1
|
Jácome D, Cotrufo T, Andrés-Benito P, Lidón L, Martí E, Ferrer I, Del Río JA, Gavín R. miR-519a-3p, found to regulate cellular prion protein during Alzheimer's disease pathogenesis, as a biomarker of asymptomatic stages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167187. [PMID: 38653354 DOI: 10.1016/j.bbadis.2024.167187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Clinical relevance of miRNAs as biomarkers is growing due to their stability and detection in biofluids. In this, diagnosis at asymptomatic stages of Alzheimer's disease (AD) remains a challenge since it can only be made at autopsy according to Braak NFT staging. Achieving the objective of detecting AD at early stages would allow possible therapies to be addressed before the onset of cognitive impairment. Many studies have determined that the expression pattern of some miRNAs is dysregulated in AD patients, but to date, none has been correlated with downregulated expression of cellular prion protein (PrPC) during disease progression. That is why, by means of cross studies of miRNAs up-regulated in AD with in silico identification of potential miRNAs-binding to 3'UTR of human PRNP gene, we selected miR-519a-3p for our study. Then, in vitro experiments were carried out in two ways. First, we validated miR-519a-3p target on 3'UTR-PRNP, and second, we analyzed the levels of PrPC expression after using of mimic technology on cell culture. In addition, RT-qPCR was performed to analyzed miR-519a-3p expression in human cerebral samples of AD at different stages of disease evolution. Additionally, samples of other neurodegenerative diseases such as other non-AD tauopathies and several synucleinopathies were included in the study. Our results showed that miR-519a-3p overlaps with PRNP 3'UTR in vitro and promotes downregulation of PrPC. Moreover, miR-519a-3p was found to be up-regulated exclusively in AD samples from stage I to VI, suggesting its potential use as a novel label of preclinical stages of the disease.
Collapse
Affiliation(s)
- Dayaneth Jácome
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.
| | - Tiziana Cotrufo
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| | - Pol Andrés-Benito
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain; Neurologic Diseases and Neurogenetics Group, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| | - Eulàlia Martí
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Functional Genomics of Neurodegenerative Diseases, Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain; CIBERESP (Centro en Red de Epidemiología y Salud Pública), Spain.
| | - Isidre Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain.
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Madrid, Spain.
| |
Collapse
|
2
|
Wyman-Chick KA, Chaudhury P, Bayram E, Abdelnour C, Matar E, Chiu SY, Ferreira D, Hamilton CA, Donaghy PC, Rodriguez-Porcel F, Toledo JB, Habich A, Barrett MJ, Patel B, Jaramillo-Jimenez A, Scott GD, Kane JPM. Differentiating Prodromal Dementia with Lewy Bodies from Prodromal Alzheimer's Disease: A Pragmatic Review for Clinicians. Neurol Ther 2024; 13:885-906. [PMID: 38720013 PMCID: PMC11136939 DOI: 10.1007/s40120-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
This pragmatic review synthesises the current understanding of prodromal dementia with Lewy bodies (pDLB) and prodromal Alzheimer's disease (pAD), including clinical presentations, neuropsychological profiles, neuropsychiatric symptoms, biomarkers, and indications for disease management. The core clinical features of dementia with Lewy bodies (DLB)-parkinsonism, complex visual hallucinations, cognitive fluctuations, and REM sleep behaviour disorder are common prodromal symptoms. Supportive clinical features of pDLB include severe neuroleptic sensitivity, as well as autonomic and neuropsychiatric symptoms. The neuropsychological profile in mild cognitive impairment attributable to Lewy body pathology (MCI-LB) tends to include impairment in visuospatial skills and executive functioning, distinguishing it from MCI due to AD, which typically presents with impairment in memory. pDLB may present with cognitive impairment, psychiatric symptoms, and/or recurrent episodes of delirium, indicating that it is not necessarily synonymous with MCI-LB. Imaging, fluid and other biomarkers may play a crucial role in differentiating pDLB from pAD. The current MCI-LB criteria recognise low dopamine transporter uptake using positron emission tomography or single photon emission computed tomography (SPECT), loss of REM atonia on polysomnography, and sympathetic cardiac denervation using meta-iodobenzylguanidine SPECT as indicative biomarkers with slowing of dominant frequency on EEG among others as supportive biomarkers. This review also highlights the emergence of fluid and skin-based biomarkers. There is little research evidence for the treatment of pDLB, but pharmacological and non-pharmacological treatments for DLB may be discussed with patients. Non-pharmacological interventions such as diet, exercise, and cognitive stimulation may provide benefit, while evaluation and management of contributing factors like medications and sleep disturbances are vital. There is a need to expand research across diverse patient populations to address existing disparities in clinical trial participation. In conclusion, an early and accurate diagnosis of pDLB or pAD presents an opportunity for tailored interventions, improved healthcare outcomes, and enhanced quality of life for patients and care partners.
Collapse
Affiliation(s)
- Kathryn A Wyman-Chick
- Struthers Parkinson's Center and Center for Memory and Aging, Department of Neurology, HealthPartners/Park Nicollet, Bloomington, USA.
| | - Parichita Chaudhury
- Cleo Roberts Memory and Movement Center, Banner Sun Health Research Institute, Sun City, USA
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, University of California San Diego, San Diego, USA
| | - Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, USA
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Shannon Y Chiu
- Department of Neurology, Mayo Clinic Arizona, Phoenix, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Solna, Sweden
- Department of Radiology, Mayo Clinic Rochester, Rochester, USA
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, Spain
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Jon B Toledo
- Nantz National Alzheimer Center, Stanley Appel Department of Neurology, Houston Methodist Hospital, Houston, USA
| | - Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Solna, Sweden
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Matthew J Barrett
- Department of Neurology, Parkinson's and Movement Disorders Center, Virginia Commonwealth University, Richmond, USA
| | - Bhavana Patel
- Department of Neurology, College of Medicine, University of Florida, Gainesville, USA
- Norman Fixel Institute for Neurologic Diseases, University of Florida, Gainesville, USA
| | - Alberto Jaramillo-Jimenez
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- School of Medicine, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Gregory D Scott
- Department of Pathology and Laboratory Services, VA Portland Medical Center, Portland, USA
| | - Joseph P M Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3
|
Schraen-Maschke S, Duhamel A, Vidal JS, Ramdane N, Vaudran L, Dussart C, Buée L, Sablonnière B, Delaby C, Allinquant B, Gabelle A, Bombois S, Lehmann S, Hanon O. The free plasma amyloid Aβ 1-42/Aβ 1-40 ratio predicts conversion to dementia for subjects with mild cognitive impairment with performance equivalent to that of the total plasma Aβ 1-42/Aβ 1-40 ratio. The BALTAZAR study. Neurobiol Dis 2024; 193:106459. [PMID: 38423192 DOI: 10.1016/j.nbd.2024.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND AND PURPOSE Blood-based biomarkers are a non-invasive solution to predict the risk of conversion of mild cognitive impairment (MCI) to dementia. The utility of free plasma amyloid peptides (not bound to plasma proteins and/or cells) as an early indicator of conversion to dementia is still debated, as the results of studies have been contradictory. In this context, we investigated whether plasma levels of the free amyloid peptides Aβ1-42 and Aβ1-40 and the free plasma Aβ1-42/Aβ1-40 ratio are associated with the conversion of MCI to dementia, in particular AD, over three years of follow-up in a subgroup of the BALTAZAR cohort. We also compared their predictive value to that of total plasma Aβ1-42 and Aβ1-40 levels and the total plasma Aβ1-42/Aβ1-40 ratio. METHODS The plasma Aβ1-42 and Aβ1-40 peptide assay was performed using the INNO-BIA kit (Fujirebio Europe). Free amyloid levels (defined by the amyloid fraction directly accessible to antibodies of the assay) were obtained with the undiluted plasma, whereas total amyloid levels were obtained after the dilution of plasma (1/3) with a denaturing buffer. Free and total Aβ1-42 and Aβ1-40 levels were measured at inclusion for a subgroup of participants (N = 106) with mild cognitive impairment (MCI) from the BALTAZAR study (a large-scale longitudinal multicenter cohort with a three-year follow-up). Associations between conversion and the free/total plasma Aβ1-42 and Aβ1-40 levels and Aβ1-42/Aβ1-40 ratio were analyzed using logistic and Cox Proportional Hazards models. Demographic, clinical, cognitive (MMSE, ADL and IADL), APOE, and MRI characteristics (relative hippocampal volume) were compared using non-parametric (Mann-Whitney) or parametric (Student) tests for quantitative variables and Chi-square or Fisher exact tests for qualitative variables. RESULTS The risk of conversion to dementia was lower for patients in the highest quartile of free plasma Aβ1-42/Aβ1-40 (≥ 25.8%) than those in the three lower quartiles: hazard ratio = 0.36 (95% confidence interval [0.15-0.87]), after adjustment for age, sex, education, and APOE ε4 (p-value = 0.022). This was comparable to the risk of conversion in the highest quartile of total plasma Aβ1-42/Aβ1-40: hazard ratio = 0.37 (95% confidence interval [0.16-0.89], p-value = 0.027). However, while patients in the highest quartile of total plasma Aβ1-42/Aβ1-40 showed higher MMSE scores and a higher hippocampal volume than patients in the three lowest quartiles of total plasma Aβ1-42/Aβ1-40, as well as normal CSF biomarker levels, the patients in the highest quartile of free plasma Aβ1-42/Aβ1-40 did not show any significant differences in MMSE scores, hippocampal volume, or CSF biomarker levels relative to the three lowest quartiles of free plasma Aβ1-42/Aβ1-40. CONCLUSION The free plasma Aβ1-42/Aβ1-40 ratio is associated with a risk of conversion from MCI to dementia within three years, with performance comparable to that of the total plasma Aβ1-42/Aβ1-40 ratio. Threshold levels of the free and total plasma Aβ1-42/Aβ1-40 ratio could be determined, with a 60% lower risk of conversion for patients above the threshold than those below.
Collapse
Affiliation(s)
- S Schraen-Maschke
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France.
| | - A Duhamel
- Univ. Lille, CHU Lille, ULR 2694-METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
| | - J S Vidal
- Université de Paris, EA 4468 and APHP, Hôpital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, Paris, France
| | - N Ramdane
- Univ. Lille, CHU Lille, ULR 2694-METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
| | - L Vaudran
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - C Dussart
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - L Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - B Sablonnière
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - C Delaby
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - B Allinquant
- UMR-S1266, Université Paris Cité, Institute of Psychiatry and Neurosciences, Inserm, Paris, France
| | - A Gabelle
- CMRR, Université de Montpellier, INM INSERM, CHU de Montpellier, Montpellier, France
| | - S Bombois
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié-Salpêtrière, Paris, France
| | - S Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - O Hanon
- Université de Paris, EA 4468 and APHP, Hôpital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, Paris, France.
| |
Collapse
|
4
|
Cisterna-García A, Beric A, Ali M, Pardo JA, Chen HH, Fernandez MV, Norton J, Gentsch J, Bergmann K, Budde J, Perlmutter JS, Morris JC, Cruchaga C, Botia JA, Ibanez L. Cell-free RNA signatures predict Alzheimer's disease. iScience 2023; 26:108534. [PMID: 38089583 PMCID: PMC10711471 DOI: 10.1016/j.isci.2023.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
There is a need for affordable, scalable, and specific blood-based biomarkers for Alzheimer's disease that can be applied to a population level. We have developed and validated disease-specific cell-free transcriptomic blood-based biomarkers composed by a scalable number of transcripts that capture AD pathobiology even in the presymptomatic stages of the disease. Accuracies are in the range of the current CSF and plasma biomarkers, and specificities are high against other neurodegenerative diseases.
Collapse
Affiliation(s)
- Alejandro Cisterna-García
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Jose Adrian Pardo
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Hsiang-Han Chen
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - John Budde
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Joel S. Perlmutter
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Department of Radiology, Neuroscience, Physical Therapy, and Occupational Therapy, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - John C. Morris
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis, Saint Louis, MO, USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis, Saint Louis, MO, USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Juan A. Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Laura Ibanez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
5
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
6
|
Jones KT, Gallen CL, Ostrand AE, Rojas JC, Wais P, Rini J, Chan B, Lago AL, Boxer A, Zhao M, Gazzaley A, Zanto TP. Gamma neuromodulation improves episodic memory and its associated network in amnestic mild cognitive impairment: a pilot study. Neurobiol Aging 2023; 129:72-88. [PMID: 37276822 PMCID: PMC10583532 DOI: 10.1016/j.neurobiolaging.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023]
Abstract
Amnestic mild cognitive impairment (aMCI) is a predementia stage of Alzheimer's disease associated with dysfunctional episodic memory and limited treatment options. We aimed to characterize feasibility, clinical, and biomarker effects of noninvasive neurostimulation for aMCI. 13 individuals with aMCI received eight 60-minute sessions of 40-Hz (gamma) transcranial alternating current stimulation (tACS) targeting regions related to episodic memory processing. Feasibility, episodic memory, and plasma Alzheimer's disease biomarkers were assessed. Neuroplastic changes were characterized by resting-state functional connectivity (RSFC) and neuronal excitatory/inhibitory balance. Gamma tACS was feasible and aMCI participants demonstrated improvement in multiple metrics of episodic memory, but no changes in biomarkers. Improvements in episodic memory were most pronounced in participants who had the highest modeled tACS-induced electric fields and exhibited the greatest changes in RSFC. Increased RSFC was also associated with greater hippocampal excitability and higher baseline white matter integrity. This study highlights initial feasibility and the potential of gamma tACS to rescue episodic memory in an aMCI population by modulating connectivity and excitability within an episodic memory network.
Collapse
Affiliation(s)
- Kevin T Jones
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA.
| | - Courtney L Gallen
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Avery E Ostrand
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Julio C Rojas
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Peter Wais
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - James Rini
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Brandon Chan
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Argentina Lario Lago
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Adam Boxer
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Min Zhao
- Departments of Ophthalmology and Vision Science and Dermatology, Institute for Regenerative Cures, University of California-Davis, Davis, CA
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA; Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA
| | - Theodore P Zanto
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA.
| |
Collapse
|
7
|
Sapkota S, Erickson K, Fletcher E, Tomaszewski Farias SE, Jin LW, DeCarli C. Vascular Risk Predicts Plasma Amyloid β 42/40 Through Cerebral Amyloid Burden in Apolipoprotein E ε4 Carriers. Stroke 2023; 54:1227-1235. [PMID: 37021572 PMCID: PMC10121244 DOI: 10.1161/strokeaha.122.041854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Understanding the neurobiological underpinnings between established multimodal dementia risk factors and noninvasive blood-based biomarkers may lead to greater precision and earlier identification of older adults at risk of accelerated decline and dementia. We examined whether key vascular and genetic risk impact the association between cerebral amyloid burden and plasma aβ (amyloid β) 42/40 in nondemented older adults. METHODS We used nondemented older adults from the UCD-ADRC (University of California, Davis-Alzheimer's Disease Research Center) study (n=96) and Alzheimer's Disease Neuroimaging Initiative (n=104). Alzheimer's Disease Neuroimaging Initiative was examined as confirmatory study cohort. We followed a cross-sectional design and examined linear regression followed by mediation analyses. Vascular risk score was obtained as the sum of hypertension, diabetes, hyperlipidemia, coronary artery disease, and cerebrovascular disease. Apolipoprotein E (APOE) ε4+ risk was genotyped, and plasma aβ42 and aβ40 were assayed. Cerebral amyloid burden was quantified using Florbetapir-PET scans. Baseline age was included as a covariate in all models. RESULTS Vascular risk significantly predicted cerebral amyloid burden in Alzheimer's Disease Neuroimaging Initiative but not in the UCD-ADRC cohort. Cerebral amyloid burden was associated with plasma aβ 42/40 in both cohorts. Higher vascular risk increased cerebral amyloid burden was indirectly associated with reduced plasma aβ 42/40 in Alzheimer's Disease Neuroimaging Initiative but not in UCD-ADRC cohort. However, when stratified by APOE ε4+ risk, we consistently observed this indirect relationship only in APOE ε4+ carriers across both cohorts. CONCLUSIONS Vascular risk is indirectly associated with the level of plasma aβ 42/40 via cerebral amyloid burden only in APOE ε4+ carriers. Nondemented older adults with genetic vulnerability to dementia and accelerated decline may benefit from careful monitoring of vascular risk factors directly associated with cerebral amyloid burden and indirectly with plasma aβ 42/40.
Collapse
Affiliation(s)
- Shraddha Sapkota
- Department of Neurology (S.S., E.F., S.E.T.F., C.D.), University of California, Davis
| | - Kelsey Erickson
- Department of Neurology (S.S., E.F., S.E.T.F., C.D.), University of California, Davis
| | - Evan Fletcher
- University of California, and Department of Pathology and Laboratory Medicine (K.E., L.-W.J.), University of California, Davis
| | | | - Lee-Way Jin
- University of California, and Department of Pathology and Laboratory Medicine (K.E., L.-W.J.), University of California, Davis
| | - Charles DeCarli
- Department of Neurology (S.S., E.F., S.E.T.F., C.D.), University of California, Davis
| |
Collapse
|
8
|
Tavakoli M, Ghadami SA, Adibi H, Gulcan HO. Synthesis of benzylidene-benzofuranone derivatives as probes for detection of amyloid fibrils in cells. J Biomol Struct Dyn 2023; 41:14989-15002. [PMID: 36866639 DOI: 10.1080/07391102.2023.2184635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Aggregated protein is the common cause of a wide variety of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease, etc. It is proven that protein aggregation like amyloid β (Aβ) is one of the critical factors causing AD and, its diagnosis in the early stages of the disease is important for the treatment or prevention of AD. To have a better understanding of protein aggregation and its pathologies, there is a huge need to design and develop new and more trustworthy probe molecules for in vitro amyloid quantification and in vivo amyloid imaging. In this study, 17 new biomarker compounds, have been synthesized from benzofuranone derivatives, to detect and identify amyloid in vitro (dye-binding assay) as well as in the cell by staining method. According to the results, some of these synthetic derivatives can be considered suitable identifiers and quantifiers to detect amyloid fibrils in vitro. Compared to thioflavin T, 4 probes out of 17 probes have shown good results in selectivity and detectability of Aβ depositions, and their binding properties were also confirmed with in silico analysis. The drug-likeness prediction results for selected compounds by the Swiss ADME server show a satisfactory percentage of blood-brain barrier (BBB) permeability and gastrointestinal (GI) absorption. Among all of them, compound 10 was able to show better binding properties than others, and in vivo study showed that this compound was capable of detecting intracellular amyloid.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohsen Tavakoli
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Faculty of Pharmacy, Eastern Mediterranean University, TRNC, Famagusta, Turkey
| | | | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
9
|
Ghadami SA, Ahadi-Amandi K, Khodarahmi R, Ghanbari S, Adibi H. Synthesis of benzylidene-indandione derivatives as quantification of amyloid fibrils. Biophys Chem 2023; 296:106982. [PMID: 36868163 DOI: 10.1016/j.bpc.2023.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The formation of amyloid fibrils due to its association with fatal diseases, including Alzheimer's, has been investigated by many researchers. These common diseases, mostly become verified when it is too late to be treated. Currently, no cure is available for neurodegenerative diseases, and the process of diagnosing amyloid fibrils in the early stages, while there are fewer amyloid fibrils, has become an issue of interest. To do so, determining new probes with the highest binding affinity to the lowest number of amyloid fibrils is necessary. In this study, we proposed to employ new synthesized benzylidene-indandione derivatives as amyloid fibrils fluorescent detection probes. Native soluble proteins of insulin, bovine serum albumin (BSA), BSA amorphous aggregation, and insulin amyloid fibrils were used to evaluate our compounds' specificity to the amyloid structure. While ten synthesized compounds were examined individually, four of them including 3d, 3g, 3i, and 3j showed a high binding affinity with selectivity and specificity to amyloid fibrils, and their binding properties were also confirmed with in silico analysis. The drug-likeness prediction results for selected compounds by Swiss ADME server shows a satisfactory percentage of blood-brain barrier (BBB) permeability and gastrointestinal (GI) absorption for the compounds 3g, 3i, and 3j. More evaluation is needed to determine all properties of compounds in vitro and in vivo.
Collapse
Affiliation(s)
| | - Kimia Ahadi-Amandi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Ghanbari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Hayes JP, Pierce ME, Brown E, Salat D, Logue MW, Constantinescu J, Valerio K, Miller MW, Sherva R, Huber BR, Milberg W, McGlinchey R. Genetic Risk for Alzheimer Disease and Plasma Tau Are Associated With Accelerated Parietal Cortex Thickness Change in Middle-Aged Adults. Neurol Genet 2023; 9:e200053. [PMID: 36742995 PMCID: PMC9893442 DOI: 10.1212/nxg.0000000000200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 02/04/2023]
Abstract
Background and Objectives Neuroimaging and biomarker studies in Alzheimer disease (AD) have shown well-characterized patterns of cortical thinning and altered biomarker concentrations of tau and β-amyloid (Aβ). However, earlier identification of AD has great potential to advance clinical care and determine candidates for drug trials. The extent to which AD risk markers relate to cortical thinning patterns in midlife is unknown. The first objective of this study was to examine cortical thickness change associated with genetic risk for AD among middle-aged military veterans. The second objective was to determine the relationship between plasma tau and Aβ and change in brain cortical thickness among veterans stratified by genetic risk for AD. Methods Participants consisted of post-9/11 veterans (N = 155) who were consecutively enrolled in the Translational Research Center for TBI and Stress Disorders prospective longitudinal cohort and were assessed for mild traumatic brain injury (TBI) and posttraumatic disorder (PTSD). Genome-wide polygenic risk scores (PRSs) for AD were calculated using summary results from the International Genomics of Alzheimer's Disease Project. T-tau and Aβ40 and Aβ42 plasma assays were run using Simoa technology. Whole-brain MRI cortical thickness change estimates were obtained using the longitudinal stream of FreeSurfer. Follow-up moderation analyses examined the AD PRS × plasma interaction on change in cortical thickness in AD-vulnerable regions. Results Higher AD PRS, signifying greater genetic risk for AD, was associated with accelerated cortical thickness change in a right hemisphere inferior parietal cortex cluster that included the supramarginal gyrus, angular gyrus, and intraparietal sulcus. Higher tau, but not Aβ42/40 ratio, was associated with greater cortical thickness change among those with higher AD PRS. Mild TBI and PTSD were not associated with cortical thickness change. Discussion Plasma tau, particularly when combined with genetic stratification for AD risk, can be a useful indicator of brain change in midlife. Accelerated inferior parietal cortex changes in midlife may be an important factor to consider as a marker of AD-related brain alterations.
Collapse
Affiliation(s)
- Jasmeet Pannu Hayes
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Meghan E Pierce
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Emma Brown
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - David Salat
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Mark W Logue
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Julie Constantinescu
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Kate Valerio
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Mark W Miller
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Richard Sherva
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Bertrand Russell Huber
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - William Milberg
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| | - Regina McGlinchey
- Department of Psychology (J.P.H., K.V.), The Ohio State University, & Chronic Brain Injury Program, The Ohio State University, Columbus; Translational Research Center for TBI and Stress Disorders (TRACTS) (M.E.P., E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Department of Psychiatry (M.E.P., M.W.L., M.W.M., B.R.H.), Boston University School of Medicine, MA; Neuroimaging Research for Veterans (NeRVe) Center (E.B., D.S., J.C., W.M., R.M.), VA Boston Healthcare System, MA; Brain Aging and Dementia (BAnD) Laboratory (D.S.), A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown; National Center for PTSD (M.W.L., M.W.M., B.R.H.), Behavioral Sciences Division, VA Boston Healthcare System, MA; Boston University School of Medicine (M.W.L., R.S.), Biomedical Genetics, MA; Boston University School of Public Health (M.W.L.), Department of Biostatistics, MA; Department of Neurology (B.R.H.), Boston University School of Medicine, MA; Geriatric Research (W.M., R.M.), Education, and Clinical Center (GRECC), VA Boston Healthcare System, MA; and Department of Psychiatry (W.M., R.M.), Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Ball S, Adamson JSP, Sullivan MA, Zimmermann MR, Lo V, Sanz-Hernandez M, Jiang X, Kwan AH, McKenzie ADJ, Werry EL, Knowles TPJ, Kassiou M, Meisl G, Todd MH, Rutledge PJ, Sunde M. Perphenazine-Macrocycle Conjugates Rapidly Sequester the Aβ42 Monomer and Prevent Formation of Toxic Oligomers and Amyloid. ACS Chem Neurosci 2023; 14:87-98. [PMID: 36542544 PMCID: PMC9818246 DOI: 10.1021/acschemneuro.2c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease is imposing a growing social and economic burden worldwide, and effective therapies are urgently required. One possible approach to modulation of the disease outcome is to use small molecules to limit the conversion of monomeric amyloid (Aβ42) to cytotoxic amyloid oligomers and fibrils. We have synthesized modulators of amyloid assembly that are unlike others studied to date: these compounds act primarily by sequestering the Aβ42 monomer. We provide kinetic and nuclear magnetic resonance data showing that these perphenazine conjugates divert the Aβ42 monomer into amorphous aggregates that are not cytotoxic. Rapid monomer sequestration by the compounds reduces fibril assembly, even in the presence of pre-formed fibrillar seeds. The compounds are therefore also able to disrupt monomer-dependent secondary nucleation, the autocatalytic process that generates the majority of toxic oligomers. The inhibitors have a modular design that is easily varied, aiding future exploration and use of these tools to probe the impact of distinct Aβ42 species populated during amyloid assembly.
Collapse
Affiliation(s)
- Sarah
R. Ball
- School
of Medical Sciences, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Julius S. P. Adamson
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Michael A. Sullivan
- School
of Medical Sciences, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Manuela R. Zimmermann
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Victor Lo
- School
of Medical Sciences, The University of Sydney, Sydney, New South Wales2006, Australia
| | | | - Xiaofan Jiang
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Ann H. Kwan
- School
of Life and Environmental Sciences, The
University of Sydney, Sydney, New South Wales2006, Australia
| | - André D. J. McKenzie
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Eryn L. Werry
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
- Brain and
Mind Centre, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, CambridgeCB3 0HE, U.K.
| | - Michael Kassiou
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Georg Meisl
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, U.K.
| | - Matthew H. Todd
- School
of Pharmacy, University College London, LondonWC1N 1AX, U.K.
| | - Peter J. Rutledge
- School
of Chemistry, The University of Sydney, Sydney, New South Wales2006, Australia
| | - Margaret Sunde
- School
of Medical Sciences, The University of Sydney, Sydney, New South Wales2006, Australia
| |
Collapse
|
12
|
Tian J, Du E, Jia K, Wang T, Guo L, Zigman JM, Du H. Elevated Ghrelin Promotes Hippocampal Ghrelin Receptor Defects in Humanized Amyloid-β Knockin Mice During Aging. J Alzheimers Dis 2023; 96:1579-1592. [PMID: 38007666 PMCID: PMC10841720 DOI: 10.3233/jad-231002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Emerging evidence has revealed that dysregulation of the hormone ghrelin and its receptor, growth hormone secretagogue receptor (GHSR), contributes to the pathogenesis of Alzheimer's disease (AD). Specifically, defective GHSR function and resultant hippocampal ghrelin resistance are linked to hippocampal synaptic injury in AD paradigms. Also, AD patients exhibit elevated ghrelin activation. However, the detailed molecular mechanisms of hippocampal GHSR dysfunction and the relevance of ghrelin elevation to hippocampal ghrelin resistance in AD-relevant pathological settings are not fully understood. OBJECTIVE In the current study, we employed a recently established mouse line of AD risk [humanized amyloid beta knockin (hAβ KI mice), also referred to as a mouse model of late-onset AD in previous literature] to further define the role of ghrelin system dysregulation in the development of AD. METHODS We employed multidisciplinary techniques to determine the change of plasma ghrelin and the functional status of GHSR in hAβ KI mice as well as primary neuron cultures. RESULTS We observed concurrent plasma ghrelin elevation and hippocampal GHSR desensitization with disease progression. Further examination excluded the possibility that ghrelin elevation is a compensatory change in response to GHSR dysfunction. In contrast, further in vitro and in vivo results show that agonist-mediated overstimulation potentiates GHSR desensitization through enhanced GHSR internalization. CONCLUSIONS These findings suggest that circulating ghrelin elevation is a pathological event underlying hippocampal GHSR dysfunction, culminating in hippocampal ghrelin resistance and resultant synaptic injury in late-onset AD-related settings.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Eric Du
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
- Blue Valley West High School, Overland Park, KS, USA
| | - Kun Jia
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Jeffrey M. Zigman
- Department of Internal Medicine, Center for Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
- Alzheimer’s disease Research Center (ADRC), Department of Neurology, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
13
|
Shim Y. Follow-up Comparisons of Two Plasma Biomarkers of Alzheimer's Disease, Neurofilament Light Chain, and Oligomeric Aβ: A Pilot Study. Curr Alzheimer Res 2023; 20:715-724. [PMID: 38299421 DOI: 10.2174/0115672050284054240119101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND AND OBJECTIVE Recent evidence suggests that blood-based biomarkers might be useful for Alzheimer's disease (AD). Among them, we intend to investigate whether neurofilament light (NfL) and multimer detection system-oligomeric Aβ (MDS-OAβ) values can be useful in screening, predicting, and monitoring disease progression and how the relationship between NfL and MDS-OAβ values changes. METHODS Eighty participants with probable AD dementia, 50 with mild cognitive impairment (MCI), and 19 with subjective cognitive decline (SCD) underwent baseline and follow-up evaluations of the Mini-Mental Status Examination (MMSE) and both plasma biomarkers. RESULTS Baseline MDS-OAß (p = 0.016) and NfL (p = 0.002) plasma concentrations differed significantly among groups, but only NfL correlated with baseline MMSE scores (r = -0.278, p = 0.001). In follow-up, neither correlated with MMSE changes overall. However, in SCD and MCI participants (n = 32), baseline MDS-OAß correlated with follow-up MMSE scores (r = 0.532, p = 0.041). Linear regression revealed a relationship between baseline MDS-OAβ and follow-up MMSE scores. In SCD and MCI participants, plasma NfL changes correlated with MMSE changes (r = 0.564, p = 0.028). CONCLUSION This study shows that only in participants with SCD and MCI, not including AD dementia, can MDS-OAß predict the longitudinal cognitive decline measured by follow-up MMSE. Changes of NfL, not MDS-OAß, parallel the changes of MMSE. Further studies with larger samples and longer durations could strengthen these results..
Collapse
Affiliation(s)
- YongSoo Shim
- Department of Neurology, The Catholic University of Korea Eunpyeong St. Mary's Hospital, Seoul, Republic of Korea
| |
Collapse
|
14
|
Murray ME, Moloney CM, Kouri N, Syrjanen JA, Matchett BJ, Rothberg DM, Tranovich JF, Sirmans TNH, Wiste HJ, Boon BDC, Nguyen AT, Reichard RR, Dickson DW, Lowe VJ, Dage JL, Petersen RC, Jack CR, Knopman DS, Vemuri P, Graff-Radford J, Mielke MM. Global neuropathologic severity of Alzheimer's disease and locus coeruleus vulnerability influences plasma phosphorylated tau levels. Mol Neurodegener 2022; 17:85. [PMID: 36575455 PMCID: PMC9795667 DOI: 10.1186/s13024-022-00578-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/26/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Advances in ultrasensitive detection of phosphorylated tau (p-tau) in plasma has enabled the use of blood tests to measure Alzheimer's disease (AD) biomarker changes. Examination of postmortem brains of participants with antemortem plasma p-tau levels remains critical to understanding comorbid and AD-specific contribution to these biomarker changes. METHODS We analyzed 35 population-based Mayo Clinic Study of Aging participants with plasma p-tau at threonine 181 and threonine 217 (p-tau181, p-tau217) available within 3 years of death. Autopsied participants included cognitively unimpaired, mild cognitive impairment, AD dementia, and non-AD neurodegenerative disorders. Global neuropathologic scales of tau, amyloid-β, TDP-43, and cerebrovascular disease were examined. Regional digital pathology measures of tau (phosphorylated threonine 181 and 217 [pT181, pT217]) and amyloid-β (6F/3D) were quantified in hippocampus and parietal cortex. Neurotransmitter hubs reported to influence development of tangles (nucleus basalis of Meynert) and amyloid-β plaques (locus coeruleus) were evaluated. RESULTS The strongest regional associations were with parietal cortex for tau burden (p-tau181 R = 0.55, p = 0.003; p-tau217 R = 0.66, p < 0.001) and amyloid-β burden (p-tau181 R = 0.59, p < 0.001; p-tau217 R = 0.71, p < 0.001). Linear regression analysis of global neuropathologic scales explained 31% of variability in plasma p-tau181 (Adj. R2 = 0.31) and 59% in plasma p-tau217 (Adj. R2 = 0.59). Neither TDP-43 nor cerebrovascular disease global scales independently contributed to variability. Global scales of tau pathology (β-coefficient = 0.060, p = 0.016) and amyloid-β pathology (β-coefficient = 0.080, p < 0.001) independently predicted plasma p-tau217 when modeled together with co-pathologies, but only amyloid-β (β-coefficient = 0.33, p = 0.021) significantly predicted plasma p-tau181. While nucleus basalis of Meynert neuron count/mm2 was not associated with plasma p-tau levels, a lower locus coeruleus neuron count/mm2 was associated with higher plasma p-tau181 (R = -0.50, p = 0.007) and higher plasma p-tau217 (R = -0.55, p = 0.002). Cognitive scores (Adj. R2 = 0.25-0.32) were predicted by the global tau scale, but not by the global amyloid-β scale or plasma p-tau when modeled simultaneously. CONCLUSIONS Higher soluble plasma p-tau levels may be the result of an intersection between insoluble deposits of amyloid-β and tau accumulation in brain, and may be associated with locus coeruleus degeneration.
Collapse
Affiliation(s)
- Melissa E. Murray
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Christina M. Moloney
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jeremy A. Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Billie J. Matchett
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Darren M. Rothberg
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jessica F. Tranovich
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Tiffany N. Hicks Sirmans
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Heather J. Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
| | - Baayla D. C. Boon
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN USA
| | - Jeffrey L. Dage
- Department of Neurology, Indiana University, Indianapolis, IN USA
| | | | | | | | | | | | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN USA
- Wake Forest University School of Medicine, Winston-Salem, NC USA
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, 525 Vine, 5th floor, Winston-Salem, NC 27157 USA
| |
Collapse
|
15
|
Hanon O, Vidal JS, Lehmann S, Bombois S, Allinquant B, Baret-Rose C, Tréluyer JM, Abdoul H, Gelé P, Delmaire C, Blanc F, Mangin JF, Buée L, Touchon J, Hugon J, Vellas B, Galbrun E, Benetos A, Berrut G, Paillaud E, Wallon D, Castelnovo G, Volpe-Gillot L, Paccalin M, Robert P, Godefroy O, Camus V, Belmin J, Vandel P, Novella JL, Duron E, Rigaud AS, Schraen-Maschke S, Gabelle A. Plasma amyloid beta predicts conversion to dementia in subjects with mild cognitive impairment: The BALTAZAR study. Alzheimers Dement 2022; 18:2537-2550. [PMID: 35187794 DOI: 10.1002/alz.12613] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Blood-based biomarkers are the next challenge for Alzheimer's disease (AD) diagnosis and prognosis. METHODS Mild cognitive impairment (MCI) participants (N = 485) of the BALTAZAR study, a large-scale longitudinal multicenter cohort, were followed-up for 3 years. A total of 165 of them converted to dementia (95% AD). Associations of conversion and plasma amyloid beta (Aβ)1-42 , Aβ1-40 , Aβ1-42 /Aβ1-40 ratio were analyzed with logistic and Cox models. RESULTS Converters to dementia had lower level of plasma Aβ1-42 (37.1 pg/mL [12.5] vs. 39.2 [11.1] , P value = .03) and lower Aβ1-42 /Aβ1-40 ratio than non-converters (0.148 [0.125] vs. 0.154 [0.076], P value = .02). MCI participants in the highest quartile of Aβ1-42 /Aβ1-40 ratio (>0.169) had a significant lower risk of conversion (hazard ratio adjusted for age, sex, education, apolipoprotein E ε4, hippocampus atrophy = 0.52 (95% confidence interval [0.31-0.86], P value = .01). DISCUSSION In this large cohort of MCI subjects we identified a threshold for plasma Aβ1-42 /Aβ1-40 ratio that may detect patients with a low risk of conversion to dementia within 3 years.
Collapse
Affiliation(s)
- Olivier Hanon
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Université de Paris, EA 4468, APHP, Hopital Broca, Paris, France
| | - Jean-Sébastien Vidal
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Université de Paris, EA 4468, APHP, Hopital Broca, Paris, France
| | - Sylvain Lehmann
- CHU Montpellier, LBPC, Inserm, Université de Montpellier, Montpellier, France
| | - Stéphanie Bombois
- CHU Lille, U1172-LilNCog, LiCEND, LabEx DISTALZ, Université de Lille, Inserm, Lille, France
| | - Bernadette Allinquant
- UMR-S 1266, Université de Paris, Institute of Psychiatric and Neurosciences, Inserm, Paris, France
| | - Christiane Baret-Rose
- UMR-S 1266, Université de Paris, Institute of Psychiatric and Neurosciences, Inserm, Paris, France
| | - Jean-Marc Tréluyer
- Clinical Research Unit, Université de Paris, APHP, Hôpital Necker, Paris, France
| | - Hendy Abdoul
- Clinical Research Unit, Université de Paris, APHP, Hôpital Necker, Paris, France
| | - Patrick Gelé
- CHU Lille, CRB/CIC1403, Université de Lille, Inserm, Lille, France
| | - Christine Delmaire
- CHU Lille, U1172-LilNCog, LiCEND, LabEx DISTALZ, Université de Lille, Inserm, Lille, France
| | - Fredéric Blanc
- CM2R, pôle de Gériatrie, Laboratoire ICube, FMTS, CNRS, équipe IMIS, Université de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-François Mangin
- Neurospin, CEA, CNRS, cati-neuroimaging.com, CATI Multicenter Neuroimaging Platform, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Luc Buée
- CHU Lille, U1172-LilNCog, LiCEND, LabEx DISTALZ, Université de Lille, Inserm, Lille, France
| | - Jacques Touchon
- Department of Neurology, Memory Research and Resources Center of Montpellier, Inserm INM NeuroPEPs Team, Excellence Center of Neurodegenerative Disorders, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Jacques Hugon
- APHP, Groupe Hospitalier Saint Louis-Lariboisière Fernand Widal, Center of Cognitive Neurology, Université de Paris, Paris, France
| | - Bruno Vellas
- Memory Resource and Research Centre of Midi-Pyrénées, Université de Toulouse III, CHU La Grave-Casselardit, Toulouse, France
| | - Evelyne Galbrun
- Department of Gérontology 2, Sorbonne Université, APHP, Centre Hospitalier Dupuytren, Draveil, France
| | - Athanase Benetos
- Memory Resource and Research Centre of Lorraine, Université de Lorraine, CHRU de Nancy, Vandoeuvre-lès-Nancy, France
| | - Gilles Berrut
- Department of Clinical Gerontology, Memory Research Resource Center of Nantes, Université de Nantes, EA 4334 Movement-Interactions-Performance, CHU Nantes, Nantes, France
| | - Elena Paillaud
- Service de Gériatrie, Université de Paris, APHP, Hôpital Europeen Georges Pompidou, Paris, France
| | - David Wallon
- CHU de Rouen, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, CIC-CRB1404, Normandie Univ, UNIROUEN, Inserm U1245, Rouen, France
| | | | - Lisette Volpe-Gillot
- Service de Neuro-Psycho-Gériatrie, Memory Clinic, Hôpital Léopold Bellan, Paris, France
| | - Marc Paccalin
- Memory Resource and Research Centre of Poitiers, CHU de Poitiers, Poitiers, France
| | - Philippe Robert
- Memory Research Resource Center of Nice, CoBTek lab, Université Côte d'Azur, CHU de Nice, Nice, France
| | - Olivier Godefroy
- Memory Resource and Research Centre of Amiens Picardie, CHU d'Amiens-Picardie, Amiens, France
| | - Vincent Camus
- CHRU de Tours, UMR Inserm U1253, Université François-Rabelais de Tours, Tours, France
| | - Joël Belmin
- Service de Gériatrie Ambulatoire, Sorbonne Université, APHP, Hôpitaux Universitaires Pitie-Salpêtrière-Charles Foix, Paris, France
| | - Pierre Vandel
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, CHU de Besançon, Memory Resource and Research Centre of Besançon Franche-Comté, Université Bourgogne Franche-Comté, Besançon, France
| | - Jean-Luc Novella
- Memory Resource and Research Centre of Champagne-Ardenne, Université de Reims Champagne-Ardenne, EA 3797, CHU de Reims, Reims, France
| | - Emmanuelle Duron
- Département de gériatrie, Équipe MOODS, Inserm 1178, Université Paris-Saclay, APHP, Hôpital Paul Brousse, Villejuif, France
| | - Anne-Sophie Rigaud
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Université de Paris, EA 4468, APHP, Hopital Broca, Paris, France
| | | | - Audrey Gabelle
- Department of Neurology, Memory Research and Resources Center of Montpellier, Inserm INM NeuroPEPs Team, Excellence Center of Neurodegenerative Disorders, Université de Montpellier, CHU Montpellier, Montpellier, France
| | | |
Collapse
|
16
|
Gamez N, Bravo-Alegria J, Huang Y, Perez-Urrutia N, Dongarwar D, Soto C, Morales R. Altering Brain Amyloidosis by Intra-Lingual and Extra-Nasal Exposure of Aβ Aggregates. Cells 2022; 11:3442. [PMID: 36359840 PMCID: PMC9654398 DOI: 10.3390/cells11213442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 10/13/2023] Open
Abstract
Extensive experimental and human-derived evidence suggest that misfolded Aβ particles spread similarly to infectious prions. Moreover, peripheral administration of Aβ seeds accelerates brain amyloidosis in both susceptible experimental animals and humans. The mechanisms and elements governing the transport of misfolded Aβ from the periphery to the brain are not fully understood, although circulation and retrograde axonal transport have been proposed. Here, we demonstrate that injection of Aβ seeds in the tongue, a highly innervated organ, substantially accelerates the appearance of plaques in Tg2576 mice. In addition, the extra-nasal exposure of Aβ aggregates increased amyloid pathology in the olfactory bulb. Our results show that exposing highly innervated tissues to Aβ seeds accelerates AD-like pathological features, and suggest that Aβ seeds can be transported from peripheral compartments to the brain by retrograde axonal transport. Research in this direction may be relevant on different fronts, including disease mechanisms, diagnosis, and risk-evaluation of potential iatrogenic transmission of Aβ misfolding.
Collapse
Affiliation(s)
- Nazaret Gamez
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad of Malaga, 29010 Malaga, Spain
| | - Javiera Bravo-Alegria
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago 7620001, Chile
| | - Yumeng Huang
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Nelson Perez-Urrutia
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1456, Concepcion 4080871, Chile
| | - Deepa Dongarwar
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| |
Collapse
|
17
|
Urayama A, Moreno-Gonzalez I, Morales-Scheihing D, Kharat V, Pritzkow S, Soto C. Preventive and therapeutic reduction of amyloid deposition and behavioral impairments in a model of Alzheimer's disease by whole blood exchange. Mol Psychiatry 2022; 27:4285-4296. [PMID: 35835859 PMCID: PMC10601825 DOI: 10.1038/s41380-022-01679-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the major form of dementia in the elderly population. The main neuropathological changes in AD patients are neuronal death, synaptic alterations, brain inflammation, and the presence of cerebral protein aggregates in the form of amyloid plaques and neurofibrillary tangles. Compelling evidence suggests that the misfolding, aggregation, and cerebral deposition of amyloid-beta (Aβ) plays a central role in the disease. Thus, prevention and removal of misfolded protein aggregates is considered a promising strategy to treat AD. In the present study, we describe that the development of cerebral amyloid plaques in a transgenic mice model of AD (Tg2576) was significantly reduced by 40-80% through exchanging whole blood with normal blood from wild type mice having the same genetic background. Importantly, such reduction resulted in improvement in spatial memory performance in aged Tg2576 mice. The exact mechanism by which blood exchange reduces amyloid pathology and improves memory is presently unknown, but measurements of Aβ in plasma soon after blood exchange suggest that mobilization of Aβ from the brain to blood may be implicated. Our results suggest that a target for AD therapy may exist in the peripheral circulation, which could open a novel disease-modifying intervention for AD.
Collapse
Affiliation(s)
- Akihiko Urayama
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Ines Moreno-Gonzalez
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Málaga, Spain
| | - Diego Morales-Scheihing
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vineetkumar Kharat
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
18
|
Chohan P, Dashwood M, Theodoulou G, Reed H, Kuruvilla T. Blood‐based biomarkers for Alzheimer's disease. PROGRESS IN NEUROLOGY AND PSYCHIATRY 2022. [DOI: 10.1002/pnp.764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Priyanka Chohan
- Priyanka Chohan is a Physician Associate in Child and Adolescent Mental health Services (CAMHS) at Leicester Partnership NHS Trust
| | - Mark Dashwood
- Dr Dashwood is an Old Age Psychiatry Registrar at Gloucestershire Health and Care (GHC) NHS Foundation Trust
| | - George Theodoulou
- Dr Theodoulou is a Honorary Senior Lecturer at University of Worcester; Dr Reed is a course leader and lecturer on the MSc Physician Associate course at University of Worcester
| | - Hannah Reed
- Dr Theodoulou is a Honorary Senior Lecturer at University of Worcester; Dr Reed is a course leader and lecturer on the MSc Physician Associate course at University of Worcester
| | - Tarun Kuruvilla
- Professor Kuruvilla is a Consultant Psychiatrist at GHC and Visiting Professor with the School of Health & Social Care at the University of Gloucestershire
| |
Collapse
|
19
|
The Effects of Spirulina maxima Extract on Memory Improvement in Those with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2022; 14:nu14183714. [PMID: 36145090 PMCID: PMC9505028 DOI: 10.3390/nu14183714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Spirulina maxima is a marine microalga that has been promoted worldwide as a super food. This study was conducted to evaluate its ability to improve memory in the older adults using Spirulina maxima 70% ethanol extract (SM70EE). This randomized, double-blind, placebo-controlled clinical trial comprised 80 volunteers recruited from Jeonbuk National University Hospital in Jeonju, Republic of Korea, who were randomly assigned to two groups. The participants received either 1 g/day of SM70EE or a placebo without otherwise changing their diet or physical activity. The participants were examined at baseline and after a 12-week interval to determine whether there were changes in their results for visual learning, visual working memory, and verbal learning tests from the Korean version of the Montreal Cognitive Assessment, brain-derived neurotrophic factor and beta-amyloid levels, and total antioxidant capacity. Compared to the placebo group, the treatment group showed a significant improvement in visual learning and visual working memory test results and enhanced vocabulary. SM70EE use was shown to improve memory, with no adverse effects. Its efficacy in alleviating Alzheimer’s disease symptoms was verified for the first time through this clinical trial. SM70EE could play a role in the management of patients with dementia. This trial is registered with registration number of clinical research information service (CRIS: KCT0006161).
Collapse
|
20
|
Huang Y, Li Y, Xie F, Guo Q. Associations of plasma phosphorylated tau181 and neurofilament light chain with brain amyloid burden and cognition in objectively defined subtle cognitive decline patients. CNS Neurosci Ther 2022; 28:2195-2205. [PMID: 36074638 PMCID: PMC9627371 DOI: 10.1111/cns.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS There is increasing evidence that plasma biomarkers are specific biomarkers for Alzheimer's disease (AD) pathology, but their potential utility in Obj-SCD (objectively defined subtle cognitive decline) remains unclear. METHODS A total of 234 subjects, including 65 with brain amyloid beta (Aβ) negative normal cognition (Aβ- NC), 58 with Aβ-positive NC (Aβ+ NC), 63 with Aβ- Obj-SCD, and 48 with Aβ+ Obj-SCD were enrolled. Plasma Aβ42, Aβ40, Aβ42/Aβ40 ratio, phosphorylated tau181 (p-tau181), neurofilament light chain (NfL), and total tau (T-tau) were measured using Simoa assays. Logistic and linear regression analyses were used to examine the relationship between plasma biomarkers and brain amyloid, cognition, and imaging measures adjusting for age, sex, education, APOE ε4 status, and vascular risk scores. Receiver operating characteristics were used to evaluate the discriminative validity of biomarkers. RESULTS After adjustment, only plasma p-tau181 and NfL were significantly elevated in Aβ+ Obj-SCD participants compared to Aβ- NC group. Elevated p-tau181 was associated with brain amyloid accumulation, worse cognitive performance (visual episodic memory, executive function, and visuospatial function), and hippocampal atrophy. These associations mainly occurred in Aβ+ individuals. In contrast, higher NfL was correlated with brain amyloid burden and verbal memory decline. These associations predominantly occurred in Aβ- individuals. The adjusted diagnostic model combining p-tau181 and NfL levels showed the best performance in identifying Aβ+ Obj-SCD from Aβ- NC [area under the curve (AUC) = 0.814], which did not differ from the adjusted p-tau181 model (AUC = 0.763). CONCLUSIONS Our findings highlight that plasma p-tau181, alone or combined with NfL, contributes to identifying high-risk AD populations.
Collapse
Affiliation(s)
- Yanlu Huang
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yuehua Li
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Fang Xie
- PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
21
|
Fathian A, Jamali Y, Raoufy MR. The trend of disruption in the functional brain network topology of Alzheimer's disease. Sci Rep 2022; 12:14998. [PMID: 36056059 PMCID: PMC9440254 DOI: 10.1038/s41598-022-18987-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2022] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive disorder associated with cognitive dysfunction that alters the brain's functional connectivity. Assessing these alterations has become a topic of increasing interest. However, a few studies have examined different stages of AD from a complex network perspective that cover different topological scales. This study used resting state fMRI data to analyze the trend of functional connectivity alterations from a cognitively normal (CN) state through early and late mild cognitive impairment (EMCI and LMCI) and to Alzheimer's disease. The analyses had been done at the local (hubs and activated links and areas), meso (clustering, assortativity, and rich-club), and global (small-world, small-worldness, and efficiency) topological scales. The results showed that the trends of changes in the topological architecture of the functional brain network were not entirely proportional to the AD progression. There were network characteristics that have changed non-linearly regarding the disease progression, especially at the earliest stage of the disease, i.e., EMCI. Further, it has been indicated that the diseased groups engaged somatomotor, frontoparietal, and default mode modules compared to the CN group. The diseased groups also shifted the functional network towards more random architecture. In the end, the methods introduced in this paper enable us to gain an extensive understanding of the pathological changes of the AD process.
Collapse
Affiliation(s)
- Alireza Fathian
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Science, Tarbiat Modares University, Tehran, Iran
| | - Yousef Jamali
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Science, Tarbiat Modares University, Tehran, Iran.
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany.
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Sapkota S, Erickson K, Harvey D, Tomaszewski‐Farias SE, Olichney JM, Johnson DK, Dugger BN, Mungas DM, Fletcher E, Maillard P, Seshadri S, Satizabal CL, Kautz T, Parent D, Tracy RP, Maezawa I, Jin L, DeCarli C. Plasma biomarkers predict cognitive trajectories in an ethnoracially and clinically diverse cohort: Mediation with hippocampal volume. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12349. [PMID: 36092690 PMCID: PMC9434579 DOI: 10.1002/dad2.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 06/26/2022] [Indexed: 11/11/2022]
Abstract
Introduction We examine whether the association between key plasma biomarkers (amyloid β [aβ] 42/40, total tau (t-tau), neurofilament light [NfL]) and cognitive trajectories (executive function [EF] and episodic memory [EM]) is mediated through neurodegeneration. Methods All participants were recruited from the University of California, Davis-Alzheimer's Disease Research Center (n = 473; baseline age range = 49-95 years, 60% women). We applied an accelerated longitudinal design to test latent growth models for EF and EM, and path and mediation analyses. Age was centered at 75 years, and all models were adjusted for sex, education, and ethnicity. Results HV differentially mediated the association aβ 42/40 and NfL on EF and EM level and change. Hippocampal volume (HV) did not mediate the association between t-tau and cognitive performance. Discussion Neurodegeneration as represented with HV selectively mediates the association between key non-invasive plasma biomarkers and cognitive trajectories in an ethnoracially and clinically diverse community-based sample.
Collapse
Affiliation(s)
- Shraddha Sapkota
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Kelsey Erickson
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Danielle Harvey
- Department of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | | | - John M. Olichney
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - David K. Johnson
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Brittany N. Dugger
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Dan M. Mungas
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Evan Fletcher
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Pauline Maillard
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and Department of Population Health SciencesUT Health San AntonioSan AntonioTexasUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and Department of Population Health SciencesUT Health San AntonioSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Tiffany Kautz
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and Department of Population Health SciencesUT Health San AntonioSan AntonioTexasUSA
| | - Danielle Parent
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVermontUSA
| | - Russell P. Tracy
- Department of Pathology and Laboratory MedicineUniversity of VermontBurlingtonVermontUSA
| | - Izumi Maezawa
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Lee‐Way Jin
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Charles DeCarli
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
23
|
Huang LC, Chen MH, Chuu CP, Li KY, Hour TC, Yang YH. Plasma biomarkers and their correlation in adult children of parents with Alzheimer’s disease. Front Aging Neurosci 2022; 14:977515. [PMID: 36110426 PMCID: PMC9468332 DOI: 10.3389/fnagi.2022.977515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Family history (FH) of late-onset Alzheimer’s disease (AD) is associated with changes in several cerebrospinal fluid (CSF) biomarkers in cognitively normal individuals. However, potential changes in plasma biomarkers remain unknown. This study aimed to evaluate potential plasma biomarkers and their correlation in cognitively normal adult children (AC) and to compare this data with their AD parents and unrelated non-demented controls (NC). Participants with dementia due to AD, their AC and NC were recruited. Plasma samples were assessed for amyloid beta (Aβ)1–42, Aβ1–40, total tau (T-tau) and phosphorylated tau (P-tau). Kruskal–Wallis test was used for the comparison of this data between the three groups. Spearman rank correlation was used for evaluation of the correlations between Aβ1–40 and Aβ1–42, and T-tau and P-tau in the AD and AC groups. A total of 99 subjects completed the assessment (30 had AD; 38 were AC group; and 31 were NC). Compared with the NC group, there were significantly higher levels of Aβ1–40, P-tau, and P-tau/T-tau ratio, and lower levels of Aβ1–42 and Aβ1–42/Aβ1–40 ratio in the AD and AC groups. The correlation between the level of Aβ1–42 and Aβ1–40 and level of T-tau and P-tau was only observed in the AC but not in the AD group. AC of AD parents demonstrate some indicators of AD like their parents. Disruption to the correlation between Aβ and tau in AD may be a biomarker for the development of AD in AC, which should be examined in a longitudinal cohort.
Collapse
Affiliation(s)
- Ling-Chun Huang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Ming-Hui Chen
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Kuan-Ying Li
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Tzyh-Chyuan Hour
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
24
|
Piccarducci R, Caselli MC, Zappelli E, Ulivi L, Daniele S, Siciliano G, Ceravolo R, Mancuso M, Baldacci F, Martini C. The Role of Amyloid-β, Tau, and α-Synuclein Proteins as Putative Blood Biomarkers in Patients with Cerebral Amyloid Angiopathy. J Alzheimers Dis 2022; 89:1039-1049. [PMID: 35964181 DOI: 10.3233/jad-220216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder characterized by the deposition of amyloid-β protein (Aβ) within brain blood vessels that develops in elderly people and Alzheimer's disease (AD) patients. Therefore, the investigation of biomarkers able to differentiate CAA patients from AD patients and healthy controls (HC) is of great interest, in particular in peripheral fluids. OBJECTIVE The current study aimed to detect the neurodegenerative disease (ND)-related protein (i.e., Aβ 1 - 40, Aβ 1 - 42, tau, and α-synuclein) levels in both red blood cells (RBCs) and plasma of CAA patients and HC, evaluating their role as putative peripheral biomarkers for CAA. METHODS For this purpose, the proteins' concentration was quantified in RBCs and plasma by homemade immunoenzymatic assays in an exploratory cohort of 20 CAA patients and 20 HC. RESULTS The results highlighted a significant increase of Aβ 1 - 40 and α-synuclein concentrations in both RBCs and plasma of CAA patients, while higher Aβ 1 - 42 and t-tau levels were detected only in RBCs of CAA individuals compared to HC. Moreover, Aβ 1 - 42/Aβ 1 - 40 ratio increased in RBCs and decreased in plasma of CAA patients. The role of these proteins as candidate peripheral biomarkers easily measurable with a blood sample in CAA needs to be confirmed in larger studies. CONCLUSION In conclusion, we provide evidence concerning the possible use of blood biomarkers for contributing to CAA diagnosis and differentiation from other NDs.
Collapse
Affiliation(s)
| | - Maria Chiara Caselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Leonardo Ulivi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
25
|
Rai H, Gupta S, Kumar S, Yang J, Singh SK, Ran C, Modi G. Near-Infrared Fluorescent Probes as Imaging and Theranostic Modalities for Amyloid-Beta and Tau Aggregates in Alzheimer's Disease. J Med Chem 2022; 65:8550-8595. [PMID: 35759679 DOI: 10.1021/acs.jmedchem.1c01619] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A person suspected of having Alzheimer's disease (AD) is clinically diagnosed for the presence of principal biomarkers, especially misfolded amyloid-beta (Aβ) and tau proteins in the brain regions. Existing radiotracer diagnostic tools, such as PET imaging, are expensive and have limited availability for primary patient screening and pre-clinical animal studies. To change the status quo, small-molecular near-infrared (NIR) probes have been rapidly developed, which may serve as an inexpensive, handy imaging tool to comprehend the dynamics of pathogenic progression in AD and assess therapeutic efficacy in vivo. This Perspective summarizes the biochemistry of Aβ and tau proteins and then focuses on structurally diverse NIR probes with coverages of their spectroscopic properties, binding affinity toward Aβ and tau species, and theranostic effectiveness. With the summarized information and perspective discussions, we hope that this paper may serve as a guiding tool for designing novel in vivo imaging fluoroprobes with theranostic capabilities in the future.
Collapse
Affiliation(s)
- Himanshu Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Sarika Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Jian Yang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sushil K Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| |
Collapse
|
26
|
Rippon B, Palta P, Tahmi M, Sherwood G, Soto L, Cespedes S, Mesen Y, He H, Laing K, Moreno H, Teresi J, Razlighi Q, Brickman AM, Zetterberg H, Luchsinger JA. Plasma Amyloid and in vivo Brain Amyloid in Late Middle-Aged Hispanics. J Alzheimers Dis 2022; 87:1229-1238. [PMID: 35466933 PMCID: PMC10361456 DOI: 10.3233/jad-210391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Determining amyloid positivity is possible with cerebrospinal fluid and brain imaging of amyloid, but these methods are invasive and expensive. OBJECTIVE To relate plasma amyloid-β (Aβ), measured using Single-molecule array (Simoatrademark) assays, to in vivo brain Aβ, measured using positron emission tomography (PET), examine the accuracy of plasma Aβ to predict brain Aβ positivity, and the relation of APOE ɛ4 with plasma Aβ. METHODS We performed a cross-sectional analysis in a cohort of 345 late middle-aged Hispanic men and women (age 64 years, 72% women). Our primary plasma variable was Aβ42/Aβ40 ratio measured with Simoa. Brain Aβ burden was measured as global SUVR with 18F-Florbetaben PET examined continuously and categorically. RESULTS Plasma Aβ42/Aβ40 ratio was inversely associated with global Aβ SUVR (β= -0.13, 95% Confidence Interval (CI): -0.23, -0.03; p = 0.013) and Aβ positivity (Odds Ratio: 0.59, 95% CI: 0.38, 0.91; p = 0.016), independent of demographics and APOE ɛ4. ROC curves (AUC = 0.73, 95% CI: 0.64, 0.82; p < 0.0001) showed that the optimal threshold for plasma Aβ42/Aβ40 ratio in relation to brain Aβ positivity was 0.060 with a sensitivity of 82.4% and specificity of 62.8%. APOE ɛ4 carriers had lower Aβ42/Aβ40 ratio and a higher Aβ positivity determined with the Aβ42/Aβ40 ratio threshold of 0.060. CONCLUSION Plasma Aβ42/Aβ40 ratio assayed using Simoa is weakly correlated with in vivo brain amyloid and has limited accuracy in screening for amyloid positivity and for studying risk factors of brain amyloid burden when in vivo imaging is not feasible.
Collapse
Affiliation(s)
- Brady Rippon
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Priya Palta
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY, USA.,Department of Epidemiology, Joseph P. Mailman School of Public Health, CUIMC, New York, NY, USA
| | - Mouna Tahmi
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Greysi Sherwood
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Luisa Soto
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Sandino Cespedes
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Yanette Mesen
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Hengda He
- Department of Neurology, College of Physicians and Surgeons, CUIMC, New York, NY, USA
| | - Krystal Laing
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, CUIMC, New York, NY, USA
| | - Herman Moreno
- Department of Neurology and Pharmacology/Physiology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Jeanne Teresi
- Research Division, Hebrew Home in Riverdale, Bronx, NY, USA
| | - Qolamreza Razlighi
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Adam M Brickman
- Department of Neurology, College of Physicians and Surgeons, CUIMC, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, CUIMC, New York, NY, USA.,Gertrude H. Sergievsky Center, CUIMC, New York, NY, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - José A Luchsinger
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY, USA.,Department of Epidemiology, Joseph P. Mailman School of Public Health, CUIMC, New York, NY, USA
| |
Collapse
|
27
|
Li K, Qu H, Ma M, Xia C, Cai M, Han F, Zhang Q, Gu X, Ma Q. Correlation Between Brain Structure Atrophy and Plasma Amyloid-β and Phosphorylated Tau in Patients With Alzheimer’s Disease and Amnestic Mild Cognitive Impairment Explored by Surface-Based Morphometry. Front Aging Neurosci 2022; 14:816043. [PMID: 35547625 PMCID: PMC9083065 DOI: 10.3389/fnagi.2022.816043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022] Open
Abstract
ObjectiveTo investigate the changes in the cortical thickness of the region of interest (ROI) and plasma Aβ40, Aβ42, and phosphorylated Tau (P-Tau) concentrations in patients with Alzheimer’s disease (AD) and amnestic mild cognitive impairment (aMCI) as the disease progressed with surface-based morphometry (SBM), to analyze the correlation between ROI cortical thickness and measured plasma indexes and neuropsychological scales, and to explore the clinical value of ROI cortical thickness combined with plasma Aβ40, Aβ42, and P-Tau in the early recognition and diagnosis of AD.MethodsThis study enrolled 33 patients with AD, 48 patients with aMCI, and 33 healthy controls (normal control, NC). Concentration changes in plasma Aβ42, Aβ40, and P-Tau collected in each group were analyzed. Meanwhile, the whole brain T1 structure images (T1WI-3D-MPRAGE) of each group of patients were collected, and T1 image in AD-aMCI, AD-NC, and aMCI-NC group were analyzed and processed by SBM technology to obtain brain regions with statistical differences as clusters, and the cortical thickness of each cluster was extracted. Multivariate ordered logistic regression analysis was used to screen out the measured plasma indexes and the indexes with independent risk factors in the cortical thickness of each cluster. Three comparative receiver operating characteristic (ROC) curves of AD-aMCI, AD-NC, and aMCI-NC groups were plotted, respectively, to explore the diagnostic value of multi-factor combined prediction for cognitive impairment. The relationship between cortical thickness and plasma indexes, and between cortical thickness and Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores were clarified by Pearson correlation analysis.ResultsPlasma Aβ40, Aβ42, and P-Tau proteins in the NC, aMCI, and AD groups increased with the progression of AD (P < 0.01); cortical thickness reductions in the AD-aMCI groups and AD-NC groups mainly involved the bilateral superior temporal gyrus, transverse temporal gyrus, superior marginal gyrus, insula, right entorhinal cortex, right fusiform gyrus, and cingulate gyrus. However, there were no statistical significances in cortical thickness reductions in the aMCI and NC groups. The cortical thickness of the ROI was negatively correlated with plasma Aβ40, Aβ42, and P-Tau concentrations (P < 0.05), and the cortical thickness of the ROI was positively correlated with MMSE and MoCA scores. Independent risk factors such as Aβ40, Aβ42, P-Tau, and AD-NC cluster 1R (right superior temporal gyrus, temporal pole, entorhinal cortex, transverse temporal gyrus, fusiform gyrus, superior marginal gyrus, middle temporal gyrus, and inferior temporal gyrus) were combined to plot ROC curves. The diagnostic efficiency of plasma indexes was higher than that of cortical thickness indexes, the diagnostic efficiency of ROC curves after the combination of cortical thickness and plasma indexes was higher than that of cortical thickness or plasma indexes alone.ConclusionPlasma Aβ40, Aβ42, and P-Tau may be potential biomarkers for early prediction of AD. As the disease progressed, AD patients developed cortical atrophy characterized by atrophy of the medial temporal lobe. The combined prediction of these region and plasma Aβ40, Aβ42, and P-Tau had a higher diagnostic value than single-factor prediction for cognitive decline.
Collapse
Affiliation(s)
- Kaidi Li
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hang Qu
- Department of Imaging, Yangzhou First People’s Hospital, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Mingyi Ma
- Department of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Chenyu Xia
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ming Cai
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Fang Han
- Department of Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Qing Zhang
- Department of Imaging, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xinyi Gu
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Qiang Ma
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Qiang Ma,
| |
Collapse
|
28
|
McKay NS, Dincer A, Mehrotra V, Aschenbrenner AJ, Balota D, Hornbeck RC, Hassenstab J, Morris JC, Benzinger TLS, Gordon BA. Beta-amyloid moderates the relationship between cortical thickness and attentional control in middle- and older-aged adults. Neurobiol Aging 2022; 112:181-190. [PMID: 35227946 PMCID: PMC9208719 DOI: 10.1016/j.neurobiolaging.2021.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022]
Abstract
Although often unmeasured in studies of cognition, many older adults possess Alzheimer disease (AD) pathologies such as beta-amyloid (Aβ) deposition, despite being asymptomatic. We were interested in examining whether the behavior-structure relationship observed in later life was altered by the presence of preclinical AD pathology. A total of 511 cognitively unimpaired adults completed magnetic resonance imaging and three attentional control tasks; a subset (n = 396) also underwent Aβ-positron emissions tomography. A vertex-wise model was conducted to spatially represent the relationship between cortical thickness and average attentional control accuracy, while moderation analysis examined whether Aβ deposition impacted this relationship. First, we found that reduced cortical thickness in temporal, medial- and lateral-parietal, and dorsolateral prefrontal cortex, predicted worse performance on the attention task composite. Subsequent moderation analyses observed that levels of Aβ significantly influence the relationship between cortical thickness and attentional control. Our results support the hypothesis that preclinical AD, as measured by Aβ deposition, is partially driving what would otherwise be considered general aging in a cognitively normal adult population.
Collapse
Affiliation(s)
- Nicole S McKay
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO.
| | - Aylin Dincer
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO
| | | | - Andrew J Aschenbrenner
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO; Department of Neurology, Washington School of Medicine, St. Louis, MO
| | - David Balota
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO; Department of Psychological and Brain Sciences, Washington University in St. Louis, MO
| | - Russ C Hornbeck
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO
| | - Jason Hassenstab
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO; Department of Neurology, Washington School of Medicine, St. Louis, MO; Department of Psychological and Brain Sciences, Washington University in St. Louis, MO
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO; Department of Neurology, Washington School of Medicine, St. Louis, MO
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO
| | - Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO; Department of Psychological and Brain Sciences, Washington University in St. Louis, MO
| |
Collapse
|
29
|
Li TR, Yang Q, Hu X, Han Y. Biomarkers and Tools for Predicting Alzheimer's Disease in the Preclinical Stage. Curr Neuropharmacol 2022; 20:713-737. [PMID: 34030620 PMCID: PMC9878962 DOI: 10.2174/1570159x19666210524153901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the only leading cause of death for which no disease-modifying therapy is currently available. Over the past decade, a string of disappointing clinical trial results has forced us to shift our focus to the preclinical stage of AD, which represents the most promising therapeutic window. However, the accurate diagnosis of preclinical AD requires the presence of brain β- amyloid deposition determined by cerebrospinal fluid or amyloid-positron emission tomography, significantly limiting routine screening and diagnosis in non-tertiary hospital settings. Thus, an easily accessible marker or tool with high sensitivity and specificity is highly needed. Recently, it has been discovered that individuals in the late stage of preclinical AD may not be truly "asymptomatic" in that they may have already developed subtle or subjective cognitive decline. In addition, advances in bloodderived biomarker studies have also allowed the detection of pathologic changes in preclinical AD. Exosomes, as cell-to-cell communication messengers, can reflect the functional changes of their source cell. Methodological advances have made it possible to extract brain-derived exosomes from peripheral blood, making exosomes an emerging biomarker carrier and liquid biopsy tool for preclinical AD. The eye and its associated structures have rich sensory-motor innervation. In this regard, studies have indicated that they may also provide reliable markers. Here, our report covers the current state of knowledge of neuropsychological and eye tests as screening tools for preclinical AD and assesses the value of blood and brain-derived exosomes as carriers of biomarkers in conjunction with the current diagnostic paradigm.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Qin Yang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xiaochen Hu
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, 50924, Germany
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China;,Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China;,National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China;,School of Biomedical Engineering, Hainan University, Haikou, 570228, China;,Address correspondence to this author at the Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China; Tel: +86 13621011941; E-mail:
| |
Collapse
|
30
|
Heshmatollah A, Fani L, Koudstaal PJ, Ghanbari M, Ikram MA, Ikram MK. Plasma Amyloid Beta, Total-Tau and Neurofilament Light Chain Levels and the Risk of Stroke: A Prospective Population-Based Study. Neurology 2022; 98:e1729-e1737. [PMID: 35232820 DOI: 10.1212/wnl.0000000000200004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To unravel whether Alzheimer's disease-related pathology or neurodegeneration play a role in stroke etiology, we determined the effect of plasma levels amyloid β (Aβ), total-tau and neurofilament light chain (NfL) on risk of stroke and its subtypes. METHODS Between 2002 and 2005, we measured plasma Aβ40, Aβ42, total-tau, and NfL in 4,661 stroke-free participants from the population-based Rotterdam Study. We used Cox proportional-hazards models to determine the association between these markers with incident stroke for the entire cohort, per stroke subtype, and by median age, sex, Apolipoprotein E (APOE) ε4 carriership, and education. RESULTS After a mean follow-up of 10.8 ± 3.3 years, 379 participants suffered a first-ever stroke. Log2 total-tau at baseline showed a non-linear association with risk of any stroke and ischemic stroke: compared to the first (lowest) quartile the adjusted hazard ratio for the highest quartile total-tau was 1.68, 95% CI: 1.18-2.40 for any stroke. Log2 NfL was associated with an increased risk of any stroke (HR per SD increase 1.27, 95% CI: 1.12-1.44), ischemic stroke, and hemorrhagic stroke (HR 1.56, 95% CI: 1.14-2.12). Log2 Aβ40, Aβ42, and Aβ42/40 ratio levels were not associated with stroke risk.Discussion Participants with higher total-tau and NfL at baseline had a higher risk of stroke and several stroke subtypes. These findings support the role of markers of neurodegeneration in the etiology of stroke. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that higher plasma levels of total-tau and NfL are associated with an increased risk of subsequent stroke.
Collapse
Affiliation(s)
- Alis Heshmatollah
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Lana Fani
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
31
|
Lee J, Kwon S, Jin C, Cho SY, Park SU, Jung WS, Moon SK, Park JM, Ko CN, Cho KH. Traditional East Asian Herbal Medicine Treatment for Alzheimer's Disease: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2022; 15:174. [PMID: 35215287 PMCID: PMC8874541 DOI: 10.3390/ph15020174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a leading progressive neurodegenerative disease worldwide, and its treatment is a challenging clinical problem. This review was conducted to evaluate the efficacy and safety of herbal medicine for AD treatment. The PubMed, CENTRAL, EMBASE, CNKI, OASIS, KTKP, and CiNii databases were searched until June 2020 for randomized controlled trials (RCTs) on herbal medicine for AD, and a meta-analysis of 57 RCTs was conducted. For cognitive function, herbal medicine significantly improved the Mini-Mental State Examination (MMSE) and AD Assessment Scale-Cognitive Subscale (ADAS-cog) scores compared with conventional medicine. The MMSE scores showed no significant difference between the groups treated with herbal medicine and donepezil; however, herbal medicine significantly lowered the ADAS-cog score. Acori Graminei Rhizoma-containing and Cnidii Rhizoma-containing herbal medicine significantly improved the MMSE and ADAS-cog scores compared with conventional medicine. Ginseng Radix-containing herbal medicine showed a positive, but not statistically significant, tendency toward improving the MMSE score compared with conventional medicine. Herbal medicine with conventional medicine significantly improved the MMSE, ADAS-cog, and Montreal Cognitive Assessment (MoCA) scores compared with conventional medicine, and herbal medicine with donepezil also significantly improved these scores compared with donepezil. Acori Graminei Rhizoma or Cnidii Rhizoma-containing herbal medicine with conventional medicine significantly improved the MMSE and ADAS-cog scores compared with conventional medicine. Ginseng Radix-containing herbal medicine + conventional medicine significantly improved the MMSE score, but not the ADAS-cog score, compared with conventional medicine. For behavioral and psychological symptoms of dementia, the Neuropsychiatry Inventory (NPI) score was not significantly different between herbal and conventional medicines. Herbal medicine with conventional medicine significantly improved the NPI and Behavioral Pathology in Alzheimer's Disease Rating Scale scores compared with conventional medicine. The NPI score showed no significant difference between the groups treated with herbal medicine and placebo. Furthermore, herbal medicine with conventional medicine significantly lowered plasma amyloid beta levels compared with conventional medicine alone. Herbal medicine, whether used alone or as an adjuvant, may have beneficial effects on AD treatment. However, owing to the methodological limitations and high heterogeneity of the included studies, concrete conclusions cannot be made.
Collapse
Affiliation(s)
- JiEun Lee
- Department of Korean Medicine Cardiology and Neurology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.L.); (C.J.)
| | - Seungwon Kwon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Chul Jin
- Department of Korean Medicine Cardiology and Neurology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.L.); (C.J.)
| | - Seung-Yeon Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Seong-Uk Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Jung-Mi Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Chang-Nam Ko
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| | - Ki-Ho Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.-Y.C.); (S.-U.P.); (W.-S.J.); (S.-K.M.); (J.-M.P.); (C.-N.K.); (K.-H.C.)
| |
Collapse
|
32
|
Laffoon SB, Doecke JD, Roberts AM, Vance JA, Reeves BD, Pertile KK, Rumble RL, Fowler CJ, Trounson B, Ames D, Martins R, Bush AI, Masters CL, Grieco PA, Dratz EA, Roberts BR. Analysis of plasma proteins using 2D gels and novel fluorescent probes: in search of blood based biomarkers for Alzheimer's disease. Proteome Sci 2022; 20:2. [PMID: 35081972 PMCID: PMC8790928 DOI: 10.1186/s12953-021-00185-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Australian Imaging and Biomarker Lifestyle (AIBL) study of aging is designed to aid the discovery of biomarkers. The current study aimed to discover differentially expressed plasma proteins that could yield a blood-based screening tool for Alzheimer's disease. METHODS The concentration of proteins in plasma covers a vast range of 12 orders of magnitude. Therefore, to search for medium to low abundant biomarkers and elucidate mechanisms of AD, we immuno-depleted the most abundant plasma proteins and pre-fractionated the remaining proteins by HPLC, prior to two-dimensional gel electrophoresis. The relative levels of approximately 3400 protein species resolved on the 2D gels were compared using in-gel differential analysis with spectrally resolved fluorescent protein detection dyes (Zdyes™). Here we report on analysis of pooled plasma samples from an initial screen of a sex-matched cohort of 72 probable AD patients and 72 healthy controls from the baseline time point of AIBL. RESULTS We report significant changes in variants of apolipoprotein E, haptoglobin, α1 anti-trypsin, inter-α trypsin inhibitor, histidine-rich glycoprotein, and a protein of unknown identity. α1 anti-trypsin and α1 anti-chymotrypsin demonstrated plasma concentrations that were dependent on APOE ε4 allele dose. Our analysis also identified an association with the level of Vitamin D binding protein fragments and complement factor I with sex. We then conducted a preliminary validation study, on unique individual samples compared to the discovery cohort, using a targeted LC-MS/MS assay on a subset of discovered biomarkers. We found that targets that displayed a high degree of isoform specific changes in the 2D gels were not changed in the targeted MS assay which reports on the total level of the biomarker. CONCLUSIONS This demonstrates that further development of mass spectrometry assays is needed to capture the isoform complexity that exists in theses biological samples. However, this study indicates that a peripheral protein signature has potential to aid in the characterization of AD.
Collapse
Affiliation(s)
- Scott B. Laffoon
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
| | - James D. Doecke
- Australian e-Health Research Centre, CSIRO and Cooperative Research Centre of Mental Health, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029 Australia
| | - Anne M. Roberts
- Department of Biochemistry, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
- Department of Neurology, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
| | | | - Benjamin D. Reeves
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
| | - Kelly K. Pertile
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Rebecca L. Rumble
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Chris J. Fowler
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Brett Trounson
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - David Ames
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Ralph Martins
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
- School of Medical Sciences, Edith Cowan University, Joondalup, WA Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW Australia
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
| | - Colin L. Masters
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
| | - Paul A. Grieco
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
| | - Edward A. Dratz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
| | - Blaine R. Roberts
- Department of Biochemistry, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
- Department of Neurology, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
| |
Collapse
|
33
|
Application of QPLEXTM biomarkers in cognitively normal individuals across a broad age range and diverse regions with cerebral amyloid deposition. Exp Mol Med 2022; 54:61-71. [PMID: 35058557 PMCID: PMC8814000 DOI: 10.1038/s12276-021-00719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
The deposition of beta-amyloid (Aβ) in the brain precedes the onset of symptoms such as cognitive impairment in Alzheimer’s disease (AD); therefore, the early detection of Aβ accumulation is crucial. We previously reported the applicability of the QPLEXTM Alz plus assay kit for the prescreening of Aβ accumulation. Here, we tested the specific application of the kit in a large cohort of cognitively normal (CN) individuals of varying ages for the early detection of Aβ accumulation. We included a total of 221 CN participants with or without brain Aβ. The QPLEXTM biomarkers were characterized based on age groups (1st–3rd tertile) and across various brain regions with cerebral amyloid deposition. The 3rd tertile group (>65 years) was found to be the most suitable age group for the application of our assay kit. Receiver operating characteristic curve analysis showed that the area under the curve (AUC, discrimination power) was 0.878 with 69.7% sensitivity and 98.4% specificity in the 3rd tertile group. Additionally, specific correlations between biomarkers and cerebral amyloid deposition in four different brain regions revealed an overall correlation with general amyloid deposition, consistent with previous findings. Furthermore, the combinational panel with plasma Aβ1–42 levels maximized the discrimination efficiency and achieved an AUC of 0.921 with 95.7% sensitivity and 67.3% specificity. Thus, we suggest that the QPLEXTM Alz plus assay is useful for prescreening brain Aβ levels in CN individuals, especially those aged >65 years, to prevent disease progression via the early detection of disease initiation. A novel assay kit called QPLEXTM Alz plus assay offers a convenient method for assessing brain levels of the beta-amyloid proteins implicated in Alzheimer’s disease in people with normal cognitive abilities, especially those aged over 65. South Korean researchers led by Inhee Mook-Jung at Seoul National University assessed the efficacy of blood tests using the QPLEXTM kit on 221 participants in the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer’s Disease (KBASE). The researchers developed the assay to identify several circulating biomarkers of brain beta-amyloid accumulation. They found the test can distinguish between people known to either have or not have beta-amyloid deposits in their brain. This suggests QPLEXTM Alz plus assay could offer an improved procedure for easy and early diagnosis of Alzheimer’s, increasing the opportunities for effective early treatment.
Collapse
|
34
|
Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M. Blood-based biomarkers for Alzheimer's disease: towards clinical implementation. Lancet Neurol 2021; 21:66-77. [PMID: 34838239 DOI: 10.1016/s1474-4422(21)00361-6] [Citation(s) in RCA: 392] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
For many years, blood-based biomarkers for Alzheimer's disease seemed unattainable, but recent results have shown that they could become a reality. Convincing data generated with new high-sensitivity assays have emerged with remarkable consistency across different cohorts, but also independent of the precise analytical method used. Concentrations in blood of amyloid and phosphorylated tau proteins associate with the corresponding concentrations in CSF and with amyloid-PET or tau-PET scans. Moreover, other blood-based biomarkers of neurodegeneration, such as neurofilament light chain and glial fibrillary acidic protein, appear to provide information on disease progression and potential for monitoring treatment effects. Now the question emerges of when and how we can bring these biomarkers to clinical practice. This step would pave the way for blood-based biomarkers to support the diagnosis of, and development of treatments for, Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands.
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Elisabeth H Thijssen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sölvegatan, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Special Administrative Region, China
| | - Wiesje M van der Flier
- Alzheimer Center, Department of Neurology, and Department of Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, and Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
35
|
Kim HJ, Park D, Yun G, Kim H, Kim HG, Lee KM, Hong IK, Park KC, Lee JS, Hwang KS. Screening for cerebral amyloid angiopathy based on serological biomarkers analysis using a dielectrophoretic force-driven biosensor platform. LAB ON A CHIP 2021; 21:4557-4565. [PMID: 34724019 DOI: 10.1039/d1lc00742d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We aimed to analyze plasma amyloid-β (Aβ)1-40 and Aβ1-42 using a highly sensitive dielectrophoretic-driven biosensor platform to demonstrate the possibility of precise cerebral amyloid angiopathy (CAA) diagnosis in participants classified according to Aβ-positron emission tomography (PET) positivity and the neuroimaging criteria for CAA. We prospectively recruited 25 people with non-Alzheimer's disease (non-AD) and 19 patients with Alzheimer's disease (AD), which were further classified into the CAA- and CAA+ (possible and probable CAA) groups according to the modified Boston criteria. Patients underwent plasma Aβ analysis using a highly sensitive nano-biosensor platform, Aβ-PET scanning, and detailed neuropsychological testing. As a result, the average signal levels of Aβ1-42/1-40 differed significantly between the non-AD and AD groups, and the CAA+ group exhibited significantly higher Aβ1-40 signal levels than the CAA- group in both non-AD and AD groups. The concordance between the Aβ1-40 signal level and the neuroimaging criteria for CAA was nearly perfect, with areas under the curve of 0.954 (95% confidence interval (CI) 0.856-1.000), 0.969 (0.894-1.000), 0.867 (0.648-1.000), and 1.000 (1.000-1.000) in the non-AD/CAA- vs. non-AD/possible CAA, non-AD/CAA- vs. non-AD/probable CAA, AD/CAA- vs. AD/possible CAA, and AD/CAA- vs. AD/probable CAA groups, respectively. Higher Aβ1-40 signal levels were significantly associated with the presence of CAA according to regression analyses, and the neuroimaging pattern analysis partly supported this result. Our findings suggest that measuring plasma Aβ1-40 signal levels using a highly sensitive biosensor platform could be a useful non-invasive CAA diagnostic method.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Dongsung Park
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Gyihyaon Yun
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hongrae Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hyug-Gi Kim
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung Mi Lee
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Il Ki Hong
- Department of Nuclear Medicine, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Key-Chung Park
- Department of Neurology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
36
|
Bhargavan B, Woollard SM, McMillan JE, Kanmogne GD. CCR5 antagonist reduces HIV-induced amyloidogenesis, tau pathology, neurodegeneration, and blood-brain barrier alterations in HIV-infected hu-PBL-NSG mice. Mol Neurodegener 2021; 16:78. [PMID: 34809709 PMCID: PMC8607567 DOI: 10.1186/s13024-021-00500-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neurocognitive impairment is present in 50% of HIV-infected individuals and is often associated with Alzheimer's Disease (AD)-like brain pathologies, including increased amyloid-beta (Aβ) and Tau hyperphosphorylation. Here, we aimed to determine whether HIV-1 infection causes AD-like pathologies in an HIV/AIDS humanized mouse model, and whether the CCR5 antagonist maraviroc alters HIV-induced pathologies. METHODS NOD/scid-IL-2Rγcnull mice engrafted with human blood leukocytes were infected with HIV-1, left untreated or treated with maraviroc (120 mg/kg twice/day). Human cells in animal's blood were quantified weekly by flow cytometry. Animals were sacrificed at week-3 post-infection; blood and tissues viral loads were quantified using p24 antigen ELISA, RNAscope, and qPCR. Human (HLA-DR+) cells, Aβ-42, phospho-Tau, neuronal markers (MAP 2, NeuN, neurofilament-L), gamma-secretase activating protein (GSAP), and blood-brain barrier (BBB) tight junction (TJ) proteins expression and transcription were quantified in brain tissues by immunohistochemistry, immunofluorescence, immunoblotting, and qPCR. Plasma Aβ-42, Aβ-42 cellular uptake, release and transendothelial transport were quantified by ELISA. RESULTS HIV-1 significantly decreased human (h)CD4+ T-cells and hCD4/hCD8 ratios; decreased the expression of BBB TJ proteins claudin-5, ZO-1, ZO-2; and increased HLA-DR+ cells in brain tissues. Significantly, HIV-infected animals showed increased plasma and brain Aβ-42 and phospho-Tau (threonine181, threonine231, serine396, serine199), associated with transcriptional upregulation of GSAP, an enzyme that catalyzes Aβ formation, and loss of MAP 2, NeuN, and neurofilament-L. Maraviroc treatment significantly reduced blood and brain viral loads, prevented HIV-induced loss of neuronal markers and TJ proteins; decreased HLA-DR+ cells infiltration in brain tissues, significantly reduced HIV-induced increase in Aβ-42, GSAP, and phospho-Tau. Maraviroc also reduced Aβ retention and increased Aβ release in human macrophages; decreased the receptor for advanced glycation end products (RAGE) and increased low-density lipoprotein receptor-related protein-1 (LRP1) expression in human brain endothelial cells. Maraviroc induced Aβ transendothelial transport, which was blocked by LRP1 antagonist but not RAGE antagonist. CONCLUSIONS Maraviroc significantly reduced HIV-induced amyloidogenesis, GSAP, phospho-Tau, neurodegeneration, BBB alterations, and leukocytes infiltration into the CNS. Maraviroc increased cellular Aβ efflux and transendothelial Aβ transport via LRP1 pathways. Thus, therapeutically targeting CCR5 could reduce viremia, preserve the BBB and neurons, increased brain Aβ efflux, and reduce AD-like neuropathologies.
Collapse
Affiliation(s)
- Biju Bhargavan
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Shawna M. Woollard
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800 USA
- Huvepharma, 421 W Industrial Lake Drive, Lincoln, NE 68528 USA
| | - Jo Ellyn McMillan
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800 USA
| | - Georgette D. Kanmogne
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800 USA
| |
Collapse
|
37
|
Yun G, Kim HJ, Kim HG, Lee KM, Hong IK, Kim SH, Rhee HY, Jahng GH, Yoon SS, Park KC, Hwang KS, Lee JS. Association Between Plasma Amyloid-β and Neuropsychological Performance in Patients With Cognitive Decline. Front Aging Neurosci 2021; 13:736937. [PMID: 34759814 PMCID: PMC8573146 DOI: 10.3389/fnagi.2021.736937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/07/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: To investigate the association between plasma amyloid-β (Aβ) levels and neuropsychological performance in patients with cognitive decline using a highly sensitive nano-biosensing platform. Methods: We prospectively recruited 44 patients with cognitive decline who underwent plasma Aβ analysis, amyloid positron emission tomography (PET) scanning, and detailed neuropsychological tests. Patients were classified into a normal control (NC, n = 25) or Alzheimer’s disease (AD, n = 19) group based on amyloid PET positivity. Multiple linear regression was performed to determine whether plasma Aβ (Aβ40, Aβ42, and Aβ42/40) levels were associated with neuropsychological test results. Results: The plasma levels of Aβ42/40 were significantly different between the NC and AD groups and were the best predictor of amyloid PET positivity by receiver operating characteristic curve analysis [area under the curve of 0.952 (95% confidence interval, 0.892–1.000)]. Although there were significant differences in the neuropsychological performance of cognitive domains (language, visuospatial, verbal/visual memory, and frontal/executive functions) between the NC and AD groups, higher levels of plasma Aβ42/40 were negatively correlated only with verbal and visual memory performance. Conclusion: Our results demonstrated that plasma Aβ analysis using a nano-biosensing platform could be a useful tool for diagnosing AD and assessing memory performance in patients with cognitive decline.
Collapse
Affiliation(s)
- Gyihyaon Yun
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hye Jin Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hyug-Gi Kim
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Kyung Mi Lee
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Il Ki Hong
- Department of Nuclear Medicine, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hak Young Rhee
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Sung Sang Yoon
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Key-Chung Park
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Jang H, Kim JS, Lee HJ, Kim CH, Na DL, Kim HJ, Allué JA, Sarasa L, Castillo S, Pesini P, Gallacher J, Seo SW. Performance of the plasma Aβ42/Aβ40 ratio, measured with a novel HPLC-MS/MS method, as a biomarker of amyloid PET status in a DPUK-KOREAN cohort. ALZHEIMERS RESEARCH & THERAPY 2021; 13:179. [PMID: 34686209 PMCID: PMC8540152 DOI: 10.1186/s13195-021-00911-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022]
Abstract
Background We assessed the feasibility of plasma Aβ42/Aβ40 determined using a novel liquid chromatography-mass spectrometry method (LC-MS) as a useful biomarker of PET status in a Korean cohort from the DPUK Study. Methods A total of 580 participants belonging to six groups, Alzheimer’s disease dementia (ADD, n = 134), amnestic mild cognitive impairment (aMCI, n = 212), old controls (OC, n = 149), young controls (YC, n = 15), subcortical vascular cognitive impairment (SVCI, n = 58), and cerebral amyloid angiopathy (CAA, n = 12), were included in this study. Plasma Aβ40 and Aβ42 were quantitated using a new antibody-free, LC-MS, which drastically reduced the sample preparation time and cost. We performed receiver operating characteristic (ROC) analysis to develop the cutoff of Aβ42/Aβ40 and investigated its performance predicting centiloid-based PET positivity (PET+). Results Plasma Aβ42/Aβ40 were lower for PET+ individuals in ADD, aMCI, OC, and SVCI (p < 0.001), but not in CAA (p = 0.133). In the group of YC, OC, aMCI, and ADD groups, plasma Aβ42/Aβ40 predicted PET+ with an area under the ROC curve (AUC) of 0.814 at a cutoff of 0.2576. When adding age, APOE4, and diagnosis, the AUC significantly improved to 0.912. Conclusion Plasma Aβ42/Aβ40, as measured by this novel LC-MS method, showed good discriminating performance based on PET positivity. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00911-7.
Collapse
Affiliation(s)
- Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Hye Joo Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Chi-Hun Kim
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea.,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Department of Health Sciences and Technology, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | | | - Leticia Sarasa
- Araclon Biotech-Grifols, Vía Hispanidad, 21, 50009, Zaragoza, Spain
| | - Sergio Castillo
- Araclon Biotech-Grifols, Vía Hispanidad, 21, 50009, Zaragoza, Spain
| | - Pedro Pesini
- Araclon Biotech-Grifols, Vía Hispanidad, 21, 50009, Zaragoza, Spain
| | - John Gallacher
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | | |
Collapse
|
39
|
de Souza GS, Andrade MA, Borelli WV, Schilling LP, Matushita CS, Portuguez MW, da Costa JC, Marques da Silva AM. Amyloid-β PET Classification on Cognitive Aging Stages Using the Centiloid Scale. Mol Imaging Biol 2021; 24:394-403. [PMID: 34611766 DOI: 10.1007/s11307-021-01660-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
PROPOSE This study aims to explore the use of the Centiloid (CL) method in amyloid-β PET quantification to evaluate distinct cognitive aging stages, investigating subjects' mismatch classification using different cut-points for amyloid-β positivity. PROCEDURES The CL equation was applied in four groups of individuals: SuperAgers (SA), healthy age-matched controls (AC), healthy middle-aged controls (MC), and Alzheimer's disease (AD). The amyloid-β burden was calculated and compared between groups and quantitative variables. Three different cut-points (Jack CR, Wiste HJ, Weigand SD, et al., Alzheimer's Dement 13:205-216, 2017; Salvadó G, Molinuevo JL, Brugulat-Serrat A, et al., Alzheimer's Res Ther 11:27, 2019; and Amadoru S, Doré V, McLean CA, et al., Alzheimer's Res Ther 12:22, 2020) were applied in CL values to differentiate the earliest abnormal pathophysiological accumulation of Aβ and the established Aβ pathology. RESULTS The AD group exhibited a significantly increased Aβ burden compared to the MC, but not AC groups. Both healthy control (MC and AC) groups were not significantly different. Visually, the SA group showed a diverse distribution of CL values compared with MC; however, the difference was not significant. The CL values have a moderate and significant relationship between Aβ visual read, RAVLT DR and MMSE. Depending on the cut-point used, 10 CL, 19 CL, or 30 CL, 7.5% of our individuals had a different classification in the Aβ positivity. For the AC group, we obtained about 40 to 60% of the individuals classified as positive. CONCLUSION SuperAgers exhibited a similar Aβ load to AC and MC, differing in cognitive performance. Independently of cut-point used (10 CL, 19 CL, or 30 CL), three SA individuals were classified as Aβ positive, showing the duality between the individual's clinics and the biological definition of Alzheimer's. Different cut-points lead to Aβ positivity classification mismatch in individuals, and an extra care is needed for individuals who have a CL value between 10 and 30 CL.
Collapse
Affiliation(s)
- Giordana Salvi de Souza
- School of Medicine, PUCRS, Porto Alegre, Brazil.
- Medical Image Computing Laboratory, School of Technology, PUCRS, Porto Alegre, Brazil.
| | - Michele Alberton Andrade
- School of Medicine, PUCRS, Porto Alegre, Brazil
- Medical Image Computing Laboratory, School of Technology, PUCRS, Porto Alegre, Brazil
- Brain Institute of Rio Grande Do Sul (BraIns), PUCRS, Porto Alegre, Brazil
| | | | | | | | - Mirna Wetters Portuguez
- School of Medicine, PUCRS, Porto Alegre, Brazil
- Brain Institute of Rio Grande Do Sul (BraIns), PUCRS, Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- School of Medicine, PUCRS, Porto Alegre, Brazil
- Brain Institute of Rio Grande Do Sul (BraIns), PUCRS, Porto Alegre, Brazil
| | - Ana Maria Marques da Silva
- School of Medicine, PUCRS, Porto Alegre, Brazil
- Medical Image Computing Laboratory, School of Technology, PUCRS, Porto Alegre, Brazil
- Brain Institute of Rio Grande Do Sul (BraIns), PUCRS, Porto Alegre, Brazil
| |
Collapse
|
40
|
Koychev I, Jansen K, Dette A, Shi L, Holling H. Blood-Based ATN Biomarkers of Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis 2021; 79:177-195. [PMID: 33252080 DOI: 10.3233/jad-200900] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Amyloid Tau Neurodegeneration (ATN) framework was proposed to define the biological state underpinning Alzheimer's disease (AD). Blood-based biomarkers offer a scalable alternative to the costly and invasive currently available biomarkers. OBJECTIVE In this meta-analysis we sought to assess the diagnostic performance of plasma amyloid (Aβ40, Aβ42, Aβ42/40 ratio), tangle (p-tau181), and neurodegeneration (total tau [t-tau], neurofilament light [NfL]) biomarkers. METHODS Electronic databases were screened for studies reporting biomarker concentrations for AD and control cohorts. Biomarker performance was examined by random-effect meta-analyses based on the ratio between biomarker concentrations in patients and controls. RESULTS 83 studies published between 1996 and 2020 were included in the analyses. Aβ42/40 ratio as well as Aβ42 discriminated AD patients from controls when using novel platforms such as immunomagnetic reduction (IMR). We found significant differences in ptau-181 concentration for studies based on single molecule array (Simoa), but not for studies based on IMR or ELISA. T-tau was significantly different between AD patients and control in IMR and Simoa but not in ELISA-based studies. In contrast, NfL differentiated between groups across platforms. Exosome studies showed strong separation between patients and controls for Aβ42, t-tau, and p-tau181. CONCLUSION Currently available assays for sampling plasma ATN biomarkers appear to differentiate between AD patients and controls. Novel assay methodologies have given the field a significant boost for testing these biomarkers, such as IMR for Aβ, Simoa for p-tau181. Enriching samples through extracellular vesicles shows promise but requires further validation.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Katrin Jansen
- Department of Psychology, University of Münster, Münster, Germany
| | - Alina Dette
- Department of Psychology, University of Münster, Münster, Germany
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Heinz Holling
- Department of Psychology, University of Münster, Münster, Germany
| |
Collapse
|
41
|
Cianflone A, Coppola L, Mirabelli P, Salvatore M. Predictive Accuracy of Blood-Derived Biomarkers for Amyloid-β Brain Deposition Along with the Alzheimer's Disease Continuum: A Systematic Review. J Alzheimers Dis 2021; 84:393-407. [PMID: 34542072 DOI: 10.3233/jad-210496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND An amyloid-β (Aβ) positron emission tomography (Aβ-PET) scan of the human brain could lead to an early diagnosis of Alzheimer's disease (AD) and estimate disease progression. However, Aβ-PET imaging is expensive, invasive, and rarely applicable to cognitively normal subjects at risk for dementia. The identification of blood biomarkers predictive of Aβ brain deposition could help the identification of subjects at risk for dementia and could be helpful for the prognosis of AD progression. OBJECTIVE This study aimed to analyze the prognostic accuracy of blood biomarkers in predicting Aβ-PET status along with progression toward AD. METHODS In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched bibliographic databases from 2010 to 2020. The quality of the included studies was assessed by the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. RESULTS A total of 8 studies were retrieved. The prognostic accuracy of Aβ-PET status was calculated by obtaining ROCs for the following biomarkers: free, total, and bound Aβ42 and Aβ40; Aβ42/40 ratio; neurofilaments (NFL); total tau (T-tau); and phosphorylated-tau181 (P-tau181). Higher and lower plasma baseline levels of P-tau181 and the Aβ42/40 ratio, respectively, showed consistently good prognostication of Aβ-PET brain accumulation. Only P-tau181 was shown to predict AD progression. CONCLUSION In conclusion, the Aβ42/40 ratio and plasma P-tau181 were shown to predict Aβ-PET status. Plasma P-tau181 could also be a preclinical biomarker for AD progression.
Collapse
|
42
|
Pickering J, Wong R, Al-Salami H, Lam V, Takechi R. Cognitive Deficits in Type-1 Diabetes: Aspects of Glucose, Cerebrovascular and Amyloid Involvement. Pharm Res 2021; 38:1477-1484. [PMID: 34480263 DOI: 10.1007/s11095-021-03100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
The evidence shows that individuals with type-1 diabetes mellitus (T1DM) are at greater risk of accelerated cognitive impairment and dementia. Although, to date the mechanisms are largely unknown. An emerging body of literature indicates that dysfunction of cerebral neurovascular network and plasma dyshomeostasis of soluble amyloid-β in association with impaired lipid metabolism are central to the onset and progression of cognitive deficits and dementia. However, the latter has not been extensively considered in T1DM. Therefore, in this review, we summarised the literature concerning altered lipid metabolism and cerebrovascular function in T1DM as an implication for potential pathways leading to cognitive decline and dementia.
Collapse
Affiliation(s)
- Justin Pickering
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia
| | - Rachel Wong
- Institute for Resilient Regions, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Hani Al-Salami
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia
| | - Virginie Lam
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia.,Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia
| | - Ryu Takechi
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia. .,Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
43
|
Risacher SL, West JD, Deardorff R, Gao S, Farlow MR, Brosch JR, Apostolova LG, McAllister TW, Wu Y, Jagust WJ, Landau SM, Weiner MW, Saykin AJ. Head injury is associated with tau deposition on PET in MCI and AD patients. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12230. [PMID: 34466653 PMCID: PMC8383323 DOI: 10.1002/dad2.12230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Head injuries (HI) are a risk factor for dementia, but the underlying etiology is not fully known. Understanding whether tau might mediate this relationship is important. METHODS Cognition and tau deposition were compared between 752 individuals with (impaired, n = 302) or without cognitive impairment (CN, n = 450) with amyloid and [18F]flortaucipir positron emission tomography, HI history information, and cognitive testing from the Alzheimer's Disease Neuroimaging Initiative and the Indiana Memory and Aging Study. RESULTS Sixty-three (38 CN, 25 impaired) reported a history of HI. Higher neuropsychiatric scores and poorer memory were observed in those with a history of HI. Tau was higher in individuals with a history of HI, especially those who experienced a loss of consciousness (LOC). Results were driven by impaired individuals, especially amyloid beta-positive individuals with history of HI with LOC. DISCUSSION These findings suggest biological changes, such as greater tau, are associated with HI in individuals with cognitive impairment. Small effect sizes were observed; thus, further studies should replicate and extend these results.
Collapse
Affiliation(s)
- Shannon L. Risacher
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - John D. West
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rachael Deardorff
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of BiostatisticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Martin R. Farlow
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jared R. Brosch
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Liana G. Apostolova
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Thomas W. McAllister
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yu‐Chien Wu
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - William J. Jagust
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Michael W. Weiner
- Departments of RadiologyMedicine and PsychiatryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterSan FranciscoCaliforniaUSA
| | - Andrew J. Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | | |
Collapse
|
44
|
Cheng S, Banerjee S, Daiello LA, Nakashima A, Jash S, Huang Z, Drake JD, Ernerudh J, Berg G, Padbury J, Saito S, Ott BR, Sharma S. Novel blood test for early biomarkers of preeclampsia and Alzheimer's disease. Sci Rep 2021; 11:15934. [PMID: 34354200 PMCID: PMC8342418 DOI: 10.1038/s41598-021-95611-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
A non-invasive and sensitive blood test has long been a goal for early stage disease diagnosis and treatment for Alzheimer's disease (AD) and other proteinopathy diseases. We previously reported that preeclampsia (PE), a severe pregnancy complication, is another proteinopathy disorder with impaired autophagy. We hypothesized that induced autophagy deficiency would promote accumulation of pathologic protein aggregates. Here, we describe a novel, sensitive assay that detects serum protein aggregates from patients with PE (n = 33 early onset and 33 late onset) and gestational age-matched controls (n = 77) as well as AD in both dementia and prodromal mild cognitive impairment (MCI, n = 24) stages with age-matched controls (n = 19). The assay employs exposure of genetically engineered, autophagy-deficient human trophoblasts (ADTs) to serum from patients. The aggregated protein complexes and their individual components, including transthyretin, amyloid β-42, α-synuclein, and phosphorylated tau231, can be detected and quantified by co-staining with ProteoStat, a rotor dye with affinity to aggregated proteins, and respective antibodies. Detection of protein aggregates in ADTs was not dependent on transcriptional upregulation of these biomarkers. The ROC curve analysis validated the robustness of the assay for its specificity and sensitivity (PE; AUC: 1, CI: 0.949-1.00; AD; AUC: 0.986, CI: 0.832-1.00). In conclusion, we have developed a novel, noninvasive diagnostic and predictive assay for AD, MCI and PE.
Collapse
Affiliation(s)
- Shibin Cheng
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Sayani Banerjee
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Lori A. Daiello
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University and Alzheimer’s Disease and Memory Disorders Center At Rhode Island Hospital, Providence, RI 02903 USA
| | - Akitoshi Nakashima
- grid.267346.20000 0001 2171 836XDepartment of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Sukanta Jash
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Zheping Huang
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Jonathan D. Drake
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University and Alzheimer’s Disease and Memory Disorders Center At Rhode Island Hospital, Providence, RI 02903 USA
| | - Jan Ernerudh
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Services, Linkoping University, Linkoping, Sweden
| | - Goran Berg
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Services, Linkoping University, Linkoping, Sweden
| | - James Padbury
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| | - Shigeru Saito
- grid.267346.20000 0001 2171 836XDepartment of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Brian R. Ott
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University and Alzheimer’s Disease and Memory Disorders Center At Rhode Island Hospital, Providence, RI 02903 USA
| | - Surendra Sharma
- grid.40263.330000 0004 1936 9094Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI 02905 USA
| |
Collapse
|
45
|
Castillo-Mendieta T, Arana-Lechuga Y, Campos-Peña V, Sosa AL, Orozco-Suarez S, Pinto-Almazán R, Segura-Uribe J, Javier Rodríguez-Sánchez de Tagle A, Ruiz-Sánchez E, Guerra-Araiza C. Plasma Levels of Amyloid-β Peptides and Tau Protein in Mexican Patients with Alzheimer's Disease. J Alzheimers Dis 2021; 82:S271-S281. [PMID: 34151786 DOI: 10.3233/jad-200912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) causes memory deficit and alterations in other cognitive functions, mainly in adults over 60 years of age. As the diagnosis confirmation is performed by a postmortem neuropathological examination of the brain, this disease can be confused with other types of dementia at early stages. About 860,000 Mexicans are affected by dementia, most of them with insufficient access to adequate comprehensive health care services. Plasma biomarkers could be a rapid option for early diagnosis of the disease. OBJECTIVE This study aimed to analyze some plasma biomarkers (amyloid-β, tau, and lipids) in Mexican AD patients and control subjects with no associated neurodegenerative diseases. METHODS Plasma amyloid-β peptides (Aβ40 and Aβ42), total and phosphorylated tau protein (T-tau and P-tau), and cholesterol and triglyceride levels were quantified by enzyme-linked immunosorbent assay in AD patients and control subjects. RESULTS In Mexican AD patients, we found significantly lower levels of Aβ42 (p < 0.05) compared to the control group. In contrast, significantly higher levels of P-tau (p < 0.05) and triglycerides (p < 0.05) were observed in AD patients compared to controls. Furthermore, a significant correlation was found between the severity of dementia and plasma P-tau levels, Aβ42/Aβ40 and P-tau/T-tau ratios, and triglycerides concentrations. This correlation increased gradually with cognitive decline. CONCLUSION The detection of these plasma biomarkers is an initial step in searching for a timely, less invasive, and cost-efficient diagnosis in Mexicans.
Collapse
Affiliation(s)
- Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Yoaly Arana-Lechuga
- Sleep Disorders Clinic, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Ana Luisa Sosa
- Clínica de Demencia, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Laboratorio de Biología Molecular en Enfermedades Metabólicas y Neurodegenerativas, Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, State of Mexico, Mexico
| | - Julia Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| | - Aldo Javier Rodríguez-Sánchez de Tagle
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Coordinación de QFBT, Universidad del Valle de México-Chapultepec, México City, México
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neurotoxicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
46
|
Highly specific and ultrasensitive plasma test detects Abeta(1-42) and Abeta(1-40) in Alzheimer's disease. Sci Rep 2021; 11:9736. [PMID: 33958661 PMCID: PMC8102604 DOI: 10.1038/s41598-021-89004-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma biomarkers that reflect specific amyloid beta (Abeta) proteoforms provide an insight in the treatment effects of Alzheimer’s disease (AD) therapies. Our aim was to develop and validate ready-to-use Simoa ‘Amyblood’ assays that measure full length Abeta1-42 and Abeta1-40 and compare their performance with two commercial assays. Linearity, intra- and inter-assay %CV were compared between Amyblood, Quanterix Simoa triplex, and Euroimmun ELISA. Sensitivity and selectivity were assessed for Amyblood and the Quanterix triplex. Clinical performance was assessed in CSF biomarker confirmed AD (n = 43, 68 ± 6 years) and controls (n = 42, 62 ± 5 years). Prototype and Amyblood showed similar calibrator curves and differentiation (20 AD vs 20 controls, p < 0.001). Amyblood, Quanterix triplex, and ELISA showed similar linearity (96%-122%) and intra-assay %CVs (≤ 3.1%). A minor non-specific signal was measured with Amyblood of + 2.4 pg/mL Abeta1-42 when incubated with 60 pg/mL Abeta1-40. A substantial non-specific signal of + 24.7 pg/mL Abetax-42 was obtained when 40 pg/mL Abeta3-42 was measured with the Quanterix triplex. Selectivity for Abeta1-42 at physiological Abeta1-42 and Abeta1-40 concentrations was 125% for Amyblood and 163% for Quanterix. Amyblood and Quanterix ratios (p < 0.001) and ELISA Abeta1-42 concentration (p = 0.025) could differentiate AD from controls. We successfully developed and upscaled a prototype to the Amyblood assays with similar technical and clinical performance as the Quanterix triplex and ELISA, but better specificity and selectivity than the Quanterix triplex assay. These results suggest leverage of this specific assay for monitoring treatment response in trials.
Collapse
|
47
|
Zhao X, Kang J, Svetnik V, Warden D, Wilcock G, David Smith A, Savage MJ, Laterza OF. A Machine Learning Approach to Identify a Circulating MicroRNA Signature for Alzheimer Disease. J Appl Lab Med 2021; 5:15-28. [PMID: 31811079 DOI: 10.1373/jalm.2019.029595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Accurate diagnosis of Alzheimer disease (AD) involving less invasive molecular procedures and at reasonable cost is an unmet medical need. We identified a serum miRNA signature for AD that is less invasive than a measure in cerebrospinal fluid. METHODS From the Oxford Project to Investigate Memory and Aging (OPTIMA) study, 96 serum samples were profiled by a multiplex (>500 analytes) microRNA (miRNA) reverse transcription quantitative PCR analysis, including 51 controls, 32 samples from patients with AD, and 13 samples from patients with mild cognitive impairment (MCI). Clinical diagnosis of a subset of AD and the controls was confirmed by postmortem (PM) histologic examination of brain tissue. In a machine learning approach, the AD and control samples were split 70:30 as the training and test cohorts. A multivariate random forest statistical analysis was applied to construct and test a miRNA signature for AD identification. In addition, the MCI participants were included in the test cohort to assess whether the signature can identify early AD patients. RESULTS A 12-miRNA signature for AD identification was constructed in the training cohort, demonstrating 76.0% accuracy in the independent test cohort with 90.0% sensitivity and 66.7% specificity. The signature, however, was not able to identify MCI participants. With a subset of AD and control participants with PM-confirmed diagnosis status, a separate 12-miRNA signature was constructed. Although sample size was limited, the PM-confirmed signature demonstrated improved accuracy of 85.7%, largely owing to improved specificity of 80.0% with comparable sensitivity of 88.9%. CONCLUSION Although additional and more diverse cohorts are needed for further clinical validation of the robustness, the miRNA signature appears to be a promising blood test to diagnose AD.
Collapse
Affiliation(s)
- Xuemei Zhao
- Translational Molecular Biomarkers, MRL, Merck & Co., Kenilworth, NJ
| | - John Kang
- Biometrics, MRL, Merck & Co., Rahway, NJ
| | | | - Donald Warden
- Department of Pharmacology, Oxford University, Oxford, UK
| | - Gordon Wilcock
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, Oxford, UK
| | - A David Smith
- Department of Pharmacology, Oxford University, Oxford, UK
| | - Mary J Savage
- Translational Companion Diagnostics, MRL, Merck & Co., Kenilworth, NJ
| | - Omar F Laterza
- Translational Molecular Biomarkers, MRL, Merck & Co., Kenilworth, NJ
| |
Collapse
|
48
|
Kim JH, Jung H, Lee Y, Sohn JH. Surgery Performed Under Propofol Anesthesia Induces Cognitive Impairment and Amyloid Pathology in ApoE4 Knock-In Mouse Model. Front Aging Neurosci 2021; 13:658860. [PMID: 33981208 PMCID: PMC8107235 DOI: 10.3389/fnagi.2021.658860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Postoperative cognitive dysfunction (POCD) following anesthesia and surgery is a common and severe complication, especially in elderly patients. A pre-existing cognitive impairment may impart susceptibility to further cognitive dysfunction; the mechanism remains unclear. We hypothesized that the specific impacts of anesthesia and surgery on individuals with preclinical Alzheimer’s disease (AD) may render them more susceptible to an increase in the risk of cognitive impairment. The aim of this study was to compare the cognitive impairment between normal adult mice and those with preclinical AD after propofol anesthesia and surgery. Methods: We performed abdominal surgery in cognitively pre-symptomatic, 5-month-old male mice with sporadic AD (apolipoprotein E4 allele, ApoE4-KI) and age-matched (C57BL/6J) controls. Propofol anesthesia (170 mg/kg) was induced via retro-orbital injection over 2 h. Morris water maze (MWM) and Y-maze tests were conducted 2 days before and 2, 4, and 7 days after surgery. The mean escape latencies and spontaneous alternation percentages were the major outcomes. Neuronal apoptosis in hippocampal sections was evaluated using the terminal dUTP nick-end labeling (TUNEL) assay. Hippocampal amyloid beta (Aβ) levels were assessed via quantitative immunohistochemistry (IHC). Results: The control mice exhibited increased mean escape latencies of MWM at postoperative 2 and 4, but not at day 7; ApoE4-KI mice exhibited such increases at postoperative days 2, 4 and 7. Significant differences between ApoE4-KI and control mice in terms of the mean escape latencies were evident at days 2 and 7 (both P < 0.05). However, performance on a non-hippocampal memory tasks (Y-maze test) did not differ. More TUNEL-positive neurons were evident in the hippocampal CA3 region of ApoE4-KI mice at postoperative days 2 and 4, but not at day 7 compared to the control group (both P < 0.05). IHC revealed significantly elevated Aβ deposition in the hippocampal CA3 region of ApoE4-KI mice at postoperative days 4 and 7 compared to control mice (both P < 0.05). Conclusions: Propofol anesthesia followed by surgery induced persistent changes in cognition, and pathological hippocampal changes in pre-symptomatic, but vulnerable AD mice. It would be appropriate to explore whether preclinical AD patients are more vulnerable to POCD development.
Collapse
Affiliation(s)
- Jong-Ho Kim
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea.,Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Harry Jung
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Yeonkyeong Lee
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jong-Hee Sohn
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea.,Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea
| |
Collapse
|
49
|
Moscoso A, Grothe MJ, Ashton NJ, Karikari TK, Rodriguez JL, Snellman A, Suárez-Calvet M, Zetterberg H, Blennow K, Schöll M. Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum. Brain 2021; 144:325-339. [PMID: 33257949 PMCID: PMC7880671 DOI: 10.1093/brain/awaa399] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/31/2022] Open
Abstract
Tau phosphorylated at threonine 181 (p-tau181) measured in blood plasma has recently been proposed as an accessible, scalable, and highly specific biomarker for Alzheimer’s disease. Longitudinal studies, however, investigating the temporal dynamics of this novel biomarker are lacking. It is therefore unclear when in the disease process plasma p-tau181 increases above physiological levels and how it relates to the spatiotemporal progression of Alzheimer’s disease characteristic pathologies. We aimed to establish the natural time course of plasma p-tau181 across the sporadic Alzheimer’s disease spectrum in comparison to those of established imaging and fluid-derived biomarkers of Alzheimer’s disease. We examined longitudinal data from a large prospective cohort of elderly individuals enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (n = 1067) covering a wide clinical spectrum from normal cognition to dementia, and with measures of plasma p-tau181 and an 18F-florbetapir amyloid-β PET scan at baseline. A subset of participants (n = 864) also had measures of amyloid-β1–42 and p-tau181 levels in CSF, and another subset (n = 298) had undergone an 18F-flortaucipir tau PET scan 6 years later. We performed brain-wide analyses to investigate the associations of plasma p-tau181 baseline levels and longitudinal change with progression of regional amyloid-β pathology and tau burden 6 years later, and estimated the time course of changes in plasma p-tau181 and other Alzheimer’s disease biomarkers using a previously developed method for the construction of long-term biomarker temporal trajectories using shorter-term longitudinal data. Smoothing splines demonstrated that earliest plasma p-tau181 changes occurred even before amyloid-β markers reached abnormal levels, with greater rates of change correlating with increased amyloid-β pathology. Voxel-wise PET analyses yielded relatively weak, yet significant, associations of plasma p-tau181 with amyloid-β pathology in early accumulating brain regions in cognitively healthy individuals, while the strongest associations with amyloid-β were observed in late accumulating regions in patients with mild cognitive impairment. Cross-sectional and particularly longitudinal measures of plasma p-tau181 were associated with widespread cortical tau aggregation 6 years later, covering temporoparietal regions typical for neurofibrillary tangle distribution in Alzheimer’s disease. Finally, we estimated that plasma p-tau181 reaches abnormal levels ∼6.5 and 5.7 years after CSF and PET measures of amyloid-β, respectively, following similar dynamics as CSF p-tau181. Our findings suggest that plasma p-tau181 increases are associated with the presence of widespread cortical amyloid-β pathology and with prospective Alzheimer’s disease typical tau aggregation, providing clear implications for the use of this novel blood biomarker as a diagnostic and screening tool for Alzheimer’s disease.
Collapse
Affiliation(s)
- Alexis Moscoso
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Michel J Grothe
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,Unidad de Trastornos del Movimiento, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Juan Lantero Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Turku PET Centre, University of Turku, FI-20520 Turku, Finland
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
50
|
Moscoso A, Grothe MJ, Ashton NJ, Karikari TK, Lantero Rodríguez J, Snellman A, Suárez-Calvet M, Blennow K, Zetterberg H, Schöll M. Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease. JAMA Neurol 2021; 78:396-406. [PMID: 33427873 PMCID: PMC7802009 DOI: 10.1001/jamaneurol.2020.4986] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Question What is the potential of blood-based biomarkers for predicting and monitoring the progression of Alzheimer disease neurodegeneration? Findings In this cohort study that included 1113 participants from the multicentric Alzheimer’s Disease Neuroimaging Initiative study, baseline and longitudinal increases of tau phosphorylated at threonine 181 (p-tau181) in blood plasma were associated with progressive, longitudinal neurodegeneration in brain regions characteristic for Alzheimer disease, as well as with cognitive decline, only among participants with elevated brain amyloid-β. Neurofilament light chain in plasma, however, was associated with disease progression independent of amyloid-β and plasma p-tau181. Meaning These findings suggest that plasma p-tau181, alone or combined with plasma neurofilament light chain, can be used as an accessible, minimally invasive biomarker to track Alzheimer disease progression. Importance Plasma phosphorylated tau at threonine 181 (p-tau181) has been proposed as an easily accessible biomarker for the detection of Alzheimer disease (AD) pathology, but its ability to monitor disease progression in AD remains unclear. Objective To study the potential of longitudinal plasma p-tau181 measures for assessing neurodegeneration progression and cognitive decline in AD in comparison to plasma neurofilament light chain (NfL), a disease-nonspecific marker of neuronal injury. Design, Setting, and Participants This longitudinal cohort study included data from the Alzheimer’s Disease Neuroimaging Initiative from February 1, 2007, to June 6, 2016. Follow-up blood sampling was performed for up to 8 years. Plasma p-tau181 measurements were performed in 2020. This was a multicentric observational study of 1113 participants, including cognitively unimpaired participants as well as patients with cognitive impairment (mild cognitive impairment and AD dementia). Participants were eligible for inclusion if they had available plasma p-tau181 and NfL measurements and at least 1 fluorine-18–labeled fluorodeoxyglucose (FDG) positron emission tomography (PET) or structural magnetic resonance imaging scan performed at the same study visit. Exclusion criteria included any significant neurologic disorder other than suspected AD; presence of infection, infarction, or multiple lacunes as detected by magnetic resonance imaging; and any significant systemic condition that could lead to difficulty complying with the protocol. Exposures Plasma p-tau181 and NfL measured with single-molecule array technology. Main Outcomes and Measures Longitudinal imaging markers of neurodegeneration (FDG PET and structural magnetic resonance imaging) and cognitive test scores (Preclinical Alzheimer Cognitive Composite and Alzheimer Disease Assessment Scale–Cognitive Subscale with 13 tasks). Data were analyzed from June 20 to August 15, 2020. Results Of the 1113 participants (mean [SD] age, 74.0 [7.6] years; 600 men [53.9%]; 992 non-Hispanic White participants [89.1%]), a total of 378 individuals (34.0%) were cognitively unimpaired (CU) and 735 participants (66.0%) were cognitively impaired (CImp). Of the CImp group, 537 (73.1%) had mild cognitive impairment, and 198 (26.9%) had AD dementia. Longitudinal changes of plasma p-tau181 were associated with cognitive decline (CU: r = –0.24, P < .001; CImp: r = 0.34, P < .001) and a prospective decrease in glucose metabolism (CU: r = –0.05, P = .48; CImp: r = –0.27, P < .001) and gray matter volume (CU: r = –0.19, P < .001; CImp: r = –0.31, P < .001) in highly AD-characteristic brain regions. These associations were restricted to amyloid-β–positive individuals. Both plasma p-tau181 and NfL were independently associated with cognition and neurodegeneration in brain regions typically affected in AD. However, NfL was also associated with neurodegeneration in brain regions exceeding this AD-typical spatial pattern in amyloid-β–negative participants. Mediation analyses found that approximately 25% to 45% of plasma p-tau181 outcomes on cognition measures were mediated by the neuroimaging-derived markers of neurodegeneration, suggesting links between plasma p-tau181 and cognition independent of these measures. Conclusions and Relevance Study findings suggest that plasma p-tau181 was an accessible and scalable marker for predicting and monitoring neurodegeneration and cognitive decline and was, unlike plasma NfL, AD specific. The study findings suggest implications for the use of plasma biomarkers as measures to monitor AD progression in clinical practice and treatment trials.
Collapse
Affiliation(s)
- Alexis Moscoso
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Michel J Grothe
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Unidad de Trastornos del Movimiento, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, United Kingdom
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Juan Lantero Rodríguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Turku PET Centre, University of Turku, Turku, Finland
| | - Marc Suárez-Calvet
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation. Barcelona, Spain.,Hospital del Mar Medical Research Institute, Barcelona, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,UK Dementia Research Institute at University College London, London, United Kingdom
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | |
Collapse
|