1
|
Hyle EP, Wattananimitgul N, Mukerji SS, Foote JHA, Reddy KP, Thielking A, Yu L, Viswanathan A, Rubin LH, Shebl FM, Althoff KN, Freedberg KA. Age-associated dementia among older people aging with HIV in the United States: a modeling study. AIDS 2024; 38:1186-1197. [PMID: 38329107 PMCID: PMC11141339 DOI: 10.1097/qad.0000000000003862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Almost 400 000 people with HIV (PWH) in the United States are over age 55 years and at risk for age-associated dementias (AAD), including Alzheimer's disease and vascular contributions to cognitive impairment and dementia (VCID). We projected the cumulative incidence and mortality associated with AAD among PWH at least 60 years in the United States compared with the general population. DESIGN/METHODS Integrating the CEPAC and AgeD-Pol models, we simulated two cohorts of 60-year-old male and female individuals: PWH, and the general US population. We estimated AAD incidence and AAD-associated mortality rates. Projected outcomes included AAD cumulative incidence, life expectancy, and quality-adjusted life-years (QALYs). We performed sensitivity and scenario analyses on AAD-specific (e.g. incidence) and HIV-specific (e.g. disengagement from HIV care) parameters, as well as premature aging among PWH. RESULTS We projected that 22.1%/16.3% of 60-year-old male individuals/female individuals with HIV would develop AAD by 80 years compared with 15.9%/13.3% of male individuals/female individuals in the general population. Accounting for age-associated and dementia-associated quality of life, 60-year-old PWH would have a lower life expectancy (QALYs): 17.4 years (14.1 QALYs) and 16.8 years (13.4 QALYs) for male and female individuals, respectively, compared with the general population [male individuals, 21.7 years (18.4 QALYs); female individuals, 24.7 years (20.2 QALYs)]. AAD cumulative incidence was most sensitive to non-HIV-related mortality, engagement in HIV care, and AAD incidence rates. CONCLUSION Projected estimates of AAD-associated morbidity, mortality, and quality of life can inform decision-makers and health systems planning as the population of PWH ages. Improved AAD prevention, treatment, and supportive care planning are critical for people aging with HIV.
Collapse
Affiliation(s)
- Emily P Hyle
- Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital
- Division of Infectious Diseases, Massachusetts General Hospital
- Harvard Medical School, Boston
- Harvard University Center for AIDS Research, Cambridge
| | | | - Shibani S Mukerji
- Harvard Medical School, Boston
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Julia H A Foote
- Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital
| | - Krishna P Reddy
- Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital
- Harvard Medical School, Boston
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA
| | - Acadia Thielking
- Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital
| | - Liyang Yu
- Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital
| | - Anand Viswanathan
- Harvard Medical School, Boston
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Leah H Rubin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Johns Hopkins School of Medicine, Baltimore, MD
| | - Fatma M Shebl
- Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital
- Harvard Medical School, Boston
| | - Keri N Althoff
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Kenneth A Freedberg
- Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital
- Division of Infectious Diseases, Massachusetts General Hospital
- Harvard Medical School, Boston
- Harvard University Center for AIDS Research, Cambridge
- Harvard T.H. Chan School of Public Health
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Jana AK, Keskin R, Yaşar F. Molecular Insight into the Effect of HIV-TAT Protein on Amyloid-β Peptides. ACS OMEGA 2024; 9:27480-27491. [PMID: 38947850 PMCID: PMC11209880 DOI: 10.1021/acsomega.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Increased deposition of amyloid-β (Aβ) plaques in the brain is a frequent pathological feature observed in human immunodeficiency virus (HIV)-positive patients. Emerging evidence indicates that HIV regulatory proteins, particularly the transactivator of transcription (TAT) protein, could interact with Aβ peptide, accelerating the formation of Aβ plaques in the brain and potentially contributing to the onset of Alzheimer's disease in individuals with HIV infection. Nevertheless, the molecular mechanisms underlying these processes remain unclear. In the present study, we have used long all-atom molecular dynamics simulations to probe the direct interactions between the TAT protein and Aβ peptide at the molecular level. Sampling over 28.0 μs, our simulations show that TAT protein induces a shift in the Aβ monomer ensemble toward elongated conformations, exposing aggregation-prone regions on the surface and thereby inducing subsequent aggregation. TAT protein also appears to enhance the stability of preformed Aβ fibrils, while increasing the β-sheet content within these fibrils. Our atomistically detailed simulations qualitatively agree with previous in vitro and in vivo studies. Importantly, our simulations identify key interactions between Aβ and the TAT protein that drive the Aβ aggregation process and stabilize the preformed Aβ aggregates, which are particularly challenging to obtain through current experimental techniques.
Collapse
Affiliation(s)
- Asis K. Jana
- Department
of Microbiology and Biotechnology, Sister
Nivedita University, Kolkata 700156, India
| | - Recep Keskin
- Department
of Physics Engineering, Hacettepe University, Ankara 06800, Türkiye
| | - Fatih Yaşar
- Department
of Physics Engineering, Hacettepe University, Ankara 06800, Türkiye
| |
Collapse
|
3
|
Ellis RJ, Pal S, Achim CL, Sundermann E, Moore DJ, Soontornniyomkij V, Feldman H. Alzheimer-Type Cerebral Amyloidosis in the Context of HIV Infection: Implications for a Proposed New Treatment Approach. J Neuroimmune Pharmacol 2024; 19:27. [PMID: 38829507 PMCID: PMC11147830 DOI: 10.1007/s11481-024-10126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Reverse transcriptase inhibitors (RTIs) are currently broadly prescribed for the treatment of HIV infection but are also thought to prevent Alzheimer's disease (AD) progression by protecting against amyloidosis. Our study evaluates the hypothesis that reverse transcriptase inhibitors protect against Alzheimer-type brain amyloidogenesis in the context of HIV infection. We compiled a case series of participants from a prospective study of the neurological consequences of HIV infection at the HIV Neurobehavioral Research Program (HNRP) who had serial neuropsychological and neurological assessments and were on RTIs. Two participants had gross and microscopic examination and immunohistochemistry of the brain at autopsy; one was assessed clinically for Alzheimer's disease by cerebrospinal fluid (CSF) analysis of phosphorylated-Tau, Total-Tau and Aβ42. Additionally, a larger cohort of 250 autopsied individuals was evaluated for presence of amyloid plaques, Tau, and related pathologies. Three older, virally suppressed individuals with HIV who had long-term treatment with RTIs were included in analyses. Two cases demonstrated substantial cerebral amyloid deposition at autopsy. The third case met clinical criteria for AD based on a typical clinical course and CSF biomarker profile. In the larger cohort of autopsied individuals, the prevalence of cerebral amyloidosis among people with HIV (PWH) was greater for those on RTIs. Our study showed that long-term RTI therapy did not protect against Alzheimer-type brain amyloidogenesis in the context of HIV infection in these patients. Given the known toxicities of RTIs, it is premature to recommend them to individuals at risk or with Alzheimer's disease who do not have HIV infection.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neuroscience, University of California, San Diego, CA, USA.
- Department of Psychiatry, University of California, San Diego, CA, USA.
| | - Shibangi Pal
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Cristian L Achim
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Erin Sundermann
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - David J Moore
- Department of Psychiatry, University of California, San Diego, CA, USA
| | | | - Howard Feldman
- Department of Neuroscience, University of California, San Diego, CA, USA
| |
Collapse
|
4
|
Shah S, Turner ML, Chen X, Ances BM, Hammoud DA, Tucker EW. The Promise of Molecular Imaging: Focus on Central Nervous System Infections. J Infect Dis 2023; 228:S311-S321. [PMID: 37788502 PMCID: PMC11009511 DOI: 10.1093/infdis/jiad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Central nervous system (CNS) infections can lead to high mortality and severe morbidity. Diagnosis, monitoring, and assessing response to therapy of CNS infections is particularly challenging with traditional tools, such as microbiology, due to the dangers associated with invasive CNS procedures (ie, biopsy or surgical resection) to obtain tissues. Molecular imaging techniques like positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging have long been used to complement anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI), for in vivo evaluation of disease pathophysiology, progression, and treatment response. In this review, we detail the use of molecular imaging to delineate host-pathogen interactions, elucidate antimicrobial pharmacokinetics, and monitor treatment response. We also discuss the utility of pathogen-specific radiotracers to accurately diagnose CNS infections and strategies to develop radiotracers that would cross the blood-brain barrier.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mitchell L Turner
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Xueyi Chen
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Beau M Ances
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth W Tucker
- Department of Anesthesiology and Critical Care Medicine, Center for Infection and Inflammation Imaging Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Meehan CE, Schantell M, Springer SD, Wiesman AI, Wolfson SL, O'Neill J, Murman DL, Bares SH, May PE, Johnson CM, Wilson TW. Movement-related beta and gamma oscillations indicate parallels and disparities between Alzheimer's disease and HIV-associated neurocognitive disorder. Neurobiol Dis 2023; 186:106283. [PMID: 37683957 PMCID: PMC10545947 DOI: 10.1016/j.nbd.2023.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
People with HIV (PWH) often develop HIV-related neurological impairments known as HIV-associated neurocognitive disorder (HAND), but cognitive dysfunction in older PWH may also be due to age-related disorders such as Alzheimer's disease (AD). Discerning these two conditions is challenging since the specific neural characteristics are not well understood and limited studies have probed HAND and AD spectrum (ADS) directly. We examined the neural dynamics underlying motor processing during cognitive interference using magnetoencephalography (MEG) in 22 biomarker-confirmed patients on the ADS, 22 older participants diagnosed with HAND, and 30 healthy aging controls. MEG data were transformed into the time-frequency domain to examine movement-related oscillatory activity and the impact of cognitive interference on distinct stages of motor programming. Both cognitively impaired groups (ADS/HAND) performed significantly worse on the task (e.g., less accurate and slower reaction time) and exhibited reductions in frontal and cerebellar beta and parietal gamma activity relative to controls. Disease-specific aberrations were also detected such that those with HAND exhibited weaker gamma interference effects than those on the ADS in frontoparietal and motor areas. Additionally, temporally distinct beta interference effects were identified, with ADS participants exhibiting stronger beta interference activity in the temporal cortex during motor planning, along with weaker beta interference oscillations dispersed across frontoparietal and cerebellar cortices during movement execution relative to those with HAND. These results indicate both overlapping and distinct neurophysiological aberrations in those with ADS disorders or HAND in key motor and top-down cognitive processing regions during cognitive interference and provide new evidence for distinct neuropathology.
Collapse
Affiliation(s)
- Chloe E Meehan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Memory Disorders & Behavioral Neurology Program, UNMC, Omaha, NE, USA
| | - Sara H Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
6
|
Meehan CE, Schantell M, Wiesman AI, Wolfson SL, O’Neill J, Bares SH, Johnson CM, May PE, Murman DL, Wilson TW. Oscillatory markers of neuroHIV-related cognitive impairment and Alzheimer's disease during attentional interference processing. Aging (Albany NY) 2023; 15:524-541. [PMID: 36656738 PMCID: PMC9925679 DOI: 10.18632/aging.204496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
People with HIV (PWH) frequently experience mild cognitive decline, which is typically attributed to HIV-associated neurocognitive disorder (HAND). However, such declines could also be a sign of early Alzheimer's disease (AD) in older PWH. Distinguishing these two pathologies in PWH is exceedingly difficult, as there is a major knowledge gap regarding their neural and neuropsychological bases. In the current study, we begin to address this knowledge gap by recording magnetoencephalography (MEG) during a flanker interference task in 31 biomarker-confirmed patients on the AD spectrum (ADS), 25 older participants with HAND, and 31 cognitively-normal controls. MEG data was examined in the time-frequency domain using a data-driven approach. Our results indicated that the clinical groups (ADS/HAND) performed significantly worse than controls on the task and exhibited aberrations in interference-related theta and alpha oscillations, some of which were disease-specific. Specifically, patients (ADS/HAND) exhibited weaker interference activity in frontoparietal and cingulate cortices compared to controls, while the ADS group exhibited stronger theta interference than those with HAND in frontoparietal, occipital, and temporal cortices. These results reveal overlapping and distinct patterns of neurophysiological alterations among those with ADS and HAND in attentional processing centers and suggest the existence of unique oscillatory markers of each condition.
Collapse
Affiliation(s)
- Chloe E. Meehan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Psychology, University of Nebraska – Omaha, Omaha, NE 68182, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, CA
| | | | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | - Sara H. Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | | | - Pamela E. May
- Department of Neurological Sciences, UNMC, Omaha, NE 68198, USA
| | - Daniel L. Murman
- Department of Neurological Sciences, UNMC, Omaha, NE 68198, USA
- Memory Disorders and Behavioral Neurology Program, UNMC, Omaha, NE 68198, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Psychology, University of Nebraska – Omaha, Omaha, NE 68182, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
7
|
Magaki SD, Vinters HV, Williams CK, Mareninov S, Khanlou N, Said J, Nemanim N, Gonzalez J, Morales JG, Singer EJ, Yong WH. Neuropathologic Findings in Elderly HIV-Positive Individuals. J Neuropathol Exp Neurol 2022; 81:565-576. [PMID: 35656871 DOI: 10.1093/jnen/nlac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The elderly HIV-positive population is growing due to the widespread use of combination antiretroviral therapy (cART), but the effects of longstanding HIV infection on brain aging are unknown. A significant proportion of HIV-positive individuals develop HIV-associated neurocognitive disorder (HAND) even on cART, but the pathogenesis of HAND is unknown. Although neuroinflammation is postulated to play an important role in aging and neurodegenerative diseases such as Alzheimer disease (AD), it is unclear whether HIV accelerates aging or increases the risk for AD. We examined the brains of 9 elderly HIV-positive subjects on cART without co-infection by hepatitis C virus compared to 7 elderly HIV-negative subjects. Microglial and astrocyte activation and AD pathologic change in association with systemic comorbidities and neurocognitive assessment were evaluated. There was no difference in microglial or astrocyte activation between our HIV-positive and HIV-negative cohorts. One HIV-positive subject and 2 HIV-negative subjects demonstrated significant amyloid deposition, predominantly in the form of diffuse senile plaques, but these individuals were cognitively normal. Neurofibrillary tangles were sparse in the HIV-positive cohort. There was a high prevalence of cardiovascular comorbidities in all subjects. These findings suggest that multiple factors likely contribute to aging and cognitive impairment in elderly HIV-positive individuals on cART.
Collapse
Affiliation(s)
- Shino D Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Harry V Vinters
- Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Christopher K Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Sergey Mareninov
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Negar Khanlou
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jonathan Said
- Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Natasha Nemanim
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jessica Gonzalez
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jose G Morales
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Elyse J Singer
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - William H Yong
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
8
|
Vijayan M, Yin L, Reddy PH, Benamar K. Behavioral Evidence for a Tau and HIV-gp120 Interaction. Int J Mol Sci 2022; 23:ijms23105514. [PMID: 35628323 PMCID: PMC9146203 DOI: 10.3390/ijms23105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/07/2022] Open
Abstract
Despite successful virologic control with combination antiretroviral therapy (cART), about half of people living with the human immunodeficiency virus-1 (HIV) develop an HIV-associated neurocognitive disorder (HAND). It is estimated that 50% of individuals who are HIV-positive in the United States are aged 50 years or older. Therefore, a new challenge looms as individuals living with HIV increase in age. There is concern that Alzheimer’s disease (AD) may become prevalent with an earlier onset of cognitive decline in people living with HIV (PLWH). Clinical data studies reported the presence of AD biomarkers in PLWH. However, the functional significance of the interaction between HIV or HIV viral proteins and AD biomarkers is still not well studied. The main goal of the present study is to address this knowledge gap by determining if the HIV envelope glycoprotein 120 (HIV-gp120) can affect the cognitive functions in the Tau mouse AD model. Male Tau and age-matched, wild-type (WT) control mice were treated intracerebroventricularly (ICV) with HIV-gp120. The animals were evaluated for cognitive function using a Y-maze. We found that HIV-gp120 altered cognitive function in Tau mice. Notably, HIV-gp120 was able to promote a cognitive decline in transgenic Tau (P301L) mice compared to the control (HIV-gp120 and WT). We provide the first in vivo evidence of a cognitive interaction between an HIV viral protein and Tau mice.
Collapse
Affiliation(s)
- Murali Vijayan
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (M.V.); (P.H.R.)
| | - Linda Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (M.V.); (P.H.R.)
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, School of Medicine Lubbock, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-3570; Fax: +1-806-743-2744
| |
Collapse
|
9
|
Trunfio M, Atzori C, Pasquero M, Di Stefano A, Vai D, Nigra M, Imperiale D, Bonora S, Di Perri G, Calcagno A. Patterns of Cerebrospinal Fluid Alzheimer’s Dementia Biomarkers in People Living with HIV: Cross-Sectional Study on Associated Factors According to Viral Control, Neurological Confounders and Neurocognition. Viruses 2022; 14:v14040753. [PMID: 35458483 PMCID: PMC9031633 DOI: 10.3390/v14040753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 12/11/2022] Open
Abstract
People living with HIV (PLWH) age with an excess burden of comorbidities that may increase the incidence of age-related complications. There is controversy surrounding the hypothesis that HIV can accelerate neurodegeneration and Alzheimer’s dementia (AD). We performed a retrospective study to analyze the distribution of cerebrospinal fluid (CSF) AD biomarkers (beta amyloid 1–42 fragment, tau, and phosphorylated tau) in adult PLWH (on cART with undetectable viremia, n = 136, with detectable viremia, n = 121, and with central nervous system CNS disorders regardless of viremia, n = 72) who underwent a lumbar puncture between 2008 to 2018; HIV-negative controls with AD were included (n = 84). Five subjects (1.5%) presented CSF biomarkers that were compatible with AD: one was diagnosed with AD, whereas the others showed HIV encephalitis, multiple sclerosis, cryptococcal meningitis, and neurotoxoplasmosis. Regardless of confounders, 79.6% of study participants presented normal CSF AD biomarkers. Isolated abnormalities in CSF beta amyloid 1–42 (7.9%) and tau (10.9%) were associated with age, biomarkers of intrathecal injury, and inflammation, although no HIV-specific feature was associated with abnormal CSF patterns. CSF levels of AD biomarkers very poorly overlapped between HIV-positive clinical categories and AD controls. Despite the correlations with neurocognitive performance, the inter-relationship between amyloid and tau proteins in PLWH seem to differ from that observed in AD subjects; the main driver of the isolated increase in tau seems represented by non-specific CNS inflammation, whereas the mechanisms underlying isolated amyloid consumption remain unclear.
Collapse
Affiliation(s)
- Mattia Trunfio
- Infectious Disease Unit, Department of Medical Sciences, University of Turin at Amedeo di Savoia Hospital, 10149 Torino, Italy
- Correspondence: ; Tel.: +39-0114393884
| | | | - Marta Pasquero
- Infectious Disease Unit, Department of Medical Sciences, University of Turin at Amedeo di Savoia Hospital, 10149 Torino, Italy
| | - Alessandro Di Stefano
- Infectious Disease Unit, Department of Medical Sciences, University of Turin at Amedeo di Savoia Hospital, 10149 Torino, Italy
| | - Daniela Vai
- Neurology Unit, Maria Vittoria Hospital, 10144 Torino, Italy
| | - Marco Nigra
- Laboratory Medicine, Maria Vittoria Hospital, 10144 Torino, Italy
| | | | - Stefano Bonora
- Infectious Disease Unit, Department of Medical Sciences, University of Turin at Amedeo di Savoia Hospital, 10149 Torino, Italy
| | - Giovanni Di Perri
- Infectious Disease Unit, Department of Medical Sciences, University of Turin at Amedeo di Savoia Hospital, 10149 Torino, Italy
| | - Andrea Calcagno
- Infectious Disease Unit, Department of Medical Sciences, University of Turin at Amedeo di Savoia Hospital, 10149 Torino, Italy
| |
Collapse
|
10
|
Vastag Z, Fira-Mladinescu O, Rosca EC. HIV-Associated Neurocognitive Disorder (HAND): Obstacles to Early Neuropsychological Diagnosis. Int J Gen Med 2022; 15:4079-4090. [PMID: 35450033 PMCID: PMC9017704 DOI: 10.2147/ijgm.s295859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Zsolt Vastag
- Doctoral School, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, 300041, Romania
- Clinical Hospital of Infectious Diseases and Pneumology Victor Babes Timisoara, Timisoara, 300173, Romania
| | - Ovidiu Fira-Mladinescu
- Clinical Hospital of Infectious Diseases and Pneumology Victor Babes Timisoara, Timisoara, 300173, Romania
- The XIIIth Department - Pulmonology, Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, Timișoara, 300041, Romania
- Ovidiu Fira-Mladinescu, The XIIIth Department - Pulmonology, Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, Timisoara, 300041, Romania, Tel +40 745 608856, Email
| | - Elena Cecilia Rosca
- Department of Neurology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, 300041, Romania
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Timisoara, 300736, Romania
- Correspondence: Elena Cecilia Rosca, Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, Timisoara, 300736, Romania, Tel + 40 746 173794, Email
| |
Collapse
|
11
|
Di Liberto G, Egervari K, Kreutzfeldt M, Schürch CM, Hewer E, Wagner I, Du Pasquier R, Merkler D. OUP accepted manuscript. Brain 2022; 145:2730-2741. [PMID: 35808999 PMCID: PMC9420019 DOI: 10.1093/brain/awac102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/14/2022] Open
Abstract
Glial cell activation is a hallmark of several neurodegenerative and neuroinflammatory diseases. During HIV infection, neuroinflammation is associated with cognitive impairment, even during sustained long-term suppressive antiretroviral therapy. However, the cellular subsets contributing to neuronal damage in the CNS during HIV infection remain unclear. Using post-mortem brain samples from eight HIV patients and eight non-neurological disease controls, we identify a subset of CNS phagocytes highly enriched in LGALS3, CTSB, GPNMB and HLA-DR, a signature identified in the context of ageing and neurodegeneration. In HIV patients, the presence of this phagocyte phenotype was associated with synaptic stripping, suggesting an involvement in the pathogenesis of HIV-associated neurocognitive disorder. Taken together, our findings elucidate some of the molecular signatures adopted by CNS phagocytes in HIV-positive patients and contribute to the understanding of how HIV might pave the way to other forms of cognitive decline in ageing HIV patient populations.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Ekkehard Hewer
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Doron Merkler
- Correspondence to: Doron Merkler Centre Médical Universitaire (CMU) 1, rue Michel Servet 1211 Geneva, Switzerland E-mail:
| |
Collapse
|
12
|
Calcagno A, Celani L, Trunfio M, Orofino G, Imperiale D, Atzori C, Arena V, d'Ettorre G, Guaraldi G, Gisslen M, Di Perri G. Alzheimer Dementia in People Living With HIV. Neurol Clin Pract 2021; 11:e627-e633. [PMID: 34840876 DOI: 10.1212/cpj.0000000000001060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
Objective Given the aging of people living with HIV (PLWH) and the high prevalence of HIV-associated neurocognitive disorders, we aimed at describing the clinical, instrumental, and CSF features of PLWH diagnosed with Alzheimer dementia (AD). Methods The databases of 3 large Italian outpatient clinics taking care of more than 9,000 PLWH were searched for the diagnosis of AD. After obtaining patients' or their next of kin's consent for publication, anonymous data were collected in an excel spreadsheet and described. Routinely collected CSF biomarkers and radiologic imaging results were recorded whether available. Results Four patients were included in this case series who were diagnosed with AD aged between 60 and 74 years. All participants were on highly active antiretroviral therapy and showed nondetectable serum HIV RNA. Memory impairment was the most prominent cognitive feature. The diagnosis was obtained considering the exclusion of other potential causes, MRI and fluorodeoxyglucose-PET features, and, in (in 2/4), CSF AD biomarkers levels. In 1 patient, longitudinal CSF tau/p-tau increased, and beta-amyloid1-42 decreased over time despite antiretroviral therapy containing nucleotide reverse transcriptase inhibitors. Conclusions In older PLWH cognitive symptoms may represent the onset of AD: a multidisciplinary team may be needed for reaching a likely in vivo diagnosis.
Collapse
Affiliation(s)
- Andrea Calcagno
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Luigi Celani
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Mattia Trunfio
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Giancarlo Orofino
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Daniele Imperiale
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Cristiana Atzori
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Vincenzo Arena
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Gabriella d'Ettorre
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Giovanni Guaraldi
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Magnus Gisslen
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Giovanni Di Perri
- Unit of Infectious Diseases (C. Andrea, MT, GDP), Department of Medical Sciences, University of Torino, Italy; Department of Public Health and Infectious Diseases (LC, GE), Sapienza University of Rome, Italy; "Divisione A" Unit of Infectious Diseases (GO), Ospedale Amedeo di Savoia, ASL Città di Torino, Italy; Unit of Neurology (DI, C. Atzori), Ospedale Maria Vittoria, ASL Città di Torino, Italy; AFFIDEA Irmet PET/CT Center (VA), Torino, Italy; Department of Surgical (GG), Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Italy; Department of Infectious Diseases (MG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; and Region Västra Götaland (MG), Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| |
Collapse
|
13
|
Pikuleva IA, Cartier N. Cholesterol Hydroxylating Cytochrome P450 46A1: From Mechanisms of Action to Clinical Applications. Front Aging Neurosci 2021; 13:696778. [PMID: 34305573 PMCID: PMC8297829 DOI: 10.3389/fnagi.2021.696778] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Cholesterol, an essential component of the brain, and its local metabolism are involved in many neurodegenerative diseases. The blood-brain barrier is impermeable to cholesterol; hence, cholesterol homeostasis in the central nervous system represents a balance between in situ biosynthesis and elimination. Cytochrome P450 46A1 (CYP46A1), a central nervous system-specific enzyme, converts cholesterol to 24-hydroxycholesterol, which can freely cross the blood-brain barrier and be degraded in the liver. By the dual action of initiating cholesterol efflux and activating the cholesterol synthesis pathway, CYP46A1 is the key enzyme that ensures brain cholesterol turnover. In humans and mouse models, CYP46A1 activity is altered in Alzheimer’s and Huntington’s diseases, spinocerebellar ataxias, glioblastoma, and autism spectrum disorders. In mouse models, modulations of CYP46A1 activity mitigate the manifestations of Alzheimer’s, Huntington’s, Nieman-Pick type C, and Machao-Joseph (spinocerebellar ataxia type 3) diseases as well as amyotrophic lateral sclerosis, epilepsy, glioblastoma, and prion infection. Animal studies revealed that the CYP46A1 activity effects are not limited to cholesterol maintenance but also involve critical cellular pathways, like gene transcription, endocytosis, misfolded protein clearance, vesicular transport, and synaptic transmission. How CYP46A1 can exert central control of such essential brain functions is a pressing question under investigation. The potential therapeutic role of CYP46A1, demonstrated in numerous models of brain disorders, is currently being evaluated in early clinical trials. This review summarizes the past 70 years of research that has led to the identification of CYP46A1 and brain cholesterol homeostasis as powerful therapeutic targets for severe pathologies of the CNS.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Nathalie Cartier
- NeuroGenCell, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| |
Collapse
|
14
|
Sanna PP, Fu Y, Masliah E, Lefebvre C, Repunte-Canonigo V. Central nervous system (CNS) transcriptomic correlates of human immunodeficiency virus (HIV) brain RNA load in HIV-infected individuals. Sci Rep 2021; 11:12176. [PMID: 34108514 PMCID: PMC8190104 DOI: 10.1038/s41598-021-88052-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
To generate new mechanistic hypotheses on the pathogenesis and disease progression of neuroHIV and identify novel therapeutic targets to improve neuropsychological function in people with HIV, we investigated host genes and pathway dysregulations associated with brain HIV RNA load in gene expression profiles of the frontal cortex, basal ganglia, and white matter of HIV+ patients. Pathway analyses showed that host genes correlated with HIV expression in all three brain regions were predominantly related to inflammation, neurodegeneration, and bioenergetics. HIV RNA load directly correlated particularly with inflammation genesets representative of cytokine signaling, and this was more prominent in white matter and the basal ganglia. Increases in interferon signaling were correlated with high brain HIV RNA load in the basal ganglia and the white matter although not in the frontal cortex. Brain HIV RNA load was inversely correlated with genesets that are indicative of neuronal and synaptic genes, particularly in the cortex, indicative of synaptic injury and neurodegeneration. Brain HIV RNA load was inversely correlated with genesets that are representative of oxidative phosphorylation, electron transfer, and the tricarboxylic acid cycle in all three brain regions. Mitochondrial dysfunction has been implicated in the toxicity of some antiretrovirals, and these results indicate that mitochondrial dysfunction is also associated with productive HIV infection. Genes and pathways correlated with brain HIV RNA load suggest potential therapeutic targets to ameliorate neuropsychological functioning in people living with HIV.
Collapse
Affiliation(s)
- Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- , Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
15
|
Vera JH, Eftychiou N, Schuerer M, Rullmann M, Barthel H, Sabri O, Gisslen M, Zetterberg H, Blennow K, O'Brien C, Banerjee S, Dizdarevic S. Clinical Utility of β-Amyloid PET Imaging in People Living With HIV With Cognitive Symptoms. J Acquir Immune Defic Syndr 2021; 87:826-833. [PMID: 33587503 DOI: 10.1097/qai.0000000000002648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Imaging with β-amyloid (Aβ) positron emission tomography (PET) has the potential to aid the diagnosis of the cause of cognitive impairment affecting people living with HIV (PLWH) when neurodegenerative disorders are considered. We evaluated the clinical utility of [18F]Florbetaben (FBB) in PLWH with cognitive symptoms. METHODS Imaging with FBB PET was performed in 20 patients with cognitive concerns about dementia. Neuropsychological testing, plasma neurofilament light protein, plasma Aβ40, Aβ42, and cerebrospinal fluid Aβ42, tau, and HIV RNA were obtained. FBB PET images were assessed visually by 3 readers blinded to the clinical diagnosis and quantitatively by obtaining a composite cortical to cerebellar cortex standardized uptake value ratio (SUVR). FBB SUVR from 10 age-matched healthy controls was compared with SUVR of PLWH. RESULTS Most participants were men (90%) of white ethnicity (90%) with a median age (interquartile range) of 59 (43-79) years. Median CD4 count was 682 (74-1056). All patients were on combination antiretroviral therapy with plasma and cerebrospinal fluid HIV RNA <40 copies/mL. Fourteen patients had objective cognitive impairment including 2 who met clinical criteria for a diagnosis of dementia. No significant differences in composite SUVRs between PLWH and controls [mean (SD): 1.18 (0.03) vs. 1.16 (0.09); P = 0.37] were observed. Four patients were FBB+ with the highest SUVR in the posterior cingulate, superior temporal, and frontal superior lobe. Amyloid PET results contributed to a change in diagnosis and treatment for 10 patients. CONCLUSION [18F]Florbetaben PET has potential as an adjunctive tool in the diagnosis of PLWH with cognitive impairment, increasing diagnostic certainty and optimizing management.
Collapse
Affiliation(s)
- Jaime H Vera
- Centre for Global Health Research, Brighton and Sussex Med School, United Kingdom
| | - Nicholas Eftychiou
- Department of Nuclear Medicine, Brighton and Sussex University Hospitals, United Kingdom
| | - Matti Schuerer
- Department of Nuclear Medicine, University of Leipzig, Germany
| | | | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Germany
| | - Magnus Gisslen
- Department of Infectious Diseases, University of Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Sweden
| | - Clara O'Brien
- Department of Neuropsychology, Brighton and Sussex University Hospitals, United Kingdom ; and
| | - Sube Banerjee
- Faculty of Health, University of Plymouth, United Kingdom
| | - Sabina Dizdarevic
- Department of Nuclear Medicine, Brighton and Sussex University Hospitals, United Kingdom
| |
Collapse
|
16
|
Keram A, Pei N, Qi T, Xun J, Gu Y, Li W. Untargeted GC/TOFMS unravel metabolic profiles in cerebrospinal fluid of Chinese people living with HIV. J Clin Lab Anal 2021; 35:e23673. [PMID: 33476447 PMCID: PMC7957991 DOI: 10.1002/jcla.23673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/06/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background Metabolic syndrome becomes a focus of clinical cares to people living with HIV (PLHIV) globally. This study aimed to explore the metabolic profiles in cerebrospinal fluid (CSF) of Chinese people living with HIV (PLHIV). Methods Cerebrospinal fluid samples from PLHIV and healthy controls were collected from our hospital. Then, the metabolic profiles of CSFs were analyzed PLHIV with healthy individual as the normal controls using the untargeted GC/TOFMS. Following this, kyoto encyclopedia of genes and genomes annotation and pathway analysis were performed to further explore the underlying mechanism of these metabolic alterations in cognitive impairment of PLHIV. Results Both PCA analysis and OPLS‐DA had presented that most samples were localized in 95% CI and the gap between control and HIV could significantly separate from each other. Upon this quality control, a total of 82 known metabolites were identified in CSF between PLHIV and healthy controls. Clustering of these metabolites presented that these differentially expressed metabolites could markedly distinguish HIV from healthy controls. Further pathway analyses showed that TCA cycle (citric acid, fumaric acid, lactate, et al.), amino acid (arginine, proline, alanine, aspartate, glutamine, et al.), lipid (cholesterol, butyrate, et al.) metabolisms were significantly changed in CSF of PLHIV, which might affect the cognitive status of PLHIV via affecting neuron energy support, signaling transduction, and neuroinflammation. Conclusion Metabolic profiles were significantly altered in CSF and might play key roles in the etiology of cognitive impairment of PHLIV. Further explore the exact mechanism for these metabolic changes might be useful for cognitive impairment management of PHLIV.
Collapse
Affiliation(s)
- Alim Keram
- Department of Neurosurgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ning Pei
- Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jingna Xun
- Department of Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yutong Gu
- Department of Tuberculosis and Orthopaedics, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenwei Li
- Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Fiala C, Diamandis EP. Mutations in normal tissues-some diagnostic and clinical implications. BMC Med 2020; 18:283. [PMID: 33115454 PMCID: PMC7594459 DOI: 10.1186/s12916-020-01763-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND It has long been known that mutations are at the core of many diseases, most notably cancer. Mutational analysis of tissues and fluids is useful for cancer and other disease diagnosis and management. MAIN BODY The prevailing cancer development hypothesis posits that cancer originates from mutations in cancer-driving genes that accumulate in tissues over time. These mutations then confer special characteristics to cancer cells, known as the hallmarks of cancer. Mutations in specific driver genes can lead to the formation of cancerous subclones and mutation risk increases with age. New research has revealed an unexpectedly large number of mutations in normal tissues; these findings could have significant implications to the understanding of the pathobiology of cancer and for disease diagnosis and therapy. Here, we discuss how the prevalence of mutations in normal tissues provides novel and relevant insights about clonal development in cancer and other diseases. Specifically, this review will focus on discussing mutations in normal tissues in the context of developing specific, circulating tumor DNA (ctDNA) tests for cancer, and evaluating clonal hematopoiesis as a predictor of blood cancers and cardiovascular pathology, as well as their implications to the phenomena of neural mosaicism in the context of Alzheimer's disease. CONCLUSIONS In view of these new findings, the fundamental differences between the accumulation of genetic alterations in healthy, aging tissues compared to cancer and cardiovascular or neural diseases will need to be better delineated in the future.
Collapse
Affiliation(s)
- Clare Fiala
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Clinical Biochemistry, Mount Sinai Hospital and University Health Network, 60 Murray St. Box 32, Floor 6, Rm L6-201, Toronto, ON, MST 3L9, Canada.
| |
Collapse
|
18
|
Howdle GC, Quidé Y, Kassem MS, Johnson K, Rae CD, Brew BJ, Cysique LA. Brain amyloid in virally suppressed HIV-associated neurocognitive disorder. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/4/e739. [PMID: 32393651 PMCID: PMC7238897 DOI: 10.1212/nxi.0000000000000739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/06/2020] [Indexed: 01/23/2023]
Abstract
Objective To determine whether virally suppressed HIV neuropathogenesis, a chronic neuroinflammatory state, promotes abnormal brain amyloid deposition. Methods A total of 10 men with virally suppressed HIV-associated neurocognitive disorder (HAND), aged 46–68 years, underwent 11C-labeled Pittsburgh compound B PET. Data from the Australian Imaging, Biomarkers and Lifestyle (AIBL), including 39 cognitively normal individuals (aged 60–74 years), 7 individuals with mild cognitive impairment (MCI) (aged 64–71 years), and 11 individuals with Alzheimer disease (AD) (aged 55–74 years), were used as reference. Apart from more women, the AIBL cohort was demographically comparable with the HIV sample. Also, the AIBL PET data did not differ by sex. Cerebellum standardized uptake value ratio amyloid values within 22 regions of interest were estimated. In the HIV sample, apolipoprotein E (APOE) was available in 80%, CSF biomarkers in 60%, and 8–10 years of long-term health outcomes in 100%. Results HAND and the AIBL group with no cognitive deficits had similar amyloid deposition, which was lower than that in both the MCI and AD groups. At the individual level, one HAND case showed high amyloid deposition consistent with AD. This case also had a CSF-AD–like profile and an E4/E4 for APOE. Clinically, this case declined over 18 years with mild HAND symptoms first, followed by progressive memory decline 8–9 years after the study PET, then progression to severe dementia within 2–3 years, and lived a further 6 years. Another HAND case showed increased amyloid deposition restricted to the hippocampi. Two other HAND cases showed abnormally decreased amyloid in subcortical areas. Conclusions Relative to cognitively normal older controls, brain amyloid burden does not differ in virally suppressed HAND at the group level. However, individual analyses show that abnormally high and low amyloid burden occur.
Collapse
Affiliation(s)
- Gemma C Howdle
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Yann Quidé
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Mustafa S Kassem
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Kate Johnson
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Caroline D Rae
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia
| | - Lucette A Cysique
- From the Neuroscience Research Australia (G.C.H., Y.Q., M.S.K., C.D.R., L.A.C.), Randwick; School of Psychiatry (Y.Q.), UNSW Sydney; School of Medical Sciences (M.S.K., C.D.R, B.J.B), UNSW Sydney; Peter Duncan Neuroscience Research Unit (K.J., B.J.B, L.A.C), St. Vincent's Centre for Applied Medical Research; Departments of Neurology and Immunology (K.J., B.J.B.), St. Vincent's Hospital, Darlinghurst, Australia; and School of Psychology (L.A.C.), UNSW Sydney, NSW, Australia.
| |
Collapse
|
19
|
Kaeser GE, Chun J. Mosaic Somatic Gene Recombination as a Potentially Unifying Hypothesis for Alzheimer's Disease. Front Genet 2020; 11:390. [PMID: 32457796 PMCID: PMC7221065 DOI: 10.3389/fgene.2020.00390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
The recent identification of somatic gene recombination(SGR) in human neurons affecting the well-known Alzheimer's disease (AD) pathogenic gene, amyloid precursor protein (APP), has implications for the normal and the diseased human brain. The amyloid hypothesis has been the prevailing theory for sporadic AD (SAD) pathogenesis since the discovery of APP gene involvement in familial AD and Down syndrome. Yet, despite enormous scientific and clinical effort, no disease-modifying therapy has emerged. SGR offers a novel mechanism to explain AD pathogenesis and the failures of amyloid-related clinical trials, while maintaining consistency with most aspects of the amyloid hypothesis and additionally supporting possible roles for tau, oxidative stress, inflammation, infection, and prions. SGR retro-inserts novel "genomic complementary DNAs" (gencDNAs) into neuronal genomes and becomes dysregulated in SAD, producing numerous mosaic APP variants, including DNA mutations observed in familial AD. Notably, SGR requires gene transcription, DNA strand-breaks, and reverse transcriptase (RT) activity, all of which may be promoted by well-known AD risk factors and provide a framework for the pursuit of new SGR-based therapeutics. In this perspective, we review evidence for APP SGR in AD pathogenesis and discuss its possible relevance to other AD-related dementias. Further, SGR's requirement for RT activity and the relative absence of AD in aged HIV -infected patients exposed to RT inhibitors suggest that these Food and Drug Administration (FDA)-approved drugs may represent a near-term disease-modifying therapy for AD.
Collapse
Affiliation(s)
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
20
|
Beta-amyloid (Aβ) uptake by PET imaging in older HIV+ and HIV- individuals. J Neurovirol 2020; 26:382-390. [PMID: 32270469 DOI: 10.1007/s13365-020-00836-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
The causes of cognitive impairment among older HIV+ individuals may overlap with causes among elderly HIV seronegative (HIV-) individuals. The objective of this study was to determine if beta-amyloid (Aβ) deposition measured by [18F] AV-45 (florbetapir) positron emission tomography (PET) is increased in older HIV+ individuals compared to HIV- individuals. Forty-eight HIV+ and 25 HIV- individuals underwent [18F] AV-45 PET imaging. [18F] AV-45 binding to Aβ was measured by standardized uptake value ratios (SUVR) relative to the cerebellum in 16 cortical and subcortical regions of interest. Global and regional cortical SUVRs were compared by (1) serostatus, (2) HAND stage, and (3) age decade, comparing individuals in their 50s and > 60s. There were no differences in median global cortical SUVR stratified by HIV serostatus or HAND stage. The proportion of HIV+ participants in their 50s with elevated global amyloid uptake (SUVR > 1.40) was significantly higher than the proportion in HIV- participants (67% versus 25%, p = 0.04), and selected regional SUVR values were also higher (p < 0.05) in HIV+ compared to HIV- participants in their 50s. However, these group differences were not seen in participants in their 60s. In conclusion, PET imaging found no differences in overall global Aβ deposition stratified by HIV serostatus or HAND stage. Although there was some evidence of increased Aβ deposition in HIV+ individuals in their 50s compared to HIV- individuals which might indicate premature aging, the most parsimonious explanation for this is the relatively small sample size in this cross-sectional cohort study.
Collapse
|
21
|
Brain PET Imaging: Value for Understanding the Pathophysiology of HIV-associated Neurocognitive Disorder (HAND). Curr HIV/AIDS Rep 2020; 16:66-75. [PMID: 30778853 DOI: 10.1007/s11904-019-00419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent developments in PET imaging of neuropathologies underlying HIV-associated neurocognitive dysfunction (HAND). We concentrate on the recent post antiretroviral era (ART), highlighting clinical and preclinical brain PET imaging studies. RECENT FINDINGS In the post ART era, PET imaging has been used to better understand perturbations of glucose metabolism, neuroinflammation, the function of neurotransmitter systems, and amyloid/tau protein deposition in the brains of HIV-infected patients and HIV animal models. Preclinical and translational findings from those studies shed a new light on the complex pathophysiology underlying HAND. The molecular imaging capabilities of PET in neuro-HIV are great complements for structural imaging modalities. Recent and future PET imaging studies can improve our understanding of neuro-HIV and provide biomarkers of disease progress that could be used as surrogate endpoints in the evaluation of the effectiveness of potential neuroprotective therapies.
Collapse
|
22
|
Milanini B, Samboju V, Cobigo Y, Paul R, Javandel S, Hellmuth J, Allen I, Miller B, Valcour V. Longitudinal brain atrophy patterns and neuropsychological performance in older adults with HIV-associated neurocognitive disorder compared with early Alzheimer's disease. Neurobiol Aging 2019; 82:69-76. [PMID: 31425903 PMCID: PMC6823146 DOI: 10.1016/j.neurobiolaging.2019.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/26/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
Older HIV-infected patients are at risk for both HIV-associated neurocognitive disorder (HAND) and Alzheimer's disease. We investigated neuroimaging and neuropsychological performance of 61 virally suppressed older adults with HAND (mean (SD) age 64.3 (3.9) years), 53 demographically matched individuals with mild cognitive impairment of the Alzheimer's type (MCI-AD; 65.0 [4.8]), and 89 healthy controls (65.0 [4.3]) cross-sectionally and over 20 months. At the baseline, both disease groups exhibited lower volumes in multiple cortical and subcortical regions compared with controls. Hippocampal volume differentiated MCI-AD from HAND. Cognitively, MCI-AD performed worse on memory and language compared with HAND. Adjusted longitudinal models revealed greater diffuse brain atrophy in MCI-AD compared with controls, whereas HAND showed greater atrophy in frontal gray matter and cerebellum compared with controls. Comparing HAND with MCI-AD showed similar atrophy rates in all brain regions explored, with no significant findings. MCI-AD exhibited more pronounced language decline compared with HAND. These findings reveal the need for further work on unique cognitive phenotypes and neuroimaging signatures of HAND compared with early AD, providing preliminary clinical insight for differential diagnosis of age-related brain dysfunction in geriatric neuroHIV.
Collapse
Affiliation(s)
- Benedetta Milanini
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA.
| | - Vishal Samboju
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Robert Paul
- Missouri Institute of Mental Health, University of Missouri, St. Louis, MO, USA
| | - Shireen Javandel
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Joanna Hellmuth
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Isabel Allen
- Department of Epidemiology, University of California, San Francisco, CA, USA
| | - Bruce Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Victor Valcour
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| |
Collapse
|
23
|
Mackiewicz MM, Overk C, Achim CL, Masliah E. Pathogenesis of age-related HIV neurodegeneration. J Neurovirol 2019; 25:622-633. [PMID: 30790184 PMCID: PMC6703984 DOI: 10.1007/s13365-019-00728-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023]
Abstract
People over the age of 50 are the fastest growing segment of the HIV-infected population in the USA. Although antiretroviral therapy has remarkable success controlling the systemic HIV infection, HIV-associated neurocognitive disorder (HAND) prevalence has increased or remained the same among this group, and cognitive deficits appear more severe in aged patients with HIV. The mechanisms of HAND in the aged population are not completely understood; a leading hypothesis is that aged individuals with HIV might be at higher risk of developing Alzheimer's disease (AD) or one of the AD-related dementias (ADRD). There are a number of mechanisms through which chronic HIV disease alone or in combination with antiretroviral therapy and other comorbidities (e.g., drug use, hepatitis C virus (HCV)) might be contributing to HAND in individuals over the age of 50 years, including (1) overlapping pathogenic mechanisms between HIV and aging (e.g., decreased proteostasis, DNA damage, chronic inflammation, epigenetics, vascular), which could lead to accelerated cellular aging and neurodegeneration and/or (2) by promoting pathways involved in AD/ADRD neuropathogenesis (e.g., triggering amyloid β, Tau, or α-synuclein accumulation). In this manuscript, we will review some of the potential common mechanisms involved and evidence in favor and against a role of AD/ADRD in HAND.
Collapse
Affiliation(s)
| | - Cassia Overk
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cristian L Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eliezer Masliah
- Division of Neuroscience, National Institute on Aging/NIH, Bethesda, MD, USA.
- Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, MD, USA.
| |
Collapse
|
24
|
Kodidela S, Gerth K, Haque S, Gong Y, Ismael S, Singh A, Tauheed I, Kumar S. Extracellular Vesicles: A Possible Link between HIV and Alzheimer's Disease-Like Pathology in HIV Subjects? Cells 2019; 8:E968. [PMID: 31450610 PMCID: PMC6769601 DOI: 10.3390/cells8090968] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
The longevity of people with HIV/AIDS has been prolonged with the use of antiretroviral therapy (ART). The age-related complications, especially cognitive deficits, rise as HIV patients live longer. Deposition of beta-amyloid (Aβ), a hallmark of Alzheimer's disease (AD), has been observed in subjects with HIV-associated neurocognitive disorders (HAND). Various mechanisms such as neuroinflammation induced by HIV proteins (e.g., Tat, gp120, Nef), excitotoxicity, oxidative stress, and the use of ART contribute to the deposition of Aβ, leading to dementia. However, progressive dementia in older subjects with HIV might be due to HAND, AD, or both. Recently, extracellular vesicles (EVs)/exosomes, have gained recognition for their importance in understanding the pathology of both HAND and AD. EVs can serve as a possible link between HIV and AD, due to their ability to package and transport the toxic proteins implicated in both AD and HIV (Aβ/tau and gp120/tat, respectively). Given that Aß is also elevated in neuron-derived exosomes isolated from the plasma of HIV patients, it is reasonable to suggest that neuron-to-neuron exosomal transport of Aβ and tau also contributes to AD-like pathology in HIV-infected subjects. Therefore, exploring exosomal contents is likely to help distinguish HAND from AD. However, future prospective clinical studies need to be conducted to compare the exosomal contents in the plasma of HIV subjects with and without HAND as well as those with and without AD. This would help to find new markers and develop new treatment strategies to treat AD in HIV-positive subjects. This review presents comprehensive literatures on the mechanisms contributing to Aβ deposition in HIV-infected cells, the role of EVs in the propagation of Aβ in AD, the possible role of EVs in HIV-induced AD-like pathology, and finally, possible therapeutic targets or molecules to treat HIV subjects with AD.
Collapse
Affiliation(s)
- Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA.
| | - Kelli Gerth
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
| | - Sanjana Haque
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
| | - Yuqing Gong
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Avenue #515, Memphis, TN 38163, USA
| | - Ajay Singh
- Department of Pediatric Pulmonology, Le Bonheur Children Hospital, 50 N. Dunlap st, Memphis, TN 38103, USA
| | - Ishrat Tauheed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Avenue #515, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA.
| |
Collapse
|
25
|
Šimić G, Španić E, Langer Horvat L, Hof PR. Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:99-145. [PMID: 31699331 DOI: 10.1016/bs.pmbts.2019.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is only partly understood. This is the probable reason why significant efforts to treat or prevent AD have been unsuccessful. In fact, as of April 2019, there have been 2094 studies registered for AD on the clinicaltrials.gov U.S. National Library of Science web page, of which only a few are still ongoing. In AD, abnormal accumulation of amyloid and tau proteins in the brain are thought to begin 10-20 years before the onset of overt symptoms, suggesting that interventions designed to prevent pathological amyloid and tau accumulation may be more effective than attempting to reverse a pathology once it is established. However, to be successful, such early interventions need to be selectively administered to individuals who will likely develop the disease long before the symptoms occur. Therefore, it is critical to identify early biomarkers that are strongly predictive of AD. Currently, patients are diagnosed on the basis of a variety of clinical scales, neuropsychological tests, imaging and laboratory modalities, but definitive diagnosis can be made only by postmortem assessment of underlying neuropathology. People suffering from AD thus may be misdiagnosed clinically with other primary causes of dementia, and vice versa, thereby also reducing the power of clinical trials. The amyloid cascade hypothesis fits well for the familial cases of AD with known mutations, but is not sufficient to explain sporadic, late-onset AD (LOAD) that accounts for over 95% of all cases. Since the earliest descriptions of AD there have been neuropathological features described other than amyloid plaques (AP) and neurofibrillary tangles (NFT), most notably gliosis and neuroinflammation. However, it is only recently that genetic and experimental studies have implicated microglial dysfunction as a causal factor for AD, as opposed to a merely biological response of its accumulation around AP. Additionally, many studies have suggested the importance of changes in blood-brain barrier (BBB) permeability in the pathogenesis of AD. Here we suggest how these less investigated aspects of the disease that have gained increased attention in recent years may contribute mechanistically to the development of lesions and symptoms of AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
26
|
Lee MH, Chun J. Mosaic APP Gene Recombination in Alzheimer's Disease-What's Next? J Exp Neurosci 2019; 13:1179069519849669. [PMID: 31205422 PMCID: PMC6537494 DOI: 10.1177/1179069519849669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023] Open
Abstract
A first example of somatic gene recombination (SGR) within the human brain was recently reported, involving the well-known Alzheimer’s disease (AD)-related gene amyloid precursor protein (APP). SGR was characterized by the creation of APP genomic complementary DNA (gencDNA) sequences that were identified in prefrontal cortical neurons from both normal and sporadic Alzheimer’s disease (SAD) brains. Notably, SGR in SAD appeared to become dysregulated, producing many more numbers and forms of APP gencDNAs, including 11 single-nucleotide variations (SNVs) that are considered pathogenic APP mutations when they occur in families, yet are present mosaically among SAD neurons. APP gene transcription, reverse transcriptase (RT) activity, and DNA strand-breaks were shown to be three key factors required for APP gencDNA production. Many mechanistic details remain to be determined, particularly how APP gencDNAs are involved in AD initiation and progression. The possibility of reducing disease-related SGR through the use of RT inhibitors that are already FDA-approved for HIV and Hepatitis B treatment represents both a testable hypothesis for AD clinical trials and a genuine therapeutic option, where none currently exists, for AD patients.
Collapse
Affiliation(s)
- Ming-Hsiang Lee
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
27
|
Chakradhar S. A tale of two diseases: Aging HIV patients inspire a closer look at Alzheimer's disease. Nat Med 2019; 24:376-377. [PMID: 29634694 DOI: 10.1038/nm0418-376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Aging, comorbidities, and the importance of finding biomarkers for HIV-associated neurocognitive disorders. J Neurovirol 2019; 25:673-685. [PMID: 30868422 DOI: 10.1007/s13365-019-00735-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 01/08/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) continue to affect a large proportion of persons living with HIV despite effective viral suppression with combined antiretroviral therapy (cART). Importantly, milder versions of HAND have become more prevalent. The pathogenesis of HAND in the era of cART appears to be multifactorial with contributions from central nervous system (CNS) damage that occur prior to starting cART, chronic immune activation, cART neurotoxicity, and various age-related comorbidities (i.e., cardiovascular and cerebrovascular disease, diabetes, hyperlipidemia). Individuals with HIV may experience premature aging, which could also contribute to cognitive impairment. Likewise, degenerative disorders aside from HAND increase with age and there is evidence of shared pathology between HAND and other neurodegenerative diseases, such as Alzheimer's disease, which can occur with or without co-existing HAND. Given the aforementioned complex interactions associated with HIV, cognitive impairment, and aging, it is important to consider an age-appropriate differential diagnosis for HAND as the HIV-positive population continues to grow older. These factors make the accuracy and reliability of the diagnosis of mild forms of HAND in an aging population of HIV-infected individuals challenging. The complexity of current diagnosis of mild HAND also highlights the need to develop reliable biomarkers. Ultimately, the identification of a set of specific biomarkers will be required to achieve early and accurate diagnosis, which will be necessary assuming specific treatments for HAND are developed.
Collapse
|
29
|
Fulop T, Witkowski JM, Larbi A, Khalil A, Herbein G, Frost EH. Does HIV infection contribute to increased beta-amyloid synthesis and plaque formation leading to neurodegeneration and Alzheimer's disease? J Neurovirol 2019; 25:634-647. [PMID: 30868421 DOI: 10.1007/s13365-019-00732-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
HIV infection in the combination antiretroviral therapy (cART) era has become a chronic disease with a life expectancy almost identical to those free from this infection. Concomitantly, chronic diseases such as neurodegenerative diseases have emerged as serious clinical problems. HIV-induced cognitive changes, although clinically very diverse are collectively called HIV-associated neurocognitive disorder (HAND). HAND, which until the introduction of cART manifested clinically as a subcortical disorder, is now considered primarily cognitive disorder, which makes it similar to diseases like Alzheimer's (AD) and Parkinson's disease (PD). The pathogenesis involves either the direct effects of the virus or the effect of viral proteins such as Tat, Ggp120, and Nef. These proteins are either capable of destroying neurons directly by inducing neurotoxic mediators or by initiating neuroinflammation by microglia and astrocytes. Recently, it has become recognized that HIV infection is associated with increased production of the beta-amyloid peptide (Aβ) which is a characteristic of AD. Moreover, amyloid plaques have also been demonstrated in the brains of patients suffering from HAND. Thus, the question arises whether this production of Aβ indicates that HAND may lead to AD or it is a form of AD or this increase in Aβ production is only a bystander effect. It has also been discovered that APP in HIV and its metabolic product Aβ in AD manifest antiviral innate immune peptide characteristics. This review attempts to bring together studies linking amyloid precursor protein (APP) and Aβ production in HIV infection and their possible impact on the course of HAND and AD. These data indicate that human defense mechanisms in HAND and AD are trying to contain microorganisms by antimicrobial peptides, however by employing different means. Future studies will, no doubt, uncover the relationship between HAND and AD and, hopefully, reveal novel treatment possibilities.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore.,Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, Université of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030, Besançon, France.,Department of Virology, CHRU Besancon, F-25030, Besancon, France
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
30
|
Rubin LH, Sundermann EE, Moore DJ. The current understanding of overlap between characteristics of HIV-associated neurocognitive disorders and Alzheimer's disease. J Neurovirol 2019; 25:661-672. [PMID: 30671777 DOI: 10.1007/s13365-018-0702-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
The advent of effective antiretroviral medications (ARVs) has led to an aging of the HIV population with approximately 50% of people with HIV (PWH) being over the age of 50 years. Neurocognitive complications, typically known as HIV-associated neurocognitive disorders (HAND), persist in the era of ARVs and, in addition to risk of HAND, older PWH are also at risk for age-associated, neurodegenerative disorders including Alzheimer's disease (AD). It has been postulated that risk for AD may be greater among PWH due to potential compounding effects of HIV and aging on mechanisms of neural insult. We are now faced with the challenge of disentangling AD from HAND, which has important prognostic and treatment implications given the more rapidly debilitating trajectory of AD. Herein, we review the evidence to date demonstrating both parallels and differences in the profiles of HAND and AD. We specifically address similarities and difference of AD and HAND as it relates to (1) neuropsychological profiles (cross-sectional/longitudinal), (2) AD-associated neuropathological features as evidenced from neuropathological, cerebrospinal fluid and neuroimaging assessments, (3) biological mechanisms underlying cortical amyloid deposition, (4) parallels in mechanisms of neural insult, and (5) common risk factors. Our current understanding of the similarities and dissimilarities of AD and HAND should be further delineated and leveraged in the development of differential diagnostic methods that will allow for the early identification of AD and more suitable and effective treatment interventions among graying PWH.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA.
| | - David J Moore
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA
| |
Collapse
|
31
|
Yang CC, Chien WC, Chung CH, Liu YP, Yeh CB, Chen KH, Yang SN, Chang HA, Kao YC, Lu WC, Tzeng NS. No Association Between Human Immunodeficiency Virus Infections And Dementia: A Nationwide Cohort Study In Taiwan. Neuropsychiatr Dis Treat 2019; 15:3155-3166. [PMID: 31814723 PMCID: PMC6863184 DOI: 10.2147/ndt.s225584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The associations between the human immunodeficiency virus (HIV) and dementias are as yet to be studied in Taiwan. The aim of this study is to clarify as to whether HIV infections are associated with the risk of dementia. METHODS A total of 1,261 HIV-infected patients and 3,783 controls (1:3) matched for age and sex were selected between January 1 and December 31, 2000 from Taiwan's National Health Insurance Research Database (NHIRD). Fine and Gray's survival analysis (competing with mortality) analyzed the risk of dementias during the 15-year follow up. The association between the highly active antiretroviral therapy (HAART) and dementia was analyzed by stratifying the HAART status among the HIV subjects. RESULTS During the follow-up period, 25 in the HIV group (N= 1,261) and 227 in the control group (N= 3,783) developed dementia (656.25 vs 913.15 per 100,000 person-years). Fine and Gray's survival analysis revealed that the HIV patients were not associated with an increased risk of dementia, with the adjusted hazard ratio (HR) as 0.852 (95% confidence interval [CI]: 0.189-2.886, p=0.415) after adjusting for sex, age, comorbidities, geographical region, and the urbanization level of residence. There was no significant difference between the two groups of HIV-infected patients with or without HAART in the risk of dementia. CONCLUSION This study found that HIV infections, either with or without HAART, were not associated with increased diagnoses of neurodegenerative dementias in patients older than 50 in Taiwan.
Collapse
Affiliation(s)
- Chuan-Chi Yang
- Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, ROC.,Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.,School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.,School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan, ROC
| | - Yia-Ping Liu
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.,Department of Psychiatry, Chen-Hsin General Hospital, Taipei, Taiwan, ROC.,Institute of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, ROC.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chin-Bin Yeh
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuang-Huei Chen
- Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, ROC
| | - Szu-Nian Yang
- Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, ROC.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.,Headquarters, Tri-Service General Hospital, Beitou Branch, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.,Department of Psychiatry, Tri-Service General Hospital, Song-Shan Branch, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wan-Chun Lu
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
32
|
Lee MH, Siddoway B, Kaeser GE, Segota I, Rivera R, Romanow WJ, Liu CS, Park C, Kennedy G, Long T, Chun J. Somatic APP gene recombination in Alzheimer's disease and normal neurons. Nature 2018; 563:639-645. [PMID: 30464338 DOI: 10.1038/s41586-018-0718-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/09/2018] [Indexed: 11/09/2022]
Abstract
The diversity and complexity of the human brain are widely assumed to be encoded within a constant genome. Somatic gene recombination, which changes germline DNA sequences to increase molecular diversity, could theoretically alter this code but has not been documented in the brain, to our knowledge. Here we describe recombination of the Alzheimer's disease-related gene APP, which encodes amyloid precursor protein, in human neurons, occurring mosaically as thousands of variant 'genomic cDNAs' (gencDNAs). gencDNAs lacked introns and ranged from full-length cDNA copies of expressed, brain-specific RNA splice variants to myriad smaller forms that contained intra-exonic junctions, insertions, deletions, and/or single nucleotide variations. DNA in situ hybridization identified gencDNAs within single neurons that were distinct from wild-type loci and absent from non-neuronal cells. Mechanistic studies supported neuronal 'retro-insertion' of RNA to produce gencDNAs; this process involved transcription, DNA breaks, reverse transcriptase activity, and age. Neurons from individuals with sporadic Alzheimer's disease showed increased gencDNA diversity, including eleven mutations known to be associated with familial Alzheimer's disease that were absent from healthy neurons. Neuronal gene recombination may allow 'recording' of neural activity for selective 'playback' of preferred gene variants whose expression bypasses splicing; this has implications for cellular diversity, learning and memory, plasticity, and diseases of the human brain.
Collapse
Affiliation(s)
- Ming-Hsiang Lee
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin Siddoway
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gwendolyn E Kaeser
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Biomedical Sciences Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Igor Segota
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Richard Rivera
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - William J Romanow
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christine S Liu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Biomedical Sciences Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chris Park
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Biomedical Sciences Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Grace Kennedy
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tao Long
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
33
|
Risk Factors and Pathogenesis of HIV-Associated Neurocognitive Disorder: The Role of Host Genetics. Int J Mol Sci 2018; 19:ijms19113594. [PMID: 30441796 PMCID: PMC6274730 DOI: 10.3390/ijms19113594] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Neurocognitive impairments associated with human immunodeficiency virus (HIV) infection remain a considerable health issue for almost half the people living with HIV, despite progress in HIV treatment through combination antiretroviral therapy (cART). The pathogenesis and risk factors of HIV-associated neurocognitive disorder (HAND) are still incompletely understood. This is partly due to the complexity of HAND diagnostics, as phenotypes present with high variability and change over time. Our current understanding is that HIV enters the central nervous system (CNS) during infection, persisting and replicating in resident immune and supporting cells, with the subsequent host immune response and inflammation likely adding to the development of HAND. Differences in host (human) genetics determine, in part, the effectiveness of the immune response and other factors that increase the vulnerability to HAND. This review describes findings from studies investigating the role of human host genetics in the pathogenesis of HAND, including potential risk factors for developing HAND. The similarities and differences between HAND and Alzheimer's disease are also discussed. While some specific variations in host genes regulating immune responses and neurotransmission have been associated with protection or risk of HAND development, the effects are generally small and findings poorly replicated. Nevertheless, a few specific gene variants appear to affect the risk for developing HAND and aid our understanding of HAND pathogenesis.
Collapse
|
34
|
Sohrab SS, Suhail M, Ali A, Kamal MA, Husen A, Ahmad F, Azhar EI, Greig NH. Role of viruses, prions and miRNA in neurodegenerative disorders and dementia. Virusdisease 2018; 29:419-433. [PMID: 30539044 DOI: 10.1007/s13337-018-0492-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Dementia is known as loss of cellular communications in the brain at a region caused by multi-factorial diseases and pathogenic infections. Approximately eighty percent reported cases of Alzheimer's disease are followed by vascular dementia. The common symptoms of dementia include memory loss, concentration problems, thinking, and language solving situations. Dementia is a multifactorial disease but based on latest research; various reports have been published describing the linkage and role of viruses, prions and miRNAs in neurodegeneration and neurodegenerative disorders resulting into dementia and due to this we selected to review and provide latest information related to dementia. MiRNAs are small non-coding RNAs carrying genetic regulatory information contributing to neurological disorders among human and animals. A prion is an infectious agent made of protein material. Recently, it has been reported that prions play a significant role in signaling processes, resulting in amyloidogenesis and neurological disorders. Viruses attack human immune system and central nervous system and affect classical pathways of neurodegenerative diseases. Comprehensive understandings of the expression profiles and activities of these miRNAs, Prions, Viruses will illuminate their roles as potential therapeutic targets in neurodegeneration and may lead to the discovery of breakthrough treatment strategies for neurodegenerative disorders and dementia. The provided information will further be significant not only in neuro-scientific research, but also in designing and development of management strategies for dementia.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- 1Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No-80216, Jeddah, 21589 Saudi Arabia
| | - Mohd Suhail
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box No 21589, Jeddah, Saudi Arabia
| | - Ashraf Ali
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box No 21589, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- 2King Fahd Medical Research Center, King Abdulaziz University, P.O. Box No 21589, Jeddah, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770 Australia.,Novel Global Community Educational Foundation, Sydney, Australia
| | - Azamal Husen
- 6Department of Biology, College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia
| | - Fahim Ahmad
- 7Drug Discovery Division, Southern Research Institute, 2000, Ninth Ave, South, Birmingham, AL 35205 USA
| | - Esam Ibraheem Azhar
- 1Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No-80216, Jeddah, 21589 Saudi Arabia.,5Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National, Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| |
Collapse
|
35
|
Canet G, Dias C, Gabelle A, Simonin Y, Gosselet F, Marchi N, Makinson A, Tuaillon E, Van de Perre P, Givalois L, Salinas S. HIV Neuroinfection and Alzheimer's Disease: Similarities and Potential Links? Front Cell Neurosci 2018; 12:307. [PMID: 30254568 PMCID: PMC6141679 DOI: 10.3389/fncel.2018.00307] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
Environmental factors such as chemicals, stress and pathogens are now widely believed to play important roles in the onset of some brain diseases, as they are associated with neuronal impairment and acute or chronic inflammation. Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction and neurodegeneration that ultimately lead to dementia. Neuroinflammation also plays a prominent role in AD and possible links to viruses have been proposed. In particular, the human immunodeficiency virus (HIV) can pass the blood-brain barrier and cause neuronal dysfunction leading to cognitive dysfunctions called HIV-associated neurocognitive disorders (HAND). Similarities between HAND and HIV exist as numerous factors involved in AD such as members of the amyloid and Tau pathways, as well as stress-related pathways or blood brain barrier (BBB) regulators, seem to be modulated by HIV brain infection, leading to the accumulation of amyloid plaques or neurofibrillary tangles (NFT) in some patients. Here, we summarize findings regarding how HIV and some of its proteins such as Tat and gp120 modulate signaling and cellular pathways also impaired in AD, suggesting similarities and convergences of these two pathologies.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Chloé Dias
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Audrey Gabelle
- Memory Research and Resources Center, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois, Lens, France
| | - Nicola Marchi
- Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Alain Makinson
- Department of Infectious Diseases CHU Montpellier, INSERM, IRD, University of Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| |
Collapse
|
36
|
Alford K, Vera JH. Cognitive Impairment in people living with HIV in the ART era: A Review. Br Med Bull 2018; 127:55-68. [PMID: 29868901 DOI: 10.1093/bmb/ldy019] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cognitive disorders are a common issue impacting those living with human immunodeficiency virus (HIV). Effective antiretroviral treatment has lessened the severity but not the frequency of these impairments. Such deficits reduce quality of life and present a significant challenge to clinicians in the context of an ageing HIV population with a growing number of comorbidities. SOURCES OF DATA This review is based on recent published literature in the field of HIV-associated cognitive impairment (HAND). AREAS OF AGREEMENT The pathogenesis of HAND is multifactorial and can be categorized into HIV viral factors, antiretroviral factors and individual factors. The risk factors associated with HAND are well documented. AREAS OF CONTROVERSY The prevalence of HAND in HIV populations varies and is dependent on populations studied and assessment batteries used. Disease progression is poorly understood and has important implication for screening programmes. The relative contribution of pathogenic mechanisms causing HAND is unclear, but recent papers point to inflammation as a significant contributor. GROWING AREAS The role of psychiatric diseases, such as depression, in the development and maintenance of HAND has recently been examined and requires clinical consideration. Furthermore, as the HIV population ages, its clinical management faces new challenges. AREAS TIMELY FOR DEVELOPING RESEARCH Identifying biomarkers for HAND which are practical in a clinical setting and utilizing new imaging technologies to better monitor diagnosis and disease progression. Furthermore, the development of therapeutics targeting inflammation appears of increasing importance.
Collapse
Affiliation(s)
- K Alford
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex Brighton, UK
| | - J H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex Brighton, UK.,Department of Medicine, Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
37
|
Morgello S, Jacobs M, Murray J, Byrd D, Neibart E, Mintz L, Meloni G, Chon C, Crary J. Alzheimer's disease neuropathology may not predict functional impairment in HIV: a report of two individuals. J Neurovirol 2018; 24:629-637. [PMID: 30094630 DOI: 10.1007/s13365-018-0663-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/23/2018] [Accepted: 07/03/2018] [Indexed: 01/27/2023]
Abstract
With aging of HIV populations, there is concern that Alzheimer's disease (AD) may become prevalent and difficult to distinguish from HIV-associated neurocognitive disorders. To date, there are no reports documenting histologically verified Alzheimer's neuropathology in individuals with HIV and dementia. Herein, we report two antiretroviral-treated, virally suppressed, HIV-infected individuals autopsied by the Manhattan HIV Brain Bank. Subject A presented to study at 52 years, already dependent in instrumental activities of daily living (ADLs), with severe cognitive impairment inclusive of learning and memory dysfunction. Her history was significant for educational disability and head trauma. She had rapid cognitive decline and, by death at age 59 years, was bed-bound, incontinent, and non-communicative. At autopsy, she exhibited severe AD neuropathologic change (NIA-AA score A3B3C3) and age-related tau astrogliopathy (ARTAG). She was homozygous for APOE ε3/ε3. No HIV DNA was detected in frontal lobe by nested polymerase chain reaction. Subject B was a community dwelling 81-year-old woman who experienced sudden death by pulmonary embolus. Prior to death, she was fully functional, living independently, and managing all ADLs. At autopsy, she displayed moderate amyloid and severe tau AD neuropathologic changes (A2B3C2), ARTAG, and cerebral congophilic angiopathy. She was an APOE ε3/ε4 heterozygote, and HIV DNA, but not RNA, was detected in frontal lobe, despite 20 years of therapy-induced viral suppression. We conclude that in the setting of HIV, AD neuropathology may occur with or without symptomatic cognitive dysfunction; as with seronegative individuals, there are likely to be complex factors in the generation of clinically relevant impairments.
Collapse
Affiliation(s)
- Susan Morgello
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Mount Sinai Medical Center, Gustave L Levy Place, Box 1137, New York, NY, 10029, USA. .,Department of Neuroscience and Pathology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Michelle Jacobs
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Mount Sinai Medical Center, Gustave L Levy Place, Box 1137, New York, NY, 10029, USA
| | - Jacinta Murray
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Mount Sinai Medical Center, Gustave L Levy Place, Box 1137, New York, NY, 10029, USA
| | - Desiree Byrd
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Mount Sinai Medical Center, Gustave L Levy Place, Box 1137, New York, NY, 10029, USA.,Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Neibart
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Letty Mintz
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Mount Sinai Medical Center, Gustave L Levy Place, Box 1137, New York, NY, 10029, USA
| | - Gregory Meloni
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Mount Sinai Medical Center, Gustave L Levy Place, Box 1137, New York, NY, 10029, USA
| | - Christina Chon
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, Mount Sinai Medical Center, Gustave L Levy Place, Box 1137, New York, NY, 10029, USA
| | - John Crary
- Department of Neuroscience and Pathology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
38
|
Hellmuth J, Milanini B, Masliah E, Tartaglia MC, Dunlop MB, Moore DJ, Javandel S, DeVaughn S, Valcour V. A neuropathologic diagnosis of Alzheimer's disease in an older adult with HIV-associated neurocognitive disorder. Neurocase 2018; 24:213-219. [PMID: 30304986 PMCID: PMC6226354 DOI: 10.1080/13554794.2018.1530362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We discuss the challenges associated with diagnosing neurodegenerative disorders in older adults living with HIV, illustrated through a case report where neurologic co-diagnosis of Alzheimer's disease (AD) and HIV-associated Neurocognitive Disorder (HAND) are considered. The patient was followed and evaluated for over 4 years and underwent post-mortem neuropathologic evaluation. Further work is needed to identify diagnostic tests that can adequately distinguish HAND from early stage neurodegenerative disorders among older adults living with HIV and cognitive changes.
Collapse
Affiliation(s)
- Joanna Hellmuth
- a Memory and Aging Center, Department of Neurology , University of California, San Francisco , California, CA , USA
| | - Benedetta Milanini
- a Memory and Aging Center, Department of Neurology , University of California, San Francisco , California, CA , USA
| | - Eliezer Masliah
- b Departments of Neurosciences and Pathology , University of California, San Diego , California, CA, USA
| | - Maria Carmela Tartaglia
- c University of Toronto, Tanz Centre for Research in Neurodegenerative Diseases , Toronto , Canada
| | - Miranda B Dunlop
- d Department of Internal Medicine , University of California, San Francisco , California, CA, USA
| | - David J Moore
- e Department of Psychiatry , University of California, San Diego , California, CA,USA
| | - Shireen Javandel
- a Memory and Aging Center, Department of Neurology , University of California, San Francisco , California, CA , USA
| | - Saskia DeVaughn
- a Memory and Aging Center, Department of Neurology , University of California, San Francisco , California, CA , USA
| | - Victor Valcour
- a Memory and Aging Center, Department of Neurology , University of California, San Francisco , California, CA , USA
| |
Collapse
|
39
|
Milanini B, Valcour V. Differentiating HIV-Associated Neurocognitive Disorders From Alzheimer's Disease: an Emerging Issue in Geriatric NeuroHIV. Curr HIV/AIDS Rep 2018; 14:123-132. [PMID: 28779301 DOI: 10.1007/s11904-017-0361-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review was to examine characteristics that may distinguish HIV-associated neurocognitive disorder (HAND) from early Alzheimer's disease (AD). RECENT FINDINGS Cerebrospinal fluid (CSF) AD biomarkers are perturbed in HIV, yet these alterations may be limited to settings of advanced dementia or unsuppressed plasma HIV RNA. Neuropsychological testing will require extensive batteries to maximize utility. Structural imaging is limited for early AD detection in the setting of HIV, but proper studies are absent. While positron-emission tomography (PET) amyloid imaging has altered the landscape of differential diagnosis for age-associated neurodegenerative disorders, costs are prohibitive. Risk for delayed AD diagnosis in the aging HIV-infected population is now among the most pressing issues in geriatric neuroHIV. While clinical, imaging, and biomarker characterizations of AD are extensively defined, fewer data define characteristics of HIV-associated neurocognitive disorder in the setting of suppressed plasma HIV RNA. Data needed to inform the phenotype of AD in the setting of HIV are equally few.
Collapse
Affiliation(s)
- Benedetta Milanini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW HIV-associated neurocognitive disease is the most active topic for neuroAIDS investigations at present. Although impairment is mild in patients successfully treated with modern antiviral regimens, it remains an ongoing problem for HIV patients. It is important to update the emerging research concerning HIV-associated neurocognitive disease. RECENT FINDINGS The virus enters the brain during acute infection, with evidence for abnormal functioning that may occur early and often persists. Direct relationships with ongoing viral infection continue to be monitored, but chronic inflammation often associated with monocytes and macrophages appears to be the most likely driver of cognitive dysfunction. Appreciation for cerebrovascular disease as a significant comorbidity that is associated with cognitive deficits is increasing. Neuroimaging is actively being developed to address detection and measurement of changes in the brain. Optimal combined antiretroviral treatment therapy has vastly improved neurologic outcomes, but so far has not been demonstrated to reverse the remaining mild impairment. Inflammatory and vascular mechanisms of cerebral dysfunction may need to be addressed to achieve better outcomes. SUMMARY Ongoing research is required to improve neurological outcomes for persons living with HIV. It is likely that interventions beyond antiviral approaches will be required to control or reverse HIV-associated neurocognitive disease.
Collapse
|
41
|
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects roughly half the HIV-positive population. The symptoms of cognitive slowing, poor concentration, and memory problems can impact on everyday life. Its diagnosis is validated where possible by identifying deficits in two cognitive domains on neuropsychologic testing in patients either with or without symptoms. Corroborating evidence may be found on imaging, blood tests, and cerebrospinal fluid analysis, though sensitive and specific biomarkers are currently lacking. The introduction of combined antiretroviral therapy in the 1990s has generated a therapeutic paradox whereby the number of severe cases of HAND has fallen, yet milder forms continue to rise in prevalence. New emphasis has been placed on identifying the cause of apparent ongoing HIV infection and inflammation of the central nervous system (CNS) in the face of durable systemic viral suppression, and how this equates to the neuronal dysfunction underlying HAND. The interaction with aging and comorbidities is becoming increasingly common as the HIV-positive population enters older adulthood, with neurodegenerative, metabolic, and vascular causes of cognitive impairment combining and probably accelerating in the context of chronic HIV infection. Therapies targeted to the CNS, but without neurotoxic side-effects, are being investigated to attempt to reduce the likelihood of developing, and improving, HAND.
Collapse
Affiliation(s)
| | - Bruce James Brew
- Departments of Neurology and HIV Medicine, St. Vincent's Hospital and Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Abstract
Human immunodeficiency virus (HIV) enters the brain early after infecting humans and may remain in the central nervous system despite successful antiretroviral treatment. Many neuroimaging techniques were used to study HIV+ patients with or without opportunistic infections. These techniques assessed abnormalities in brain structures (using computed tomography, structural magnetic resonance imaging (MRI), diffusion MRI) and function (using functional MRI at rest or during a task, and perfusion MRI with or without a contrast agent). In addition, single-photon emission computed tomography with various tracers (e.g., thallium-201, Tc99-HMPAO) and positron emission tomography with various agents (e.g., [18F]-dexoyglucose, [11C]-PiB, and [11C]-TSPO tracers), were applied to study opportunistic infections or HIV-associated neurocognitive disorders. Neuroimaging provides diagnoses and biomarkers to quantitate the severity of brain injury or to monitor treatment effects, and may yield insights into the pathophysiology of HIV infection. As the majority of antiretroviral-stable HIV+ patients are living longer, age-related comorbid disorders (e.g., additional neuroinflammation, cerebrovascular disorders, or other dementias) will need to be considered. Other highly prevalent conditions, such as substance use disorders, psychiatric illnesses, and the long-term effects of combined antiretroviral therapy, all may lead to additional brain injury. Neuroimaging studies could provide knowledge regarding how these comorbid conditions impact the HIV-infected brain. Lastly, specific molecular imaging agents may be needed to assess the central nervous system viral reservoir.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Medicine and Department of Neurology, John A. Burns School of Medicine, University of Hawaii, Manoa, United States.
| | - Dinesh K Shukla
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
43
|
Chatterjee P, Roy D, Rathi N. Epigenetic Drug Repositioning for Alzheimer’s Disease Based on Epigenetic Targets in Human Interactome. J Alzheimers Dis 2017; 61:53-65. [PMID: 29199645 DOI: 10.3233/jad-161104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Debjani Roy
- Department of Biophysics, Bose Institute, West Bengal, India
| | - Nitin Rathi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
44
|
Solomon IH, De Girolami U, Chettimada S, Misra V, Singer EJ, Gabuzda D. Brain and liver pathology, amyloid deposition, and interferon responses among older HIV-positive patients in the late HAART era. BMC Infect Dis 2017; 17:151. [PMID: 28212619 PMCID: PMC5316187 DOI: 10.1186/s12879-017-2246-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/07/2017] [Indexed: 01/15/2023] Open
Abstract
Background HIV+ patients on highly active antiretroviral therapy (HAART) with suppressed viral loads have a low incidence of HIV-associated dementia, but increased prevalence of milder forms of HIV-associated neurocognitive disorders (HAND). These milder forms of HAND are often associated with minimal histological abnormalities, and their pathophysiology is unclear. Comorbidities, altered amyloid metabolism, accelerated brain aging, and activated interferon responses are suspected to play a role in HAND pathogenesis in HAART–treated persons. Methods To investigate associations between liver disease, accelerated brain aging, and HAND in HIV+ patients in the late HAART era (2002–2015), we studied liver and brain autopsy tissues from 53 older subjects evaluated at UCLA and BWH using histopathological stains, a sensitive fluorescent amyloid stain (AmyloGlo), and targeted gene expression profiling (NanoString). Results The majority of HIV+ subjects (median age 56) were on HAART (89.3%) with last pre-mortem plasma viral load <400 copies/mL (81.5%); 50% had CD4+ counts <200 cells/μL. Compared to HIV- controls (median age 65), HIV+ subjects had more cancer (p = 0.04), illicit drug use (p <0.00001), and HCV co-infection (p = 0.002), less cardiovascular disease (p = 0.03), and similar prevalence of cerebrovascular disease (~40%), hypertension, hyperlipidemia, and diabetes. Deep frontal white matter showed increased gliosis in HIV+ subjects vs. HIV- controls (p = 0.09), but no significant differences in myelin loss, blood vessel thickening, or inflammation. Liver showed more severe fibrosis/cirrhosis (p = 0.02) and less steatosis (p = 0.03) in HIV+ subjects, but no significant differences in inflammation, blood vessel thickness, or pigment deposition. There were no significant associations between liver and brain pathologies. AmyloGlo staining detected large amyloid deposits in only one HIV+ case (age 69 with Alzheimer’s disease pathology) and two HIV- controls (ages 66 and 74). White matter from HIV+ cases vs. HIV- seronegative controls showed a trend (p = 0.06) towards increased interferon response gene expression (ISG15, MX1, IFIT1, IFIT2, and IFITM1). Conclusions Gliosis and cerebrovascular disease, but not accelerated amyloid deposition, are common brain pathologies among older HIV+ patients in the late HAART era. Although HIV+ subjects had more cirrhosis, liver pathology was not associated with any consistent pattern of brain pathology. Cerebrovascular disease, interferon responses, and neuroinflammation are likely factors contributing to brain aging and HAND in older HIV+ patients on current HAART regimens. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2246-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, USA
| | | | - Sukrutha Chettimada
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, USA
| | - Vikas Misra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, USA
| | - Elyse J Singer
- Department of Neurology and UCLA National Neurological AIDS Bank (NNAB), David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, USA. .,Department of Neurology, Harvard Medical School, Boston, USA. .,, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
45
|
PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy. Eur J Nucl Med Mol Imaging 2017; 44:895-902. [PMID: 28058461 DOI: 10.1007/s00259-016-3602-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Effective combination antiretroviral therapy (cART) has lead to a significant reduction in the prevalence and incidence of central nervous system (CNS) HIV-associated brain disease, particularly CNS opportunistic infections and HIV encephalitis. Despite this, cognitive deficits in people living with HIV, also known as HIV-associated neurocognitive disorders (HAND) have become more prevalent in recent years. The pathogenesis of HAND is likely to be multifactorial, however recent evidence suggests that brain microglial activation is the most likely pathogenic mechanism. Recent developments in positron emission tomography (PET) brain neuroimaging using novel brain radioligands targeting a variety of physiological changes in the brains of HIV-positive individuals have improved our understanding of the mechanisms associated with the development of HAND. This review will highlight recent PET brain neuroimaging studies in the cART era, focusing on physiological and neurochemical changes associated with HAND in people living with HIV.
Collapse
|
46
|
DADM: The first 2 years of the Alzheimer Association's open access journal to support the research and development of novel biomarkers and diagnostic approaches. Alzheimers Dement 2016; 12:755-7. [PMID: 27370207 DOI: 10.1016/j.jalz.2016.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|