1
|
Shao ZL, Lan CP, Yu XP, Wang ZL. RNAi-mediated silencing of NlGRP3 augments the insecticidal virulence of Metarhizium anisopliae to the brown planthopper Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106141. [PMID: 39477594 DOI: 10.1016/j.pestbp.2024.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 11/07/2024]
Abstract
The rapid development of insecticide resistance reinforces the urgent need to develop eco-friendly strategies for controlling Nilaparvata lugens (brown planthopper, BPH), the most destructive insect pest of rice. Both entomopathogens and RNA interference (RNAi) provide attractive alternatives to chemical insecticides. In this study, we demonstrated the synergistic potential of the combination use of entomopathogen- and RNAi-mediated approaches to control BPH. The β-1, 3-glucan recognition protein (βGRP) encoding gene NlGRP3 was identified and its potential role in immune defense was characterized in BPH. The open reading frame (ORF) of NlGRP3 is 1740 bp in length, encoding a 65.8 kDa protein with conserved CBM39 and GH16 domains that typically existed in the βGRP family members. NlGRP3 was shown to be differentially expressed across developmental stages and highly transcribed in the immune responsive tissues haemolymph and fat body. Topical infection with a fungal entomopathogen Metarhizium anisopliae could significantly up-regulate its expression level. RNAi-mediated silencing of NlGRP3 resulted in significantly decreased survival rate and increased susceptibility to fungal challenge in the fifth-instar BPH nymphs. The greatly enhanced mortality of NlGRP3-silenced BPH following fungal infection might be in part directly due to the immune suppression by down-regulating expressions of antimicrobial peptide genes and the imbalance of the bacterial community harboring in BPH body. Our results highly demonstrated that suppressing the insect innate immune defense through RNAi targeting the immune-related genes could effectively strengthen the biocontrol efficacy of fungal entomopathogens, providing clues to the combination use of RNAi and entomopathogens as a promising approach for BPH control.
Collapse
Affiliation(s)
- Zhu-Long Shao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Chen-Ping Lan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China.
| |
Collapse
|
2
|
Wang Y, Liu Z, Yin X, Liu S, Wang K, Wan R, Chen H, Li X, Huang B. Variation in Bombyx mori immune response against fungal pathogen Beauveria bassiana with variability in cell wall β-1,3-glucan. INSECT SCIENCE 2024; 31:211-224. [PMID: 37350124 DOI: 10.1111/1744-7917.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/24/2023]
Abstract
Entomopathogenic fungi are protected by a cell wall with dynamic structure for adapting to various environmental conditions. β-1,3-Glucan recognition proteins activate the innate immune system of insects by recognizing surface molecules of fungi. However, the associations between pathogenicity and the different components of entomopathogenic fungal cell walls remain unclear. Three Beauveria bassiana strains were selected that have significantly differing virulence against Bombyx mori. The molecular mechanisms underlying the immune response in B. mori were investigated using RNA sequencing, which revealed differences in the immune response to different B. bassiana strains at 12 h post-infection. Immunofluorescence assays revealed that β-1,3-glucan content had an opposite trend to that of fungal virulence. β-1,3-Glucan injection upregulated BmβGRP4 expression and significantly reduced the virulence of the high-virulence strain but not that of the medium-virulence or low-virulence strains. BmβGRP4 silencing in B. mori with RNA interference resulted in the opposite virulence pattern, indicating that the virulence of B. bassiana was affected by the cell walls' content of β-1,3-glucan, which could be recognized by BmβGRP4. Furthermore, interference with the gene CnA (calcineurin catalytic A subunit) involved in β-1,3-glucan synthesis eliminated differences in virulence between B. bassiana strains. These results indicate that strains of a single species of pathogenic fungi that have differing cell wall components are recognized differently by the innate immune system of B. mori.
Collapse
Affiliation(s)
- Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Zhen Liu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Xuebing Yin
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Shihong Liu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Kai Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Rongjie Wan
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Haoran Chen
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Xinyang Li
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Cao Z, Cao J, Vlasenko V, Bakumenko O, Li W. Molecular characterization and functional analysis of a beta-1,3-glucan recognition protein from oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22068. [PMID: 38013606 DOI: 10.1002/arch.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
The beta-1,3-glucan recognition protein (BGRP) is an important pattern recognition protein (PRP), which plays an important role in immune recognition and signaling pathway of insect innate immunity. Herein, a BGRP gene was obtained from the transcriptome of Grapholita molesta and its expression was verified by PCR. The full cDNA of the GmBGRP gene was 1691 bp encoding 486 amino acid residues. The calculated molecular mass of the mature protein was 54.83 kDa with an estimated pI of 6.14. The amino acid sequence of GmBGRP was highly homologous to BGRPs of other lepidopterans including Leguminivora glycinivorella BGRP-3. Expression profile of GmBGRP at different developmental stages and different tissues of 5th instar larvae showed that the expression level of this gene tends to slightly increase and then decrease at the adult stage, with the highest at the pupa stage; and mainly expressed in the epidermis, fat body and hemocytes compared with other tissues. In addition, we investigated the transcription levels of other immune-related genes, such as Serine-1, Serine-2, Serine-3, Serpin, SRCB (scavenger receptor gene), Toll, PPO (prophenoloxidase) upon GmBGRP gene silencing, indicating that GmBGRP expression is associated with immune responses of G. molesta. This was further supported by the upregulation of the mRNA level of GmBGRP following fungal infection. Taken together, these results provide experimental evidence for the role of GmBGRP gene in immune defense in G. molesta larvae.
Collapse
Affiliation(s)
- Zhishan Cao
- International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Xinxiang, Henan, China
- Department of Plant Protection, Sumy National Agrarian University, Sumy, Ukraine
| | - Jinjun Cao
- International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Xinxiang, Henan, China
| | - Volodymyr Vlasenko
- Department of Plant Protection, Sumy National Agrarian University, Sumy, Ukraine
| | - Olha Bakumenko
- Department of Plant Protection, Sumy National Agrarian University, Sumy, Ukraine
| | - Weihai Li
- International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Xinxiang, Henan, China
| |
Collapse
|
4
|
Ye B, Song Q, Li H, Shen J, Wu C, Shu J, Zhang Y. Cloning and Functional Characterization of a Novel β-GRP Gene From Melanotus cribricollis. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:4. [PMID: 36082677 PMCID: PMC9459437 DOI: 10.1093/jisesa/ieac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel β-1,3-glucan recognition protein gene (β-GRP) was identified from Melanotus cribricollis, and its potential role in the immune response was investigated. The full length of β-GRP cDNA (Accession Number: MT941530) was 1644 bp, encoding a protein composed of 428 amino acids. The theoretical molecular weight and the isoelectric point were 51.53 kDa and 6.17, respectively. The amino acid sequence of β-GRP from M. cribricollis was closely related to that of. β-GRP-like from Photinus pyralis, and was predicted to contain conserved GH16 domain without glucanase active site. The results of real-time quantitative PCR showed that fungal infection of Metarhizium pingshaense may significantly upregulated the expression level of β-GRP gene. The RNAi suppression of β-GRP gene expression significantly increased the corrected cumulative mortality. Meanwhile, antimicrobial peptide genes defensin and lysozyme were significantly downregulated after interference of β-GRP. Taken together, these results suggest that β-GRP of M. cribricollis probably participates in the host immune system by mediating the expression of antimicrobial peptides. This study provides comprehensive insights into the innate immune system of insect larvae.
Collapse
Affiliation(s)
- Bihuan Ye
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Qiyan Song
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Haibo Li
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Jianjun Shen
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | | | - Jinping Shu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yabo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
5
|
Host–Pathogen Interactions between Metarhizium spp. and Locusts. J Fungi (Basel) 2022; 8:jof8060602. [PMID: 35736085 PMCID: PMC9224550 DOI: 10.3390/jof8060602] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
The progress in research on the interactions between Metarhizium spp. and locusts has improved our understanding of the interactions between fungal infection and host immunity. A general network of immune responses has been constructed, and the pathways regulating fungal pathogenicity have also been explored in depth. However, there have been no systematic surveys of interaction between Metarhizium spp. and locusts. The pathogenesis of Metarhizium comprises conidial attachment, germination, appressorial formation, and colonization in the body cavity of the host locusts. Meanwhile, the locust resists fungal infection through humoral and cellular immunity. Here, we summarize the crucial pathways that regulate the pathogenesis of Metarhizium and host immune defense. Conidial hydrophobicity is mainly affected by the contents of hydrophobins and chitin. Appressorial formation is regulated by the pathways of MAPKs, cAMP/PKA, and Ca2+/calmodulin. Lipid droplets degradation and secreted enzymes contributed to fungal penetration. The humoral response of locust is coordinated by the Toll pathway and the ecdysone. The regulatory mechanism of hemocyte differentiation and migration is elusive. In addition, behavioral fever and density-dependent population immunity have an impact on the resistance of hosts against fungal infection. This review depicts a prospect to help us understand host–pathogen interactions and provides a foundation for the engineering of entomopathogenic fungi and the discovery of insecticidal targets to control insect pests.
Collapse
|
6
|
Ekblom C, Söderhäll K, Söderhäll I. Early Changes in Crayfish Hemocyte Proteins after Injection with a β-1,3-glucan, Compared to Saline Injected and Naive Animals. Int J Mol Sci 2021; 22:6464. [PMID: 34208769 PMCID: PMC8234337 DOI: 10.3390/ijms22126464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/29/2022] Open
Abstract
Early changes in hemocyte proteins in freshwater crayfish Pacifastacus leniusculus, in response to an injection with the fungal pattern recognition protein β-1,3-glucan (laminarin) were investigated, as well as changes after saline (vehicle) injection and in naïve animals. Injection of saline resulted in rapid recruitment of granular hemocytes from surrounding tissues, whereas laminarin injection on the other hand induced an initial dramatic drop of hemocytes. At six hours after injection, the hemocyte populations therefore were of different composition. The results show that mature granular hemocytes increase in number after saline injection as indicated by the high abundance of proteins present in granular cell vesicles, such as a vitelline membrane outer layer protein 1 homolog, mannose-binding lectin, masquerade, crustin 1 and serine protease homolog 1. After injection with the β-1,3-glucan, only three proteins were enhanced in expression, in comparison with saline-injected animals and uninjected controls. All of them may be associated with immune responses, such as a new and previously undescribed Kazal proteinase inhibitor. One interesting observation was that the clotting protein was increased dramatically in most of the animals injected with laminarin. The number of significantly affected proteins was very few after a laminarin injection when compared to uninjected and saline-injected crayfish. This finding may demonstrate some problematic issues with gene and protein expression studies from other crustaceans receiving injections with pathogens or pattern recognition proteins. If no uninjected controls are included and no information about hemocyte count (total or differential) is given, expressions data for proteins or mRNAs are very difficult to properly interpret.
Collapse
Affiliation(s)
- Charlotta Ekblom
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Science for Life Laboratory, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| | - Irene Söderhäll
- Department of Comparative Physiology, Science for Life Laboratory, Uppsala University, Norbyvägen 18 A, SE752 36 Uppsala, Sweden;
| |
Collapse
|
7
|
Nabavi Z, Baniardalani M, Basseri H. Purification and Partial Characterization of Agglutinin Lectin from Heamolymph of German Cockroach, Blattella germanica. J Arthropod Borne Dis 2020; 14:144-152. [PMID: 33365342 PMCID: PMC7738926 DOI: 10.18502/jad.v14i2.3732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/28/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Lectin molecules have crucial biological role in insects’ immune system. The aim of present study was to find the agglutinin activities in haemolymph of German cockroach, Belatella germanica with appropriate screening and purification. Methods: The heamolymph of cockroach was collected and agglutinin test performed against different animal and human red blood cells (RBC). Then sugar inhibition assay was carried out to find carbohydrate specific binding lectin. The proteins of haemolymph was purified using ion-exchange chromatography (HPLC) and each fraction was tested for agglutinin activity. Finally the molecular weight of the agglutinin protein was determined using SDS-page. Results: The most agglutinin activity of haemolymph was found against RBC of mouse at titer 1/128ml/L dilution and sugar inhibition assay showed that fucos, N-acetyglucoseamine and galactose reduced titer of agglutinin to ½ml/L. Only one fraction of heamolymph at rotation time of 36 minute showed agglutinin activity. The molecular weight of this lectin was measured as 120Kds. Conclusion: The range of agglutinin activities against different RBC indicates that the isolated lectin is not specific for a particular carbohydrate. In addition, the isolated lectin at low concentration present in heamolymph should be an innate lactin not secreted, because we found it without any trigger immunity of the insect.
Collapse
Affiliation(s)
- Zohreh Nabavi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Baniardalani
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Basseri
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zhang W, Zheng X, Chen J, Keyhani NO, Cai K, Xia Y. Spatial and temporal transcriptomic analyses reveal locust initiation of immune responses to Metarhizium acridum at the pre-penetration stage. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103524. [PMID: 31634520 DOI: 10.1016/j.dci.2019.103524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Insect hemocyte and fat body tissues play critical functional roles in insect immunity. Little, however, is known concerning the dynamic responses of these tissues to fungal infection. Here, we report on a time course of locust hemocyte and fat body transcriptomic responses to infection by the acridid specific fungal pathogen, Metarhizium acridum. Fat body responses were more pronounced at all infection stages as compared to hemocytes. Immune and other related genes were induced far earlier than previously considered including at pre-penetration stages. Differential expression in hemocyte and fat body tissues persisted throughout the course of infection up until host death. Our data indicate selective pressure on the host to recognize the infection as early as possible in order to limit its spread. Overall, fat body and hemocyte tissues launch a robust multi-tiered response to combat the fungal pathogen, with our data providing potential host targets for exploitation in pest control.
Collapse
Affiliation(s)
- Wei Zhang
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Rd, Gainesville, FL32611, USA.
| | - Xiaoli Zheng
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China; College of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR China.
| | - Jianhong Chen
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China.
| | - Nemat O Keyhani
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China; Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Rd, Gainesville, FL32611, USA.
| | - Kaiyong Cai
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China.
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 400030, China.
| |
Collapse
|
9
|
iTRAQ-Based Quantitative Proteomic Analysis of Digestive Juice across the First 48 Hours of the Fifth Instar in Silkworm Larvae. Int J Mol Sci 2019; 20:ijms20246113. [PMID: 31817210 PMCID: PMC6940845 DOI: 10.3390/ijms20246113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023] Open
Abstract
The silkworm is an oligophagous insect for which mulberry leaves are the sole diet. The nutrients needed for vital activities of the egg, pupal, and adult stages, and the proteins formed in the cocoon, are all derived from the larval stages. The silkworm feeds and grows quickly during the larval stages. In particular, the amount of leaf ingested and digested quickly increases from the ecdysis to the gluttonous stage in the fifth instar period. In this study, we used the iTRAQ proteomic technique to identify and analyze silkworm larval digestive juice proteins during this period. A total of 227 proteins were successfully identified. These were primarily serine protease activity, esterase activity, binding, and serine protease inhibitors, which were mainly involved in the digestion and overcoming the detrimental effects of mulberry leaves. Moreover, 30 genes of the identified proteins were expressed specifically in the midgut. Temporal proteomic analysis of digestive juice revealed developmental dynamic features related to molecular mechanisms of the principal functions of digesting, resisting pathogens, and overruling the inhibitory effects of mulberry leaves protease inhibitors (PIs) with a dynamic strategy, although overruling the inhibitory effects has not yet been confirmed by previous study. These findings will help address the potential functions of digestive juice in silkworm larvae.
Collapse
|
10
|
Yi Y, Xu H, Li M, Wu G. RNA-seq profiles of putative genes involved in specific immune priming in Bombyx mori haemocytes. INFECTION GENETICS AND EVOLUTION 2019; 74:103921. [PMID: 31207402 DOI: 10.1016/j.meegid.2019.103921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The immune system of many invertebrates, including insects, has been shown to comprise memory, or specific immune priming. However, knowledge of the molecular mechanisms especially the candidate immune-related genes mediated the specificity of the immune priming are still very scarce and fragmentary. We therefore used two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) as the priming agents and employed Illumina/Solexa platform to investigate the transcriptional changes of the haemocytes of Bombyx mori larvae after priming. RESULTS In total, 23.0 Gbp of sequence data and 153,331,564 reads were generated, representing 10,496 genes. Approximately 89% of the genes or sequenced reads could be aligned to the silkworm reference genome. The differentially expressed genes (DEGs) of PBS-vs-TT01 (up-regulated expression of TT01 relative to PBS), PBS-vs-H06 (up-regulated expression of H06 relative to PBS) and TT01-vs-H06 (up-regulated expression of H06 relative to TT01) were 707, 159 and 461 respectively. In addition, expression patterns of 25 selected DEGs derived from quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with their transcript abundance changes obtained by transcriptomic analyses. The DEGs are mainly related to pattern recognition receptors (PRRs), antimicrobial peptides (AMPs), signaling molecular, effector molecules, phagosome and spliceosome, indicating that they have participated in the regulation of the specific immune priming in the B. mori larvae. CONCLUSIONS The transcriptome profiling data sets from this study will provide valuable resources to better understand the molecular and biological mechanisms regulating the specificity of invertebrates' immune priming. All these will shed light on controlling insect pests or preventing epidemic of infectious diseases in economic invertebrates.
Collapse
Affiliation(s)
- Yunhong Yi
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Hui Xu
- Jingzhou Academy of Agricultural Sciences, Jingzhou 434000, China
| | - Mei Li
- University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China.
| | - Gongqing Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
11
|
Molecular cloning and characterization of the β-1,3-glucan recognition protein in Anatolica polita. Gene X 2019; 697:144-151. [DOI: 10.1016/j.gene.2019.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022] Open
|
12
|
Xie J, Li S, Zhang W, Xia Y. RNAi-knockdown of the Locusta migratoria nuclear export factor protein results in insect mortality and alterations in gut microbiome. PEST MANAGEMENT SCIENCE 2019; 75:1383-1390. [PMID: 30387240 DOI: 10.1002/ps.5258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The migratory locust Locusta migratoria is one of the most important agricultural pests worldwide. The nuclear export factor 1 (NXF1) protein plays a crucial role in mediating mRNA transport from the nucleus to the cytoplasm. This study evaluates whether NXF1 could be a potential target for RNAi-mediated pest control of L. migratoria. RESULTS We cloned and characterized the nuclear export factor lm-nxf1 of L. migratoria. Lm-nxf1 was expressed in all tissues examined, including head, fat body, hemolymph, trunk, leg and midgut, with high expression observed in the hemolymph and fat body. Injection of lm-nxf1 dsRNA into hemolymph resulted in inhibition of mRNA export in hemocytes, which were used as a target for observing mRNA export. Total hemocyte levels were reduced by ca. 97% in lm-nxf1-dsRNA-treated locusts, and high insect mortality occurred with LT50 = 7.75 day as compared with 18.15 day for gfp-dsRNA-treated controls. Further, the locust intestine became atrophy, and the opportunistic pathogens Enterobacter aerogenes, Klebsiella pneumoniae and Enterobacter asburiae were specifically detected in midgut after lm-nxf1 dsRNA treatment. CONCLUSIONS The results reveal that knockdown of the lm-nxf1 gene affects the survival of L. migratoria, indicating that lm-nxf1 is a potential target for RNAi-mediated pest control. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaqin Xie
- Chongqing Engineering Research Center for Fungal Insecticide, Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| | - Shangji Li
- Chongqing Engineering Research Center for Fungal Insecticide, Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| | - Wei Zhang
- Chongqing Engineering Research Center for Fungal Insecticide, Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yuxian Xia
- Chongqing Engineering Research Center for Fungal Insecticide, Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
13
|
Rao XJ, Zhan MY, Pan YM, Liu S, Yang PJ, Yang LL, Yu XQ. Immune functions of insect βGRPs and their potential application. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:80-88. [PMID: 29229443 DOI: 10.1016/j.dci.2017.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, β-1,3-glucan recognition proteins (βGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize β-1,3-glucans. Typical insect βGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical β-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect βGRPs possess at least three types of functions. Firstly, some βGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal β-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect βGRPs, functions of some well-characterized members, structure-function studies and their potential application.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yue-Min Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li-Ling Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiao-Qiang Yu
- Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
14
|
Wu T, Zhao Y, Wang Z, Song Q, Wang Z, Xu Q, Wang Y, Wang L, Zhang Y, Feng C. β-1,3-Glucan recognition protein 3 activates the prophenoloxidase system in response to bacterial infection in Ostrinia furnacalis Guenée. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:31-43. [PMID: 29032241 DOI: 10.1016/j.dci.2017.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Pattern recognition receptors (PRRs) are biosensor proteins that bind to non-self pathogen associated molecular patterns (PAMPs). β-1,3-glucan recognition proteins (βGRPs) play an essential role in immune recognition and signaling pathway of insect innate immunity. Here, we report the cloning and characterization of cDNA of OfβGRP3 from Ostrinia furnacalis larvae. The OfβGRP3 contains 1455 bp open reading frame, encoding a predicted 484 amino acid residue protein. In hemocytes, the expression levels of OfβGRP3 in Escherichia coli-challenged group were higher than those of Bacillus subtilis-challenged group at 2, 4, 8, 10 and 12 h post injection (HPI). In fat body, OfβGRP3 expression in both B. subtilis and E. coli-challenged group was significantly higher than that in untreated group from 4 to 10 HPI, and then the expression continuously dropped from 12 to 36 HPI. The OfβGRP3 expression in laminarin-injected group was higher than that in lipopolysaccharides (LPS)-injected group in various test tissues from 4 to 24 HPI. The LT50 of E. coli-infected OfβGRP3-RNAi larvae (1.0 days) was significantly lower compared with that of E. coli infected wild-type larvae (3.0 days) (p < 0.01). Only 10.2% Sephadex G50 beads (degree 3) were completely melanized in the larvae inoculated with OfβGRP3 dsRNA, as compared to 48.8% in control larvae (p < 0.01). A notable reduction in the PO activity and IEARase activity in hemolymph was also detected in the OfβGRP3 knockdown larvae. Our study demonstrates that OfβGRP3 is one of PRR members involved the PPO-activating system in O. furnacalis larvae.
Collapse
Affiliation(s)
- Taoyan Wu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ya Zhao
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Zengxia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuwen Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yingjuan Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yiqiang Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
15
|
Ye BH, Zhang YB, Shu JP, Wu H, Wang HJ. RNA-sequencing analysis of fungi-induced transcripts from the bamboo wireworm Melanotus cribricollis (Coleoptera: Elateridae) larvae. PLoS One 2018; 13:e0191187. [PMID: 29338057 PMCID: PMC5770045 DOI: 10.1371/journal.pone.0191187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022] Open
Abstract
Larvae of Melanotus cribricollis, feed on bamboo shoots and roots, causing serious damage to bamboo in Southern China. However, there is currently no effective control measure to limit the population of this underground pest. Previously, a new entomopathogenic fungal strain isolated from M. cribricollis larvae cadavers named Metarhizium pingshaense WP08 showed high pathogenic efficacy indoors, indicated that the fungus could be used as a bio-control measure. So far, the genetic backgrounds of both M. cribricollis and M. pingshaense WP08 were blank. Here, we analyzed the whole transcriptome of M. cribricollis larvae, infected with M. pingshaense WP08 or not, using high-throughput next generation sequencing technology. In addition, the transcriptome sequencing of M. pingshaense WP08 was also performed for data separation of those two non-model species. The reliability of the RNA-Seq data was also validated through qRT-PCR experiment. The de novo assembly, functional annotation, sequence comparison of four insect species, and analysis of DEGs, enriched pathways, GO terms and immune related candidate genes were operated. The results indicated that, multiple defense mechanisms of M. cribricollis larvae are initiated to protect against the more serious negative effects caused by fungal infection. To our knowledge, this was the first report of transcriptome analysis of Melanotus spp. infected with a fungus, and it could provide insights to further explore insect-fungi interaction mechanisms.
Collapse
Affiliation(s)
- Bi-huan Ye
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Ya-bo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Jin-ping Shu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- * E-mail: (JPS); (HW)
| | - Hong Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- * E-mail: (JPS); (HW)
| | - Hao-jie Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
16
|
Shafeeq T, UlAbdin Z, Lee KY. Induction of stress- and immune-associated genes in the Indian meal moth Plodia interpunctella against envenomation by the ectoparasitoid Bracon hebetor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21405. [PMID: 28730731 DOI: 10.1002/arch.21405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Envenomation is an important process in parasitism by parasitic wasps; it suppresses the immune and development of host insects. However, the molecular mechanisms of host responses to envenomation are not yet clear. This study aimed to determine the transcription-level responses of the Indian meal moth Plodia interpunctella against envenomation of the ectoparasitoid Bracon hebetor. Quantitative real-time reverse-transcription PCR was used to determine the transcriptional changes of 13 selected genes, which are associated with development, metabolism, stress, or immunity, in the feeding and wandering fifth instar larvae over a 4-day period after envenomation. The effects of envenomation on the feeding-stage larvae were compared with those of starvation in the transcriptional levels of the 13 genes. Most selected genes were altered in their expression by either envenomation or starvation. In particular, a heat shock protein, hsp70, was highly upregulated in envenomated larvae in both the feeding and wandering stages as well as in starved larvae. Further, some genes were upregulated by envenomation in a stage-specific manner. For example, hsp25 was upregulated after envenomation in the feeding larvae, but hsp90 and an immune-associated gene, hemolin, were upregulated in the wandering larvae. However, both envenomation and starvation resulted in the downregulation of genes associated with development and metabolism. Taken together, P. interpunctella upregulated stress- and immune-responsive genes, but downregulated genes associated with development and metabolism after envenomation. This study provides important information for understanding the molecular mechanisms of host responses to parasitism.
Collapse
Affiliation(s)
- Tahir Shafeeq
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Zain UlAbdin
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea
- Sustainable Agriculture Research Center, Kyungpook National University, Gunwi, Republic of Korea
| |
Collapse
|
17
|
Shakeel M, Xu X, Xu J, Zhu X, Li S, Zhou X, Yu J, Xu X, Hu Q, Yu X, Jin F. Identification of immunity-related genes in Plutella xylostella in response to fungal peptide destruxin A: RNA-Seq and DGE analysis. Sci Rep 2017; 7:10966. [PMID: 28887550 PMCID: PMC5591186 DOI: 10.1038/s41598-017-11298-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/17/2017] [Indexed: 11/09/2022] Open
Abstract
Plutella xylostella has become the major lepidopteran pest of Brassica owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of entomopathogenic fungus, Metarhizium anisopliae, has broad-spectrum insecticidal effects. However, the interaction mechanism of destruxin A with the immune system of P. xylostella at genomic level is still not well understood. Here, we identified 129 immunity-related genes, including pattern recognition receptors, signal modulators, few members of main immune pathways (Toll, Imd, and JAK/STAT), and immune effectors in P. xylostella in response to destruxin A at three different time courses (2 h, 4 h, and 6 h). It is worthy to mention that the immunity-related differentially expressed genes (DEGs) analysis exhibited 30, 78, and 72 up-regulated and 17, 13, and 6 down-regulated genes in P. xylostella after destruxin A injection at 2 h, 4 h, and 6 h, respectively, compared to control. Interestingly, our results revealed that the expression of antimicrobial peptides that play a vital role in insect immune system was up-regulated after the injection of destruxin A. Our findings provide a detailed information on immunity-related DEGs and reveal the potential of P. xylostella to limit the infection of fungal peptide destruxin A by increasing the activity of antimicrobial peptides.
Collapse
Affiliation(s)
- Muhammad Shakeel
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xiaoxia Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Jin Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuzhong Li
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | | | | | | | - Qiongbo Hu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xiaoqiang Yu
- School of Biological Sciences, University of Missouri-Kansas, Kansas City, MO, 64110, USA
| | - Fengliang Jin
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China.
| |
Collapse
|
18
|
Han P, Han J, Fan J, Zhang M, Ma E, Li S, Fan R, Zhang J. 20-Hydroxyecdysone activates PGRP-SA mediated immune response in Locusta migratoria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:128-139. [PMID: 28254619 DOI: 10.1016/j.dci.2017.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/26/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
20-hydroxyecdysone (20E) has been implicated in regulating the immune response in insects. Conflicting conclusions on 20E regulating immunity have been reported in model holometabolous species. However, in hemimetabolous insects, the role of 20E as an immune-suppressor or activator and the mechanism remains unclear. The migratory locust Locusta migratoria is a representative member of hemimetabolous insects. Here, digital gene expression (DGE) profiles of Locusta migratoria treated with 20E were analyzed. Pattern recognition receptors [peptidoglycan recognition protein (PGRP-SA), PGRP-LE, and gram-negative binding protein (GNBP3)] and antimicrobial peptides (defensin, diptericin, and i-type lysozyme) were significantly induced by 20E in fat body. These immune-related genes significantly increased their mRNA levels during the high-20E stage. Antibacterial activities in plasma were enhanced after 20E injection and during the high-20E developmental stage. Conversely, when 20E signal was suppressed by RNAi of EcR (ecdysone receptor), the expression levels of these genes and antibacterial activities failed to be increased by 20E injection and during the high-20E developmental stage, and the mortality increased after being infected by entomogenous fungus. The knockdown of PGRP-SA inhibited the expression level of defensin, diptericin and i-type lysozyme in fat body and reduced antibacterial activities in plasma. 20E injection could not significantly induce the expression of antimicrobial peptides after RNAi of PGRP-SA. These results demonstrated that 20E enhanced the immune response by activating PGRP-SA in L. migratoria.
Collapse
Affiliation(s)
- Pengfei Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Jiao Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Jiqiao Fan
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Min Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Enbo Ma
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renjun Fan
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China.
| | - Jianzhen Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China.
| |
Collapse
|
19
|
Lv M, Mohamed AA, Zhang L, Zhang P, Zhang L. A Family of CSαβ Defensins and Defensin-Like Peptides from the Migratory Locust, Locusta migratoria, and Their Expression Dynamics during Mycosis and Nosemosis. PLoS One 2016; 11:e0161585. [PMID: 27556587 PMCID: PMC4996505 DOI: 10.1371/journal.pone.0161585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/08/2016] [Indexed: 11/23/2022] Open
Abstract
Insect defensins are effector components of the innate defense system. During infection, these peptides may play a role in the control of pathogens by providing protective antimicrobial barriers between epithelial cells and the hemocoel. The cDNAs encoding four defensins of the migratory locust, Locusta migratoria, designated LmDEF 1, 3–5, were identified for the first time by transcriptome-targeted analysis. Three of the members of this CSαβ defensin family, LmDEF 1, 3, and 5, were detected in locust tissues. The pro regions of their sequences have little-shared identities with other insect defensins, though the predicted mature peptides align well with other insect defensins. Phylogenetic analysis indicates a completely novel position of both LmDEF 1 and 3, compared to defensins from hymenopterans. The expression patterns of the genes encoding LmDEFs in the fat body and salivary glands were studied in response to immune-challenge by the microsporidian pathogen Nosema locustae and the fungus Metarhizium anisopliae after feeding or topical application, respectively. Focusing on Nosema-induced immunity, qRT-PCR was employed to quantify the transcript levels of LmDEFs. A higher transcript abundance of LmDEF5 was distributed more or less uniformly throughout the fat body along time. A very low baseline transcription of both LmDEFs 1 and 3 in naïve insects was indicated, and that transcription increases with time or is latent in the fat body or salivary glands of infected nymphs. In the salivary glands, expression of LmDEF3 was 20-40-times higher than in the fat body post-microbial infection. A very low expression of LmDEF3 could be detected in the fat body, but eventually increased with time up to a maximum at day 15. Delayed induction of transcription of these peptides in the fat body and salivary glands 5–15 days post-activation and the differential expression patterns suggest that the fat body/salivary glands of this species are active in the immune response against pathogens. The ability of N. locustae to induce salivary glands as well as fat body expression of defensins raises the possibility that these AMPs might play a key role in the development and/or tolerance of parasitic infections.
Collapse
Affiliation(s)
- Mingyue Lv
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Amr Ahmed Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Liwei Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Pengfei Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Long Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
20
|
Zhang W, Chen J, Keyhani NO, Zhang Z, Li S, Xia Y. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 2015; 16:867. [PMID: 26503342 PMCID: PMC4624584 DOI: 10.1186/s12864-015-2089-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 01/20/2023] Open
Abstract
Background The migratory locust, Locusta migratoria manilensis, is an immensely destructive agricultural pest that forms a devastating and voracious gregarious phase. The fungal insect pathogen, Metarhizium acridum, is a specialized locust pathogen that has been used as a potent mycoinsecticide for locust control. Little, however, is known about locust immune tissue, i.e. fat body and hemocyte, responses to challenge by this fungus. Methods RNA-seq (RNA sequencing) technology were applied to comparatively examine the different roles of locust fat body and hemocytes, the two major contributors to the insect immune response, in defense against M. acridum. According to the sequence identity to homologies of other species explored immune response genes, immune related unigenes were screened in all transcriptome wide range from locust and the differential expressed genes were identified in these two tissues, respectively. Results Analysis of differentially expressed locust genes revealed 4660 and 138 up-regulated, and 1647 and 23 down-regulated transcripts in the fat body and hemocytes, respectively after inoculation with M. acridum spores. GO (Gene Ontology) enrichment analysis showed membrane biogenesis related proteins and effector proteins significantly differentially expressed in hemocytes, while the expression of energy metabolism and development related transcripts were enriched in the fat body after fungal infection. A total of 470 immune related unigenes were identified, including members of the three major insect immune pathways, i.e. Toll, Imd (immune deficiency) and JAK/STAT (janus kinase/signal transduction and activator of transcription). Of these, 58 and three were differentially expressed in the insect fat body or hemocytes after infection, respectively. Of differential expressed transcripts post challenge, 43 were found in both the fat body and hemocytes, including the LmLys4 lysozyme, representing a microbial cell wall targeting enzyme. Conclusions These data indicate that locust fat body and hemocytes adopt different strategies in response to M. acridum infection. Fat body gene expression after M. acridum challenge appears to function mainly through activation of innate immune related genes, energy metabolism and development related genes. Hemocyte responses attempt to limit fungal infection primarily through regulation of membrane related genes and activation of cellular immune responses and release of humoral immune factors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2089-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Jianhong Chen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Zhengyi Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Sai Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
21
|
Huang W, Xu X, Freed S, Zheng Z, Wang S, Ren S, Jin F. Molecular cloning and characterization of a β-1,3-glucan recognition protein from Plutella xylostella (L.). N Biotechnol 2015; 32:290-9. [DOI: 10.1016/j.nbt.2015.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 11/15/2022]
|
22
|
Santos D, Vanden Broeck J, Wynant N. Systemic RNA interference in locusts: reverse genetics and possibilities for locust pest control. CURRENT OPINION IN INSECT SCIENCE 2014; 6:9-14. [PMID: 32846691 DOI: 10.1016/j.cois.2014.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is a biological process triggered by double stranded (ds)RNA that results in sequence-dependent mRNA degradation. Because of its high specificity, this post-transcriptional gene silencing mechanism is a widely used tool for reverse genetics in several insect species. In particular, locusts possess a very robust and sensitive RNAi response that has already been exploited to investigate a diverse range of important physiological processes. These orthopteran insects constitute important model organisms in several areas of entomology, but they can also become voracious swarming pests that threaten the agricultural production in large parts of the world. In comparison to the widely applied chemical insecticides, the RNAi-technology could contribute to the development of a novel generation of insecticides, with high species-specificity. In this article, we discuss the potential of the RNAi-technology in loss of function studies in locusts, as well as to control locust populations.
Collapse
Affiliation(s)
- Dulce Santos
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Niels Wynant
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
23
|
The invertebrate midintestinal gland ("hepatopancreas") is an evolutionary forerunner in the integration of immunity and metabolism. Cell Tissue Res 2014; 358:685-95. [PMID: 25174684 DOI: 10.1007/s00441-014-1985-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
The immune system has an impact on the metabolic performance in vertebrates, thus the metabolic effects of immune cells are receiving intense attention today in the biomedical field. However, the evolutionary origin of the immunity-metabolism interaction is still uncertain. In this review, I show that mollusks and crustaceans integrate immune functions to a metabolic organ, the midintestinal gland ("hepatopancreas"). In these animals, the epithelial cells of the midintestinal gland are major sources of immune molecules, such as lectins, hemocyanin, ferritin, antibacterial and antiviral proteins, proteolytic enzymes and nitric oxide. There is crosstalk between midintestinal gland cells and phagocytes, which aids the initiation of the immune response and the clearance of pathogens. The midintestinal gland is thereby an integrated organ of immunity and metabolism. It is likely that immunity was the primary function of the midintestinal gland cells and that their role in the intermediate metabolism has evolved during the course of their further specialization.
Collapse
|
24
|
Rao XJ, Zhong X, Lin XY, Huang XH, Yu XQ. Characterization of a novel Manduca sexta beta-1, 3-glucan recognition protein (βGRP3) with multiple functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:13-22. [PMID: 24952171 PMCID: PMC4143429 DOI: 10.1016/j.ibmb.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 05/30/2023]
Abstract
Recognition of pathogens by insect pattern recognition receptors is critical to mount effective immune responses. In this study, we reported a new member (βGRP3) of the β-1, 3-glucan recognition protein (βGRP) family from the tobacco hornworm Manduca sexta. Unlike other members of the M. sexta βGRP family proteins, which contain an N-terminal small glucan binding domain and a C-terminal large glucanase-like domain, βGRP3 is 40-45 residues shorter at the N-terminus and lacks the small glucan binding domain. The glucanase-like domain of βGRP3 is most similar to that of M. sexta microbe binding protein (MBP) with 78% identity. βGRP3 transcript was mainly expressed in the fat body, and both its mRNA and protein levels were not induced by microorganisms in larvae. Recombinant βGRP3 purified from Drosophila S2 cells could bind to several Gram-negative and Gram-positive bacteria and yeast, as well as to laminarin (β-1, 3-glucan), mannan, lipopolysaccharide (LPS), lipoteichoic acid (LTA), and meso-diaminopimelic acid (DAP)-type peptidoglycan (PG), but did not bind to Lysine-type PG. Binding of βGRP3 to laminarin could be competed well by free laminarin, mannan, LPS and LTA, but almost not competed by free PGs. Recombinant βGRP3 could agglutinate Bacillus cereus and Escherichia coli in a calcium-dependent manner and showed antibacterial (bacteriostatic) activity against B. cereus, novel functions that have not been reported for the βGRP family proteins before. M. sexta βGRP3 may serve as an immune surveillance receptor with multiple functions.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China; Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Xue Zhong
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Xin-Yu Lin
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Hong Huang
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA.
| |
Collapse
|
25
|
Chen H, Yin Y, Feng E, Li Y, Xie X, Wang Z. Thioredoxin peroxidase gene is involved in resistance to biocontrol fungus Nomuraea rileyi in Spodoptera litura: gene cloning, expression, localization and function. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:76-85. [PMID: 24296440 DOI: 10.1016/j.dci.2013.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 06/02/2023]
Abstract
Thioredoxin peroxidases (Tpxs) are a ubiquitous family of antioxidant enzymes that play important roles in protecting organisms against oxidative stress. Here, one Tpx was cloned from Spodoptera litura named as SlTpx. The full-length cDNA consists of 1165 bp with 588 bp open reading frame, encoding 195 amino acids. The putative amino acid sequence shared >70% identity with Tpxs from other insects. Phylogenetic analysis revealed that SlTpx is closely related to other available lepidopteran Tpxs. Real-time PCR analysis showed that SlTpx can be induced by Nomuraea rileyi infection in some detected tissues at the mRNA level. The strongest expression was found in hemocytes of unchallenged and N. rileyi-challenged S. litura. Western blotting showed SlTpx protein in the hemocytes, head and cuticle from normal S. litura. However, when N. rileyi was inoculated into the body cavity of S. litura larvae, SlTpx protein was detected in head, hemocytes, fatbody, midgut, malpighian tubule, but not in the hemolymph and cuticle. Moreover, time-course analysis showed that SlTpx mRNA/protein expression levels were up-regulated in the hemocytes, when S. litura were infected by N. rileyi or injected with H2O2. The levels of N. rileyi-induced reactive oxygen species (ROS) in hemocytes were evaluated, and revealed that N. rileyi infection caused generation of ROS, and induced changes in expression of SlTpx. In addition, the heterologously expressed protein of this gene in Escherichia coli showed antioxidant activity; it removed H2O2 and protected DNA. Knocking down SlTpx transcripts by dsRNA interference resulted in accelerated insect death with N. rileyi infection. This is believed to be the first report showing that SlTpx has a significant role in resisting oxidative stress caused by N. rileyi infection.
Collapse
Affiliation(s)
- Huan Chen
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China; Institute of Plant Physiology and Ecology, Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, CAS, Shanghai 200032, China
| | - Youping Yin
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China
| | - Eryan Feng
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China
| | - Yan Li
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China
| | - Xiang Xie
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China
| | - Zhongkang Wang
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
26
|
Mannakkara A, Niu L, Ma W, Lei C. Zero effect of Bt rice on expression of genes coding for digestion, detoxification and immune responses and developmental performances of brown planthopper Nilaparvata lugens (Stål). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:985-993. [PMID: 23920284 DOI: 10.1016/j.jinsphys.2013.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/15/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
Transgenic Cry1Ac, Cry2Aa and Cry1Ca (Bt toxins) rice lines are well developed to manage lepidopteron pests in China. The impact of transgenic Bt rice on the non-target Brown Planthopper (BPH) has become an essential part of environmental risk assessment, however, scanty evidence is found addressing on developmental and molecular responses of BPH to the ingestion of Bt protein from transgenic rice. The focus of the current study is to examine the developmental characteristics and the expression profiles of gene in relation to digestion, detoxification and immune responses were examined. Our study strongly revealed that the tested Bt rice strains have no unfavorable effect on fecundity, survival and growth of BPH. Furthermore, each of the tested genes did not exhibit distinct expression pattern responding to non Bt parental cultivar, thus, it could be concluded that Bt rice have no detrimental effects on the physiological processes of digestion, detoxification and immune responses of BPH.
Collapse
Affiliation(s)
- Amani Mannakkara
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei, China; Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya 81100, Sri Lanka
| | | | | | | |
Collapse
|
27
|
He Z, Wang P, Shi H, Si F, Hao Y, Chen B. Fas-associated factor 1 plays a negative regulatory role in the antibacterial immunity of Locusta migratoria. INSECT MOLECULAR BIOLOGY 2013; 22:389-398. [PMID: 23635314 DOI: 10.1111/imb.12029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Insect immune responses are precisely regulated to maintain immune balance. In this study, the Fas-associated factor 1 (FAF1) gene of Locusta migratoria manilensis, a homologue of the caspar gene that functions as a specific negative regulator in the antibacterial immunity pathway, was cloned. Gene expression analysis showed that FAF1 was expressed throughout the developmental stages and in all tested tissues, but its transcription levels varied significantly. Thus, FAF1 appears to be tightly regulated and is probably involved in multiple physiological processes. In addition, the antimicrobial peptide gene prolixicin was cloned and characterized. After bacterial challenge, prolixicin was rapidly up-regulated, whereas FAF1 was markedly down-regulated. This result was consistent with the observation that prolixicin was hyperactivated when FAF1 was suppressed by RNA interference. Moreover, after bacterial infection, the survival rate of FAF1-knockdown locusts was much higher than that of the wild-type. Taken together, these findings strongly suggest that FAF1 shares a similar function as caspar in Drosophila and may be involved in the negative regulation of antibacterial immunity in locusts.
Collapse
Affiliation(s)
- Z He
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
28
|
Garcia-Garcia E, Galindo-Villegas J, Mulero V. Mucosal immunity in the gut: the non-vertebrate perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:278-288. [PMID: 23537860 DOI: 10.1016/j.dci.2013.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
Much is now known about the vertebrate mechanisms involved in mucosal immunity, and the requirement of commensal microbiota at mucosal surfaces for the proper functioning of the immune system. In comparison, very little is known about the mechanisms of immunity at the barrier epithelia of non-vertebrate organisms. The purpose of this review is to summarize key experimental evidence illustrating how non-vertebrate immune mechanisms at barrier epithelia compare to those of higher vertebrates, using the gut as a model organ. Not only effector mechanisms of gut immunity are similar between vertebrates and non-vertebrates, but it also seems that the proper functioning of non-vertebrate gut defense mechanisms requires the presence of a resident microbiota. As more information becomes available, it will be possible to obtain a more accurate picture of how mucosal immunity has evolved, and how it adapts to the organisms' life styles.
Collapse
Affiliation(s)
- Erick Garcia-Garcia
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain.
| | | | | |
Collapse
|