1
|
Shetty S, Pappachan JM, Fernandez CJ. Diabetes and tuberculosis: An emerging dual threat to healthcare. World J Diabetes 2024; 15:1409-1416. [PMID: 39099826 PMCID: PMC11292341 DOI: 10.4239/wjd.v15.i7.1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 07/08/2024] Open
Abstract
Tuberculosis (TB) remains a huge global healthcare challenge even in the 21st century though the prevalence has dropped in developed countries in recent decades. Diabetes mellitus (DM) is an important risk factor for the development and perpetuation of TB owing to the immune dysfunction in patients with DM. The coexistence of both diseases in the same individual also aggravates disease severity, complications, and chance of treatment failure because of gross immune alterations posed by DM as well as TB. Various complex cellular and humoral immunological factors are involved in the dangerous interaction between TB and DM, some of which remain unknown even today. It is highly important to identify the risk factors for TB in patients with DM, and vice versa, to ensure early diagnosis and management to prevent complications from this ominous coexistence. In their research study published in the recent issue of the World Journal of Diabetes, Shi et al elaborate on the factors associated with the development of TB in a large cohort of DM patients from China. More such research output from different regions of the world is expected to improve our knowledge to fight the health devastation posed by TB in patients with diabetes.
Collapse
Affiliation(s)
- Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Cornelius James Fernandez
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| |
Collapse
|
2
|
Panda S, Arora A, Luthra K, Mohan A, Vikram NK, Kumar Gupta N, Singh A. Hyperglycemia modulates M1/M2 macrophage polarization in chronic diabetic patients with pulmonary tuberculosis infection. Immunobiology 2024; 229:152787. [PMID: 38271857 DOI: 10.1016/j.imbio.2024.152787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Increased susceptibility to bacterial infections like tuberculosis (TB) is one of the complications of type 2 diabetes, however the underlying mechanisms remains poorly characterized. To explore how chronic hyperglycemia in diabetes affects progression of active TB, we examined mRNA expression of M1 (proinflammatory) and M2 (anti-inflammatory) cytokines/markers, in monocyte-derived macrophages obtained from patients with PTB + DM (pulmonary TB + diabetes mellitus type 2), patients with DM alone, patients with PTB alone, and healthy individuals (controls). Our findings indicate a dysregulated cytokine response in patients with both PTB and DM, characterized by decreased expression levels of interferon-gamma (IFN-γ) and inducible nitric oxide synthase (iNOS), along with increased expression levels of interleukin-1 beta (IL-1β) and CD206. Furthermore, we observed a positive correlation of IL-1β and CD206 expression with levels of glycosylated hemoglobin (HbA1c) in both PTB + DM and DM groups, while IFN-γ showed a positive correlation with HbA1c levels, specifically in the PTB + DM group. Additionally, M1 cytokines/markers, IL-1β and iNOS were found to be significantly associated with the extent of sputum positivity in both PTB and PTB + DM groups, suggesting it to be a function of increased bacterial load and hence severity of infection. Our data demonstrates that tuberculosis in individuals with PTB + DM is characterized by altered M1/M2 cytokine responses, indicating that chronic inflammation associated with type 2 diabetes may contribute to increased immune pathology and inadequate control of tuberculosis infection.
Collapse
Affiliation(s)
- Sudhasini Panda
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi -110029, India
| | - Alisha Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi -110029, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi -110029, India
| | - Anant Mohan
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, New Delhi -110029, India
| | - Naval K Vikram
- Department of Medicine, All India Institute of Medical Sciences, New Delhi -110029, India
| | - Neeraj Kumar Gupta
- Department of Pulmonary Medicine, VMMC and Safdarjung Hospital, New Delhi -110029, India
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi -110029, India.
| |
Collapse
|
3
|
Peng YF. Pulmonary tuberculosis and diabetes mellitus: Epidemiology, pathogenesis and therapeutic management (Review). MEDICINE INTERNATIONAL 2024; 4:4. [PMID: 38204892 PMCID: PMC10777470 DOI: 10.3892/mi.2023.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
The dual burden of pulmonary tuberculosis (PTB) and diabetes mellitus (DM) is a major global public health concern. There is increasing evidence to indicate an association between PTB and DM. DM is associated with immune dysfunction and altered immune components. Hyperglycemia weakens the innate immune response by affecting the function of macrophages, dendritic cells, neutrophils, and natural killer cells, and also disrupts the adaptive immune response, thus promoting the susceptibility of PTB in patients with DM. Antituberculosis drugs often cause the impairment of liver and kidney function in patients with PTB, and the infection with Mycobacterium tuberculosis weaken pancreatic endocrine function by causing islet cell amyloidosis, which disrupts glucose metabolism and thus increases the risk of developing DM in patients with PTB. The present review discusses the association between PTB and DM from the perspective of epidemiology, pathogenesis, and treatment management. The present review aims to provide information for the rational formulation of treatment strategies for patients with PTB-DM.
Collapse
Affiliation(s)
- You-Fan Peng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
4
|
Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023; 168:115734. [PMID: 37857245 DOI: 10.1016/j.biopha.2023.115734] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Nowadays, diabetes mellitus has emerged as a significant global public health concern with a remarkable increase in its prevalence. This review article focuses on the definition of diabetes mellitus and its classification into different types, including type 1 diabetes (idiopathic and fulminant), type 2 diabetes, gestational diabetes, hybrid forms, slowly evolving immune-mediated diabetes, ketosis-prone type 2 diabetes, and other special types. Diagnostic criteria for diabetes mellitus are also discussed. The role of inflammation in both type 1 and type 2 diabetes is explored, along with the mediators and potential anti-inflammatory treatments. Furthermore, the involvement of various organs in diabetes mellitus is highlighted, such as the role of adipose tissue and obesity, gut microbiota, and pancreatic β-cells. The manifestation of pancreatic Langerhans β-cell islet inflammation, oxidative stress, and impaired insulin production and secretion are addressed. Additionally, the impact of diabetes mellitus on liver cirrhosis, acute kidney injury, immune system complications, and other diabetic complications like retinopathy and neuropathy is examined. Therefore, further research is required to enhance diagnosis, prevent chronic complications, and identify potential therapeutic targets for the management of diabetes mellitus and its associated dysfunctions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Naira A Ashour
- Department of Neurology, Faculty of Physical Therapy, Horus University, New Damietta 34518, Egypt
| | - Roaa T Zaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
5
|
Bisht MK, Dahiya P, Ghosh S, Mukhopadhyay S. The cause-effect relation of tuberculosis on incidence of diabetes mellitus. Front Cell Infect Microbiol 2023; 13:1134036. [PMID: 37434784 PMCID: PMC10330781 DOI: 10.3389/fcimb.2023.1134036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/25/2023] [Indexed: 07/13/2023] Open
Abstract
Tuberculosis (TB) is one of the oldest human diseases and is one of the major causes of mortality and morbidity across the Globe. Mycobacterium tuberculosis (Mtb), the causal agent of TB is one of the most successful pathogens known to mankind. Malnutrition, smoking, co-infection with other pathogens like human immunodeficiency virus (HIV), or conditions like diabetes further aggravate the tuberculosis pathogenesis. The association between type 2 diabetes mellitus (DM) and tuberculosis is well known and the immune-metabolic changes during diabetes are known to cause increased susceptibility to tuberculosis. Many epidemiological studies suggest the occurrence of hyperglycemia during active TB leading to impaired glucose tolerance and insulin resistance. However, the mechanisms underlying these effects is not well understood. In this review, we have described possible causal factors like inflammation, host metabolic changes triggered by tuberculosis that could contribute to the development of insulin resistance and type 2 diabetes. We have also discussed therapeutic management of type 2 diabetes during TB, which may help in designing future strategies to cope with TB-DM cases.
Collapse
Affiliation(s)
- Manoj Kumar Bisht
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Priyanka Dahiya
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sudip Ghosh
- Molecular Biology Unit, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Jamai Osmania PO, Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
6
|
Ssekamatte P, Sande OJ, van Crevel R, Biraro IA. Immunologic, metabolic and genetic impact of diabetes on tuberculosis susceptibility. Front Immunol 2023; 14:1122255. [PMID: 36756113 PMCID: PMC9899803 DOI: 10.3389/fimmu.2023.1122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Due to the increasing prevalence of diabetes mellitus (DM) globally, the interaction between DM and major global diseases like tuberculosis (TB) is of great public health significance, with evidence of DM having about a three-fold risk for TB disease. TB defense may be impacted by diabetes-related effects on immunity, metabolism, and gene transcription. An update on the epidemiological aspects of DM and TB, and the recent trends in understanding the DM-associated immunologic, metabolic, and genetic mechanisms of susceptibility to TB will be discussed in this review. This review highlights gaps in the incomplete understanding of the mechanisms that may relate to TB susceptibility in type 2 DM (T2DM). Understanding these three main domains regarding mechanisms of TB susceptibility in T2DM patients can help us build practical treatment plans to lessen the combined burden of the diseases in rampant areas.
Collapse
Affiliation(s)
- Phillip Ssekamatte
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Irene Andia Biraro
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
7
|
Ge L, Huang P, Miao H, Yu H, Wu D, Chen F, Lin Y, Lin Y, Li W, Hua J. The new landscape of differentially expression proteins in placenta tissues of gestational diabetes based on iTRAQ proteomics. Placenta 2023; 131:36-48. [PMID: 36473392 DOI: 10.1016/j.placenta.2022.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) refers to abnormal glucose tolerance that occurs or is firstly diagnosed during pregnancy. GDM is related to various adverse pregnancy outcomes, but GDM pathogeny has not been fully elucidated. Nevertheless, previous studies have observed that many proteins in the placentas of patients with GDM are dysregulated. The present study aimed to establish a novel differentially expressed protein (DEP) landscape of GDM and normal maternal placentas and to explore the possible connection between DEPs and GDM pathogenesis. This study provides new insights into the mechanism of GDM and should make an important contribution to the development of biomarkers. METHODS The morphological characteristics of the placenta were observed on 30 GDM and normal maternal placental tissues stained with haematoxylin and eosin. Isobaric tags for relative and absolute quantitation (iTRAQ) was used in the proteomics screening of the DEPs of the normal and GDM maternal placentas. Bioinformatics analysis was performed on the DEPs, and parallel reaction monitoring (PRM) was performed to verify the DEPs. Finally, the quantitative analysis of iTRAQ and PRM was verified by immunohistochemical assay. RESULTS A total of 68 DEPs in the GDM placenta were identified with iTRAQ proteomics experiment, comprising 21 up-regulated and 47 down-regulated DEPs. Bioinformatics analysis showed that the regulation of transport, catabolic process of non-coding RNA, cytoskeleton and cell binding were the most abundant Gene Ontology terms, and RNA degradation was an important pathway for significant enrichment. Protein-protein interaction network analysis showed that heterogeneous nuclear ribonucleoproteins A2/B1 (HNRNPA2B1), heterogeneous nuclear ribonucleoprotein A/B (HNRNPAB), heterogeneous nuclear ribonucleoprotein L (HNRNPL) and heterogeneous nuclear ribonucleoprotein A3 (HNRNPA3) were the cores of the up-regulated proteins. Band 3 anion transport protein (SLC4A1), spectrin beta chain erythrocytic (SPTB), ankyrin-1 (ANK1), spectrin beta chain non-erythrocytic 2 (SPTBN2), D-3-phosphoglycerate dehydrogenase (PHGDH) and exosome complex component RRP42 (EXOSC7) were the cores of the down-regulated proteins. These proteins are involved in the binding, splicing, processing, transport and degradation of RNA and in the formation and maintenance of the cytoskeleton. PRM verification results showed that seven proteins, namely, epiplakin (EPPK1), cold-inducible RNA-binding protein (CIRBP), HNRNPA2B1, HNRNPAB, HNRNPL, Ras-related protein Rab-21 (RAB21) and Ras-related protein Rab-3B (RAB3B), were up-regulated, whereas SPTB and SLC4A1 were down-regulated. The results of immunohistochemical assay also showed that the expression of five proteins, namely EPPK1, HNRNPA2B1, HNRNPAB, CIRBP and RAB21, were significantly higher in GDM placental tissues (P < 0.01). The GDM placentas showed changes in the morphological evaluation, including poor villous maturation, obvious increase in the number of syncytiotrophoblast nodules, thickening of the wall of dry villous arterioles with lumen stenosis, increased fibrinous exudation and excessive filling of villous interstitial vessels. DISCUSSION Differentially expressed proteins related to a variety of biological processes in the GDM placenta were found. Fourteen proteins, namely, HNRNPA2B1, HNRNPAB, HNRNPL, HNRNPA3, EPPK1, CIRBP, RAB21, RAB3B, SLC4A1, SPTB, ANK1, SPTBN2, PHGDH and EXOSC7, which were differentially expressed in the placenta, may play an important role in regulating the occurrence and development of gestational diabetes through multi-channel and multi-link regulation.
Collapse
Affiliation(s)
- Li Ge
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| | - Pingping Huang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haiyan Miao
- Department of Obstetrics and Gynecology, The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Honghong Yu
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dongmei Wu
- Department of Obstetrics and Gynecology, The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Fan Chen
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yan Lin
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuzheng Lin
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenfang Li
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jinghe Hua
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
8
|
Cheng P, Wang L, Gong W. Cellular Immunity of Patients with Tuberculosis Combined with Diabetes. J Immunol Res 2022; 2022:6837745. [PMID: 35692502 PMCID: PMC9177301 DOI: 10.1155/2022/6837745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is one of humanity's three major infectious diseases. Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia due to impaired insulin secretion or impaired insulin function. It has been reported that DM is a primary risk factor for TB disease. Given the increasing public health threat to people's health, more and more studies have focused on diabetes complicated by TB. Hyperglycemia can affect the function of human immune cells, promote primary infections and reactivation of TB, and increase the susceptibility and severity of TB. However, the immunological mechanism behind it is still not clear. By reviewing the related articles on tuberculosis complicated with diabetes published in recent years, this paper expounds on the effect of hyperglycemia on innate immunity and adaptive immunity of patients with TB. This review provides new insights for elucidating the immunological mechanism of TB complicated with DM and lays the foundation for finding potential targets for preventing and treating TB combined with DM.
Collapse
Affiliation(s)
- Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou, 075000 Hebei, China
| | - Liang Wang
- Department of Geriatrics, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
9
|
Alam A, Abubaker Bagabir H, Sultan A, Siddiqui MF, Imam N, Alkhanani MF, Alsulimani A, Haque S, Ishrat R. An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases. Front Pharmacol 2022; 12:770762. [PMID: 35153741 PMCID: PMC8829040 DOI: 10.3389/fphar.2021.770762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death from a single infectious agent. The estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially increasing in low- and middle-income countries, where the prevention and treatment of TB disease remains a great burden, and there is enough empirical evidence (scientific evidence) to justify a greater research emphasis on the syndemic interaction between TB and NCDs. The current study was proposed to build a disease-gene network based on overlapping TB with NCDs (overlapping means genes involved in TB and other/s NCDs), such as Parkinson’s disease, cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and lung cancer. We compared the TB-associated genes with genes of its overlapping NCDs to determine the gene-disease relationship. Next, we constructed the gene interaction network of disease-genes by integrating curated and experimentally validated interactions in humans and find the 13 highly clustered modules in the network, which contains a total of 86 hub genes that are commonly associated with TB and its overlapping NCDs, which are largely involved in the Inflammatory response, cellular response to cytokine stimulus, response to cytokine, cytokine-mediated signaling pathway, defense response, response to stress and immune system process. Moreover, the identified hub genes and their respective drugs were exploited to build a bipartite network that assists in deciphering the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drugs combination or drug repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs, and give a synergistic effect with better outcomes. Thus, understanding the Mycobacterium tuberculosis (Mtb) infection and associated NCDs is a high priority to contain its short and long-term effects on human health. Our network-based analysis opens a new horizon for more personalized treatment, drug-repurposing opportunities, investigates new targets, multidrug treatment, and can uncover several side effects of unrelated drugs for TB and its overlapping NCDs.
Collapse
Affiliation(s)
- Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Armiya Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Nikhat Imam
- Department of Mathematics, Institute of Computer Science and Information Technology, Magadh University, Bodh Gaya, India
| | - Mustfa F Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
López‐Torres MO, Marquina‐Castillo B, Ramos‐Espinosa O, Mata‐Espinosa D, Barrios‐Payan JA, Baay‐Guzman G, Yepez SH, Bini E, Torre‐Villalvazo I, Torres N, Tovar A, Chamberlin W, Ge Y, Carranza A, Hernández‐Pando R. 16α-Bromoepiandrosterone as a new candidate for experimental diabetes-tuberculosis co-morbidity treatment. Clin Exp Immunol 2021; 205:232-245. [PMID: 33866550 PMCID: PMC8274213 DOI: 10.1111/cei.13603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death from a single bacterial infectious agent and is one of the most relevant issues of public health. Another pandemic disease is type II diabetes mellitus (T2D) that is estimated to affect half a billion people in the world. T2D is directly associated with obesity and a sedentary lifestyle and is frequently associated with immunosuppression. Immune dysfunction induced by hyperglycemia increases infection frequency and severity. Thus, in developing countries the T2D/TB co-morbidity is frequent and represents one of the most significant challenges for the health-care systems. Several immunoendocrine abnormalities are occurring during the chronic phase of both diseases, such as high extra-adrenal production of active glucocorticoids (GCs) by the activity of 11-β-hydroxysteroid dehydrogenase type 1 (11-βHSD1). 11-βHSD1 catalyzes the conversion of inactive cortisone to active cortisol or corticosterone in lungs and liver, while 11-β-hydroxysteroid dehydrogenase type 2 (11-βHSD2) has the opposite effect. Active GCs have been related to insulin resistance and suppression of Th1 responses, which are deleterious factors in both T2D and TB. The anabolic adrenal hormone dehydroepiandrosterone (DHEA) exerts antagonistic effects on GC signaling in immune cells and metabolic tissues; however, its anabolic effects prohibit its use to treat immunoendocrine diseases. 16α-bromoepiandrosterone (BEA) is a water miscible synthetic sterol related to DHEA that lacks an anabolic effect while amplifying the immune and metabolic properties with important potential therapeutic uses. In this work, we compared the expression of 11-βHSD1 and the therapeutic efficacy of BEA in diabetic mice infected with tuberculosis (TB) (T2D/TB) with respect to non-diabetic TB-infected mice (TB). T2D was induced by feeding mice with a high-fat diet and administering a single low-dose of streptozotocin. After 4 weeks of T2D establishment, mice were infected intratracheally with a high-dose of Mycobacterium tuberculosis strain H37Rv. Then, mice were treated with BEA three times a week by subcutaneous and intratracheal routes. Infection with TB increased the expression of 11-βHSD1 and corticosterone in the lungs and liver of both T2D/TB and TB mice; however, T2D/TB mice developed a more severe lung disease than TB mice. In comparison with untreated animals, BEA decreased GC and 11-βHSD1 expression while increasing 11-βHSD2 expression. These molecular effects of BEA were associated with a reduction in hyperglycemia and liver steatosis, lower lung bacillary loads and pneumonia. These results uphold BEA as a promising effective therapy for the T2D/TB co-morbidity.
Collapse
Affiliation(s)
- Manuel Othoniel López‐Torres
- Experimental Pathology SectionDepartment of PathologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Brenda Marquina‐Castillo
- Experimental Pathology SectionDepartment of PathologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Octavio Ramos‐Espinosa
- Experimental Pathology SectionDepartment of PathologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Dulce Mata‐Espinosa
- Experimental Pathology SectionDepartment of PathologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Jorge A. Barrios‐Payan
- Experimental Pathology SectionDepartment of PathologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Guillermina Baay‐Guzman
- Oncological Diseases Research UnitHospital Infantil de Mexico ‘Federico Gomez’Mexico CityMexico
| | - Sara Huerta Yepez
- Oncological Diseases Research UnitHospital Infantil de Mexico ‘Federico Gomez’Mexico CityMexico
| | - Estela Bini
- Experimental Pathology SectionDepartment of PathologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Ivan Torre‐Villalvazo
- Physiology of Nutrition DepartmentInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Nimbe Torres
- Physiology of Nutrition DepartmentInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Armando Tovar
- Physiology of Nutrition DepartmentInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | | | - Yu Ge
- Protibea Therapeutics LLCNaplesFloridaUSA
| | - Andrea Carranza
- CONICET – Universidad de Buenos AiresInstituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMETBuenos AiresArgentina
| | - Rogelio Hernández‐Pando
- Experimental Pathology SectionDepartment of PathologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| |
Collapse
|
11
|
Mandala JP, Thada S, Sivangala R, Ponnana M, Myakala R, Gaddam S. Influence of NOD-like receptor 2 gene polymorphisms on muramyl dipeptide induced pro-inflammatory response in patients with active pulmonary tuberculosis and household contacts. Immunobiology 2021; 226:152096. [PMID: 34058448 DOI: 10.1016/j.imbio.2021.152096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/20/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The immune response induced by nucleotide-binding oligomerization domain-2(NOD2) is associated with the production of cytokines affected by the host's genetic background. The present study aimed to examine the effects of NOD2; 802C > T, 2105G > A polymorphisms associated with altered cytokine levels in patients with active pulmonary tuberculosis disease, Latent TB subjects (household contacts(HHC) and healthy controls(HC). METHODS Genetic polymorphisms were analyzed by Restriction Fragment Length Polymorphism(RFLP) in 102-PTB patients, 102-HHC, and 132-HC. QuantiFERON-TB Gold In-Tube test was performed to identify latent TB infection in 60-HHC. Estimated their cytokine levels by ELISA in MDP (muramyl dipeptide) stimulated culture supernatants of all the groups. Further, we studied pre-mRNA structures by insilico analysis and relative gene expression by RT-PCR. RESULTS Recessive genetic models of NOD2 802C > T SNP with TT genotype and AA genotype of NOD2 2105G > A SNP were significantly associated with increased TB risk in PTB patients and HHC compared with HC. In vitro stimulations were performed with NOD2 ligand MDP in PTB patients and latent TB subjects: QuantiFERON positive household contacts (QFT + ve HHC)and QuantiFERON negative household contacts(QFT-ve HHC). The results showed that reduced TNF-α and enhanced IL-12, IL-1β indicate that these cytokines may play an essential role in the initial maintenance of cell-mediated immunity. Our study demonstrated the correlation between NOD2 polymorphism with IL-1β, TNF-α, IL-12 levels. Insilico analysis represents the pre-mRNA secondary structures affected by NOD2 SNPs. We also observed the difference in m RNA levels in variant and wild genotypes. CONCLUSION This finding may lead to the forthcoming development of immunotherapy and may be used as predictive markers to identify high-risk individuals for TB disease.
Collapse
Affiliation(s)
- Jyothi Priya Mandala
- Bhagwan Mahavir Medical Research Centre, Hyderabad, India; Department of Genetics, Osmania University, Hyderabad, India
| | - Shruthi Thada
- Bhagwan Mahavir Medical Research Centre, Hyderabad, India; Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Meenakshi Ponnana
- Bhagwan Mahavir Medical Research Centre, Hyderabad, India; Department of Genetics, Osmania University, Hyderabad, India
| | | | - SumanLatha Gaddam
- Bhagwan Mahavir Medical Research Centre, Hyderabad, India; Department of Genetics, Osmania University, Hyderabad, India.
| |
Collapse
|
12
|
Wang J, Wang K, Liu W, Cai Y, Jin H. m6A mRNA methylation regulates the development of gestational diabetes mellitus in Han Chinese women. Genomics 2021; 113:1048-1056. [PMID: 33667648 DOI: 10.1016/j.ygeno.2021.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/20/2021] [Accepted: 02/28/2021] [Indexed: 11/27/2022]
Abstract
N6-methyladenosine (m6A) is the most prevalent mRNA modification in mammals. However, m6A modification profiling and its potential role in gestational diabetes mellitus (GDM) have not yet been investigated. In this work, we performed comprehensive m6A analysis in placental tissues from GDM and control patients to elucidate the role of m6A in GDM. An m6A RNA profile identified that m6A levels were strongly decreased in 3'-untranslated regions (UTRs) and coding sequences (CDSs) near stop codons in GDM placenta samples. Among the many methylated mRNAs, MazF-qPCR verified that the m6A levels of the BAMBI 3'-UTR and CDS were significantly decreased in GDM. BAMBI mRNA and protein expression was significantly decreased in GDM, suggesting that m6A plays a key role in regulating gene expression. In addition, it was verified that the m6A levels of GDM related genes (INSR and IRS1) were significantly reduced in GDM. Taken together, our data suggest that down-regulation of m6A both in the 3'-UTR and CDS near stop codons of placental mRNAs is involved in GDM development in Han Chinese women.
Collapse
Affiliation(s)
- Jin Wang
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, Shandong Province, PR China
| | - Ke Wang
- Psychology Department, Heze Third People's Hospital, Heze, Shandong Province, PR China
| | - Wei Liu
- Anesthesiology Department, Jinan Maternal and Child Health Care Hospital, Jinan, Shandong Province, PR China
| | - Yan Cai
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, Shandong Province, PR China
| | - Hua Jin
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, Shandong Province, PR China.
| |
Collapse
|
13
|
Yang WB, Wang HL, Mao JT, Chen Z, Xu JW, Wang LH, Xu M, Zhang X. The correlation between CT features and insulin resistance levels in patients with T2DM complicated with primary pulmonary tuberculosis. J Cell Physiol 2020; 235:9370-9377. [PMID: 32346889 DOI: 10.1002/jcp.29741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 01/19/2023]
Abstract
The aim is to investigate the correlation between computed tomography (CT) features and insulin resistance levels in patients with type 2 diabetes mellitus (T2DM) complicated with primary pulmonary tuberculosis (PTB). Nearly, 268 untreated PTB patients complicated with T2DM were divided into two groups according to the optimal cutoff value of HOMA-IR score for the Chinese population: HOMA-IR ≤ 2.69 (Group I: 74 patients), >2.69 (Group II: 194 patients). The basic characteristics and changes of CT manifestations were analyzed. In the two groups, the detection rate of large segmented leafy shadow was 39.2% and 78.9%; the air bronchogram sign detection rate was 40.5% and 80.9%; the discovery rate of mouth-eaten cavity was 33.8% and 73.7%; the thin-walled cavity detection rate was 2.7% and 16.0%; the rate of multiple cavities was 35.1% and 69.6%; and bronchial tuberculosis was found in 4.1% and 35.6%, respectively. The detection rates of lesions in Group II were significantly higher than in Group I (p < .05). HOMA-IR was found independently associated with large segmented leafy shadow, air bronchial sign, thin-walled cavity, and bronchial tuberculosis. The level of insulin resistance can effectively reflect the severity of PTB patients with T2DM. CT scan can directly provide image information in clinics. These two examinations can guide clinicians to accurately formulate subsequent treatment plans.
Collapse
Affiliation(s)
- Wei-Bin Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui, China
| | - Hai-Lin Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui, China
| | - Jian-Ting Mao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui, China
| | - Zhen Chen
- Department of Medical Imaging, The Fourth People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Jin-Wei Xu
- Department of Medical Imaging, The Fourth People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Lian-Hong Wang
- Department of Medical Imaging, The Fourth People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui, China
| | - Xin Zhang
- Department of Medical Imaging, The Fourth People's Hospital of Huai'an, Huai'an, Jiangsu, China
| |
Collapse
|
14
|
Arabfard M, Ohadi M, Rezaei Tabar V, Delbari A, Kavousi K. Genome-wide prediction and prioritization of human aging genes by data fusion: a machine learning approach. BMC Genomics 2019; 20:832. [PMID: 31706268 PMCID: PMC6842548 DOI: 10.1186/s12864-019-6140-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Machine learning can effectively nominate novel genes for various research purposes in the laboratory. On a genome-wide scale, we implemented multiple databases and algorithms to predict and prioritize the human aging genes (PPHAGE). Results We fused data from 11 databases, and used Naïve Bayes classifier and positive unlabeled learning (PUL) methods, NB, Spy, and Rocchio-SVM, to rank human genes in respect with their implication in aging. The PUL methods enabled us to identify a list of negative (non-aging) genes to use alongside the seed (known age-related) genes in the ranking process. Comparison of the PUL algorithms revealed that none of the methods for identifying a negative sample were advantageous over other methods, and their simultaneous use in a form of fusion was critical for obtaining optimal results (PPHAGE is publicly available at https://cbb.ut.ac.ir/pphage). Conclusion We predict and prioritize over 3,000 candidate age-related genes in human, based on significant ranking scores. The identified candidate genes are associated with pathways, ontologies, and diseases that are linked to aging, such as cancer and diabetes. Our data offer a platform for future experimental research on the genetic and biological aspects of aging. Additionally, we demonstrate that fusion of PUL methods and data sources can be successfully used for aging and disease candidate gene prioritization.
Collapse
Affiliation(s)
- Masoud Arabfard
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran.,Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mina Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Vahid Rezaei Tabar
- Department of Statistics, Faculty of Mathematical Sciences and Computer, Allameh Tabataba'i University, Tehran, Iran
| | - Ahmad Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
15
|
Immunological Impacts of Diabetes on the Susceptibility of Mycobacterium tuberculosis. J Immunol Res 2019; 2019:6196532. [PMID: 31583258 PMCID: PMC6754884 DOI: 10.1155/2019/6196532] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
The interaction between diabetes and major world infections like TB is a major public health concern because of rapidly rising levels of diabetes. The dual burden of tuberculosis (TB) and diabetes mellitus (DM) has become a major global public health problem. Diabetes mellitus is a major risk factor for the development of active and latent tuberculosis. Immune mechanisms contributing to the increased susceptibility of diabetic patients to TB are due to the defects in bacterial recognition, phagocytic activity, and cellular activation which results in impaired production of chemokines and cytokines. The initiation of adaptive immunity is delayed by impaired antigen-presenting cell (APC) recruitment and function in hyperglycemic host, which results in reduced frequencies of Th1, Th2, and Th17 cells and its secretion of cytokines having a great role in activation of macrophage and inflammatory response of tuberculosis. In addition, impaired immune response and killing of intracellular bacteria potentially increase bacterial load, chronic inflammation, and central necrosis that facilitate bacterial dissemination and miliary tuberculosis. Understanding of the immunological and biochemical basis of TB susceptibility in diabetic patients will tell us the rational development of implementation and therapeutic strategies to alleviate the dual burden of the diseases. Therefore, the aim of this review was focused on the association between diabetes and tuberculosis, focusing on epidemiology, pathogenesis, and immune dysfunction in diabetes mellitus, and its association with susceptibility, severity, and treatment outcome failure to tuberculosis.
Collapse
|
16
|
Luo J, Zhang M, Yan B, Li F, Guan S, Chang K, Jiang W, Xu H, Yuan T, Chen M, Deng S. Diagnostic performance of plasma cytokine biosignature combination and MCP-1 as individual biomarkers for differentiating stages Mycobacterium tuberculosis infection. J Infect 2019; 78:281-291. [DOI: 10.1016/j.jinf.2018.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
|
17
|
Xu X, Lu X, Dong X, Luo Y, Wang Q, Liu X, Fu J, Zhang Y, Zhu B, Ma X. Effects of hMASP-2 on the formation of BCG infection-induced granuloma in the lungs of BALB/c mice. Sci Rep 2017; 7:2300. [PMID: 28536447 PMCID: PMC5442121 DOI: 10.1038/s41598-017-02374-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/10/2017] [Indexed: 11/09/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, affects the functions of the lung and causes high morbidity and mortality rates worldwide. MASP-2 is an executioner enzyme, which plays an essential role in the activation of lectin pathway. In our previous studies, the MASP-2 played a dual role in promoting the progress of lesions in BCG-infected rabbit skin models. However, the really effects of MASP-2 on tuberculosis are unknown. The aim of this study was to investigate the effects of MASP-2 in granuloma formation with BCG-infected mice. Compared to the control group, rAd-hMASP-2 treated group showed increasing in survival rate of BCG-infected mice (P = 0.042), and decreasing of bacteria loads (P = 0.005) in the lung tissue. MASP-2 displayed a protective efficacy in BCG-infected mice, which promoted the activation and recruitment of macrophages and lymphocytes to the granuloma. Moreover, the data obtained from the ELISA and RT-PCR demonstrated that mRNA expression for IL-6, CCL12, CCL2 and cytokines of IFN-γ, TNF-α in lung were significantly elevated by treatment of rAd-hMASP-2. Those findings provided an evidence that MASP-2 may be as a newly immunomodulatory in targeting granuloma formation, which displayed a potential protective role in control of tuberculosis.
Collapse
Affiliation(s)
- Xiaoying Xu
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaoling Lu
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xingfang Dong
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanping Luo
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xun Liu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jie Fu
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bingdong Zhu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xingming Ma
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
18
|
Pan Q, Yan J, Liu Q, Yuan C, Zhang XL. A single-stranded DNA aptamer against mannose-capped lipoarabinomannan enhances anti-tuberculosis activity of macrophages through downregulation of lipid-sensing nuclear receptor peroxisome proliferator-activated receptor γ expression. Microbiol Immunol 2017; 61:92-102. [PMID: 28206680 DOI: 10.1111/1348-0421.12470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/30/2017] [Accepted: 02/12/2017] [Indexed: 12/26/2022]
Abstract
Mannose-capped lipoarabinomannan (ManLAM) is an immunomodulatory epitope of Mycobacterium tuberculosis (Mtb). An aptamer (ZXL1) that specifically binds to ManLAM from the virulent Mtb H37Rv strain was previously generated and it was found that ZXL1 functions as an antagonist, inhibiting the ManLAM-induced immunosuppression of DCs. In the present study, it was found that ZXL1 inhibits Mtb entry into murine macrophages and that ZXL1 enhances IL-1β and IL-12 mRNA expression and cytokine production in ManLAM-treated macrophages but decreases IL-10 production. Inducible nitric oxide synthase expression in macrophages was upregulated in the presence of ZXL1 after stimulation with ManLAM. ZXL1 was also found to inhibit expression of lipid-sensing nuclear receptor peroxisome proliferator-activated receptor γ (PPAR-γ). These results suggest that ZXL1 promotes anti-tuberculosis activity through downregulation of PPAR-γ expression, which may contribute to M1 macrophage polarization and Mtb killing by macrophages.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Jiamin Yan
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Qi Liu
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Chunhui Yuan
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| |
Collapse
|