1
|
Audia S, Brescia C, Dattilo V, Torchia N, Trapasso F, Amato R. The IL-23R and Its Genetic Variants: A Hitherto Unforeseen Bridge Between the Immune System and Cancer Development. Cancers (Basel) 2024; 17:55. [PMID: 39796684 PMCID: PMC11718844 DOI: 10.3390/cancers17010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
IL-23R (interleukin-23 receptor), found on the surface of several immune cells, plays a key role in the immune system. Indeed, this process is not limited to the inflammatory response but also plays a role in the adaptive immune response. The binding between IL-23R and its specific ligand, the interleukin 23, initiates a number of specific signals by modulating both properties and behavior of immune cells. In particular, it is critical for the regulation of T helper 17 cells (Th17). Th17s are a subset of T cells involved in autoimmune and inflammatory diseases, as well as in cancer. The clinical relevance of IL-23R is underscored by its association with an elevated susceptibility or diminished vulnerability to a spectrum of diseases, including psoriasis, ankylosing spondylitis, and inflammatory bowel disease (IBD). Evidence has emerged that suggests it may also serve to predict both tumor progression and therapeutic responsiveness. It is noteworthy that the IL-23/IL-23R pathway is emerging as a promising therapeutic target. A number of biologic drugs, such as monoclonal antibodies, are currently developing with the aim of blocking this interaction, thus reducing inflammation. This represents a significant advancement in the field of medicine, offering new hope for pursuing more effective and personalized treatments. Recent studies have also investigated the role of such a pathway in autoimmune diseases, and its potential impact on infections as well as in carcinogenesis. The aim of this review is to focus on the role of IL-23R in immune genetics and its potential for modulating the natural history of neoplastic disease.
Collapse
Affiliation(s)
- Salvatore Audia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Carolina Brescia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Vincenzo Dattilo
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Naomi Torchia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Rosario Amato
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| |
Collapse
|
2
|
Li Q, Marcoux G, Hu Y, Rebetz J, Guo L, Semple E, Provan D, Xu S, Hou M, Peng J, Semple JW. Autoimmune effector mechanisms associated with a defective immunosuppressive axis in immune thrombocytopenia (ITP). Autoimmun Rev 2024; 23:103677. [PMID: 39515406 DOI: 10.1016/j.autrev.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated thrombocytopenia and variable phenotype as some patients suffer no bleeding whilst others have bleeding from mild to severe, which may be fatal. This variability probably reflects the disease's complex pathophysiology; a dysregulated hyperreactive immune effector cell response involving the entire adaptive immune system (e.g. B and T cell subsets) that leads to platelet and megakaryocyte (MK) destruction. It appears that these effector responses are due to a breakdown in immune tolerance, and this is characterized by defects in several immunosuppressive cell types. These include defective T regulatory cells (Tregs), B regulatory cells (Bregs) and Myeloid-derived suppressor cells (MDSC), all of which are all intimately associated with antigen presenting cells (APC) such as dendritic cells (DC). The loss of this immunosuppressive axis allows for the activation of unchecked autoreactive T cells and B cells, leading to the development of autoantibodies and cytotoxic T cells (CTL), which can directly destroy platelets in the periphery and inhibit MK platelet production in the bone marrow (BM). This review will focus on the effector cell mechanisms in ITP and highlight the defective immunosuppressive axis that appears responsible for this platelet-specific immune hyperreactivity.
Collapse
Affiliation(s)
- Qizhao Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Geneviève Marcoux
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Yuefen Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Li Guo
- Bloodworks Northwest Research Institute, Seattle, USA; Division of Hematology and Oncology, University of Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | | | - Drew Provan
- Department of Haematology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Jawale D, Khandibharad S, Singh S. Innate Immune Response and Epigenetic Regulation: A Closely Intertwined Tale in Inflammation. Adv Biol (Weinh) 2024:e2400278. [PMID: 39267219 DOI: 10.1002/adbi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Maintenance of delicate homeostasis is very important in various diseases because it ensures appropriate immune surveillance against pathogens and prevents excessive inflammation. In a disturbed homeostatic condition, hyperactivation of immune cells takes place and interplay between these cells triggers a plethora of signaling pathways, releasing various pro-inflammatory cytokines such as Tumor necrosis factor alpha (TNFα), Interferon-gamma (IFNƴ), Interleukin-6 (IL-6), and Interleukin-1 beta (IL-1β), which marks cytokine storm formation. To be precise, dysregulated balance can impede or increase susceptibility to various pathogens. Pathogens have the ability to hijack the host immune system by interfering with the host's chromatin architecture for their survival and replication in the host cell. Cytokines, particularly IL-6, Interleukin-17 (IL-17), and Interleukin-23 (IL-23), play a key role in orchestrating innate immune responses and shaping adaptive immunity. Understanding the interplay between immune response and the role of epigenetic modification to maintain immune homeostasis and the structural aspects of IL-6, IL-17, and IL-23 can be illuminating for a novel therapeutic regimen to treat various infectious diseases. In this review, the light is shed on how the orchestration of epigenetic regulation facilitates immune homeostasis.
Collapse
Affiliation(s)
- Diksha Jawale
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shweta Khandibharad
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
4
|
Specht CA, Wang R, Oliveira LVN, Hester MM, Gomez C, Mou Z, Carlson D, Lee CK, Hole CR, Lam WC, Upadhya R, Lodge JK, Levitz SM. Immunological correlates of protection mediated by a whole organism, Cryptococcus neoformans, vaccine deficient in chitosan. mBio 2024; 15:e0174624. [PMID: 38980038 PMCID: PMC11323574 DOI: 10.1128/mbio.01746-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4+ T-cell counts. Previously, we deleted three chitin deacetylase genes from Cryptococcus neoformans to create a chitosan-deficient, avirulent strain, designated as cda1∆2∆3∆, which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8+ T cells. In contrast, protection was lost in mice lacking α/β T cells or CD4+ T cells. Moreover, CD4+ T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4+ T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4+ T cells after vaccination but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in interferon-γ (IFNγ), tumor necrosis factor alpha (TNFα), or interleukin (IL)-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4+ T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8+ T cells are dispensable, IFNγ and CD4+ T cells have overlapping roles in generating protective immunity prior to cda1∆2∆3∆ vaccination. However, once vaccinated, protection becomes less dependent on CD4+ T cells, suggesting a strategy for vaccinating HIV+ persons prior to loss of CD4+ T cells. IMPORTANCE The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4+ T-cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans, designated as cda1∆2∆3∆. When used as a vaccine, cda1∆2∆3∆ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8+ T cells were dispensible, protection was lost in mice genetically deficient in CD4+ T cells and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4+ T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4+ T cells following vaccination, suggesting a strategy to protect persons who are at risk of future CD4+ T-cell dysfunction.
Collapse
Affiliation(s)
- Charles A. Specht
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ruiying Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lorena V. N. Oliveira
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Maureen M. Hester
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Christina Gomez
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Zhongming Mou
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Diana Carlson
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Chrono K. Lee
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Camaron R. Hole
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Woei C. Lam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajendra Upadhya
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer K. Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stuart M. Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Yasmeen F, Pirzada RH, Ahmad B, Choi B, Choi S. Understanding Autoimmunity: Mechanisms, Predisposing Factors, and Cytokine Therapies. Int J Mol Sci 2024; 25:7666. [PMID: 39062908 PMCID: PMC11277571 DOI: 10.3390/ijms25147666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Autoimmunity refers to an organism's immune response against its own healthy cells, tissues, or components, potentially leading to irreversible damage to vital organs. Central and peripheral tolerance mechanisms play crucial roles in preventing autoimmunity by eliminating self-reactive T and B cells. The disruption of immunological tolerance, characterized by the failure of these mechanisms, results in the aberrant activation of autoreactive lymphocytes that target self-tissues, culminating in the pathogenesis of autoimmune disorders. Genetic predispositions, environmental exposures, and immunoregulatory disturbances synergistically contribute to the susceptibility and initiation of autoimmune pathologies. Within the realm of immune therapies for autoimmune diseases, cytokine therapies have emerged as a specialized strategy, targeting cytokine-mediated regulatory pathways to rectify immunological imbalances. Proinflammatory cytokines are key players in inducing and propagating autoimmune inflammation, highlighting the potential of cytokine therapies in managing autoimmune conditions. This review discusses the etiology of autoimmune diseases, current therapeutic approaches, and prospects for future drug design.
Collapse
Affiliation(s)
- Farzana Yasmeen
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Rameez Hassan Pirzada
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bilal Ahmad
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bogeum Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
6
|
Specht CA, Wang R, Oliveira LVN, Hester MM, Gomez C, Mou Z, Carlson D, Lee CK, Hole CR, Lam WC, Upadhya R, Lodge JK, Levitz SM. Immunological correlates of protection mediated by a whole organism Cryptococcus neoformans vaccine deficient in chitosan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598760. [PMID: 38915489 PMCID: PMC11195286 DOI: 10.1101/2024.06.12.598760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The global burden of infections due to the pathogenic fungus Cryptococcus is substantial in persons with low CD4 + T cell counts. Previously, we deleted three chitin deacetylase genes from C. neoformans to create a chitosan-deficient, avirulent strain, designated cda1Δ2Δ3Δ which, when used as a vaccine, protected mice from challenge with virulent C. neoformans strain KN99. Here, we explored the immunological basis for protection. Vaccine-mediated protection was maintained in mice lacking B cells or CD8 + T cells. In contrast, protection was lost in mice lacking α/β T cells or CD4 + T cells. Moreover, CD4 + T cells from vaccinated mice conferred protection upon adoptive transfer to naive mice. Importantly, while monoclonal antibody-mediated depletion of CD4 + T cells just prior to vaccination resulted in complete loss of protection, significant protection was retained in mice depleted of CD4 + T cells after vaccination, but prior to challenge. Vaccine-mediated protection was lost in mice genetically deficient in IFNγ, TNFα, or IL-23p19. A robust influx of leukocytes and IFNγ- and TNFα-expressing CD4 + T cells was seen in the lungs of vaccinated and challenged mice. Finally, a higher level of IFNγ production by lung cells stimulated ex vivo correlated with lower fungal burden in the lungs. Thus, while B cells and CD8 + T cells are dispensable, IFNγ and CD4 + T cells have overlapping roles in generating protective immunity prior to cda1Δ2Δ3Δ vaccination. However, once vaccinated, protection becomes less dependent on CD4 + T cells, suggesting a strategy for vaccinating HIV + persons prior to loss of CD4 + T cells. Importance The fungus Cryptococcus neoformans is responsible for >100,000 deaths annually, mostly in persons with impaired CD4 + T cell function such as AIDS. There are no approved human vaccines. We previously created a genetically engineered avirulent strain of C. neoformans , designated cda1Δ2Δ3Δ . When used as a vaccine, cda1Δ2Δ3Δ protects mice against a subsequent challenge with a virulent C. neoformans strain. Here, we defined components of the immune system responsible for vaccine-mediated protection. We found that while B cells and CD8 + T cells were dispensible, protection was lost in mice genetically deficient in CD4 + T cells, and the cytokines IFNγ, TNFα, or IL-23. A robust influx of cytokine-producing CD4 + T cells was seen in the lungs of vaccinated mice following infection. Importantly, protection was retained in mice depleted of CD4 + T cells following vaccination, suggesting a strategy to protect persons who are at risk for future CD4 + T cell dysfunction.
Collapse
|
7
|
Cammayo-Fletcher PLT, Flores RA, Nguyen BT, Altanzul B, Fernandez-Colorado CP, Kim WH, Devi RM, Kim S, Min W. Identification of Critical Immune Regulators and Potential Interactions of IL-26 in Riemerella anatipestifer-Infected Ducks by Transcriptome Analysis and Profiling. Microorganisms 2024; 12:973. [PMID: 38792803 PMCID: PMC11123779 DOI: 10.3390/microorganisms12050973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Riemerella anatipestifer (RA) is an economically important pathogen in the duck industry worldwide that causes high mortality and morbidity in infected birds. We previously found that upregulated IL-17A expression in ducks infected with RA participates in the pathogenesis of the disease, but this mechanism is not linked to IL-23, which primarily promotes Th17 cell differentiation and proliferation. RNA sequencing analysis was used in this study to investigate other mechanisms of IL-17A upregulation in RA infection. A possible interaction of IL-26 and IL-17 was discovered, highlighting the potential of IL-26 as a novel upstream cytokine that can regulate IL-17A during RA infection. Additionally, this process identified several important pathways and genes related to the complex networks and potential regulation of the host immune response in RA-infected ducks. Collectively, these findings not only serve as a roadmap for our understanding of RA infection and the development of new immunotherapeutic approaches for this disease, but they also provide an opportunity to understand the immune system of ducks.
Collapse
Affiliation(s)
- Paula Leona T. Cammayo-Fletcher
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Rochelle A. Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Binh T. Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Bujinlkham Altanzul
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Cherry P. Fernandez-Colorado
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines;
| | - Woo H. Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Rajkumari Mandakini Devi
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University (1), Jalukie 797110, India;
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| |
Collapse
|
8
|
Han P, Tang J, Xu X, Meng P, Wu K, Sun B, Song X. Identification of the grass carp interleukin-23 receptor and its proinflammatory role in intestinal inflammation. Int J Biol Macromol 2024; 265:130946. [PMID: 38521334 DOI: 10.1016/j.ijbiomac.2024.130946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
The interleukin 23 receptor (IL-23R) is associated with a variety of inflammatory diseases in humans and other mammals. However, whether IL-23R is involved in inflammatory diseases in teleost fish is less understood. Thus, to investigate the potential involvement of IL-23R in fish inflammatory diseases, the full-length cDNA of IL-23R from grass carp Ctenopharyngodon idella was cloned and used to generate a recombinant protein (rgcIL-23R) containing the extracellular domain of IL-23R, against which a polyclonal antibody (rgcIL-23R pAb) was then developed. qPCR analysis revealed that IL-23R mRNA was significantly upregulated in most grass carp tissues in response to infection with Gram-negative Aeromonas hydrophila. Treatment with rgcIL-23R significantly induced IL-17A/F1 expression in C. idella kidney (CIK) cells. By contrast, knockdown of IL-23R caused significant decreases in IL-23R, STAT3, and IL-17N expression in CIK cells after lipopolysaccharide (LPS) stimulation. Similarly, rgcIL-23R pAb treatment effectively inhibited the LPS-induced increase in the expression of IL-23 subunit genes and those of the IL-23/IL-17 pathway in CIK cells. Furthermore, intestinal symptoms identical to those caused by A. hydrophila were induced by anal intubation with rgcIL-23R, but suppressed by rgcIL-23R pAb. Therefore, these results suggest that IL-23R has a crucial role in the regulation of intestinal inflammation and, thus, is a promising target for controlling inflammatory diseases in farmed fish.
Collapse
Affiliation(s)
- Panpan Han
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jian Tang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Xufang Xu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Pengkun Meng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Kang Wu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Bingyao Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
9
|
Khan S, Bilal H, Khan MN, Fang W, Chang W, Yin B, Song NJ, Liu Z, Zhang D, Yao F, Wang X, Wang Q, Cai L, Hou B, Wang J, Mao C, Liu L, Zeng Y. Interleukin inhibitors and the associated risk of candidiasis. Front Immunol 2024; 15:1372693. [PMID: 38605952 PMCID: PMC11007146 DOI: 10.3389/fimmu.2024.1372693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Interleukins (ILs) are vital in regulating the immune system, enabling to combat fungal diseases like candidiasis effectively. Their inhibition may cause enhanced susceptibility to infection. IL inhibitors have been employed to control autoimmune diseases and inhibitors of IL-17 and IL-23, for example, have been associated with an elevated risk of Candida infection. Thus, applying IL inhibitors might impact an individual's susceptibility to Candida infections. Variations in the severity of Candida infections have been observed between individuals with different IL inhibitors, necessitating careful consideration of their specific risk profiles. IL-1 inhibitors (anakinra, canakinumab, and rilonacept), IL-2 inhibitors (daclizumab, and basiliximab), and IL-4 inhibitors (dupilumab) have rarely been associated with Candida infection. In contrast, tocilizumab, an inhibitor of IL-6, has demonstrated an elevated risk in the context of coronavirus disease 2019 (COVID-19) treatment, as evidenced by a 6.9% prevalence of candidemia among patients using the drug. Furthermore, the incidence of Candida infections appeared to be higher in patients exposed to IL-17 inhibitors than in those exposed to IL-23 inhibitors. Therefore, healthcare practitioners must maintain awareness of the risk of candidiasis associated with using of IL inhibitors before prescribing them. Future prospective studies need to exhaustively investigate candidiasis and its associated risk factors in patients receiving IL inhibitors. Implementing enduring surveillance methods is crucial to ensure IL inhibitors safe and efficient utilization of in clinical settings.
Collapse
Affiliation(s)
- Sabir Khan
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Muhammad Nadeem Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Wenjie Fang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenqiang Chang
- School of Pharmacy, Shandong University, Qingdao, Shandong, China
| | - Bin Yin
- Department of Dermatovenereology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ning-jing Song
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhongrong Liu
- Department of Dermatology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongxing Zhang
- Department of Dermatology, Meizhou Dongshan Hospital, Meizhou, Guangdong, China
- Department of Dermatology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Fen Yao
- Department of Pharmacy, Shantou University School Medical College, Shantou, China
| | - Xun Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qian Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lin Cai
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Bing Hou
- Department of Clinical Laboratory, Skin and Venereal Diseases Prevention and Control Hospital of Shantou City, Shantou, Guangdong, China
| | - Jiayue Wang
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Mao
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingxi Liu
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuebin Zeng
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Li B, Sun L, Sun Y, Zhen L, Qi Q, Mo T, Wang H, Qiu M, Cai Q. Identification of the key genes of tuberculosis and construction of a diagnostic model via weighted gene co-expression network analysis. J Infect Chemother 2023; 29:1046-1053. [PMID: 37499902 DOI: 10.1016/j.jiac.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Tuberculosis (TB) is an infectious disease with high mortality, and mining key genes for TB diagnosis is vital to raise the survival rate of patients. METHODS The whole microarray datasets GSE83456 (training set) and GSE19444 (validation set) of TB patients were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression was conducted on genes between TB and normal samples (unconfirmed TB) in GSE83456 to yield TB-related differentially expressed genes (DEGs). DEGs were subjected to weighted gene co-expression network analysis (WGCNA) and clustered to form distinct gene modules. The immune scores of 25 kinds of immune cells were obtained by single-sample gene set enrichment analysis (ssGSEA) of TB samples, and Pearson correlation analysis was carried out between the 25 immune scores and diverse gene modules. The gene modules significantly associated with immune cells were retained as Target modules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the genes in the modules (p-value <0.05). The protein-protein interaction (PPI) network was established utilizing the STRING database for genes in the Target module, and the selected key genes were intersected with immune-related genes in the ImmPort database. The obtained immune-related module genes were used for subsequent least absolute shrinkage and selection operator (LASSO) regression analysis and diagnostic models were constructed. Finally, the receiver operating characteristic (ROC) curve was utilized to validate the diagnostic model. RESULTS The turquoise and yellow modules had a high correlation with macrophages. LASSO regression analysis of immune-related genes in TB was carried on to finally construct a 5-gene diagnostic model composed of C5, GRN, IL1B, IL23A, and TYMP. As demonstrated by the ROC curves, the diagnostic efficiency of this diagnostic model was 0.957 and 0.944 in the training and validation sets, respectively. Therefore, the immune-related 5-gene model had a good diagnostic function for TB. CONCLUSION We identified 5 immune-related diagnostic markers that may play an important role in TB, and verified that this immune-related key gene model had a good diagnostic performance.
Collapse
Affiliation(s)
- Baiying Li
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Lifang Sun
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Yaping Sun
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Libo Zhen
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Qi Qi
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Ting Mo
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Huijie Wang
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Meihua Qiu
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Qingshan Cai
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
11
|
He J, Du W, Yang H, Wang J, Cai C, Ma Q, Li N, Yu J, Wu X, Wu J, Chen Y, Cao G, Zhang J. Safety and pharmacokinetics of IBI112, an IL-23 monoclonal antibody, in Chinese healthy volunteers: a first-in-human phase 1 study. Expert Opin Investig Drugs 2023; 32:669-675. [PMID: 37358916 DOI: 10.1080/13543784.2023.2230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Interleukin (IL) 23p19 monoclonal antibodies were efficacious and safe in the treatment of psoriasis. A first-in-human (FIH) study was conducted to evaluate the safety, tolerability, pharmacokinetics (PK) and immunogenicity of IBI112, a novel IL-23p19 monoclonal antibody. METHODS In this FIH, randomized, double-blind, placebo-controlled, single-ascending-dose study, a subcutaneous (SC, 5-600 mg) or intravenous (IV, 100 and 600 mg) or placebo was administered to eligible healthy subjects. Safety was assessed by physical examinations, vital signs, laboratory tests, and electrocardiograms. Furthermore, non-compartment analysis and population PK modeling were conducted to characterize PK, and model-based simulation was applied to justify dose selection for psoriasis patients. RESULTS A total of 46 subjects were enrolled, with 35 receiving IBI112 and 11 receiving placebo. No serious adverse events (SAEs) and no clinically significant adverse events were identified. After a single SC of IBI112, the median Tmax was 4-10.5 days, and the half-life (t1/2) ranged from 21.8 to 35.8 days. IBI112 exposures (Cmax and AUCinf) approached dose proportionality across 5-300 mg range. CONCLUSION IBI112 was well tolerated and safe at SC or IV dose up to 600 mg and showed a linear PK characteristics at SC dose from 5 to 300 mg. CLINICAL TRIAL REGISTRATION ClinicalTrial.gov NCT04511624.
Collapse
Affiliation(s)
- Jinjie He
- Phase I Clinical Research Center, Huashan Hospital of Fudan University, Shanghai, China
| | - Weijuan Du
- The Clinical Pharmacology Department, Innovent Biologics (Suzhou), Suzhou, China
| | - Haijing Yang
- Phase I Clinical Research Center, Huashan Hospital of Fudan University, Shanghai, China
| | - Jingjing Wang
- Phase I Clinical Research Center, Huashan Hospital of Fudan University, Shanghai, China
| | - Chenghang Cai
- The Clinical Pharmacology Department, Innovent Biologics (Suzhou), Suzhou, China
| | - Qingyang Ma
- The Clinical Pharmacology Department, Innovent Biologics (Suzhou), Suzhou, China
| | - Nanyang Li
- Phase I Clinical Research Center, Huashan Hospital of Fudan University, Shanghai, China
| | - Jicheng Yu
- Phase I Clinical Research Center, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiaojie Wu
- Phase I Clinical Research Center, Huashan Hospital of Fudan University, Shanghai, China
| | - Jufang Wu
- Phase I Clinical Research Center, Huashan Hospital of Fudan University, Shanghai, China
| | - Yuancheng Chen
- Phase I Clinical Research Center, Huashan Hospital of Fudan University, Shanghai, China
| | - Guoying Cao
- Phase I Clinical Research Center, Huashan Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- Phase I Clinical Research Center, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
12
|
Barac IS, Văcăraș V, Iancu M, Mureșanu DF, Procopciuc LM. Interleukins (IL-23 and IL-27) serum levels: Relationships with gene polymorphisms and disease patterns in multiple sclerosis patients under treatment with interferon and glatiramer acetate. Heliyon 2023; 9:e17427. [PMID: 37484355 PMCID: PMC10361377 DOI: 10.1016/j.heliyon.2023.e17427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/22/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Background interleukin 23 (IL-23) is an important factor involved in the survival and proliferation of T helper 17 cells (Th17), known for their implication in multiple sclerosis (MS). By contrast, IL-27 regulates and modulates the function of T lymphocytes, in particular as a suppressor of Th17 differentiation. The aims of the study were i) to test the association of cytokines with the clinical and genetic characteristics in each of the multiple sclerosis groups (CIS - clinically isolated syndrome, RRMS - relapsing-remitting MS and SPMS - Secondary progressive MS) and ii) to evaluate the association between serum levels of IL-23 and IL-27 with T4730C (IL-27), A964G (IL-27) and R381Q (IL-23) gene polymorphisms in RRMS patients. Methods Blood samples were obtained from 82 patients diagnosed with MS under treatment with glatiramer acetate (GA), interferon beta (IFN) 1 A and 1 B. IL-23 and IL-27 serum concentrations were measured by enzyme-linked immunosorbant assay (ELISA). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used in order to determine the genotypes for R381Q (IL-23) polymorphisms, T4730C (IL-27) and A964G (IL-27). Results Patients with SPMS, RRMS and CIS respectively differed significantly regarding age distribution (p = 0.003) but the studied MS groups were similar regarding age at disease onset (p = 0.528) and treatment type (p = 0.479). A significant increase of mean serum IL-27 was noticed in cases with early onset (age at disease onset <28 years) of RRMS (mean difference: 4.2 pg/ml, 95% CI: 0.8-5.3 pg/ml), compared to cases with later onset of RRMS (age at disease onset ≥28 years). RRMS patients with wild GG genotype of R381Q (IL-23) showed a significant increase of mean serum IL-23 than patients with variant AG genotype (mean difference: 115.1 pg/ml, 95% CI: 8.6-221.6 pg/ml). A trend for a higher increase in means of serum IL-23 (p = 0.086) was observed in RRMS patients carriers of AA genotype of A964G (IL-27) polymorphism in comparison with patients with AG or GG genotypes. We found no significant monotonic correlation of IL-27, IL-23 serum levels with age at disease onset (years) and duration of disease (p > 0.05) in the CIS and SPMS group respectively but a significant correlation between IL-23 and the duration of disease-modifying treatment was noticed only in the SPMS group. Conclusions The results of the current study suggest an association between IL-23 levels and the R381Q gene polymorphism and also a relationship between IL-27 serum levels and early age at disease onset in RRMS patients.
Collapse
Affiliation(s)
- Ioana S. Barac
- Department of Clinical Neurosciences, “Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Vitalie Văcăraș
- Department of Clinical Neurosciences, “Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Mihaela Iancu
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj‐Napoca, Cluj‐Napoca, 400012, Romania
| | - Dafin F. Mureșanu
- Department of Clinical Neurosciences, “Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Lucia M. Procopciuc
- Department of Biochemistry, “Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, 400012, Romania
| |
Collapse
|
13
|
Lay CS, Isidro-Llobet A, Kilpatrick LE, Craggs PD, Hill SJ. Characterisation of IL-23 receptor antagonists and disease relevant mutants using fluorescent probes. Nat Commun 2023; 14:2882. [PMID: 37208328 PMCID: PMC10199020 DOI: 10.1038/s41467-023-38541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Association of single nucleotide polymorphisms in the IL-23 receptor with several auto-inflammatory diseases, led to the heterodimeric receptor and its cytokine-ligand IL-23, becoming important drug targets. Successful antibody-based therapies directed against the cytokine have been licenced and a class of small peptide antagonists of the receptor have entered clinical trials. These peptide antagonists may offer therapeutic advantages over existing anti-IL-23 therapies, but little is known about their molecular pharmacology. In this study, we use a fluorescent version of IL-23 to characterise antagonists of the full-length receptor expressed by living cells using a NanoBRET competition assay. We then develop a cyclic peptide fluorescent probe, specific to the IL23p19:IL23R interface and use this molecule to characterise further receptor antagonists. Finally, we use the assays to study the immunocompromising C115Y IL23R mutation, demonstrating that the mechanism of action is a disruption of the binding epitope for IL23p19.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Chemical Biology, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | | | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK
- Division of Bimolecular Science and Medicinal Chemistry, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Peter D Craggs
- Chemical Biology, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK.
- Crick-GSK Biomedical Linklabs, Medicine Design, GlaxoSmithKline, Stevenage, SG1 2NY, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
14
|
Kargar M, Torabizadeh M, Purrahman D, Zayeri ZD, Saki N. Regulatory factors involved in Th17/Treg cell balance of immune thrombocytopenia. Curr Res Transl Med 2023; 71:103389. [PMID: 37062251 DOI: 10.1016/j.retram.2023.103389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Immune thrombocytopenia is a common heterogeneous autoimmune disease that is characterized by decreasing peripheral blood platelet counts and increasing risk of bleeding. Studies have shown that an imbalance between T helper 17 (Th17) and Regulatory T (Treg) cells differentiated from CD4+T-cells is a key factor influencing the development and pathogenesis of immune thrombocytopenia. Th17 cells promote the development of chronic inflammatory disorders and induce autoimmune diseases, whereas Treg cells regulate immune homeostasis and prevent autoimmune diseases. Several regulators affecting the production and maintenance of these cells are also essential for proper regulation of Th17/Treg balance; these regulatory factors include cell surface proteins, miRNAs, and cytokine signaling. In this review, we focus on the function and role of balance between Th17 and Treg cells in immune thrombocytopenia, the regulatory factors, and therapeutic goals of this balance in immune thrombocytopenia.
Collapse
Affiliation(s)
- Masoud Kargar
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Torabizadeh
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
15
|
Xiong DK, Shi X, Han MM, Zhang XM, Wu NN, Sheng XY, Wang JN. The regulatory mechanism and potential application of IL-23 in autoimmune diseases. Front Pharmacol 2022; 13:982238. [PMID: 36176425 PMCID: PMC9514453 DOI: 10.3389/fphar.2022.982238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
IL-23 is a heterodimeric pro-inflammatory cytokine secreted by dendritic cells and macrophages that belongs to the IL-12 family. It has pro-inflammatory effects and is a key cytokine and upstream regulatory cytokine involved in protective immune responses, stimulating the differentiation and proliferation of downstream effectors such as Th17 cells. It is expressed in various autoimmune diseases such as psoriasis, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA). The IL-23/TH17 axis formed by IL-23 and TH17 has been confirmed to participate in autoimmune diseases pathogenesis. IL-23R is the receptor for IL-23 and plays an activating role. Targeting IL-23 is currently the main strategy for the treatment of various autoimmune diseases. In this review we summarized the mechanism of action and clinical application potential of IL-23 in autoimmune diseases by summarizing the latest research results and reviewing the literature, which would help to further understand IL-23 and provide a theoretical basis for future clinical targeting and drug development.
Collapse
Affiliation(s)
- De-Kai Xiong
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xiang Shi
- School of Health Management, Anhui Medical University, Hefei, China
| | - Miao-Miao Han
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xing-Min Zhang
- School of Health Management, Anhui Medical University, Hefei, China
| | - Na-Na Wu
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xiu-Yue Sheng
- School of Health Management, Anhui Medical University, Hefei, China
| | - Ji-Nian Wang
- School of Health Management, Anhui Medical University, Hefei, China
- Department of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ji-Nian Wang,
| |
Collapse
|
16
|
Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus. Pharmaceuticals (Basel) 2022; 15:ph15080936. [PMID: 36015084 PMCID: PMC9413112 DOI: 10.3390/ph15080936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/07/2022] Open
Abstract
Systemic sclerosis and systemic lupus erythematosus represent two distinct autoimmune diseases belonging to the group of connective tissue disorders. Despite the great progress in the basic science, this progress has not been translated to the development of novel therapeutic approaches that can radically change the face of these diseases. The discovery of JAK kinases, which are tyrosine kinases coupled with cytokine receptors, may open a new chapter in the treatment of so far untreatable diseases. Small synthetic compounds that can block Janus kinases and interact directly with cytokine signalling may provide therapeutic potential in these diseases. In this review, we discuss the therapeutic potential of Jak kinases in light of the cytokine network that JAK kinases are able to interact with. We also provide the theoretical background for the rationale of blocking cytokines with specific JAK inhibitors.
Collapse
|
17
|
Liu C, Zhang Y, Ma Z, Yi H. Long Noncoding RNAs as Orchestrators of CD4+ T-Cell Fate. Front Cell Dev Biol 2022; 10:831215. [PMID: 35794862 PMCID: PMC9251064 DOI: 10.3389/fcell.2022.831215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cells differentiate towards different subpopulations through the regulation of lineage-specific cytokines and transcription factors, which flexibly respond to various immune challenges. However, considerable work has demonstrated that the CD4+ T-cell differentiation mechanism is complex and not limited to transcription factors and cytokines. Long noncoding RNAs (lncRNAs) are RNA molecules with lengths exceeding 200 base pairs that regulate various biological processes and genes. LncRNAs have been found to conciliate the plasticity of CD4+ T-cell differentiation. Then, we focused on lncRNAs involved in CD4+ T-cell differentiation and enlisted some molecular thought into the plasticity and functional heterogeneity of CD4+ T cells. Furthermore, elucidating how lncRNAs modulate CD4+ T-cell differentiation in disparate immune diseases may provide a basis for the pathological mechanism of immune-mediated diseases.
Collapse
Affiliation(s)
- Chang Liu
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
- *Correspondence: Huanfa Yi,
| |
Collapse
|
18
|
Vincken NLA, Welsing PMJ, Silva-Cardoso SC, Bekker CPJ, Lopes AP, Nordkamp MO, Leijten EFA, Radstake TRDJ, Angiolilli C. Suppression of IL-12/IL-23 p40 subunit in the skin and blood of psoriasis patients by Tofacitinib is dependent on active interferon-γ signaling in dendritic cells: implications for the treatment of psoriasis and interferon-driven diseases. Exp Dermatol 2022; 31:962-969. [PMID: 35297512 PMCID: PMC9313893 DOI: 10.1111/exd.14566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 11/27/2022]
Abstract
Interleukin (IL)‐12 and IL‐23 are pro‐inflammatory cytokines produced by dendritic cells (DCs) and associated with Psoriasis (Pso) and Psoriatic Arthritis (PsA) pathogenesis. Tofacitinib, a Janus kinase inhibitor, effectively suppresses inflammatory cascades downstream the IL‐12/IL‐23 axis in Pso and PsA patients. Here, we investigated whether Tofacitinib directly regulates IL‐12/IL‐23 production in DCs, and how this regulation reflects responses to Tofacitinib in Pso patients. We treated monocyte‐derived dendritic cells and myeloid dendritic cells with Tofacitinib and stimulated cells with either lipopolysaccharide (LPS) or a combination of LPS and IFN‐γ. We assessed gene expression by qPCR, obtained skin microarray and blood Olink data and clinical parameters of Pso patients treated with Tofacitinib from public data sets. Our results indicate that in DCs co‐stimulated with LPS and IFN‐γ, but not with LPS alone, Tofacitinib leads to the decreased expression of IL‐23/IL‐12 shared subunit IL12B (p40). In Tofacitinib‐treated Pso patients, IL‐12 expression and psoriasis area and severity index (PASI) are significantly reduced in patients with higher IFN‐γ at baseline. These findings demonstrate for the first time that Tofacitinib suppresses IL‐23/IL‐12 shared subunit IL12B in DCs upon active IFN‐γ signaling, and that Pso patients with higher IFN‐γ baseline levels display improved clinical response after Tofacitinib treatment.
Collapse
Affiliation(s)
- Nanette L A Vincken
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Paco M J Welsing
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandra C Silva-Cardoso
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cornelis P J Bekker
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ana P Lopes
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Michel Olde Nordkamp
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Emmerik F A Leijten
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Timothy R D J Radstake
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Chiara Angiolilli
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
19
|
Puigdevall L, Michiels C, Stewardson C, Dumoutier L. JAK/STAT: Why choose a classical or an alternative pathway when you can have both? J Cell Mol Med 2022; 26:1865-1875. [PMID: 35238133 PMCID: PMC8980962 DOI: 10.1111/jcmm.17168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 01/21/2023] Open
Abstract
A subset of cytokines triggers the JAK‐STAT pathway to exert various functions such as the induction of inflammation and immune responses. The receptors for these cytokines are dimers/trimers of transmembrane proteins devoid of intracellular kinase activity. Instead, they rely on Janus kinases (JAKs) for signal transduction. Classical JAK‐STAT signalling involves phosphorylation of cytokine receptors' intracellular tyrosines, which subsequently serve as docking sites for the recruitment and activation of STATs. However, there is evidence to show that several cytokine receptors also use a noncanonical, receptor tyrosine‐independent path to induce activation of STAT proteins. We identified two main alternative modes of STAT activation. The first involves an association between a tyrosine‐free region of the cytokine receptor and STATs, while the second seems to depend on a direct interaction between JAK and STAT proteins. We were able to identify the use of noncanonical mechanisms by almost a dozen cytokine receptors, suggesting they have some importance. These alternative pathways and the receptors that employ them are discussed in this review.
Collapse
Affiliation(s)
- Léna Puigdevall
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Camille Michiels
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Clara Stewardson
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure Dumoutier
- Experimental Medicine Unit, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
20
|
Hinckley JD, Saba L, Raymond K, Bartels K, Klawitter J, Christians U, Hopfer C. An Approach to Biomarker Discovery of Cannabis Use Utilizing Proteomic, Metabolomic, and Lipidomic Analyses. Cannabis Cannabinoid Res 2022; 7:65-77. [PMID: 33998853 PMCID: PMC8864439 DOI: 10.1089/can.2020.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Relatively little is known about the molecular pathways influenced by cannabis use in humans. We used a multi-omics approach to examine protein, metabolomic, and lipid markers in plasma differentiating between cannabis users and nonusers to understand markers associated with cannabis use. Methods: Eight discordant twin pairs and four concordant twin pairs for cannabis use completed a blood draw, urine and plasma toxicology testing, and provided information about their past 30-day cannabis use and other substance use patterns. The 24 twins were all non-Hispanic whites. Sixty-six percent were female. Median age was 30 years. Fifteen participants reported that they had used cannabis in the last 30 days, including eight participants that used every day or almost every day (29-30 of 30 days). Of these 15 participants, plasma 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) and total tetrahydrocannabinol (THC) concentrations were detectable in 12 participants. Among the eight "heavy users" the amount of total THC (sum of THC and its metabolites) and plasma THC-COOH concentrations varied widely, with ranges of 13.1-1713 ng/mL and 2.7-284 ng/mL, respectively. A validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay measured plasma THC-COOH, THC, and other cannabinoids and metabolites. Plasma THC-COOH was used as the primary measure. Expression levels of 1305 proteins were measured using SOMAScan assay, and 34 lipid mediators and 314 metabolites were measured with LC-MS/MS. Analyses examined associations between markers and THC-COOH levels with and without taking genetic relatedness into account. Results: Thirteen proteins, three metabolites, and two lipids were identified as associated with THC-COOH levels. Myc proto-oncogene was identified as associated with THC-COOH levels in both molecular insight and potential marker analyses. Five pathways (interleukin-6 production, T lymphocyte regulation, apoptosis, kinase signaling pathways, and nuclear factor kappa-light-chain-enhancer of activated B cells) were linked with molecules identified in these analyses. Conclusions: THC-COOH levels are associated with immune system-related pathways. This study presents a feasible approach to identify additional molecular markers associated with THC-COOH levels.
Collapse
Affiliation(s)
- Jesse D. Hinckley
- Division of Substance Dependence, Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristen Raymond
- Division of Substance Dependence, Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Karsten Bartels
- Division of Substance Dependence, Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Anesthesiology, and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jost Klawitter
- Department of Anesthesiology, and University of Colorado School of Medicine, Aurora, Colorado, USA
- iC42 Clinical Research and Development, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Uwe Christians
- Department of Anesthesiology, and University of Colorado School of Medicine, Aurora, Colorado, USA
- iC42 Clinical Research and Development, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christian Hopfer
- Division of Substance Dependence, Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
21
|
Jung SM, Kim WU. Targeted Immunotherapy for Autoimmune Disease. Immune Netw 2022; 22:e9. [PMID: 35291650 PMCID: PMC8901705 DOI: 10.4110/in.2022.22.e9] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
In the past few decades, biological drugs and small molecule inhibitors targeting inflammatory cytokines, immune cells, and intracellular kinases have become the standard-of-care to treat autoimmune diseases. Inhibition of TNF, IL-6, IL-17, and IL-23 has revolutionized the treatment of autoimmune diseases, such as rheumatoid arthritis, ankylosing spondylitis, and psoriasis. B cell depletion therapy using anti-CD20 mAbs has shown promising results in patients with neuroinflammatory diseases, and inhibition of B cell survival factors is approved for treatment of systemic lupus erythematosus. Targeting co-stimulatory molecules expressed on Ag-presenting cells and T cells is also expected to have therapeutic potential in autoimmune diseases by modulating T cell function. Recently, small molecule kinase inhibitors targeting the JAK family, which is responsible for signal transduction from multiple receptors, have garnered great interest in the field of autoimmune and hematologic diseases. However, there are still unmet medical needs in terms of therapeutic efficacy and safety profiles. Emerging therapies aim to induce immune tolerance without compromising immune function, using advanced molecular engineering techniques.
Collapse
Affiliation(s)
- Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
22
|
Xie Y, Abel PW, Casale TB, Tu Y. T H17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol 2022; 149:467-479. [PMID: 34953791 PMCID: PMC8821175 DOI: 10.1016/j.jaci.2021.12.769] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, USA
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
23
|
Zhang C, Wang S, Lau J, Roden AC, Matteson EL, Sun J, Luo F, Tschumperlin DJ, Vassallo R. IL-23 amplifies the epithelial-mesenchymal transition of mechanically conditioned alveolar epithelial cells in rheumatoid arthritis-associated interstitial lung disease through mTOR/S6 signaling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1006-L1022. [PMID: 34585990 DOI: 10.1152/ajplung.00292.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) creates an environment facilitating fibrosis following alveolar epithelial cell injury. IL-23 has important roles in chronic autoimmune conditions like rheumatoid arthritis (RA), but its role in the interstitial lung disease that affects patients with RA is unclear. This study aimed to determine the profibrogenic role of IL-23 on somatic alveolar type I (ATI) epithelial cells. Primary ATI cells were isolated from rats and cultured on plastic dishes for 1-3 wk. After prolonged culture (≥14 days) on rigid culture dishes, primary ATI cells gradually acquired a mesenchymal phenotype, identified by decreased expression of caveolin-1, and reorganization of F-actin cytoskeleton, indicating the initiation of EMT by matrix stiffness. To determine how IL-23 promotes EMT in vitro, transitioning ATI cells, cultured on a stiff substrate for ≥14 days were stimulated with IL-23. The EMT phenotype was significantly enhanced by IL-23, which upregulated α-smooth muscle actin (α-SMA), collagen I/III protein, and decreased caveolin-1. Furthermore, IL-23 significantly promoted cell invasion, as well as apoptotic resistance on transitioning ATI cells. Mechanistically, IL-23-induced EMT was mammalian target of rapamycin/ribosomal protein S6 (mTOR/S6) signaling dependent and reversible by rapamycin. Transcriptional sequencing analysis of human lung fibrosis biopsy tissue revealed key roles for IL-23 in rheumatoid arthritis-associated interstitial lung disease (RA-ILD). This result was further validated by significantly upregulated IL-23 expression at the mRNA level in RA-ILD lung sections. Notably, transitioning ATI epithelial cells were abundantly detected in RA-ILD tissue. Taken together, these data support a role for IL-23 in the pathogenesis of RA lung fibrosis by promoting EMT in alveolar epithelial cells through mTOR/S6 signaling.
Collapse
Affiliation(s)
- Chujie Zhang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jessica Lau
- Pulmonary and Critical Care Medicine, The Vancouver Clinic, Vancouver, Washington
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Eric L Matteson
- Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jie Sun
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Daniel J Tschumperlin
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
24
|
Geyer CE, Newling M, Sritharan L, Griffith GR, Chen HJ, Baeten DLP, den Dunnen J. C-Reactive Protein Controls IL-23 Production by Human Monocytes. Int J Mol Sci 2021; 22:ijms222111638. [PMID: 34769069 PMCID: PMC8583945 DOI: 10.3390/ijms222111638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
C-reactive protein (CRP) is an acute-phase protein in humans that is produced in high quantities by the liver upon infection and under inflammatory conditions. Although CRP is commonly used as a marker of inflammation, CRP can also directly contribute to inflammation by eliciting pro-inflammatory cytokine production by immune cells. Since CRP is highly elevated in serum under inflammatory conditions, we have studied the CRP-induced cytokine profile of human monocytes, one of the main innate immune cell populations in blood. We identified that CRP is relatively unique in its capacity to induce production of the pro-inflammatory cytokine IL-23, which was in stark contrast to a wide panel of pattern recognition receptor (PRR) ligands. We show that CRP-induced IL-23 production was mediated at the level of gene transcription, since CRP particularly promoted gene transcription of IL23A (encoding IL-23p19) instead of IL12A (encoding IL-12p35), while PRR ligands induce the opposite response. Interestingly, when CRP stimulation was combined with PRR ligand stimulation, as for example, occurs in the context of sepsis, IL-23 production by monocytes was strongly reduced. Combined, these data identify CRP as a unique individual ligand to induce IL-23 production by monocytes, which may contribute to shaping systemic immune responses under inflammatory conditions.
Collapse
Affiliation(s)
- Chiara E. Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Melissa Newling
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lathees Sritharan
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Guillermo R. Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Dominique L. P. Baeten
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-205668043
| |
Collapse
|
25
|
Boccarelli A, Del Buono N, Esposito F. Analysis of fibroblast genes selected by NMF to reveal the potential crosstalk between ulcerative colitis and colorectal cancer. Exp Mol Pathol 2021; 123:104713. [PMID: 34666047 DOI: 10.1016/j.yexmp.2021.104713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
Patients with ulcerative colitis (UC) have an increased risk of developing colorectal cancer (CRC). The CRC risk extent raises with increasing age, duration of symptoms, severity of inflammation and dysplasia. CRC is a complex multi-stage process and associated with UC represents 2% of all colon cancers. With the aim of clarifying some aspects of the evolution of UC towards CRC, we characterized the phenotype of fibroblasts present in the mucosa of subjects affected by UC to verify whether they can contribute to the genesis of a microenvironment favorable to tumor transformation. The fibroblast phenotype was obtained with the help of transcriptome analysis adopting a novel framework based on Nonnegative Matrix Factorization (NMF) which automatically extracts a limited number of genes from fibroblast gene expression profiles of patients with UC and CRC. These genes may be considered possible candidates in generating a permissive microenvironment for the evolution of disease under study.
Collapse
Affiliation(s)
- Angelina Boccarelli
- Department of Biomedical Science and Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy.
| | - Nicoletta Del Buono
- Department of Mathematics, University of Bari Aldo Moro, via E. Orabona 4, Bari 70125, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, Roma 00185, Italy.
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, via E. Orabona 4, Bari 70125, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, Roma 00185, Italy.
| |
Collapse
|
26
|
Preclinical development of a bispecific TNFα/IL-23 neutralising domain antibody as a novel oral treatment for inflammatory bowel disease. Sci Rep 2021; 11:19422. [PMID: 34593832 PMCID: PMC8484351 DOI: 10.1038/s41598-021-97236-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
Anti-TNFα and anti-IL-23 antibodies are highly effective therapies for Crohn’s disease or ulcerative colitis in a proportion of patients. V56B2 is a novel bispecific domain antibody in which a llama-derived IL-23p19-specific domain antibody, humanised and engineered for intestinal protease resistance, V900, was combined with a previously-described TNFα-specific domain antibody, V565. V56B2 contains a central protease-labile linker to create a single molecule for oral administration. Incubation of V56B2 with trypsin or human faecal supernatant resulted in a complete separation of the V565 and V900 monomers without loss of neutralising potency. Following oral administration of V900 and V565 in mice, high levels of each domain antibody were detected in the faeces, demonstrating stability in the intestinal milieu. In ex vivo cultures of colonic biopsies from IBD patients, treatment with V565 or V900 inhibited tissue phosphoprotein levels and with a combination of the two, inhibition was even greater. These results support further development of V56B2 as an oral therapy for IBD with improved safety and efficacy in a greater proportion of patients as well as greater convenience for patients compared with traditional monoclonal antibody therapies.
Collapse
|
27
|
Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a 'Third Signal' in NK Cells. Cells 2021; 10:cells10081955. [PMID: 34440725 PMCID: PMC8393955 DOI: 10.3390/cells10081955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Innate and adaptive immune systems are evolutionarily divergent. Primary signaling in T and B cells depends on somatically rearranged clonotypic receptors. In contrast, NK cells use germline-encoded non-clonotypic receptors such as NCRs, NKG2D, and Ly49H. Proliferation and effector functions of T and B cells are dictated by unique peptide epitopes presented on MHC or soluble humoral antigens. However, in NK cells, the primary signals are mediated by self or viral proteins. Secondary signaling mediated by various cytokines is involved in metabolic reprogramming, proliferation, terminal maturation, or memory formation in both innate and adaptive lymphocytes. The family of common gamma (γc) cytokine receptors, including IL-2Rα/β/γ, IL-7Rα/γ, IL-15Rα/β/γ, and IL-21Rα/γ are the prime examples of these secondary signals. A distinct set of cytokine receptors mediate a ‘third’ set of signaling. These include IL-12Rβ1/β2, IL-18Rα/β, IL-23R, IL-27R (WSX-1/gp130), IL-35R (IL-12Rβ2/gp130), and IL-39R (IL-23Rα/gp130) that can prime, activate, and mediate effector functions in lymphocytes. The existence of the ‘third’ signal is known in both innate and adaptive lymphocytes. However, the necessity, context, and functional relevance of this ‘third signal’ in NK cells are elusive. Here, we define the current paradigm of the ‘third’ signal in NK cells and enumerate its clinical implications.
Collapse
Affiliation(s)
- Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| |
Collapse
|
28
|
Hu Y, Gu J, Wang Y, Lin J, Yu H, Yang F, Wu S, Yin J, Lv H, Ji X, Wang S. Promotion Effect of EGCG on the Raised Expression of IL-23 through the Signaling of STAT3-BATF2-c-JUN/ATF2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7898-7909. [PMID: 34227806 DOI: 10.1021/acs.jafc.1c02433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tea polyphenol of epigallocatechin-3-gallate (EGCG) has been verified to possess multiple biological activities. Interleukin-23 (IL-23) is a heterodimeric cytokine consisting of two subunits of IL-23p19 and IL-12p40, with the functionality in regulating the production of cytokines under physiological or pathological conditions. By serendipity, the raised expression of IL-23 was observed after treating cells with EGCG, whereas the detailed mechanism remains poorly understood. This study was proposed to investigate the signaling related to EGCG-induced IL-23. The raised expression of IL-23 was confirmed primarily by intraperitoneally injecting with different concentrations of EGCG (0, 20, 50, 80 mg/kg) into BALB/c mice, and the raised expression was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results from enzyme-linked immunosorbent assay (ELISA) revealed the increase of IL-23 in serum from 116.09 to 153.90 pg/mL after treating with EGCG. The same results were also observed in RAW264.7 and peritoneal macrophages after treating with EGCG (0, 1, 5, 10, 25 μM) with the increased tendency of IL-23 in cultural medium (7.98 to 25.38 pg/mL for RAW264.7; 3.64 to 260.93 pg/mL for peritoneal macrophages). After preliminary exploration of the signaling related to the increased IL-23, the classical signaling pathways and key transcription factors, such as nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) signaling pathways, and interferon regulatory factor 5 (IRF5), were demonstrated with no relevant contribution. A further study revealed the involvement of the key transcription factor of BATF2, which could antagonistically modulate the transcription and translation of IL-23. The signaling of STAT3-BATF2-c-JUN/ATF2-IL-23 has been further verified in RAW264.7 macrophages using the STAT3 inhibitor of AG490 and the activator of Colivelin TFA. The results indicated that EGCG inhibits the phosphorylation of STAT3 to facilitate the decreased level of BATF2, which contributed to the increased level of IL-23 by the enhancing heterodimerization of c-JUN and ATF2.
Collapse
Affiliation(s)
- Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jiaxin Gu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Lin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huaning Yu
- Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd, Guangdong 528000, China
| | - Feier Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jia Yin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Ben Abdallah H, Johansen C, Iversen L. Key Signaling Pathways in Psoriasis: Recent Insights from Antipsoriatic Therapeutics. PSORIASIS-TARGETS AND THERAPY 2021; 11:83-97. [PMID: 34235053 PMCID: PMC8254604 DOI: 10.2147/ptt.s294173] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022]
Abstract
Psoriasis is a common chronic inflammatory skin disease associated with several comorbidities and reduced quality of life. In the past decades, highly effective targeted therapies have led to breakthroughs in the management of psoriasis, providing important insights into the pathogenesis. This article reviews the current concepts of the pathophysiological pathways and the recent progress in antipsoriatic therapeutics, highlighting key targets, signaling pathways and clinical effects in psoriasis.
Collapse
Affiliation(s)
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
30
|
IL-23R gene polymorphisms in rheumatoid arthritis. Rheumatol Int 2021; 42:555-562. [PMID: 33978821 DOI: 10.1007/s00296-021-04881-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease in which many different genetic variants of functional gene polymorphisms may play a culprit role in the underlying pathogenetic mechanism. The recent studies suggest that interleukin-23 receptor (IL-23R) gene polymorphisms may increase susceptibility to the development of various autoimmune diseases. We aimed to examine the possible relationship of nine single nucleotide polymorphisms (SNPs) in the IL-23R gene to susceptibility to rheumatoid arthritis and their associations with disease characteristics in the South Aegean region of Turkey. We enrolled 100 rheumatoid arthritis patients and age- and sex-matched 96 healthy subjects in the study. After deoxyribonucleic acid (DNA) isolation was performed, a 'Restriction Fragment Length Polymorphism' (RFLP) method was used for the investigation of polymorphisms associated with the IL-23R gene. Allele identification and genotyping were obtained from polymerase chain reaction (PCR) products using gel electrophoresis. Allele frequencies and detected genotypes were compared between groups. All statistical analyses were performed using SPSS 25.0 (IBM SPSS Statistics 25 software (Armonk, NY: IBM Corp.)). Continuous variables were defined by the mean ± standard deviation and categorical variables were defined by number and percent. Logistic Regression Analysis was used for determining which variables affect the presence of RA. Differences between categorical variables were analyzed with Chi-square analysis. Statistical significance was determined as p < 0.05. The mean age was 53.48 ± 11.7 years in the RA group, whereas 52.55 ± 12.7 years in the healthy control group. The genotypes of IL-23R with rs11805303(TT), rs10889677(AA), rs1004819(AA), and rs7530511(CT) polymorphisms were seen more often in RA patients than healthy controls. Having the AA genotype of IL-23R rs1004819 and the CT genotype of Il-23R rs7530511 increase the development risk of RA with a statistical significance (OR: 3.416 p = 0.003 and OR: 4.899 p = 0.0001, respectively). RA patients with the CC genotype of Il-23R with rs11805303, the CC genotype with rs10889677, and the TT genotype with rs2201841 of the IL-23R gene had higher erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels than with other genotypes. RA patients with the CC genotype rs11805303 and the GG genotype rs1004819 of the IL-23R gene had more active disease. Our findings suggest that all of the nine analyzed IL-23R gene polymorphisms are seen more frequently than healthy controls in our study population. Besides, some SNPs were related to higher acute phase reactants and higher disease activity scores.
Collapse
|
31
|
Yang G, Xia Y, Ren W. Glutamine metabolism in Th17/Treg cell fate: applications in Th17 cell-associated diseases. SCIENCE CHINA. LIFE SCIENCES 2021; 64:221-233. [PMID: 32671630 DOI: 10.1007/s11427-020-1703-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Alteration in the Th17/Treg cell balance is implicated in various autoimmune diseases and these disease-associated pathologies. Increasing investigations have shown that glutamine metabolism regulates the differentiation of Th17 and Treg cells. Here we summarize the mechanisms by which glutamine metabolism regulates Th17/Treg cell fate. Some examples of a glutamine metabolism-dependent modulation of the development and progression of several Th17 Treg cell-associated diseases are provided afterward. This review will provide a comprehensive understanding of the importance of glutamine metabolism in the fate of Th17 Treg cell differentiation.
Collapse
Affiliation(s)
- Guan Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Honma M, Hayashi K. Psoriasis: Recent progress in molecular‐targeted therapies. J Dermatol 2021; 48:761-777. [DOI: 10.1111/1346-8138.15727] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Masaru Honma
- Department of Dermatology Asahikawa Medical University Hospital Asahikawa Japan
- International Medical Support Center Asahikawa Medical University Hospital Asahikawa Japan
| | - Kei Hayashi
- International Medical Support Center Asahikawa Medical University Hospital Asahikawa Japan
| |
Collapse
|
33
|
Elevated IL-38 inhibits IL-23R expression and IL-17A production in thyroid-associated ophthalmopathy. Int Immunopharmacol 2020; 91:107300. [PMID: 33383445 DOI: 10.1016/j.intimp.2020.107300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
IL-23/IL-23R and PGE2/EP2+EP4 have been recognized as crucial signals that promote Th17 differentiation in many autoimmune diseases, including thyroid-associated ophthalmopathy (TAO). However, the interactive role of IL-23R in IL-23/Th17 signaling and PGE2/Th17 signaling has not been clarified in TAO. Furthermore, the role of IL-38, a novel anti-inflammatory cytokine, has not been explored in TAO. Thus, we aimed to investigate the roles of IL-23R and IL-38 in the pathogenesis of TAO. Activated peripheral blood mononuclear cells (PBMCs) were cultured with or without IL-23 and PGE2. The results showed that IL-23R and IL-17A were upregulated to different degrees and reached the highest levels with both stimuli, indicating that IL-23 induced PBMCs to secrete PGE2, which further boosted the proportion of IL-23R+CD4+T cells to promote IL-17A secretion. Pretreatment with antagonists aimed at EP2/EP4 receptors diminished PGE2-induced upregulation of IL-23R and IL-17A. IL-38 in TAO patients was increased. Activated orbital fibroblasts (OFs) and PBMCs were pretreated with different concentrations of IL-38. IL-23R and IL-17A expression in circulating PBMCs and IL-6 and IL-8 in resident OFs were suppressed by IL-38 at relatively low concentrations. Our findings suggest that the feedback loop of IL-23/IL-23R/PGE2/EP2+EP4/IL-23R/IL-17A plays a significant role in the pathogenesis of TAO and that IL-23R is one of the key targets. Increased IL-38 in TAO could not only inhibit the expression of IL-23R and IL-17A in PBMCs but also suppress inflammation in OFs. Therapies targeting IL-23R may be effective, and IL-38 could be a potential therapeutic approach for TAO.
Collapse
|
34
|
Scarsella L, Pollmann R, Amber KT. Autoreactive T cells in pemphigus: perpetrator and target. Ital J Dermatol Venerol 2020; 156:124-133. [PMID: 33179878 DOI: 10.23736/s2784-8671.20.06706-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disease, in which autoantibodies against epidermal cadherins, such as desmoglein (Dsg)1 and Dsg3, lead to the development of blisters and erosions on the skin and mucous membranes. Autoreactive CD4+ T cells are essential for the induction and perpetuation of the disease by interaction with B cells producing autoantibodies. PV has a strong genetic association with certain human leucocyte antigen (HLA) alleles with HLA-DRB1*04:02 and LA-DQB1*05:03 being the most prevalent in patients. Recently, genome-wide association studies have provided a new approach to identify single nucleotide polymorphisms, alongside the known association with HLA alleles. Loss of tolerance against Dsgs and other autoantigens is a critical event in the pathogenesis of PV. Epitope spreading contributes to the progression of PV, leading to an extension of the Dsg-specific autoimmune response to other molecular epitopes of autoantigens, such as desmocollins or muscarinic receptors. Alterations in CD4+CD25+ FoxP3+ regulatory T cells are thought to contribute to the development of PV representing a suitable target for therapeutic interventions. Several CD4+ T-cell subsets and cytokines are involved in the pathogenesis of PV, while Th2 cells are the extensively studied population. Recently, other T cell subsets like T follicular helper cells and Th17 have gained attention as new potential players in PV pathogenesis. The involvement of local autoantibody production in the lesional skin of PV patients in tertiary lymphoid organs is currently discussed but not yet clarified. In this study, we reviewed the current knowledge about the development, characteristics and function of autoreactive T cells in pemphigus and present current new T cell-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany -
| | - Kyle T Amber
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| |
Collapse
|
35
|
Liu Y, Cui X, Wang S, Liu J, Zhao N, Huang M, Qin J, Li Y, Shan Z, Teng W. Elevated MicroRNA-326 Levels Regulate the IL-23/IL-23R/Th17 Cell Axis in Hashimoto's Thyroiditis by Targeting a Disintegrin and Metalloprotease 17. Thyroid 2020; 30:1327-1337. [PMID: 32204685 DOI: 10.1089/thy.2019.0552] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: MicroRNAs (miRNAs) are a class of critical epigenetic regulators involved in several autoimmune diseases. Our previous study reported an miR-326-induced increase in T helper (Th) 17 cells in a mouse model of Hashimoto's thyroiditis (HT), but the pathogenic effect of miR-326 in HT patients has not been verified. The goal of the present study was to explore the pathogenic role of miR-326 and its underlying molecular mechanism in HT patients. Methods: A total of 58 HT patients and 55 normal controls were enrolled in this study. We examined whether Th17 cells and miR-326 were aberrantly altered in the peripheral blood mononuclear cells (PBMCs) of HT patients with flow cytometry and real-time polymerase chain reaction. Levels of membrane interleukin (IL)-23R (mIL-23R) were determined by flow cytometry and Western blot to explore the critical role of mIL-23R in the development of Th17 cells. Isolated CD3+ T cells were used to further investigate the ectodomain shedding of mIL-23R by a disintegrin and metalloprotease (ADAM17). Furthermore, miR-326 inhibitor and mimics were transfected into PBMCs derived from HT patients and healthy controls to verify the regulation of ADAM17 by miR-326. Results: We observed elevated miR-326 levels in the PBMCs of HT patients compared with those in the PBMCs of healthy controls. Consistent with IL-23-induced STAT3 overactivation, substantially more HT patient-derived PBMCs differentiated into Th17 cells under polarization culture conditions, which may, at least in part, have resulted from enhanced mIL-23R levels. Furthermore, ADAM17, an ectodomain sheddase of mIL-23R, was targeted and negatively regulated by miR-326. Inhibiting ADAM17 might attenuate the ectodomain shedding of mIL-23R. Conclusions: Our findings suggest that the effect of miR-326 on the IL-23/IL-23R/Th17 cell axis in HT patients might be partially due to the targeting of ADAM17.
Collapse
Affiliation(s)
- Yongping Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejiao Cui
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Na Zhao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingshi Huang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Qin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yushu Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Characterization of the Th17 profile immune response in cases of human rabies transmitted by dogs and its interference in the disease pathogenesis. J Neuroimmunol 2020; 344:577263. [PMID: 32416557 DOI: 10.1016/j.jneuroim.2020.577263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022]
Abstract
The Th17 profile immune response is influenced by the presence of cytokines such as IL-1, IL-6, TGF-β, IL-17, and IL-23. We sought to characterize the Th17 profile in CNS samples from human rabies cases transmitted by dogs and examine its possible influence on disease pathogenesis. We observed a high expression of TGF-β, followed by IL-23, IL-17 and IL-6, and a low expression of IL-1β and IFN-γ. Those results suggest the participation of Th17 in rabies virus neuroinfection transmitted by dogs. IL-23 probably plays a role in maintaining the Th17 profile, but it can also interfere with the establishment of the Th1 profile and viral clearance.
Collapse
|
37
|
Zhu JJ, Stenfeldt C, Bishop EA, Canter JA, Eschbaumer M, Rodriguez LL, Arzt J. Mechanisms of Maintenance of Foot-and-Mouth Disease Virus Persistence Inferred From Genes Differentially Expressed in Nasopharyngeal Epithelia of Virus Carriers and Non-carriers. Front Vet Sci 2020; 7:340. [PMID: 32637426 PMCID: PMC7318773 DOI: 10.3389/fvets.2020.00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes persistent infection of nasopharyngeal epithelial cells in ~50% of infected ruminants. The mechanisms involved are not clear. This study provides a continued investigation of differentially expressed genes (DEG) identified in a previously published transcriptomic study analyzing micro-dissected epithelial samples from FMDV carriers and non-carriers. Pathway analysis of DEG indicated that immune cell trafficking, cell death and hematological system could be affected by the differential gene expression. Further examination of the DEG identified five downregulated (chemerin, CCL23, CXCL15, CXCL16, and CXCL17) and one upregulated (CCL2) chemokines in carriers compared to non-carriers. The differential expression could reduce the recruitment of neutrophils, antigen-experienced T cells and dendritic cells and increase the migration of macrophages and NK cells to the epithelia in carriers, which was supported by DEG expressed in these immune cells. Downregulated chemokine expression could be mainly due to the inhibition of canonical NFκB signaling based on DEG in the signaling pathways and transcription factor binding sites predicted from the proximal promoters. Additionally, upregulated CD69, IL33, and NID1 and downregulated CASP3, IL17RA, NCR3LG1, TP53BP1, TRAF3, and TRAF6 in carriers could inhibit the Th17 response, NK cell cytotoxicity and apoptosis. Based on our findings, we hypothesize that (1) under-expression of chemokines that recruit neutrophils, antigen-experienced T cells and dendritic cells, (2) blocking NK cell binding to target cells and (3) suppression of apoptosis induced by death receptor signaling, viral RNA, and cell-mediated cytotoxicity in the epithelia compromised virus clearance and allowed FMDV to persist. These hypothesized mechanisms provide novel information for further investigation of persistent FMDV infection.
Collapse
Affiliation(s)
- James J Zhu
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Carolina Stenfeldt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Elizabeth A Bishop
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jessica A Canter
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States.,Plum Island Animal Disease Center, Oak Ridge Institute for Science and Education (ORISE), Orient, NY, United States
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Luis L Rodriguez
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| | - Jonathan Arzt
- USDA-ARS, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY, United States
| |
Collapse
|
38
|
Esch A, Masiarz A, Mossner S, Moll JM, Grötzinger J, Schröder J, Scheller J, Floss DM. Deciphering site 3 interactions of interleukin 12 and interleukin 23 with their cognate murine and human receptors. J Biol Chem 2020; 295:10478-10492. [PMID: 32518162 DOI: 10.1074/jbc.ra120.013935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Indexed: 01/04/2023] Open
Abstract
Interleukin (IL)-12 and IL-23 belong to the IL-12 type family and are composite cytokines, consisting of the common β subunit p40 and the specific cytokine α subunit p35 and p19, respectively. IL-12 signals via the IL-12Rβ1·IL-12Rβ2 receptor complex, and IL-23 uses also IL-12Rβ1 but engages IL-23R as second receptor. Importantly, binding of IL-12 and IL-23 to IL-12Rβ1 is mediated by p40, and binding to IL-12Rβ2 and IL-23R is mediated by p35 and p19, respectively. Previously, we have identified a W157A substitution at site 3 of murine IL-23p19 that abrogates binding to murine IL-23R. Here, we demonstrate that the analogous Y185R site 3 substitution in murine and Y189R site 3 substitution in human IL-12p35 abolishes binding to IL-12Rβ2 in a cross-species manner. Although Trp157 is conserved between murine and human IL-23p19 (Trp156 in the human ortholog), the site 3 W156A substitution in hIL-23p19 did not affect signaling of cells expressing human IL-12Rβ1 and IL-23R, suggesting that the interface of murine IL-23p19 required for binding to IL-23R is different from that in the human ortholog. Hence, we introduced additional hIL-23p19 substitutions within its binding interface to hIL-23R and found that the combined site 3 substitutions of W156A and L160E, which become buried at the complex interface, disrupt binding of hIL-23p19 to hIL-23R. In summary, we have identified substitutions in IL-12p35 and IL-23p19 that disrupt binding to their cognate receptors IL-12Rβ2 and IL-23R in a murine/human cross-species manner.
Collapse
Affiliation(s)
- Alessandra Esch
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anna Masiarz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University, Kiel, Germany
| | - Jutta Schröder
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
39
|
Nie J, Zhao Q. Lnc-ITSN1-2, Derived From RNA Sequencing, Correlates With Increased Disease Risk, Activity and Promotes CD4 + T Cell Activation, Proliferation and Th1/Th17 Cell Differentiation by Serving as a ceRNA for IL-23R via Sponging miR-125a in Inflammatory Bowel Disease. Front Immunol 2020; 11:852. [PMID: 32547537 PMCID: PMC7271921 DOI: 10.3389/fimmu.2020.00852] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background: This study aimed to investigate long-non-coding RNA (lncRNA) expression profiles and the correlation of lnc-ITSN1-2 expression with disease risk, activity and inflammation, and its influence on CD4+ T cell activation, proliferation, and differentiation of inflammatory bowel disease (IBD). Methods: LncRNA expression profiles were detected in intestinal mucosa samples from six IBD patients and six healthy controls (HCs). Intestinal mucosa and PBMC lnc-ITSN1-2, IL-23R, and inflammatory cytokines were measured in 120 IBD patients [60 Crohn's disease (CD) and 60 ulcerative colitis (UC)] and 30 HCs. Effect of lnc-ITSN1-2 on IBD CD4+ T cell activation, proliferation, and differentiation was determined and its regulatory interaction with miR-125a and IL-23R was detected. Results: Three-hundred-and-nine upregulated and 310 downregulated lncRNAs were identified in IBD patients by RNA-Sequencing, which were enriched in regulating immune and inflammation related pathways. Large-sample qPCR validation disclosed that both intestinal mucosa and PBMC lnc-ITSN1-2 expressions were increased in IBD patients compared to HCs, and presented with good predictive values for IBD risk, especially for active disease conditions, and they positively correlated with disease activity, inflammation cytokines, and IL-23R in IBD patients. Lnc-ITSN1-2 was decreased after infliximab treatment in active-CD patients. Furthermore, lnc-ITSN1-2 promoted IBD CD4+ T cell activation and proliferation, and stimulated Th1/Th17 cell differentiation. Multiple rescue experiments disclosed that lnc-ITSN1-2 functioned in IBD CD4+ T cells via targeting miR-125a, then positively regulating IL-23R. Luciferase Reporter assay observed that lnc-ITSN1-2 bound miR-125a, and miR-125a bound IL-23R. Conclusion: Lnc-ITSN1-2 correlates with increased disease risk, activity, and inflammatory cytokines of IBD, and promotes IBD CD4+ T cell activation, proliferation, and Th1/Th17 cell differentiation by serving as a competing endogenous RNA for IL-23R via sponging miR-125a.
Collapse
Affiliation(s)
- Jiayan Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, China
| |
Collapse
|
40
|
Antagonistic Peptides That Specifically Bind to the First and Second Extracellular Loops of CCR5 and Anti-IL-23p19 Antibody Reduce Airway Inflammation by Suppressing the IL-23/Th17 Signaling Pathway. Mediators Inflamm 2020; 2020:1719467. [PMID: 32410846 PMCID: PMC7204182 DOI: 10.1155/2020/1719467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Asthma is a heterogeneous chronic inflammatory disorder of the airways with a complex etiology, which involves a variety of cells and cellular components. Therefore, the aim of the study was to investigate the effects and mechanisms of antagonistic peptides that specifically bind to the first and second extracellular loops of CCR5 (GH and HY peptides, respectively) and anti-interleukin-23 subunit p19 (anti-IL-23p19) in the airway and thereby mediate inflammation and the IL-23/T helper 17 (Th17) cell pathway in asthmatic mice. An experimental asthma model using BALB/c mice was induced by ovalbumin (OVA) and treated with peptides that are antagonistic to CCR5 or with anti-IL-23p19. The extents of the asthmatic inflammation and mucus production were assessed. In addition, bronchoalveolar lavage fluid (BALF) was collected, the cells were counted, and the IL-4 level was detected by ELISA. The IL-23/Th17 pathway-related protein and mRNA levels in the lung tissues were measured, and the positive production rates of Th17 cells in the thymus, spleen, and peripheral blood were detected. The groups treated with one of the two peptides and/or anti-IL-23p19 showed significant reductions in allergic inflammation and mucus secretion; decreased expression levels of IL-23p19, IL-23R, IL-17A and lactoferrin (LTF); and reduced proportions of Th17 cells in the thymus, spleen, and peripheral blood. Specifically, among the four treatment groups, the anti-IL-23p19 with HY peptide group exhibited the lowest positive production rate of Th17 cells. Our data also showed a significant and positive correlation between CCR5 and IL-23p19 protein expression. These findings suggest that the administration of peptides antagonistic to CCR5 and/or anti-IL-23p19 can reduce airway inflammation in asthmatic mice, most likely through inhibition of the IL-23/Th17 signaling pathway, and the HY peptide can alleviate inflammation not only through the IL-23/Th17 pathway but also through other mechanisms that result in the regulation of inflammation.
Collapse
|
41
|
Baj J, Brzozowska K, Forma A, Maani A, Sitarz E, Portincasa P. Immunological Aspects of the Tumor Microenvironment and Epithelial-Mesenchymal Transition in Gastric Carcinogenesis. Int J Mol Sci 2020; 21:E2544. [PMID: 32268527 PMCID: PMC7177728 DOI: 10.3390/ijms21072544] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Infection with Helicobacter pylori, a Gram-negative, microaerophilic pathogen often results in gastric cancer in a subset of affected individuals. This explains why H. pylori is the only bacterium classified as a class I carcinogen by the World Health Organization. Several studies have pinpointed mechanisms by which H. pylori alters signaling pathways in the host cell to cause diseases. In this article, the authors have reviewed 234 studies conducted over a span of 18 years (2002-2020). The studies investigated the various mechanisms associated with gastric cancer induction. For the past 1.5 years, researchers have discovered new mechanisms contributing to gastric cancer linked to H. pylori etiology. Alongside alteration of the host signaling pathways using oncogenic CagA pathways, H. pylori induce DNA damage in the host and alter the methylation of DNA as a means of perturbing downstream signaling. Also, with H. pylori, several pathways in the host cell are activated, resulting in epithelial-to-mesenchymal transition (EMT), together with the induction of cell proliferation and survival. Studies have shown that H. pylori enhances gastric carcinogenesis via a multifactorial approach. What is intriguing is that most of the targeted mechanisms and pathways appear common with various forms of cancer.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Karolina Brzozowska
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Amr Maani
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
42
|
Ma X, Shou P, Smith C, Chen Y, Du H, Sun C, Porterfield Kren N, Michaud D, Ahn S, Vincent B, Savoldo B, Pylayeva-Gupta Y, Zhang S, Dotti G, Xu Y. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat Biotechnol 2020; 38:448-459. [PMID: 32015548 PMCID: PMC7466194 DOI: 10.1038/s41587-019-0398-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Cytokines that stimulate T cell proliferation, such as interleukin (IL)-15, have been explored as a means of boosting the antitumor activity of chimeric antigen receptor (CAR) T cells. However, constitutive cytokine signaling in T cells and activation of bystander cells may cause toxicity. IL-23 is a two-subunit cytokine known to promote proliferation of memory T cells and T helper type 17 cells. We found that, upon T cell antigen receptor (TCR) stimulation, T cells upregulated the IL-23 receptor and the IL-23α p19 subunit, but not the p40 subunit. We engineered expression of the p40 subunit in T cells (p40-Td cells) and obtained selective proliferative activity in activated T cells via autocrine IL-23 signaling. In comparison to CAR T cells, p40-Td CAR T cells showed improved antitumor capacity in vitro, with increased granzyme B and decreased PD-1 expression. In two xenograft and two syngeneic solid tumor mouse models, p40-Td CAR T cells showed superior efficacy in comparison to CAR T cells and attenuated side effects in comparison to CAR T cells expressing IL-18 or IL-15.
Collapse
MESH Headings
- Animals
- Cell Hypoxia/genetics
- Cell Line, Tumor
- Cell Proliferation
- Humans
- Immunotherapy, Adoptive/methods
- Interleukin-12 Subunit p40/genetics
- Interleukin-12 Subunit p40/metabolism
- Interleukin-23/genetics
- Interleukin-23/metabolism
- Lymphocyte Activation
- Mice
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xingcong Ma
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Oncology, Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| | - Peishun Shou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christof Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuhui Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongwei Du
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancy Porterfield Kren
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Michaud
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuqun Zhang
- Department of Oncology, Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Yang Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
43
|
Dziobek K, Opławski M, Grabarek BO, Zmarzły N, Kieszkowski P, Januszyk P, Kiełbasiński K, Kiełbasiński R, Boroń D. Assessment of the Usefulness of the SEMA5A Concentration Profile Changes as a Molecular Marker in Endometrial Cancer. Curr Pharm Biotechnol 2020; 21:45-51. [PMID: 31544715 DOI: 10.2174/1389201020666190911113611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/12/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Semaphorin 5A (SEMA5A) functions not only in the nervous system but also in cancer transformation where its role has not yet been sufficiently studied and described. OBJECTIVE The aim of the study was to determine the changes in SEMA5A expression in endometrial cancer at various degrees of its differentiation (G1-G3) compared to control. MATERIALS AND METHODS The study group consisted of 45 patients with endometrial cancer at various grades: G1, 17; G2, 15; G3, 13. The control consisted of 15 women without neoplastic changes in the routine gynecological examination. The statistical analysis of immunohistochemical assessment of SEMA5A level was carried out using the Statistica 12 program based on the Kruskal-Wallis test and Dunn's post-hoc test (p<0.05). RESULTS The expression of SEMA5A (optical density) was observed in the control group (Me = 103.43) and in the study group (G1, Me = 140.72; G2, Me = 150.88; G3, Me = 173.77). Differences in expression between each grade and control and between individual grades turned out to be statistically significant (p<0.01). The protein level of SEMA5A expression increased with the decreasing degree of endometrial cancer differentiation. CONCLUSION In our research, we indicated the overexpression of SEMA5A protein in endometrial cancer. It is a valuable starting point for further consideration of the role of SEMA5A as a new supplementary molecular marker in endometrial cancer.
Collapse
Affiliation(s)
- Konrad Dziobek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Krakow, Poland
| | - Beniamin O Grabarek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Department of Molecular Biology, School of Pharmaceutical in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Nikola Zmarzły
- Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Department of Molecular Biology, School of Pharmaceutical in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Piotr Januszyk
- Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | | | - Robert Kiełbasiński
- Department of Obstetrics & Gynaecology ward, Health Center in Mikołów, Mikołów, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Krakow, Poland.,Katowice School of Technology, The University of Science and Art in Katowice, Katowice, Poland.,Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| |
Collapse
|
44
|
Lim KS, Yong ZWE, Wang H, Tan TZ, Huang RYJ, Yamamoto D, Inaki N, Hazawa M, Wong RW, Oshima H, Oshima M, Ito Y, Voon DCC. Inflammatory and mitogenic signals drive interleukin 23 subunit alpha (IL23A) secretion independent of IL12B in intestinal epithelial cells. J Biol Chem 2020; 295:6387-6400. [PMID: 32209656 DOI: 10.1074/jbc.ra120.012943] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/29/2020] [Indexed: 01/15/2023] Open
Abstract
The heterodimeric cytokine interleukin-23 (IL-23 or IL23A/IL12B) is produced by dendritic cells and macrophages and promotes the proinflammatory and regenerative activities of T helper 17 (Th17) and innate lymphoid cells. A recent study has reported that IL-23 is also secreted by lung adenoma cells and generates an inflammatory and immune-suppressed stroma. Here, we observed that proinflammatory tumor necrosis factor (TNF)/NF-κB and mitogen-activated protein kinase (MAPK) signaling strongly induce IL23A expression in intestinal epithelial cells. Moreover, we identified a strong crosstalk between the NF-κB and MAPK/ERK kinase (MEK) pathways, involving the formation of a transcriptional enhancer complex consisting of proto-oncogene c-Jun (c-Jun), RELA proto-oncogene NF-κB subunit (RelA), RUNX family transcription factor 1 (RUNX1), and RUNX3. Collectively, these proteins induced IL23A secretion, confirmed by immunoprecipitation of endogenous IL23A from activated human colorectal cancer (CRC) cell culture supernatants. Interestingly, IL23A was likely secreted in a noncanonical form, as it was not detected by an ELISA specific for heterodimeric IL-23 likely because IL12B expression is absent in CRC cells. Given recent evidence that IL23A promotes tumor formation, we evaluated the efficacy of MAPK/NF-κB inhibitors in attenuating IL23A expression and found that the MEK inhibitor trametinib and BAY 11-7082 (an IKKα/IκB inhibitor) effectively inhibited IL23A in a subset of human CRC lines with mutant KRAS or BRAFV600E mutations. Together, these results indicate that proinflammatory and mitogenic signals dynamically regulate IL23A in epithelial cells. They further reveal its secretion in a noncanonical form independent of IL12B and that small-molecule inhibitors can attenuate IL23A secretion.
Collapse
Affiliation(s)
- Kee Siang Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Zachary Wei Ern Yong
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Huajing Wang
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore 138669
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Obstetrics & Gynaecology, National University Hospital, Singapore 119228
| | - Daisuke Yamamoto
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Department of Gastroenterological Surgery, Ishikawa Prefectural Central Hospital, Ishikawa 920-8530, Japan
| | - Noriyuki Inaki
- Department of Digestive and General Surgery, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Masaharu Hazawa
- Faculty of Natural System, Institute of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Richard W Wong
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Faculty of Natural System, Institute of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroko Oshima
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Masanobu Oshima
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Dominic Chih-Cheng Voon
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan .,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
45
|
Vreven T, Vangaveti S, Borrman TM, Gaines JC, Weng Z. Performance of ZDOCK and IRAD in CAPRI rounds 39-45. Proteins 2020; 88:1050-1054. [PMID: 31994784 DOI: 10.1002/prot.25873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/15/2019] [Accepted: 01/22/2020] [Indexed: 12/23/2022]
Abstract
We report docking performance on the six targets of Critical Assessment of PRedicted Interactions (CAPRI) rounds 39-45 that involved heteromeric protein-protein interactions and had the solved structures released since the rounds were held. Our general strategy involved protein-protein docking using ZDOCK, reranking using IRAD, and structural refinement using Rosetta. In addition, we made extensive use of experimental data to guide our docking runs. All the experimental information at the amino-acid level proved correct. However, for two targets, we also used protein-complex structures as templates for modeling interfaces. These resulted in incorrect predictions, presumably due to the low sequence identity between the targets and templates. Albeit a small number of targets, the performance described here compared somewhat less favorably with our previous CAPRI reports, which may be due to the CAPRI targets being increasingly challenging.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sweta Vangaveti
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tyler M Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jennifer C Gaines
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
46
|
Gong HB, Wu XJ, Pu XM, Kang XJ. Association of Interleukin-23R Gene Polymorphisms with Behcet’s Disease Susceptibility: A Meta-Analysis of Case-control Studies. Immunol Invest 2019; 49:648-661. [PMID: 31814470 DOI: 10.1080/08820139.2019.1698600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hai-Bo Gong
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiu-Juan Wu
- Department of Dermatology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Xiong-Ming Pu
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiao-Jing Kang
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
47
|
Liu J, Hao S, Chen X, Zhao H, Du L, Ren H, Wang C, Mao H. Human placental trophoblast cells contribute to maternal-fetal tolerance through expressing IL-35 and mediating iT R35 conversion. Nat Commun 2019; 10:4601. [PMID: 31601798 PMCID: PMC6787064 DOI: 10.1038/s41467-019-12484-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
During pregnancy, trophoblast cells sustain the maternal-fetal tolerance via expressing and secreting various chemokines and cytokines. Our previous study revealed the expression of interleukin-35 (IL-35) in human first-trimester trophoblasts. Here we show that IL-35 is expressed in both human first-trimester primary trophoblast cells and a trophoblast cell line. Trophoblast cells inhibit the proliferation of human naive conventional T cells (Tconv cells) and convert suppressed Tconv cells into iTR35 in an IL-35-dependent manner. Mechanistically, trophoblast cell derived IL-35 mediates its function through phosphorylation of STAT1 and STAT3. In vivo studies confirm that mice with immunologically spontaneous abortion have lower levels of IL-35 and iTR35 cells at the maternal-fetal interface, and neutralizing anti-IL-35 mAb enhances abortion rates. Meanwhile, exogenous IL-35 induces iTR35 and prevents immunological abortion. Our findings thus suggest that trophoblast cells have a critical function in preserving maternal-fetal tolerance via secreting IL-35 during pregnancy.
Collapse
Affiliation(s)
- Jia Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong Province, People's Republic of China
| | - Shengnan Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong Province, People's Republic of China
| | - Xi Chen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong Province, People's Republic of China
| | - Hui Zhao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong Province, People's Republic of China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong Province, People's Republic of China
| | - Hanxiao Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong Province, People's Republic of China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong Province, People's Republic of China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong Province, People's Republic of China.
| |
Collapse
|
48
|
Flores RA, Fernandez-Colorado CP, Afrin F, Cammayo PLT, Kim S, Kim WH, Min W. Riemerella anatipestifer infection in ducks induces IL-17A production, but not IL-23p19. Sci Rep 2019; 9:13269. [PMID: 31519917 PMCID: PMC6744436 DOI: 10.1038/s41598-019-49516-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
R. anatipestifer (RA) is one of the most harmful bacterial pathogens affecting the duck industry, and infection is associated with the production of proinflammatory cytokines, including IL-17A. Another proinflammatory cytokine, IL-23, is critical for the development of Th17 cells, which produce IL-17. However, IL-23 roles have not been studied in this infection. Here, we describe the identification and mRNA expression analysis of duck IL-23p19 (duIL-23p19) in splenic lymphocytes and macrophages stimulated with killed RA and in spleens of RA-infected ducks. Expression of duIL-23p19 transcript identified in this study was relatively high in livers of healthy ducks and was upregulated in mitogen-activated splenic lymphocytes as well as in splenic lymphocytes and macrophages stimulated with killed RA. In spleens of RA-infected ducks, expression levels of duIL-23p19 transcript were unchanged at all time points except on days 4 and 7 post-infection; however, duIL-17A and IL-17F expression levels were upregulated in both spleens of RA-infected ducks and splenic lymphocytes and macrophages stimulated with killed RA. In sera collected at 24 h after this infection, duIL-23p19 expression levels were unchanged, whereas IL-17A significantly upregulated. These results suggest that IL-23p19 does not play a critical role in the IL-17A response in early stages of RA-infected ducks.
Collapse
Affiliation(s)
- Rochelle A Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Cherry P Fernandez-Colorado
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Banos, College, Laguna, 4031, Philippines
| | - Fahmida Afrin
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Hwang San-ro 1214-13, Unbong-up, Namwon, 55717, Korea
| | - Paula Leona T Cammayo
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
49
|
Yin L, Ren J, Wang D, Feng S, Qiu X, Lv M, Wang X, Zhou H. Functional characterization of three fish-specific interleukin-23 isoforms as regulators of Th17 signature cytokine expression in grass carp head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 92:315-321. [PMID: 31202965 DOI: 10.1016/j.fsi.2019.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Mammalian Interleukin (IL)-23 is a heterodimeric cytokine with an IL-23-specific P19 subunit and a P40 subunit shared with IL-12, and plays a key role in the regulation of cell differentiation as well as inflammation. We previously demonstrated the existence of three soluble fish Interleukin (Il)-23 isoforms consist of a single P19 and one of three P40 isoforms (P40a/b/c) in grass carp. In the present study, three recombinant grass carp Il-23 (rgcIl-23) isoforms were prepared by linking gcP19 and gcP40a/b/c in a prokaryotic expression system, and then their functional properties were verified in grass carp head kidney leukocytes (HKLs). All three rgcIl-23 isoforms showed the bioactivities to divergently upregulate the mRNA expression of Th17 signature cytokines (il17a/f1, il21, il22 and il26) as well as Il-23 receptor (il23r) in HKLs. Moreover, they also promoted gcIl-17a/f1 secretion in a dose-dependent manner, strengthening their roles in Th17-like response. Furthermore, induction of il17a/f1 and il23r transcription by rgcIl-23 was blocked by a STAT3 inhibitor in grass carp HKLs, suggesting the involvement of STAT3 signaling in these inductions. Taken together, we for the first time identified the bioactivities of fish Il-23 isoforms and particularly revealed the existence of Il-23/Il-17a/f1 axis in fish, thereby advancing our understanding of Th17-like responses in fish immunity.
Collapse
Affiliation(s)
- Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
50
|
Wang J, Zhao P, Gao Y, Zhang F, Yuan X, Jiao Y, Gong K. The Effects of Anti-IL-23p19 Therapy on Atherosclerosis Development in ApoE -/- Mice. J Interferon Cytokine Res 2019; 39:564-571. [PMID: 31264927 DOI: 10.1089/jir.2019.0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to detect the dynamic expression of interleukin-23 (IL-23) in ApoE-/- mice at different ages and to further examine the effects of anti-IL-23 therapy on atherosclerosis development. The levels of IL-23 in the sera, aortas, and lymph nodes of ApoE-/- mice were significantly increased compared with those of age-matched controls at 8, 12, 16, 20, and 24 weeks of age. Then, 12-week-old ApoE-/- mice were intraperitoneally injected with anti-IL-23p19 neutralizing antibodies, isotype controls, and phosphate-buffered saline for 8 weeks. The proinflammatory and anti-inflammatory mediators in atherosclerotic aortas, plaque areas, plaque necrotic cores, and the contents of major inflammatory cells in plaques were subsequently determined. The results showed that anti-IL-23p19 treatment significantly decreased the expression of IL-17A, IL-6, and TNF-α in the aortas of ApoE-/- mice, but had no obvious effect on the plaque area, plaque necrotic core, or content of major inflammatory cells in atherosclerotic plaques. Although anti-IL-23p19 therapy reduces the expression of several proinflammatory cytokines, it does not significantly suppress the progression of atherosclerosis in ApoE-/- mice.
Collapse
Affiliation(s)
- Jun Wang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Pei Zhao
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yang Gao
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Fengyu Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaochen Yuan
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yungen Jiao
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Kaizheng Gong
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|