a data-driven perspective (including genome-wide analysis of clinical samples, studies on mutant mice, and clinical trials), which concludes that IL-1β should be replaced by soluble mediators such as IL-17 or TGF-β1, which are much more likely to mimic the disease in OA model systems. We also discuss the evidence that changes in early OA can be attributed to the activity of such soluble mediators, whereas late-stage disease results more from a chronic biomechanical effect on the matrix and cells of the remaining cartilage and on other local mediator-secreting cells. Lastly, an updated protocol for in vitro studies with cartilage explants and chondrocytes (including the use of specific gene expression arrays) is provided to motivate more disease-relevant studies on the interplay of cytokines, growth factors, and biomechanics on cellular behavior.
Collapse
|
34
|
Wang NG, Wang F, Tan BY, Han SJ, Dong J, Yuan ZN, Wang DC. Genetic analysis of TNFST15 variants in ankylosing spondylitis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15210-15215. [PMID: 26823868 PMCID: PMC4713654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
AIMS The purpose of this study was to explore the role of TNF-like ligand 1A (TL1A) gene (TNFST15) polymorphisms (rs3810936, rs7848647, and rs6478109) in the generation of ankylosing spondylitis (AS). METHODS Polymerase chain reaction (PCR) and sequencing were used to conduct the genotyping of TNFSF15 polymorphisms in 113 AS patients and 120 healthy persons as the case and control groups. The frequencies comparison was performed by chi-square or t test between the two groups. Odds ratio (OR) and 95% confidence interval (95% CI) were calculated to represent the correlation between TNFSF15 polymorphism and AS. Besides, genotypes distribution of the former in controls was checked by Hardy-Weinberg equilibrium (HWE). RESULTS There was statistically significant difference in AS patients and controls based on family history. Among TNFSF15 polymorphisms, only TT genotype frequency of rs3810936 in cases was obviously high, compared with the controls (P=0.04), the results indicated that TT was a high-risk genotype (OR=2.31, 95% CI=1.03-5.20). However, both of rs6478109, rs7848647 polymorphisms didn't show any association with AS. CONCLUSION Rs3810936 of TNFSF15 were related to the risk of AS and we should pay more attention to the role of TNFSF15 polymorphisms in the pathogenesis of AS in the future.
Collapse
Affiliation(s)
- Nai-Guo Wang
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan 250021, Shandong, China
| | - Feng Wang
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan 250021, Shandong, China
| | - Bing-Yi Tan
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan 250021, Shandong, China
| | - Shi-Jie Han
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan 250021, Shandong, China
| | - Jun Dong
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan 250021, Shandong, China
| | - Ze-Nong Yuan
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan 250021, Shandong, China
| | - Da-Chuan Wang
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University Jinan 250021, Shandong, China
| |
Collapse
|
35
|
Richard AC, Ferdinand JR, Meylan F, Hayes ET, Gabay O, Siegel RM. The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. J Leukoc Biol 2015; 98:333-45. [PMID: 26188076 PMCID: PMC4763597 DOI: 10.1189/jlb.3ri0315-095r] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/10/2015] [Accepted: 06/19/2015] [Indexed: 12/12/2022] Open
Abstract
Originally described in 2002 as a T cell-costimulatory cytokine, the tumor necrosis factor family member TNF-like factor 1A (TL1A), encoded by the TNFSF15 gene, has since been found to affect multiple cell lineages through its receptor, death receptor 3 (DR3, encoded by TNFRSF25) with distinct cell-type effects. Genetic deficiency or blockade of TL1A-DR3 has defined a number of disease states that depend on this cytokine-receptor pair, whereas excess TL1A leads to allergic gastrointestinal inflammation through stimulation of group 2 innate lymphoid cells. Noncoding variants in the TL1A locus are associated with susceptibility to inflammatory bowel disease and leprosy, predicting that the level of TL1A expression may influence host defense and the development of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Arianne C Richard
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John R Ferdinand
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Françoise Meylan
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Erika T Hayes
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Odile Gabay
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Richard M Siegel
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
36
|
Golden JB, Groft SG, Squeri MV, Debanne SM, Ward NL, McCormick TS, Cooper KD. Chronic Psoriatic Skin Inflammation Leads to Increased Monocyte Adhesion and Aggregation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:2006-18. [PMID: 26223654 PMCID: PMC4686256 DOI: 10.4049/jimmunol.1402307] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
Abstract
Psoriasis patients exhibit an increased risk of death by cardiovascular disease (CVD) and have elevated levels of circulating intermediate (CD14(++)CD16(+)) monocytes. This elevation could represent evidence of monocyte dysfunction in psoriasis patients at risk for CVD, as increases in circulating CD14(++)CD16(+) monocytes are predictive of myocardial infarction and death. An elevation in the CD14(++)CD16(+) cell population has been previously reported in patients with psoriatic disease, which has been confirmed in the cohort of our human psoriasis patients. CD16 expression was induced in CD14(++)CD16(-) classical monocytes following plastic adhesion, which also elicited enhanced β2 but not β1 integrin surface expression, suggesting increased adhesive capacity. Indeed, we found that psoriasis patients have increased monocyte aggregation among circulating PBMCs, which is recapitulated in the KC-Tie2 murine model of psoriasis. Visualization of human monocyte aggregates using imaging cytometry revealed that classical (CD14(++)CD16(-)) monocytes are the predominant cell type participating in these aggregate pairs. Many of these pairs also included CD16(+) monocytes, which could account for apparent elevations of intermediate monocytes. Additionally, intermediate monocytes and monocyte aggregates were the predominant cell type to adhere to TNF-α- and IL-17A-stimulated dermal endothelium. Ingenuity Pathway Analysis demonstrated that monocyte aggregates have a distinct transcriptional profile from singlet monocytes and monocytes following plastic adhesion, suggesting that circulating monocyte responses to aggregation are not fully accounted for by homotypic adhesion, and that further factors influence their functionality.
Collapse
Affiliation(s)
- Jackelyn B Golden
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106; Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Sarah G Groft
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106
| | - Michael V Squeri
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106
| | - Sara M Debanne
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106
| | - Nicole L Ward
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106; Murdough Family Center for Psoriasis, Cleveland, OH 44106; University Hospitals Case Medical Center, Cleveland, OH 44106; and
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106; Murdough Family Center for Psoriasis, Cleveland, OH 44106; University Hospitals Case Medical Center, Cleveland, OH 44106; and
| | - Kevin D Cooper
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106; Department of Pathology, Case Western Reserve University, Cleveland, OH 44106; Murdough Family Center for Psoriasis, Cleveland, OH 44106; University Hospitals Case Medical Center, Cleveland, OH 44106; and Veterans Affairs Medical Center, Cleveland, OH 44106
| |
Collapse
|
37
|
Siakavellas SI, Sfikakis PP, Bamias G. The TL1A/DR3/DcR3 pathway in autoimmune rheumatic diseases. Semin Arthritis Rheum 2015; 45:1-8. [PMID: 25887448 DOI: 10.1016/j.semarthrit.2015.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
IMPORTANCE TNF-like cytokine 1A (TL1A) and its receptors, death receptor 3 (DR3) and decoy receptor 3 (DcR3) are members of the TNF and TNF receptor superfamilies of proteins, respectively. They constitute a cytokine system that actively interferes with the regulation of immune responses and may participate in the pathogenesis of autoimmune diseases. OBJECTIVES This review aims to present the current knowledge on the role of the TL1A/DR3/DcR3 system in the pathophysiology of autoimmune rheumatic diseases, with a focus on rheumatoid arthritis (RA). METHODS An extensive literature search was performed in the PubMed database using the following keywords: TL1A, death receptor 3, DR3, decoy receptor 3, DcR3, TNFSF15, TNFRSF25, and TNFSF6B. Studies were assessed and selected in view of their relevance to autoimmune rheumatic diseases. CONCLUSION The TL1A/DR3/DcR3 axis is a novel immune pathway that participates in the pathogenesis of a variety of autoimmune rheumatic diseases. These molecules may be promising therapeutic targets for inflammatory arthritis.
Collapse
Affiliation(s)
- Spyros I Siakavellas
- Academic Department of Gastroenterology, Laikon Hospital, Kapodistrian University of Athens, 17 Agiou Thoma St, Athens 11527, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic and Internal Medicine, Laikon Hospital, Kapodistrian University of Athens, Athens, Greece
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Laikon Hospital, Kapodistrian University of Athens, 17 Agiou Thoma St, Athens 11527, Greece.
| |
Collapse
|
38
|
Duan L, Ma B, Liang Y, Chen J, Zhu W, Li M, Wang D. Cytokine networking of chondrocyte dedifferentiation in vitro and its implications for cell-based cartilage therapy. Am J Transl Res 2015; 7:194-208. [PMID: 25901191 PMCID: PMC4399086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/25/2014] [Indexed: 06/04/2023]
Abstract
Autologous chondrocyte implantation (ACI) is a golden treatment for large defects of the knee joint without osteoarthritis or other complications. Despite notable progresses, generation of a stable chondrocyte phenotype using progenitor cells remains a main obstacle for chondrocyte-based cartilage treatment. Monolayer chondrocyte expansion in vitro is accompanied by chondrocyte dedifferentiation, which produces a non-specific mechanically inferior extracellular matrix (ECM) unsuitable for ACI. In-depth understanding of the molecular events during chondrocyte dedifferentiation is required to maintain the capacity of in vitro expanded chondrocytes to produce hyaline cartilage-specific ECM. This review discusses key cytokines and signaling pathways involved in chondrocyte dedifferentiation from the standpoint of catabolism and anabolism. Some potential therapeutic strategies are also presented to counteract chondrocyte dedifferentiation for cell-based cartilage therapy.
Collapse
Affiliation(s)
- Li Duan
- School of Medicine, Sun Yat-sen UniversityGuangzhou 510182, Guangdong Province, China
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
| | - Bin Ma
- Division of Immunology, University Children’s Hospital ZurichZurich 8032, Switzerland
| | - Yujie Liang
- School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate SchoolShenzhen 518055, Guangdong Province, China
| | - Jielin Chen
- School of Medicine, Sun Yat-sen UniversityGuangzhou 510182, Guangdong Province, China
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
| | - Weimin Zhu
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
| | - Mingtao Li
- School of Medicine, Sun Yat-sen UniversityGuangzhou 510182, Guangdong Province, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
- Department of Orthopedics, Shenzhen Second People’s HospitalShenzhen 518035, Guangdong Province, China
| |
Collapse
|
39
|
Wang ECY, Newton Z, Hayward OA, Clark SR, Collins F, Perks WV, Singh RK, Twohig JP, Williams AS. Regulation of early cartilage destruction in inflammatory arthritis by death receptor 3. Arthritis Rheumatol 2014; 66:2762-72. [PMID: 25044706 PMCID: PMC4286106 DOI: 10.1002/art.38770] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/26/2014] [Indexed: 12/28/2022]
Abstract
Objective To investigate the role of death receptor 3 (DR-3) and its ligand tumor necrosis factor–like molecule 1A (TL1A) in the early stages of inflammatory arthritis. Methods Antigen-induced arthritis (AIA) was generated in C57BL/6 mice deficient in the DR-3 gene (DR3−/−) and their DR3+/+ (wild-type) littermates by priming and intraarticular injection of methylated bovine serum albumin. The joints were sectioned and analyzed histochemically for damage to cartilage and expression of DR3, TL1A, Ly-6G (a marker for neutrophils), the gelatinase matrix metalloproteinase 9 (MMP-9), the aggrecanase ADAMTS-5, and the neutrophil chemoattractant CXCL1. In vitro production of MMP-9 was measured in cultures from fibroblasts, macrophages, and neutrophils following the addition of TL1A and other proinflammatory stimuli. Results DR3 expression was up-regulated in the joints of wild-type mice following generation of AIA. DR3−/− mice were protected against cartilage damage compared with wild-type mice, even at early time points prior to the main accumulation of Teff cells in the joint. Early protection against AIA in vivo correlated with reduced levels of MMP-9. In vitro, neutrophils were major producers of MMP-9, while neutrophil numbers were reduced in the joints of DR3−/− mice. However, TL1A neither induced MMP-9 release nor affected the survival of neutrophils. Instead, reduced levels of CXCL1 were observed in the joints of DR3−/− mice. Conclusion DR-3 drives early cartilage destruction in the AIA model of inflammatory arthritis through the release of CXCL1, maximizing neutrophil recruitment to the joint and leading to enhanced local production of cartilage-destroying enzymes.
Collapse
Affiliation(s)
- Eddie C Y Wang
- Cardiff Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jia X, Li W, Miao Z, Feng C, Liu Z, He Y, Lv J, Du Y, Hou M, He W, Li D, Chen L. Identification of modules related to programmed cell death in CHD based on EHEN. BIOMED RESEARCH INTERNATIONAL 2014; 2014:475379. [PMID: 25133163 PMCID: PMC4123579 DOI: 10.1155/2014/475379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/28/2014] [Indexed: 01/26/2023]
Abstract
The formation and death of macrophages and foam cells are one of the major factors that cause coronary heart disease (CHD). In our study, based on the Edinburgh Human Metabolic Network (EHMN) metabolic network, we built an enzyme network which was constructed by enzymes (nodes) and reactions (edges) called the Edinburgh Human Enzyme Network (EHEN). By integrating the subcellular location information for the reactions and refining the protein-reaction relationships based on the location information, we proposed a computational approach to select modules related to programmed cell death. The identified module was in the EHEN-mitochondria (EHEN-M) and was confirmed to be related to programmed cell death, CHD pathogenesis, and lipid metabolism in the literature. We expected this method could analyze CHD better and more comprehensively from the point of programmed cell death in subnetworks.
Collapse
Affiliation(s)
- Xu Jia
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhengqiang Miao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Chenchen Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhe Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Youwen Du
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Min Hou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Danbin Li
- Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
41
|
Nieves Torres EC, Yang B, Janardhanan R, Brahmbhatt A, Leof E, Mukhopadhyay D, Misra S. Adventitial delivery of lentivirus-shRNA-ADAMTS-1 reduces venous stenosis formation in arteriovenous fistula. PLoS One 2014; 9:e94510. [PMID: 24732590 PMCID: PMC3986087 DOI: 10.1371/journal.pone.0094510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/17/2014] [Indexed: 11/18/2022] Open
Abstract
Hemodialysis vascular access can develop venous neointimal hyperplasia (VNH) causing stenosis. Recent clinical and experimental data has demonstrated that there is increased expression of a disintegrin and metalloproteinase thrombospondin motifs-1 (ADAMTS-1) at site of VNH. The experiments outlined in the present paper were designed to test the hypothesis that targeting of the adventitia of the outflow vein of murine arteriovenous fistula (AVF) using a small hairpin RNA that inhibits ADAMTS-1 expression (LV-shRNA-ADAMTS-1) at the time of fistula creation will decrease VNH. At early time points, ADAMTS-1 expression was significantly decreased associated with a reduction in vascular endothelial growth factor-A (VEGF-A) and matrix metalloproteinase-9 (MMP-9) (LV-shRNA-ADAMTS-1 transduced vessels vs. controls). These changes in gene and protein expression resulted in favorable vascular remodeling with a significant increase in mean lumen vessel area, decrease in media/adventitia area, with a significant increase in TUNEL staining accompanied with a decrease in cellular proliferation accompanied with a reduction in CD68 staining. Collectively, these results demonstrate that ADAMTS-1 transduced vessels of the outflow vein of AVF have positive vascular remodeling.
Collapse
Affiliation(s)
- Evelyn C. Nieves Torres
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Binxia Yang
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rajiv Janardhanan
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Akshaar Brahmbhatt
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ed Leof
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
42
|
Ashlin TG, Buckley ML, Salter RC, Johnson JL, Kwan APL, Ramji DP. The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, -4 and -5 in human macrophages: Requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphoinositide 3-kinase signaling pathways. Int J Biochem Cell Biol 2014; 46:113-23. [PMID: 24275094 PMCID: PMC3928996 DOI: 10.1016/j.biocel.2013.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/18/2013] [Accepted: 11/05/2013] [Indexed: 12/22/2022]
Abstract
Atherosclerosis is an inflammatory disorder of the vasculature regulated by cytokines. Amongst the cytokines, IL-33 attenuates the development of atherosclerosis in mouse model systems via several mechanisms, including inhibition of macrophage foam cell formation and promotion of a Th1 to Th2 shift. Proteases produced by macrophages, such as matrix metalloproteinases and members of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family, play potential roles in regulating atherosclerotic plaque stability. Despite such importance, the action of IL-33 on the expression of such proteases has not been analyzed. We have therefore investigated the effect of IL-33 on the expression of ADAMTS-1, -4 and -5 in human macrophages. Immunohistochemical analysis showed that these three proteases were expressed in human atherosclerotic lesions, particularly by macrophages and, to a lesser extent, by smooth muscle cells and endothelial cells. The expression of ADAMTS-1, -4 and -5 in human macrophages was specifically inhibited by IL-33. The action of IL-33 on the expression of these ADAMTS members was mediated through its receptor ST2. IL-33 activated ERK1/2, JNK1/2 and c-Jun, but not p38 MAPK or Akt, in human macrophages. RNA interference assays using a combination of adenoviral encoding small hairpin RNA and small interfering RNA showed a requirement of ERK1/2, JNK1/2, c-Jun, PI3Kγ and PI3Kδ, but not p38α, in the IL-33-inhibited expression of these ADAMTS isoforms. These studies provide novel insights into the expression of ADAMTS-1, -4 and -5 in human atherosclerotic lesions and the regulation of their expression in human macrophages by the key anti-atherogenic cytokine IL-33.
Collapse
Affiliation(s)
- Tim G Ashlin
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Melanie L Buckley
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Rebecca C Salter
- Laboratory of Cardiovascular Pathology, School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol BS2 8HW, United Kingdom
| | - Jason L Johnson
- Laboratory of Cardiovascular Pathology, School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol BS2 8HW, United Kingdom
| | - Alvin P L Kwan
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, United Kingdom.
| |
Collapse
|
43
|
Lemarchant S, Pruvost M, Montaner J, Emery E, Vivien D, Kanninen K, Koistinaho J. ADAMTS proteoglycanases in the physiological and pathological central nervous system. J Neuroinflammation 2013; 10:133. [PMID: 24176075 PMCID: PMC4228433 DOI: 10.1186/1742-2094-10-133] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/17/2013] [Indexed: 11/24/2022] Open
Abstract
ADAMTS-1, -4, -5 and -9 belong to ‘a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)’ family and more precisely to the proteoglycanases subgroup based on their common ability to degrade chondroitin sulfate proteoglycans. They have been extensively investigated for their involvement in inflammation-induced osteoarthritis, and a growing body of evidence indicates that they may be of key importance in the physiological and pathological central nervous system (CNS). In this review, we discuss the deregulated expression of ADAMTS proteoglycanases during acute CNS injuries, such as stroke and spinal cord injury. Then, we provide new insights on ADAMTS proteoglycanases mediating synaptic plasticity, neurorepair, angiogenesis and inflammation mechanisms. Altogether, this review allows us to propose that ADAMTS proteoglycanases may be original therapeutic targets for CNS injuries.
Collapse
Affiliation(s)
- Sighild Lemarchant
- Department of Neurobiology, A, I, Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P,O, Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|