1
|
Okano M, Miyamae J, Sakurai K, Yamaguchi T, Uehara R, Katakura F, Moritomo T. Subgenomic T cell receptor alpha and delta (TRA/TRD) loci in common carp. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109421. [PMID: 38325591 DOI: 10.1016/j.fsi.2024.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
In jawed vertebrates, the T cell receptor alpha (TRA) and delta (TRD) genes, which encode the TRα and TRδ chains, respectively, are located as a nested structure on a single chromosome. To date, no animal has been reported to harbor multiple TRA/TRD loci on different chromosomes. Therefore, herein, we describe the first full annotation of the TRA/TRD genomic regions of common carp, an allo-tetraploid fish species that experiences cyprinid-specific whole-genome duplication (WGD) in evolution. Fine genomic maps of TRA/TRD genomic regions 1 and 2, on LG30 and LG22, respectively, were constructed using the annotations of complete sets of TRA and TRD genes, including TRA/TRD variable (V), TRA junction (J), and constant (C), TRD diversity (D), and the J and C genes. The structure and synteny of the TRA/TRD genomic regions were highly conserved in zebrafish, indicating that these regions are on individual chromosomes. Furthermore, analysis of the variable regions of the TRA and TRD genes in a monoclonal T cell line revealed that both subgenomic regions 1 and 2 were indeed rearranged. Although carp TRAV and TRDV genes were phylogenetically divided into different lineages, they were mixed and organized into the TRA/TRD V gene clusters on the genome, similar to that in other vertebrates. Notably, 285 potential TRA/TRD V genes were detected in the TRA/TRD genomic regions, which is the most abundant number of genes in vertebrates and approximately two-fold that in zebrafish. The recombination signal sequences (RSSs) at the end of each V gene differed between TRAV and TRDV, suggesting that RSS variations might separate each V gene into a TRα or TRδ chain. This study is the first to describe subgenomic TRA/TRD loci in animals. Our findings provide fundamental insights to elucidate the impact of WGD on the evolution of immune repertoire.
Collapse
Affiliation(s)
- Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, Kanda-Surugadai 1-8-13, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 794-8555, Japan
| | - Kohei Sakurai
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Takuya Yamaguchi
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Ren Uehara
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan.
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
2
|
Chen W, Hu J, Huang J, Liu Q, Wang Q, Zhang Y, Yang D. Characterization of T-cell receptors and immunoglobulin heavy chains loci and identification of T/B cell clusters in teleost. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108746. [PMID: 37054766 DOI: 10.1016/j.fsi.2023.108746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Bacterial disease is one of the important factors leading to economic losses in the turbot (Scophthalmus maximus) cultivation industry. T lymphocytes are major components of cellular immunity, whereas B lymphocytes produce immunoglobulins (Ig) that are key elements of humoral immune responses against infection. However, the genomic organization of genes encoding T-cell receptors (TCR) and immunoglobulin heavy chains (IgHs) in turbot remains largely unknown. In this study, abundant full-length transcripts of TCRs and IgHs were sequenced by Isoform-sequencing (Iso-seq), and we investigated and annotated the V, D, J and C gene loci of TCRα, TCRβ, IgT, IgM and IgD in turbot. Furthermore, through single-cell RNA sequencing (scRNA-seq) of blood leukocytes, we confirmed that these identified TCRs and IgHs were highly expressed in T/B cell clusters, respectively. Meanwhile, we also identified the IgM+IgD+ B and IgT+ B cells with differential gene expression profiles and potential functions. Taken together, our results provide a comprehensive understanding of TCRs and IgHs loci in turbot, which will contribute to evolutionary and functional characterization of T and B lymphocytes in teleost.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Hu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianchang Huang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
3
|
Grimholt U, Sundaram AYM, Bøe CA, Dahle MK, Lukacs M. Tetraploid Ancestry Provided Atlantic Salmon With Two Paralogue Functional T Cell Receptor Beta Regions Whereof One Is Completely Novel. Front Immunol 2022; 13:930312. [PMID: 35784332 PMCID: PMC9247247 DOI: 10.3389/fimmu.2022.930312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Protective cellular immune responses have been difficult to study in fish, due to lack of basic understanding of their T cell populations, and tools to study them. Cellular immunity is thus mostly ignored in vaccination and infection studies compared to humoral responses. High throughput sequencing, as well as access to well assembled genomes, now advances studies of cellular responses. Here we have used such resources to describe organization of T cell receptor beta genes in Atlantic salmon. Salmonids experienced a unique whole genome duplication approximately 94 million years ago, which provided these species with many functional duplicate genes, where some duplicates have evolved new functions or sub-functions of the original gene copy. This is also the case for T cell receptor beta, where Atlantic salmon has retained two paralogue T cell receptor beta regions on chromosomes 01 and 09. Compared to catfish and zebrafish, the genomic organization in both regions is unique, each chromosomal region organized with dual variable- diversity- joining- constant genes in a head to head orientation. Sequence identity of the chromosomal constant sequences between TRB01 and TRB09 is suggestive of rapid diversification, with only 67 percent as opposed to the average 82-90 percent for other duplicated genes. Using virus challenged samples we find both regions expressing bona fide functional T cell receptor beta molecules. Adding the 292 variable T cell receptor alpha genes to the 100 variable TRB genes from 14 subgroups, Atlantic salmon has one of the most diverse T cell receptor alpha beta repertoire of any vertebrate studied so far. Perhaps salmonid cellular immunity is more advanced than we have imagined.
Collapse
Affiliation(s)
- Unni Grimholt
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
- *Correspondence: Unni Grimholt,
| | - Arvind Y. M. Sundaram
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Maria K. Dahle
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
| | - Morten Lukacs
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
4
|
Crider J, Quiniou SMA, Felch KL, Showmaker K, Bengtén E, Wilson M. A Comprehensive Annotation of the Channel Catfish ( Ictalurus punctatus) T Cell Receptor Alpha/Delta, Beta, and Gamma Loci. Front Immunol 2021; 12:786402. [PMID: 34899754 PMCID: PMC8656973 DOI: 10.3389/fimmu.2021.786402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022] Open
Abstract
The complete germline repertoires of the channel catfish, Ictalurus punctatus, T cell receptor (TR) loci, TRAD, TRB, and TRG were obtained by analyzing genomic data from PacBio sequencing. The catfish TRB locus spans 214 kb, and contains 112 TRBV genes, a single TRBD gene, 31 TRBJ genes and two TRBC genes. In contrast, the TRAD locus is very large, at 1,285 kb. It consists of four TRDD genes, one TRDJ gene followed by the exons for TRDC, 125 TRAJ genes and the exons encoding the TRAC. Downstream of the TRAC, are 140 TRADV genes, and all of them are in the opposite transcriptional orientation. The catfish TRGC locus spans 151 kb and consists of four diverse V-J-C cassettes. Altogether, this locus contains 15 TRGV genes and 10 TRGJ genes. To place our data into context, we also analyzed the zebrafish TR germline gene repertoires. Overall, our findings demonstrated that catfish possesses a more restricted repertoire compared to the zebrafish. For example, the 140 TRADV genes in catfish form eight subgroups based on members sharing 75% nucleotide identity. However, the 149 TRAD genes in zebrafish form 53 subgroups. This difference in subgroup numbers between catfish and zebrafish is best explained by expansions of catfish TRADV subgroups, which likely occurred through multiple, relatively recent gene duplications. Similarly, 112 catfish TRBV genes form 30 subgroups, while the 51 zebrafish TRBV genes are placed into 36 subgroups. Notably, several catfish and zebrafish TRB subgroups share ancestor nodes. In addition, the complete catfish TR gene annotation was used to compile a TR gene segment database, which was applied in clonotype analysis of an available gynogenetic channel catfish transcriptome. Combined, the TR annotation and clonotype analysis suggested that the expressed TRA, TRB, and TRD repertoires were generated by different mechanisms. The diversity of the TRB repertoire depends on the number of TRBV subgroups and TRBJ genes, while TRA diversity relies on the many different TRAJ genes, which appear to be only minimally trimmed. In contrast, TRD diversity relies on nucleotide additions and the utilization of up to four TRDD segments.
Collapse
Affiliation(s)
- Jonathan Crider
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Stoneville, MS, United States
| | - Kristianna L Felch
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kurt Showmaker
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Data Science, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, United States
| | - Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
5
|
Edholm ES, Fenton CG, Mondot S, Paulssen RH, Lefranc MP, Boudinot P, Magadan S. Profiling the T Cell Receptor Alpha/Delta Locus in Salmonids. Front Immunol 2021; 12:753960. [PMID: 34733285 PMCID: PMC8559430 DOI: 10.3389/fimmu.2021.753960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
In jawed vertebrates, two major T cell populations have been characterized. They are defined as α/β or γ/δ T cells, based on the expressed T cell receptor. Salmonids (family Salmonidae) include two key teleost species for aquaculture, rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) which constitute important models for fish immunology and important targets for vaccine development. The growing interest to decipher the dynamics of adaptive immune responses against pathogens or vaccines has resulted in recent efforts to sequence the immunoglobulin (IG) or antibodies and T cell receptor (TR) repertoire in these species. In this context, establishing a comprehensive and coherent locus annotation is the fundamental basis for the analysis of high-throughput repertoire sequencing data. We therefore decided to revisit the description and annotation of TRA/TRD locus in Atlantic salmon and two strains of rainbow trout (Swanson and Arlee) using the now available high-quality genome assemblies. Phylogenetic analysis of functional TRA/TRD V genes from these three genomes led to the definition of 25 subgroups shared by both species, some with particular feature. A total of 128 TRAJ genes were identified in Salmo, the majority with a close counterpart in Oncorhynchus. Analysis of expressed TRA repertoire indicates that most TRAV gene subgroups are expressed at mucosal and systemic level. The present work on TRA/TRD locus annotation along with the analysis of TRA repertoire sequencing data show the feasibility and advantages of a common salmonid TRA/TRD nomenclature that allows an accurate annotation and analysis of high-throughput sequencing results, across salmonid T cell subsets.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Faculty of Biosciences, Fisheries & Economics, Norwegian College of Fishery Science, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Christopher Graham Fenton
- Clinical Bioinformatics Research Group, Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Stanislas Mondot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ruth H Paulssen
- Clinical Bioinformatics Research Group, Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System (IMGT), Laboratoire d´ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), CNRS, University of Montpellier, Montpellier Cedex, France
| | - Pierre Boudinot
- Université Paris Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Susana Magadan
- Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.,Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| |
Collapse
|
6
|
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. FISH & SHELLFISH IMMUNOLOGY 2019; 95:422-439. [PMID: 31669897 DOI: 10.1016/j.fsi.2019.10.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Fumio Takizawa
- Laboratory of Marine Biotechnology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, 2871 Akashina-nakagawate, Azumino-shi, Nagano-ken, 399-7102, Japan
| | - Veronica Soto-Lampe
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Uwe Fischer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
7
|
Smith NC, Rise ML, Christian SL. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front Immunol 2019; 10:2292. [PMID: 31649660 PMCID: PMC6795676 DOI: 10.3389/fimmu.2019.02292] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
The immune system is composed of two subsystems-the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates-the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
8
|
Bilal S, Lie KK, Dalum AS, Karlsen OA, Hordvik I. Analysis of immunoglobulin and T cell receptor gene expression in ballan wrasse (Labrus bergylta) revealed an extraordinarily high IgM expression in the gut. FISH & SHELLFISH IMMUNOLOGY 2019; 87:650-658. [PMID: 30753920 DOI: 10.1016/j.fsi.2019.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
The serum IgM concentration of ballan wrasse is relatively high, estimated to approximately 13 mg/ml in adult wild fish of 800 g. The present study revealed an unusual high abundance of IgM mRNA in the gut of ballan wrasse. Initially, transcripts encoding IgM, IgT, IgD, TCRα, TCRδ and CD3ε were quantified by RT-qPCR in several tissues of wild caught fish (approx. 800 g), indicating an elevated immune activity in hindgut and an extraordinarily high expression of IgM. Subsequently, a new RT-qPCR analysis was performed on the entire intestine, cut into four different segments, of reared fish (32-100 g). The analysis indicated immune activity along the entire intestine, but not as strong as in the hindgut. Furthermore, similar to the larger fish, the relative abundance of IgM transcripts was higher in the hindgut than in kidney and spleen, although the absolute level of IgM was in general higher in the larger fish. The secreted form of IgM was completely dominant in comparison to the membrane bound form of IgM and the other analysed genes. IgM was purified from gut mucus and external mucosal surfaces by magnetic beads coated with protein A. Mucus IgM reacted with rabbit antisera raised against serum IgM and contained subunits of the same size. Regarding the elevated immune activity in the intestine it is tempting to speculate on a possible compensatory strategy in this lineage of stomach-less fish, and that natural antibodies have an important role in the first line defence.
Collapse
Affiliation(s)
- Sumaira Bilal
- Department of Biological Sciences, University of Bergen, Norway
| | | | | | | | - Ivar Hordvik
- Department of Biological Sciences, University of Bergen, Norway.
| |
Collapse
|
9
|
Luo Y, Yu W, Yu Y, Dong S, Yin Y, Huang Z, Wan X, Zhang L, Yu Y, Ai T, Wang Q, Xu Z. Molecular characterization and expression analysis of T cell receptor (TCR) γ and δ genes in dojo loach (Misgurnus anguillicaudatus) in response to bacterial, parasitic and fungal challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 86:641-652. [PMID: 30485793 DOI: 10.1016/j.fsi.2018.11.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
In mammalian, T-cell receptors (TCRs) play a key role in recognizing the presented antigen from external to protect organisms against environmental pathogens. To understand the potential roles of TCRγ and TCRδ in dojo loach (Misgurnus anguillicaudatus), Ma-TCRγ and Ma-TCRδ cDNAs were cloned and their gene expression profiles were investigated after bacterial, parasitic and fungal challenge. The open reading frame (ORF) of Ma-TCRγ and Ma-TCRδ cDNAs contained 948 and 867 bp, encoding 316 and 288 amino acid residues, respectively. Structurally, Ma-TCRγ and Ma-TCRδ were consisted of a signal peptide, a variable region, a constant region (IgC), a connecting peptide (CPS), a transmembrane region (TM) and a cytoplasmic domain (CYT), which were similar to those of other vertebrates. Multiple sequence alignment and phylogenetic analysis showed Ma-TCRγ and Ma-TCRδ were closely related to fish of Cyprinidae family. Ma-TCRγ and Ma-TCRδ were widely expressed in all tested organs/tissues, as the highest expressions of Ma-TCRγ and Ma-TCRδ were detected in kidney and gill, respectively. In addition, three infection models of dojo loach with bacteria (F. columnare G4), parasite (Ichthyophthirius multifiliis) and fungus (Saprolegnia sp.) were constructed. The morphological changes of gills and skin after challenged with F. columnare G4 and Ichthyophthirius multifiliis were investigated. Compared to F. columnare G4 infection, mRNA expression of both TCRγ and TCRδ showed higher sensitivity in classical immune organs (kidney and spleen) and mucosal tissues (skin and gill) after challenge with Ichthyophthirius multifiliis and Saprolegnia sp. Our results first indicated that TCRγ and TCRδ of dojo loach might function differently in response to challenge with different pathogens.
Collapse
Affiliation(s)
- Yanzhi Luo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Wei Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Shuai Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Yaxing Yin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Xinyu Wan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Liqiang Zhang
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Yunzhen Yu
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Taoshan Ai
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430207, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
10
|
Hu Y, Maisey K, Subramani PA, Liu F, Flores-Kossack C, Imarai M, Secombes CJ, Wang T. Characterisation of rainbow trout peripheral blood leucocytes prepared by hypotonic lysis of erythrocytes, and analysis of their phagocytic activity, proliferation and response to PAMPs and proinflammatory cytokines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:104-113. [PMID: 30009927 DOI: 10.1016/j.dci.2018.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Rapid and high quality preparation of peripheral blood leucocytes (PBL) is important in fish immunology research and in particular for fish vaccine development, where multiple immune parameters can be monitored on the same fish over time. Fish PBL are currently prepared by density separation using Percoll or Hispaque-1.077, which is time consuming, costly and prone to erythrocyte contamination. We present here a modified PBL preparation method that includes a 20 s hypotonic lysis of erythrocytes and a subsequent separation of PBL from cell debris by a cell strainer. This method is simple, rapid and cost effective. The PBL obtained are similar in cellular composition to those prepared by density separation but have less erythrocyte contamination as demonstrated by FACS analysis and the expression of cell marker genes. Marker gene analysis also suggested that PBL prepared by hypotonic lysis are superior to those obtained by the gradient method in that some high-density cells (certain B cell types and neutrophils) might be lost using the latter. The PBL prepared in this way can proliferate in response to the T cell mitogen PHA, and both lymphoid and myeloid cells can phagocytose fluorescent beads and bacteria, with the latter enhanced by treatment with pro-inflammatory cytokines (IL-1β and IL-6). Furthermore, the PBL can respond to stimulation with PAMPs (LPS, poly I:C) and cytokines (IL-1β and IFNγ) in terms of upregulation of proinflammatory cytokine gene expression. Such data demonstrate the utility of this approach (hypotonic lysis of erythrocytes) for PBL isolation and will enable more studies of their role in disease protection in future immunological and vaccine development research in fish.
Collapse
Affiliation(s)
- Yehfang Hu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Kevin Maisey
- Laboratorio de Immunología Comparativa, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Parasuraman Aiya Subramani
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Camila Flores-Kossack
- Laboratorio de Immunología Comparativa, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Mónica Imarai
- Laboratorio de Immunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| |
Collapse
|
11
|
Findly RC, Niagro FD, Sweeney RP, Camus AC, Dickerson HW. Rearranged T Cell Receptor Sequences in the Germline Genome of Channel Catfish Are Preferentially Expressed in Response to Infection. Front Immunol 2018; 9:2117. [PMID: 30319607 PMCID: PMC6170632 DOI: 10.3389/fimmu.2018.02117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/28/2018] [Indexed: 11/27/2022] Open
Abstract
Rearranged V(D)J genes coding for T cell receptor α and β chains are integrated into the germline genome of channel catfish. Previous analysis of expressed TCR Vβ2 repertoires demonstrated that channel catfish express multiple public clonotypes, which were shared among all the fish, following infection with a common protozoan parasite. In each case a single DNA sequence was predominately used to code for a public clonotype. We show here that the rearranged VDJ genes coding for these expressed public Vβ2 clonotypes can be amplified by PCR from germline DNA isolated from oocytes and erythrocytes. Sequencing of the Vβ2 PCR products confirmed that these expressed public Vβ2 clonotypes are integrated into the germline. Moreover, sequencing of PCR products confirmed that all five Vβ gene families and Vα1 have rearranged V(D)J genes with diverse CDR3 sequences integrated into the germline. Germline rearranged Vβ2 and Vβ4 genes retain the intron between the leader and Vβ sequence. This suggests that the germline rearranged TCR Vβ genes arose through VDJ rearrangement in T cells, and subsequently moved into the germline through DNA transposon mediated transposition. These results reveal a new dimension to the adaptive immune system of vertebrates, namely: the expression of evolutionarily conserved, rearranged V(D)J genes from the germline.
Collapse
Affiliation(s)
- Robert Craig Findly
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Frank D Niagro
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ryan P Sweeney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Alvin C Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Harry W Dickerson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
12
|
Bilal S, Lie KK, Sæle Ø, Hordvik I. T Cell Receptor Alpha Chain Genes in the Teleost Ballan Wrasse (Labrus bergylta) Are Subjected to Somatic Hypermutation. Front Immunol 2018; 9:1101. [PMID: 29872436 PMCID: PMC5972329 DOI: 10.3389/fimmu.2018.01101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Previously, somatic hypermutation (SHM) was considered to be exclusively associated with affinity maturation of antibodies, although it also occurred in T cells under certain conditions. More recently, it has been shown that SHM generates diversity in the variable domain of T cell receptor (TCR) in camel and shark. Here, we report somatic mutations in TCR alpha chain genes of the teleost fish, Ballan wrasse (Labrus bergylta), and show that this mechanism adds extra diversity to the polymorphic constant (C) region as well. The organization of the TCR alpha/delta locus in Ballan wrasse was obtained from a scaffold covering a single copy C alpha gene, 65 putative J alpha segments, a single copy C delta gene, 1 J delta segment, and 2 D delta segments. Analysis of 37 fish revealed 6 allotypes of the C alpha gene, each with 1-3 replacement substitutions. Somatic mutations were analyzed by molecular cloning of TCR alpha chain cDNA. Initially, 79 unique clones comprising four families of variable (V) alpha genes were characterized. Subsequently, a more restricted PCR was performed to focus on a specific V gene. Comparison of 48 clones indicated that the frequency of somatic mutations in the VJ region was 4.5/1,000 base pairs (bps), and most prevalent in complementary determining region 2 (CDR2). In total, 45 different J segments were identified among the 127 cDNA clones, counting for most of the CDR3 diversity. The number of mutations in the C alpha chain gene was 1.76 mutations/1,000 bps and A nucleotides were most frequently targeted, in contrast to the VJ region, where G nucleotides appeared to be mutational hotspots. The replacement/synonymous ratios in the VJ and C regions were 2.5 and 1.85, respectively. Only 7% of the mutations were found to be linked to the activation-induced cytidine deaminase hotspot motif (RGYW/WRCY).
Collapse
Affiliation(s)
- Sumaira Bilal
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Øystein Sæle
- Institute of Marine Research (IMR), Bergen, Norway
| | - Ivar Hordvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Dickerson HW, Findly RC. Vertebrate Adaptive Immunity-Comparative Insights from a Teleost Model. Front Immunol 2017; 8:1379. [PMID: 29123524 PMCID: PMC5662878 DOI: 10.3389/fimmu.2017.01379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
The channel catfish (Ictalurus punctatus) and the ciliated protozoan parasite Ichthyophthirius multifiliis are used to study pathogen-specific protective immunity. In this review, we briefly describe this host–parasite system and discuss the comparative insights it provides on the adaptive immune response of vertebrates. We include studies related to cutaneous mucosal immunity, B cell memory responses, and analyses of αβ T cell receptor (TCR) repertoires. This host–parasite model has played an important role in elucidating host protective responses to parasite invasion and for comparative studies of vertebrate immunity. Recent findings from bioinformatics analyses of TCR β repertoires suggest that channel catfish preferentially expand specific clonotypes that are stably integrated in the genome. This finding could have broad implications related to diversity in lymphocyte receptors of early vertebrates.
Collapse
Affiliation(s)
- Harry W Dickerson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Robert Craig Findly
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Findly RC, Niagro FD, Dickerson HW. The expressed TCRβ CDR3 repertoire is dominated by conserved DNA sequences in channel catfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:26-33. [PMID: 27838245 DOI: 10.1016/j.dci.2016.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
We analyzed by high-throughput sequencing T cell receptor beta CDR3 repertoires expressed by αβ T cells in outbred channel catfish before and after an immunizing infection with the parasitic protozoan Ichthyophthirius multifiliis. We compared CDR3 repertoires in caudal fin before infection and at three weeks after infection, and in skin, PBL, spleen and head kidney at seven and twenty-one weeks after infection. Public clonotypes with the same CDR3 amino acid sequence were expressed by αβ T cells that underwent clonal expansion following development of immunity. These clonally expanded αβ T cells were primarily located in spleen and skin, which is a site of infection. Although multiple DNA sequences were expected to code for each public clonotype, each public clonotype was predominately coded by an identical CDR3 DNA sequence in combination with the same J gene in all fish. The processes underlying this shared use of CDR3 DNA sequences are not clear.
Collapse
Affiliation(s)
- R Craig Findly
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA.
| | - Frank D Niagro
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA.
| | - Harry W Dickerson
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
15
|
Genomic organization of the zebrafish (Danio rerio) T cell receptor alpha/delta locus and analysis of expressed products. Immunogenetics 2016; 68:365-79. [PMID: 26809968 DOI: 10.1007/s00251-016-0904-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022]
Abstract
In testing the hypothesis that all jawed vertebrate classes employ immunoglobulin heavy chain V (IgHV) gene segments in their T cell receptor (TCR)δ encoding loci, we found that some basic characterization was required of zebrafish TCRδ. We began by annotating and characterizing the TCRα/δ locus of Danio rerio based on the most recent genome assembly, GRCz10. We identified a total of 141 theoretically functional V segments which we grouped into 41 families based upon 70 % nucleotide identity. This number represents the second greatest count of apparently functional V genes thus far described in an antigen receptor locus with the exception of cattle TCRα/δ. Cloning, relative quantitative PCR, and deep sequencing results corroborate that zebrafish do express TCRδ, but these data suggest only at extremely low levels and in limited diversity in the spleens of the adult fish. While we found no evidence for IgH-TCRδ rearrangements in this fish, by determining the locus organization we were able to suggest how the evolution of the teleost α/δ locus could have lost IgHVs that exist in sharks and frogs. We also found evidence of surprisingly low TCRδ expression and repertoire diversity in this species.
Collapse
|
16
|
Moulana M, Taylor EB, Edholm ES, Quiniou SMA, Wilson M, Bengtén E. Identification and characterization of TCRγ and TCRδ chains in channel catfish, Ictalurus punctatus. Immunogenetics 2014; 66:545-61. [PMID: 25129471 DOI: 10.1007/s00251-014-0793-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022]
Abstract
Channel catfish, Ictalurus punctatus, T cell receptors (TCR) γ and δ were identified by mining of expressed sequence tag databases, and full-length sequences were obtained by 5'-RACE and RT-PCR protocols. cDNAs for each of these TCR chains encode typical variable (V), diversity (D), joining (J), and constant (C) regions. Three TCRγ V families, seven TCRγ J sequences, and three TCRγ C sequences were identified from sequencing of cDNA. Primer walking on bacterial artificial chromosomes (BACs) confirmed that the TRG locus contained seven TRGJ segments and indicated that the locus consists of (Vγ3-Jγ6-Cγ2)-(Vγ1n-Jγ7-Cγ3)-(Vγ2-Jγ5-Jγ4-Jγ3-Jγ2-Jγ1-Cγ1). In comparison for TCRδ, two V families, four TCRδ D sequences, one TCRδ J sequence, and one TCRδ C sequence were identified by cDNA sequencing. Importantly, the finding that some catfish TCRδ cDNAs contain TCR Vα-D-Jδ rearrangements and some TCRα cDNAs contain Vδ-Jα rearrangements strongly implies that the catfish TRA and TRD loci are linked. Finally, primer walking on BACs and Southern blotting suggest that catfish have four TRDD gene segments and a single TRDJ and TRDC gene. As in most vertebrates, all three reading frames of each of the catfish TRDD segments can be used in functional rearrangements, and more than one TRDD segment can be used in a single rearrangement. As expected, catfish TCRδ CDR3 regions are longer and more diverse than TCRγ CDR3 regions, and as a group they utilize more nucleotide additions and contain more nucleotide deletions than catfish TCRγ rearrangements.
Collapse
Affiliation(s)
- Mohadetheh Moulana
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
17
|
Tian JY, Qi ZT, Wu N, Chang MX, Nie P. Complementary DNA sequences of the constant regions of T-cell antigen receptors α, β and γ in mandarin fish, Siniperca chuatsi Basilewsky, and their transcriptional changes after stimulation with Flavobacterium columnare. JOURNAL OF FISH DISEASES 2014; 37:89-101. [PMID: 24330001 DOI: 10.1111/jfd.12042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 12/14/2011] [Accepted: 01/23/2012] [Indexed: 06/03/2023]
Abstract
In this study, the constant-region genes (Cα, Cβ and Cγ) that encode the T-cell antigen receptor (TCR) α, β and γ chains were cloned from mandarin fish, Siniperca chuatsi Basilewsky, an important freshwater fish species in China. The complementary DNA sequences of Cα, Cβ and Cγ were 843, 716 and 906 base pairs (bp) in length and had a 465-, 289- and 360-bp 3' untranslated region, encoding 125, 142 and 182 amino acids, respectively. The amino-acid sequences of the constant regions of mandarin fish TCR α, β and γ chains (encoded by Cα, Cβ and Cγ, respectively) were most similar to those of their teleost counterparts, showing 60% similarity with pufferfish, 48% similarity with Atlantic salmon and 57% similarity with flounder, respectively. The phylogenetic analysis revealed that the mandarin fish Cα, Cβ and Cγ were clustered, respectively, with their vertebrate counterparts. The mandarin fish Cα, Cβ and Cγ could also be separated into four domains: immunoglobulin; connecting peptide (CP); transmembrane (TM); and cytoplasmic tail. Several conserved features in mammalian TCRs were also found in those of mandarin fish, such as a conserved cysteine residue in the CP domain of Cα, necessary for creating an interchain disulphide bond with the TCR β chain, and a conserved antigen receptor TM motif in Cα and Cβ. Meanwhile, transcripts of Cα, Cβ and Cγ were detectable in all examined organs, with a stronger signal observed in lymphoid organs. In addition, the temporal transcriptional changes for Cα and Cγ were investigated, 1, 2, 3, 4, 5, 6 and 8 weeks after stimulation with Flavobacterium columnare, in head kidney, spleen, blood, thymus, gill and intestine, using real-time polymerase chain reaction. The results demonstrated stimulation-dependent up-regulations in almost all tissues examined, which indicates that T cells may play important roles in preventing mandarin fish from bacterial invasion. In particular, apart from thymus, T cells were distributed mainly in gill and intestine, where striking up-regulation of Cγ was also observed. These results will facilitate functional studies of teleost TCRs and T cells.
Collapse
Affiliation(s)
- J Y Tian
- National Oceanographic Center, Qingdao, Shandong Province, China
| | | | | | | | | |
Collapse
|
18
|
Rauta PR, Nayak B, Das S. Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunol Lett 2012; 148:23-33. [PMID: 22902399 DOI: 10.1016/j.imlet.2012.08.003] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 12/16/2022]
Abstract
The basal position of fish in vertebrate phylogeny makes them very attractive for genomic and functional comparative immunity studies. Adaptive immunity arose early in vertebrate evolution, 450 million years ago between the divergence of cyclostomes and cartilaginous fish. The fundamental immune molecules, which include Ag-recognizing lymphocytes, immunoglobulins (Abs and Ig-family TCR), MHC products, and recombination-activating (RAG) 1 and 2 genes and the recombination mechanisms (cause of diversity in TCRs and Igs) are similar in fish and mammals. These molecules and their immune response mechanisms unravelled the primordial vertebrate immune system repertoire and adaptive radiations. Moreover, screening of animal models like zebrafish has a great importance to discover genes involved in T cell development, thymic organogenesis, and in immunity to infections. The zebrafish model may also be useful for cancer research due to its various features like rapid development, tractable genetics, ease in in vivo imaging and chemical screening.
Collapse
Affiliation(s)
- Pradipta R Rauta
- Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | | |
Collapse
|
19
|
Chen H, Bernstein H, Ranganathan P, Schluter SF. Somatic hypermutation of TCR γ V genes in the sandbar shark. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:176-83. [PMID: 21925537 DOI: 10.1016/j.dci.2011.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 05/05/2023]
Abstract
In a recent publication we demonstrated that somatic hypermutation occurs in the V region of the TCR γ gene of the sandbar shark (Carcharhinus plumbeus). We hypothesize that similar mechanisms are used to generate somatic mutations in both immunoglobulin and TCR γ genes of the sharks. Two distinct patterns of mutation occur, single nucleotide mutations (point mutations) and mutations comprising 2-5 consecutive bases (tandem mutations). Our data indicates that point mutations occur by a mechanism similar to that of somatic hypermutation in immunoglobulin genes of mammals, whereas tandem mutations may be generated by an error-prone DNA polymerase with terminal deoxynucleotidyl transferase (TdT)-like activity. Shark hotspot motifs identical to those of higher vertebrates were identified. We confirm that, as in immunoglobulin of sharks and higher vertebrates, highly significant targeting of AID activity to the classical DGYW/WRCH motif occurs in somatic hypermutation of sandbar shark TCR γ V genes. Our analysis suggests that the purpose of somatic mutations in shark TCR γ V-regions is to generate a more diverse repertoire in γ/δ receptors, rather than receptors with higher affinity.
Collapse
Affiliation(s)
- Hao Chen
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
20
|
Laing KJ, Hansen JD. Fish T cells: recent advances through genomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1282-1295. [PMID: 21414347 DOI: 10.1016/j.dci.2011.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/14/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.
Collapse
Affiliation(s)
- Kerry J Laing
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer, Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
21
|
Castro R, Bernard D, Lefranc MP, Six A, Benmansour A, Boudinot P. T cell diversity and TcR repertoires in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2011; 31:644-654. [PMID: 20804845 DOI: 10.1016/j.fsi.2010.08.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 05/29/2023]
Abstract
In vertebrates, the diverse and extended range of antigenic motifs is matched to large populations of lymphocytes. The concept of immune repertoire was proposed to describe this diversity of lymphocyte receptors--IG and TR--required for the recognition specificity. Immune repertoires have become useful tools to describe lymphocyte and receptor populations during the immune system development and in pathological situations. In teleosts, the presence of conventional T cells was first proposed to explain graft rejection and optimized specific antibody production. The discovery of TR genes definitely established the reality of conventional T cells in fish. The development of genomic and EST databases recently led to the description of several key T cell markers including CD4, CD8, CD3, CD28, CTLA4, as well as important cytokines, suggesting the existence of different T helper (Th) subtypes, similar to the mammalian Th1, Th2 and Th17. Over the last decade, repertoire studies have demonstrated that both public and private responses occur in fish as they do in mammals, and in vitro specific cytotoxicity assays have been established. While such typical features of T cells are similar in both fish and mammals, the structure of particular repertoires such as the one of gut intra-epithelial lymphocytes seems to be very different. Future studies will further reveal the particular characteristics of teleost T cell repertoires and adaptive responses.
Collapse
Affiliation(s)
- R Castro
- Virologie et Immunologie Moléculaires, INRA, 78352 Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
22
|
Takizawa F, Dijkstra JM, Kotterba P, Korytář T, Kock H, Köllner B, Jaureguiberry B, Nakanishi T, Fischer U. The expression of CD8α discriminates distinct T cell subsets in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:752-63. [PMID: 21352850 DOI: 10.1016/j.dci.2011.02.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 05/08/2023]
Abstract
CD8, belonging to the TCR complex, is the main marker molecule of CTLs. Although CD8 genes have been detected in many fish species, the analysis of teleost CD8+ cells has been limited because of the lack of antibodies. Using newly established mAbs against rainbow trout CD8α, we found high ratios of CD8α+ cells in trout thymus, gill and intestine, but relatively low abundance in pronephros, spleen and blood. Accordingly, tissue sections revealed many CD8α+ cells in thymus, numerous intra- and subepithelial CD8α+ cells in intestine and gill and few scattered CD8α+ cells in spleen and pronephros. In secondary lymphoid tissues, CD8α+ lymphocytes, which did not react with anti-thrombocyte or anti-IgM mAbs, expressed CD8α, CD8β and TCRα, while Ig and CD4 transcripts were found in CD8α⁻ lymphocytes. In contrast, considerable CD4 expression in CD8α+ thymocytes suggests the presence of double-positive early T cells. Highly expressed TCRγ, LAG3 and CTLA4 in CD8α+ lymphocytes imply that they constitute a heterogeneous population different from found in non-mucosal tissues. PHA stimulation resulted in an up-regulation of CTL effector genes (perforin, granulysin and IFN-γ) in CD8α+ pronephrocytes, while both Th1 (IFN-γ) and Th2 (IL-4/13A) cytokines were up-regulated in CD8α⁻ pronephrocytes. Although the basic characteristics of CD8α+ lymphocytes seem similar in teleost and mammals, features such as the low proportion of teleost CD8α+ lymphocytes in blood and their high abundance in respiratory tissue reveal a unique dynamics and distribution.
Collapse
Affiliation(s)
- Fumio Takizawa
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tadiso TM, Krasnov A, Skugor S, Afanasyev S, Hordvik I, Nilsen F. Gene expression analyses of immune responses in Atlantic salmon during early stages of infection by salmon louse (Lepeophtheirus salmonis) revealed bi-phasic responses coinciding with the copepod-chalimus transition. BMC Genomics 2011; 12:141. [PMID: 21385383 PMCID: PMC3062619 DOI: 10.1186/1471-2164-12-141] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/07/2011] [Indexed: 12/30/2022] Open
Abstract
Background The salmon louse (Lepeophtheirus salmonis Krøyer), an ectoparasitic copepod with a complex life cycle causes significant losses in salmon aquaculture. Pesticide treatments against the parasite raise environmental concerns and their efficacy is gradually decreasing. Improvement of fish resistance to lice, through biological control methods, needs better understanding of the protective mechanisms. We used a 21 k oligonucleotide microarray and RT-qPCR to examine the time-course of immune gene expression changes in salmon skin, spleen, and head kidney during the first 15 days after challenge, which encompassed the copepod and chalimus stages of lice development. Results Large scale and highly complex transcriptome responses were found already one day after infection (dpi). Many genes showed bi-phasic expression profiles with abrupt changes between 5 and 10 dpi (the copepod-chalimus transitions); the greatest fluctuations (up- and down-regulation) were seen in a large group of secretory splenic proteases with unknown roles. Rapid sensing was witnessed with induction of genes involved in innate immunity including lectins and enzymes of eicosanoid metabolism in skin and acute phase proteins in spleen. Transient (1-5 dpi) increase of T-cell receptor alpha, CD4-1, and possible regulators of lymphocyte differentiation suggested recruitment of T-cells of unidentified lineage to the skin. After 5 dpi the magnitude of transcriptomic responses decreased markedly in skin. Up-regulation of matrix metalloproteinases in all studied organs suggested establishment of a chronic inflammatory status. Up-regulation of putative lymphocyte G0/G1 switch proteins in spleen at 5 dpi, immunoglobulins at 15 dpi; and increase of IgM and IgT transcripts in skin indicated an onset of adaptive humoral immune responses, whereas MHCI appeared to be down-regulated. Conclusions Atlantic salmon develops rapid local and systemic reactions to L. salmonis, which, however, do not result in substantial level of protection. The dramatic changes observed after 5 dpi can be associated with metamorphosis of copepod, immune modulation by the parasite, or transition from innate to adaptive immune responses.
Collapse
|
24
|
Quiniou SMA, Sahoo M, Edholm ES, Bengten E, Wilson M. Channel catfish CD8α and CD8β co-receptors: characterization, expression and polymorphism. FISH & SHELLFISH IMMUNOLOGY 2011; 30:894-901. [PMID: 21272650 DOI: 10.1016/j.fsi.2011.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/12/2011] [Accepted: 01/16/2011] [Indexed: 05/30/2023]
Abstract
In this study we report the identification and characterization of channel catfish, Ictalurus punctatus CD8α and CD8β genes. Both genes encode predicted proteins containing a leader, a immunoglobulin superfamily V domain, a stalk/hinge region, a transmembrane region and a positively charged cytoplasmic tail (CYT) containing the conserved teleost C-X-H motif. Catfish CD8α and CD8β are encoded as single copy genes and as in other vertebrates exhibit a conserved head to tail synteny; the CD8β gene is found 14.1kb upstream of the CD8α gene. Both CD8α and CD8β transcripts showed a low degree of polymorphism. Finally, as determined by q-PCR both CD8α and CD8β are expressed in various catfish lymphoid tissues with the highest expression observed in thymus from 2 month old catfish-fry. In the future these results will provide the basis for evaluating the role of CD8(+) CTL and other CD8-bearing cells in response to immunization or infection in the catfish.
Collapse
|
25
|
Yamaguchi T, Katakura F, Shitanda S, Niida Y, Toda H, Ohtani M, Yabu T, Suetake H, Moritomo T, Nakanishi T. Clonal growth of carp (Cyprinus carpio) T cells in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:193-202. [PMID: 20875447 DOI: 10.1016/j.dci.2010.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 05/29/2023]
Abstract
Carp kidney leukocytes co-cultured with a supporting cell layer resulted in the rapid proliferation of various types of leukocytes including immature leukocytes. Expressions of marker genes for multiple blood cell lineages were observed in the primary culture. However, after several passages, the proliferating cells expressed only T cell and macrophage marker genes. Further RT-PCR analysis revealed that the proliferating cells expressed TCR constant regions (Cα, Cβ, Cγ, Cδ), CD3γ/δ and CD4 (CD4L-1), but did not express CD8α and CD8β. Additionally, in situ hybridization analysis showed that the majority of proliferating cells expressed Cα, Cβ, Cγ, Cδ and CD4. Moreover, 5'-RACE sequences of TCR variable regions (Vα, Vβ, Vγ, Vδ) revealed that the proliferating cells contained a polyclonal T cell repertoire, and most of the Vα and Vβ sequences were functional, but the Vγ and Vδ sequences were non-functional with frame shifts and stop codons. Taken together, these results indicate that the proliferating cells after serial passages predominantly contained CD4+ CD8- αβT cells that simultaneously co-expressed non-functional γδTCR. To obtain CD4+ αβT cell (helper T cell) clones, single cells were picked up from the bulk culture, seeded into each well of 96-well plates and cultured in the presence of supporting cells and conditioned media. T cell colonies formed from single cells after 2-3 weeks. These colony cells expressed Cα, Cβ, Cδ and CD4, and weakly expressed Cγ, but did not express CD8α, CD8β and CD4L-2. Taken together, these results indicate that these clonal T cells resemble a subpopulation of mammalian CD4+ helper T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- CD4 Antigens/genetics
- CD4-Positive T-Lymphocytes
- CD8 Antigens/genetics
- Carps/immunology
- Cell Proliferation
- Cells, Cultured
- Clone Cells/cytology
- Clone Cells/immunology
- Coculture Techniques
- Gene Expression
- Gene Expression Profiling
- Genes, T-Cell Receptor
- In Situ Hybridization
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Davidson WS, Koop BF, Jones SJM, Iturra P, Vidal R, Maass A, Jonassen I, Lien S, Omholt SW. Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol 2010; 11:403. [PMID: 20887641 PMCID: PMC2965382 DOI: 10.1186/gb-2010-11-9-403] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The International Collaboration to Sequence the Atlantic Salmon Genome (ICSASG) will produce a genome sequence that identifies and physically maps all genes in the Atlantic salmon genome and acts as a reference sequence for other salmonids.
Collapse
Affiliation(s)
- William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby BC, V5A 1S6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yasuike M, de Boer J, von Schalburg KR, Cooper GA, McKinnel L, Messmer A, So S, Davidson WS, Koop BF. Evolution of duplicated IgH loci in Atlantic salmon, Salmo salar. BMC Genomics 2010; 11:486. [PMID: 20813058 PMCID: PMC2996982 DOI: 10.1186/1471-2164-11-486] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 09/02/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Atlantic salmon (Salmo salar) immunoglobulin heavy chain (IgH) locus possesses two parallel IgH isoloci (IGH-A and IGH-B), that are related to the genomic duplication event in the family Salmonidae. These duplicated IgH loci in Atlantic salmon provide a unique opportunity to examine the mechanisms of genome diversity and genome evolution of the IgH loci in vertebrates. In this study, we defined the structure of these loci in Atlantic salmon, and sequenced 24 bacterial artificial chromosome (BAC) clones that were assembled into the IGH-A (1.1 Mb) and IGH-B (0.9 Mb) loci. In addition, over 7,000 cDNA clones from the IgH variable (VH) region have been sequenced and analyzed. RESULTS The present study shows that the genomic organization of the duplicated IgH loci in Atlantic salmon differs from that in other teleosts and other vertebrates. The loci possess multiple Cτ genes upstream of the Cμ region, with three of the Cτ genes being functional. Moreover, the duplicated loci possess over 300 VH segments which could be classified into 18 families. This is the largest number of VH families currently defined in any vertebrate. There were significant structural differences between the two loci, indicating that both IGH-A and -B loci have evolved independently in the short time after the recent genome duplication approximately 60 mya. CONCLUSIONS Our results indicate that the duplication of the IgH loci in Atlantic salmon significantly contributes to the increased diversity of the antibody repertoire, as compared with the single IgH locus in other vertebrates.
Collapse
Affiliation(s)
- Motoshige Yasuike
- Department of Biology, University of Victoria,Victoria, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Criscitiello MF, Ohta Y, Saltis M, McKinney EC, Flajnik MF. Evolutionarily conserved TCR binding sites, identification of T cells in primary lymphoid tissues, and surprising trans-rearrangements in nurse shark. THE JOURNAL OF IMMUNOLOGY 2010; 184:6950-60. [PMID: 20488795 DOI: 10.4049/jimmunol.0902774] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cartilaginous fish are the oldest animals that generate RAG-based Ag receptor diversity. We have analyzed the genes and expressed transcripts of the four TCR chains for the first time in a cartilaginous fish, the nurse shark (Ginglymostoma cirratum). Northern blotting found TCR mRNA expression predominantly in lymphoid and mucosal tissues. Southern blotting suggested translocon-type loci encoding all four chains. Based on diversity of V and J segments, the expressed combinatorial diversity for gamma is similar to that of human, alpha and beta may be slightly lower, and delta diversity is the highest of any organism studied to date. Nurse shark TCRdelta have long CDR3 loops compared with the other three chains, creating binding site topologies comparable to those of mammalian TCR in basic paratope structure; additionally, nurse shark TCRdelta CDR3 are more similar to IgH CDR3 in length and heterogeneity than to other TCR chains. Most interestingly, several cDNAs were isolated that contained IgM or IgW V segments rearranged to other gene segments of TCRdelta and alpha. Finally, in situ hybridization experiments demonstrate a conservation of both alpha/beta and gamma/delta T cell localization in the thymus across 450 million years of vertebrate evolution, with gamma/delta TCR expression especially high in the subcapsular region. Collectively, these data make the first cellular identification of TCR-expressing lymphocytes in a cartilaginous fish.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
29
|
Phillips RB, Keatley KA, Morasch MR, Ventura AB, Lubieniecki KP, Koop BF, Danzmann RG, Davidson WS. Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss). BMC Genet 2009; 10:46. [PMID: 19689812 PMCID: PMC2734554 DOI: 10.1186/1471-2156-10-46] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 08/18/2009] [Indexed: 12/04/2022] Open
Abstract
Background Most teleost species, especially freshwater groups such as the Esocidae which are the closest relatives of salmonids, have a karyotype comprising 25 pairs of acrocentric chromosomes and 48–52 chromosome arms. After the common ancestor of salmonids underwent a whole genome duplication, its karyotype would have 100 chromosome arms, and this is reflected in the modal range of 96–104 seen in extant salmonids (e.g., rainbow trout). The Atlantic salmon is an exception among the salmonids as it has 72–74 chromosome arms and its karyotype includes 12 pairs of large acrocentric chromosomes, which appear to be the result of tandem fusions. The purpose of this study was to integrate the Atlantic salmon's linkage map and karyotype and to compare the chromosome map with that of rainbow trout. Results The Atlantic salmon genetic linkage groups were assigned to specific chromosomes in the European subspecies using fluorescence in situ hybridization with BAC probes containing genetic markers mapped to each linkage group. The genetic linkage groups were larger for metacentric chromosomes compared to acrocentric chromosomes of similar size. Comparison of the Atlantic salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout. Conclusion It had been suggested that some of the large acrocentric chromosomes in Atlantic salmon are the result of tandem fusions, and that the small blocks of repetitive DNA in the middle of the arms represent the sites of chromosome fusions. The finding that the chromosomal regions on either side of the blocks of repetitive DNA within the larger acrocentric chromosomes correspond to different rainbow trout chromosome arms provides support for this hypothesis.
Collapse
Affiliation(s)
- Ruth B Phillips
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Coordinated down-regulation of the antigen processing machinery in the gills of amoebic gill disease-affected Atlantic salmon (Salmo salar L.). Mol Immunol 2008; 45:2581-97. [DOI: 10.1016/j.molimm.2007.12.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 12/25/2007] [Accepted: 12/28/2007] [Indexed: 11/23/2022]
|
31
|
de Boer JG, Yazawa R, Davidson WS, Koop BF. Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genomics 2007; 8:422. [PMID: 18021408 PMCID: PMC2198921 DOI: 10.1186/1471-2164-8-422] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 11/16/2007] [Indexed: 11/17/2022] Open
Abstract
Background Several genome duplications have occurred in the evolutionary history of teleost fish. In returning to a stable diploid state, the polyploid genome reorganized, and large portions are lost, while the fish lines evolved to numerous species. Large scale transposon movement has been postulated to play an important role in the genome reorganization process. We analyzed the DNA sequence of several large loci in Salmo salar and other species for the presence of DNA transposon families. Results We have identified bursts of activity of 14 families of DNA transposons (12 Tc1-like and 2 piggyBac-like families, including 11 novel ones) in genome sequences of Salmo salar. Several of these families have similar sequences in a number of closely and distantly related fish, lamprey, and frog species as well as in the parasite Schistosoma japonicum. Analysis of sequence similarities between copies within the families of these bursts demonstrates several waves of transposition activities coinciding with salmonid species divergence. Tc1-like families show a master gene-like copying process, illustrated by extensive but short burst of copying activity, while the piggyBac-like families show a more random copying pattern. Recent families may include copies with an open reading frame for an active transposase enzyme. Conclusion We have identified defined bursts of transposon activity that make use of master-slave and random mechanisms. The bursts occur well after hypothesized polyploidy events and coincide with speciation events. Parasite-mediated lateral transfer of transposons are implicated.
Collapse
Affiliation(s)
- Johan G de Boer
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2 Canada.
| | | | | | | |
Collapse
|