1
|
Jiang XX, Tang ZR, Li ZP, Zhang GR, Zhou X, Ma XF, Wei KJ. Molecular characterization, expression analysis and function identification of Pf_IL-12p35, Pf_IL-23p19 and Pf_IL-12p40 genes in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109623. [PMID: 38750705 DOI: 10.1016/j.fsi.2024.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
The interleukin-12 (IL-12) family is a class of heterodimeric cytokines that play crucial roles in pro-inflammatory and pro-stimulatory responses. Although some IL-12 and IL-23 paralogues have been found in fish, their functional activity in fish remains poorly understood. In this study, Pf_IL-12p35a/b, Pf_IL-23p19 and Pf_IL-12p40a/b/c genes were cloned from yellow catfish (Pelteobagrus fulvidraco), four α-helices were found in Pf_IL-12p35a/b and Pf_IL-23p19. The transcripts of these six genes were relatively high in mucus and immune tissues of healthy individuals, and in gill leukocytes. Following Edwardsiella ictaluri infection, Pf_IL-12p35a/b and Pf_IL-23p19 mRNAs were induced in brain and kidney (or head kidney), Pf_IL-12p40a mRNA was induced in gill, and Pf_IL-12p40b/c mRNAs were induced in brain and liver (or skin). The mRNA expression of these genes in PBLs was induced by phytohaemagglutinin (PHA) and polyinosinic-polycytidylic acid (poly I:C), while lipopolysaccharides (LPS) induced the mRNA expression of Pf_IL-12p35a and Pf_IL-12p40b/c in PBLs. After stimulation with recombinant (r) Pf_IL-12 and rPf_IL-23 subunit proteins, either alone or in combination, mRNA expression patterns of genes related to T helper cell development exhibited distinct differences. The results suggest that Pf_IL-12 and Pf_IL-23 subunits may play important roles in regulating immune responses to pathogens and T helper cell development.
Collapse
Affiliation(s)
- Xin-Xin Jiang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zi-Rui Tang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhang-Ping Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xu Zhou
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xu-Fa Ma
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Tran HTQ, Ho TH, Nan FH, Liu CH, Hu YF, Chong CM, de Cruz CR, Karim M, Liu TJ, Kuo IP, Lee PT. Assessment of fish protein hydrolysate as a substitute for fish meal in white shrimp diets: Impact on growth, immune response, and resistance against Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109597. [PMID: 38697373 DOI: 10.1016/j.fsi.2024.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
This study investigated the effects of fish protein hydrolysate derived from barramundi on growth performance, muscle composition, immune response, disease resistance, histology and gene expression in white shrimp (Penaeus vannamei). In vitro studies demonstrated FPH enhanced mRNA expressions of key immune-related genes and stimulated reactive oxygen species (ROS) production and phagocytic activity in shrimp hemocytes. To evaluate the effects of substituting fish meal with FPH in vivo, four isoproteic (43 %), isolipidic (6 %), and isoenergetic diets (489 kcal/100 g) were formulated with fish meal substitution levels of 0 % (control), 30 % (FPH30), 65 % (FPH65), and 100 % (FPH100). After 8-week feeding, the growth performance of FPH65 and FPH100 were significantly lower than that of control and FPH30 (p < 0.05). Similarly, the midgut histological examination revealed the wall thickness and villi height of FPH100 were significantly lower than those of control (p < 0.05). The shrimps were received the challenge of AHPND + Vibrio parahaemolyticus at week 4 and 8. All FPH-fed groups significantly enhanced resistance against Vibrio parahaemolyticus at week 4 (p < 0.05). However, this protective effect diminished after long-period feeding. No significant difference of survival rate was observed among all groups at week 8 (p > 0.05). The expressions of immune-related genes were analyzed at week 4 before and after challenge. In control group, V. parahaemolyticus significantly elevated SOD in hepatopancreas and Muc 19, trypsin, Midline-fas, and GPx in foregut (p < 0.05). Moreover, hepatopancreatic SOD of FPH65 and FPH100 were significantly higher than that of control before challenge (p < 0.05). Immune parameters were measured at week 8. Compared with control, the phagocytic index of FPH 30 was significantly higher (p < 0.05). However, dietary FPH did not alter ROS production, phenoloxidase activity, phagocytic rate, and total hemocyte count (p > 0.05). These findings suggest that FPH30 holds promise as a feed without adverse impacts on growth performance while enhancing the immunological response of white shrimp.
Collapse
Affiliation(s)
| | - Thi Hang Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chou Min Chong
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Clement R de Cruz
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Murni Karim
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Ting-Jui Liu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - I-Pei Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan; Freshwater Aquaculture Research Center Chupei Station, Fisheries Research Institute, Ministry of Agriculture, Hsinchu, Taiwan.
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
3
|
Mahapatra S, Ganguly B, Pani S, Saha A, Samanta M. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management. Int J Biol Macromol 2023; 253:126541. [PMID: 37648127 DOI: 10.1016/j.ijbiomac.2023.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Toll-like receptors (TLRs) represent a conserved group of germline-encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play a crucial role in inducing the broadly acting innate immune response against pathogens. In recent years, the detection of 21 different TLR types in various fish species has sparked interest in exploring the potential of TLRs as targets for boosting immunity and disease resistance in fish. This comprehensive review offers the latest insights into the diverse facets of fish TLRs, highlighting their history, classification, architectural insights through 3D modelling, ligands recognition, signalling pathways, crosstalk, and expression patterns at various developmental stages. It provides an exhaustive account of the distinct TLRs induced during the invasion of specific pathogens in various fish species and delves into the disparities between fish TLRs and their mammalian counterparts, highlighting the specific contribution of TLRs to the immune response in fish. Although various facets of TLRs in some fish, shellfish, and molluscs have been described, the role of TLRs in several other aquatic organisms still remained as potential gaps. Overall, this article outlines frontier aquaculture research in advancing the knowledge of fish immune systems for the proper management of piscine maladies.
Collapse
Affiliation(s)
- Smruti Mahapatra
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Bristy Ganguly
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Saswati Pani
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Ashis Saha
- Reproductive Biology and Endocrinology Laboratory, Fish Nutrition and Physiology Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
4
|
Fang YD, Liu JY, Xie F, Liu LP, Zeng WW, Wang WH. Antibody preparation and age-dependent distribution of TLR8 in Bactrian camel spleens. BMC Vet Res 2023; 19:276. [PMID: 38104080 PMCID: PMC10725000 DOI: 10.1186/s12917-023-03812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Toll-like receptor 8 (TLR8) can recognize specific pathogen-associated molecular patterns and exert multiple immunological functions through activation of signaling cascades. However, the precise distribution and age-related alterations of TLR8 in the spleens of Bactrian camels have not yet been investigated. This study aimed to prepare a rabbit anti-Bactrian camel TLR8 polyclonal antibody and elucidate the distribution of TLR8 in the spleens of Bactrian camels at different age groups. The methodology involved the construction of the pET-28a-TLR8 recombinant plasmid, followed by the expression of TLR8 recombinant protein via prokaryotic expression. Subsequently, rabbits were immunized with the purified protein to prepare the TLR8 polyclonal antibody. Finally, twelve Alashan Bactrian camels were categorized into four groups: young (1-2 years), pubertal (3-5 years), middle-aged (6-16 years) and old (17-20 years). These camels received intravenous sodium pentobarbital (20 mg/kg) anesthesia and were exsanguinated to collect spleen samples. Immunohistochemical techniques were employed to observe and analyze the distribution patterns and age-related changes of TLR8 in the spleen. RESULTS The results showed that the TLR8 recombinant protein was expressed in the form of inclusion body with a molecular weight of 52 kDa, and the optimal induction condition involved 0.3 mmol/L IPTG induction for 8 h. The prepared antibody yielded a titer of 1:32 000, and the antibody demonstrated specific binding to TLR8 recombinant protein. TLR8 positive cells exhibited a consistent distribution pattern in the spleen across different age groups of Bactrian camels, primarily scattered within the periarterial lymphatic sheath of the white pulp, marginal zone, and red pulp. The predominant cell type expressing TLR8 was macrophages, with expression also observed in neutrophils and dendritic cells. Statistical analysis revealed that there were significant differences in the distribution density of TLR8 positive cells among different spleen regions at the same age, with the red pulp, marginal zone, and white pulp showing a descending order (P<0.05). Age-related changes indicated that the distribution density in the marginal zone and red pulp exhibited a similar trend of initially increasing and subsequently decreasing from young to old camels. As camels age, there was a significant decrease in the distribution density across all spleen regions (P<0.05). CONCLUSIONS The results confirmed that this study successfully prepared a rabbit anti-Bactrian camel TLR8 polyclonal antibody with good specificity. TLR8 positive cells were predominantly located in the red pulp and marginal zone of the spleen, signifying their pivotal role in the innate immune response of the spleen. Aging was found to significantly reduce the density of TLR8 positive cells, while leaving their scattered distribution characteristics unaffected. These findings provide valuable support for further investigations into the immunomorphology and immunosenescence of the spleen in Bactrian camels.
Collapse
Affiliation(s)
- Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing-Yu Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Li-Ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei-Wei Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Rao SS, Lunde HS, Dolan DWP, Fond AK, Petersen K, Haugland GT. Transcriptome-wide analyses of early immune responses in lumpfish leukocytes upon stimulation with poly(I:C). Front Immunol 2023; 14:1198211. [PMID: 37388730 PMCID: PMC10300353 DOI: 10.3389/fimmu.2023.1198211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Background Both bacterial and viral diseases are a major threat to farmed fish. As the antiviral immune mechanisms in lumpfish (Cyclopterus lumpus L.) are poorly understood, lumpfish leukocytes were stimulated with poly(I:C), a synthetic analog of double stranded RNA, which mimic viral infections, and RNA sequencing was performed. Methods To address this gap, we stimulated lumpfish leukocytes with poly(I:C) for 6 and 24 hours and did RNA sequencing with three parallels per timepoint. Genome guided mapping was performed to define differentially expressed genes (DEGs). Results Immune genes were identified, and transcriptome-wide analyses of early immune responses showed that 376 and 2372 transcripts were significantly differentially expressed 6 and 24 hours post exposure (hpe) to poly(I:C), respectively. The most enriched GO terms when time had been accounted for, were immune system processes (GO:0002376) and immune response (GO:0006955). Analysis of DEGs showed that among the most highly upregulated genes were TLRs and genes belonging to the RIG-I signaling pathway, including LGP2, STING and MX, as well as IRF3 and IL12A. RIG-I was not identified, but in silico analyses showed that genes encoding proteins involved in pathogen recognition, cell signaling, and cytokines of the TLR and RIG-I signaling pathway are mostly conserved in lumpfish when compared to mammals and other teleost species. Conclusions Our analyses unravel the innate immune pathways playing a major role in antiviral defense in lumpfish. The information gathered can be used in comparative studies and lay the groundwork for future functional analyses of immune and pathogenicity mechanisms. Such knowledge is also necessary for the development of immunoprophylactic measures for lumpfish, which is extensively cultivated for use as cleaner fish in the aquaculture for removal of sea lice from Atlantic salmon (Salmo salar L.).
Collapse
Affiliation(s)
- Shreesha S. Rao
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Harald S. Lunde
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - David W. P. Dolan
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Amanda K. Fond
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Kjell Petersen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Gyri T. Haugland
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Huang MY, Lo CY, Lai CY, Yu JD, Lee PT. Dietary supplementation of synbiotic Leuconostoc mesenteroide B4 and dextran improves immune regulation and disease resistance of Penaeus vannamei against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108498. [PMID: 36539168 DOI: 10.1016/j.fsi.2022.108498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
White shrimp (Penaeus vannamei) is an important culture species in Taiwan but often encounters disease infection by Vibrio parahaemolyticus that cause acute hepatopancreatic necrosis disease (AHPND). This study investigates the effects of dietary supplementation of Leuconostoc mesenteroide B4 and its fermentate (dextran) on the immune response, intestinal morphology, disease resistance, and immune-related gene expression in white shrimp. In comparison to the control group, the shrimp fed with a diet containing B4+dextran (107 CFU B4/g feed and 0.05% dextran) for 14, 28, 42 and 56 days had a significantly higher feed efficiency, weight gain and specific growth rate. A significantly higher villus height in the intestine and higher survival rate after challenging with V. parahaemolyticus was recorded for the B4+dextran group. Flow cytometry analysis demonstrated that the group that had ingested B4+dextran had a higher total hemocyte count and a higher proportion of semi-granulocytes, but a lower percentage of granulocytes compared to the control group. The shotgun metagenomic results in the midgut revealed that Leuco. mesenteroides was barely found in the midgut of the shrimp, suggesting that this microbe and its transient presence in the midgut is not the direct mechanism underlying the improved shrimp growth in the treated sample. Instead, dextran, a key ingredient in the B4 fermentate, on the dynamic of the microbial populations in shrimp, possibly promoting the diversity of gut microbes, especially the beneficial microbes, and thereby rendering protection against AHPND. In terms of comparing the gene expression between the control and synbiotic groups, pre- and post-bacterial challenge, a higher expression level of immune genes was mostly found in the B4+dextran group after challenging it with V. parahaemolyticus (group B4+dextran-VP) in the hepatopancreas and hemocyte. In contrast, the transcript level of immune-related genes was found to be higher in the B4+dextran group than other combinations in the midgut. Taken together, this study found that dietary addition of synbiotic Leuco. mesenteroides B4 and dextran can improve the growth performance, intestinal morphology and microbiome, regulation of immune genes and disease resistance against V. parahaemolyticus infection in white shrimp.
Collapse
Affiliation(s)
- Mei-Ying Huang
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, Taiwan
| | - Chia-Yi Lo
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
7
|
Liao Z, Yang C, Jiang R, Zhu W, Zhang Y, Su J. Cyprinid-specific duplicated membrane TLR5 senses dsRNA as functional homodimeric receptors. EMBO Rep 2022; 23:e54281. [PMID: 35678424 DOI: 10.15252/embr.202154281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
Membrane-embedded Toll-like receptor 5 (TLR5) functions as a homodimer to detect bacterial flagellin. Cyprinid grass carp (Ctenopharyngodon idella) encodes two TLR5 genes, CiTLR5a and CiTLR5b. Here, we show that cyprinid TLR5a and TLR5b homodimers unexpectedly bind the dsRNA analog poly(I:C) and regulate interferon (IFN) response in early endosomes and lysosomes. Although TLR5 homodimers also bind flagellin, an immune response to flagellin is only triggered by TLR5a/b heterodimer. Moreover, we demonstrate that two TLR5 paralogs have opposite effects on antiviral response: CiTLR5a slightly promotes and powerfully maintains, whereas CiTLR5b remarkably inhibits virus replication. We show that the ectodomain of CiTLR5 is required for dsRNA-induced IFN signaling, and we map the key poly(I:C) binding sites to G240 for CiTLR5a and to N547 for CiTLR5b. Furthermore, we reveal that differential N-glycosylation of CiTLR5a/b affects dsRNA-IFN signaling but has no role in flagellin-mediated NF-κB induction, with paralog-specific roles for CiTLR5a-T101 and corresponding CiTLR5b-I99. Moreover, we provide evidence that the ability to sense dsRNA represents a neofunctionalization specific for membrane-bound TLR5 in cyprinid, bridging viral and bacterial immune responses.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Jiang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wentao Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Wang B, Liu X, Zhao J, Cao M, Yu Z, Fu Q, Tan F, Yang N, Li C. Characterization, evolution and expression analysis of Toll-like receptor 7 (TLR7) in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2022; 125:9-16. [PMID: 35477098 DOI: 10.1016/j.fsi.2022.04.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The pattern recognition receptors (PRRs) can recognize the conserved molecular structures of pathogens to active the innate immune responses, and subsequently induce the antigen-specific adaptive immune responses for the clearance of infected pathogen. Among the PRRs, Toll-like receptors (TLRs) are the first and best characterized PRRs across all the species. Among the TLR members, TLR7 showed significant conservation across the vertebrates, with the lowest rate of evolution for its LRR domains from primates to fishes. In the current study, one TLR7 (SmTLR7) gene was captured in turbot, with a 3144 bp open reading frame (ORF), that encoding 1047 amino acid residues. Following multiple sequence comparison, SmTLR7 was found to have the highest similarity and identity both to Paralichthys olivaceus with 91.9% and 85.9%, respectively. In phylogenetic analysis, SmTLR7 was firstly clustered with Japanese flounder, and then clustered with fugu, rainbow trout, and zebrafish. In addition, SmTLR7 was widely expressed in all the examined tissues with the highest expression level in spleen, followed by skin, while the lowest expression level was detected in blood. Following both Edwardsiella tarda and Vibrio anguillarum challenge, SmTLR7 was significantly down-regulated in gill and intestine, and up-regulated in skin. Moreover, SmTLR7 was significantly up-regulated in head kidney macrophages following LPS, LTA, PGN and polyI:C stimulation, as well as showed the strongest binding ability to LPS, followed by PGN, LTA, and polyI:C in a dose-dependent manner. Finally, following RNAi of SmTLR7, MyD88 and IL-1β were slightly up-regulated, while TRAF6 and IL-8 were significantly down-regulated. The characterization of TLR7 can expand our understanding of the PRRs in teleost fishes, and eventually aid the exploration of interactions between host and pathogen.
Collapse
Affiliation(s)
- Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhouxin Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Sousa C, Fernandes SA, Cardoso JCR, Wang Y, Zhai W, Guerreiro PM, Chen L, Canário AVM, Power DM. Toll-Like Receptor Evolution: Does Temperature Matter? Front Immunol 2022; 13:812890. [PMID: 35237266 PMCID: PMC8882821 DOI: 10.3389/fimmu.2022.812890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) recognize conserved pathogen-associated molecular patterns (PAMPs) and are an ancient and well-conserved group of pattern recognition receptors (PRRs). The isolation of the Antarctic continent and its unique teleost fish and microbiota prompted the present investigation into Tlr evolution. Gene homologues of tlr members in teleosts from temperate regions were present in the genome of Antarctic Nototheniidae and the non-Antarctic sister lineage Bovichtidae. Overall, in Nototheniidae apart from D. mawsoni, no major tlr gene family expansion or contraction occurred. Instead, lineage and species-specific changes in the ectodomain and LRR of Tlrs occurred, particularly in the Tlr11 superfamily that is well represented in fish. Positive selective pressure and associated sequence modifications in the TLR ectodomain and within the leucine-rich repeats (LRR), important for pathogen recognition, occurred in Tlr5, Tlr8, Tlr13, Tlr21, Tlr22, and Tlr23 presumably associated with the unique Antarctic microbiota. Exposure to lipopolysaccharide (Escherichia coli O111:B4) Gram negative bacteria did not modify tlr gene expression in N. rossii head–kidney or anterior intestine, although increased water temperature (+4°C) had a significant effect.
Collapse
Affiliation(s)
- Cármen Sousa
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
| | | | - João C. R. Cardoso
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University (SHOU), Shanghai, China
| | - Wanying Zhai
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University (SHOU), Shanghai, China
| | - Pedro M. Guerreiro
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University (SHOU), Shanghai, China
| | - Adelino V. M. Canário
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University (SHOU), Shanghai, China
| | - Deborah M. Power
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University (SHOU), Shanghai, China
- *Correspondence: Deborah M. Power,
| |
Collapse
|
10
|
Lee PT, Nan FH, Chiu PY, Tseng CC, Lee MC. Sarcodia suiae Water Extract Promotes the Expression of Proinflammatory and Th1-Type Cytokines and Delay the Onset of Mortality in Cobia (Rachycentron canadum) During Photobacterium damselae subsp. damselae Infection. Front Immunol 2022; 12:801501. [PMID: 35140710 PMCID: PMC8820276 DOI: 10.3389/fimmu.2021.801501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
Cobia (Rachycentron canadum) is a marine fish of high economic value that grows at a fast rate. However, intensive fish farming has led to disease outbreaks in cobia cultures, which is highly costly to the industry. The impact of infectious diseases on cobia production has led to the inappropriate and increased use of chemicals and antibiotics, which negatively affects the environment and human health and promotes the spread of drug-resistant pathogens. Hence, prophylactic measurements, such as the use of immunomodulators, are required to improve the health of cultured animals against pathogens. In this study, we examined the effects of Sarcodia suiae water extract (SSWE) in cobia in vitro and in vivo. We found that treatment with SSWE could significantly increase the expression of cytokines (e.g., IL-1β, IL-6, IL-10, IL-12, and TNF-α) and chemokines (e.g., IL-8) in primary cultured head kidney leukocytes. Intraperitoneal injection of SSWE (20 μg/g body weight) promoted higher expression of IL-6, IL-8, IL-10, IL-12, chemokines (e.g., CC1), and antibodies (e.g., IgT) in head kidney and spleen tissues of the fish compared with other dose levels. Additionally, we describe for the second time (only after India) of the isolation of Photobacterium damselae subsp. damselae (Phdd) from a deadly epizootic in cage-farmed cobia. An intraperitoneal inoculation of SSWE before Phdd challenge showed that SSWE treatment could delay the onset of mortality of cobia. Finally, fish that received SSWE intraperitoneally before infection with Phdd exhibited elevated expression of Th1-type cytokines, namely, IL-8, IL-12, TNF-α, and IFN-γ. At the same time, the expression of Th2-related factors (such as IL-10 in the head kidney, and IgM and IgT in the spleen) were lower for the fish that received SSWE instead of PBS before the Phdd challenge. The results indicate that SSWE treatment facilitates the induction of Th1-type cytokines in cobia to fight against Phdd infection and has the potential to be used as an immunostimulant and vaccine adjuvant for fish.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Po-Yu Chiu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chung-Chih Tseng
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
- *Correspondence: Chung-Chih Tseng, ; Meng-Chou Lee,
| | - Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, Taiwan
- *Correspondence: Chung-Chih Tseng, ; Meng-Chou Lee,
| |
Collapse
|
11
|
Liao Z, Su J. Progresses on three pattern recognition receptor families (TLRs, RLRs and NLRs) in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104131. [PMID: 34022258 DOI: 10.1016/j.dci.2021.104131] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Pattern recognition receptors (PRRs) are a class of immune sensors that play crucial roles in detecting and responding to the conserved patterns of microorganisms. To date, many PRRs, such as TLRs, RLRs and NLRs, as well as their downstream molecules have been identified and characterized in teleost, while their ligands and immunoregulatory mechanisms remain largely unknown. In the present review, we described and discussed the main members of TLR/RLR/NLR families, including their expression profiles, signaling transductions and functions in teleost. And some splicing isoforms from TLR/RLR/NLR families were also addressed, which play synergistic and/or antagonistic roles in response to pathogen infections in teleost. TLRs sense different pathogens by forming homodimer and/or heterodimer. Beyond, functions of TLRs can also be affected by migrating. And some endolysosomal TLRs undergo proteolytic cleavage and in a pH-dependent mechanism to attain a mature functional form that mediate ligand recognition and downstream signaling. Until now, more than 80 members in TLR/RLR/NLR families have been identified in teleost, while only TLR5, TLR9, TLR19, TLR21, TLR22, MDA5, LGP2, NOD1 and NOD2 have direct evidence of ligand recognition in teleost. Meanwhile, new ligands as well as signaling pathways do occur during evolution of teleost. This review summarizes progresses on the TLRs/RLRs/NLRs in teleost. We attempt to insight into the ligands recognition and signaling transmission of TLRs/RLRs/NLRs in teleost.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
12
|
Wang KL, Chen SN, Huo HJ, Nie P. Identification and expression analysis of sixteen Toll-like receptor genes, TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR7-9, TLR13a-c, TLR14, TLR21-23 in mandarin fish Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104100. [PMID: 33862097 DOI: 10.1016/j.dci.2021.104100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Toll-like receptors (TLRs), as a family of pattern recognition receptors (PRRs), possess specific pathogen-related molecular pattern (PAMP) recognition spectrum in inducing immune responses. In this study, sixteen TLRs were identified and characterized in mandarin fish (Siniperca chuatsi). All these TLRs consist of leucine-rich repeats (LRRs), a transmembrane domain and a Toll/interleukin-I receptor (TIR) domain, with the exception of TLR5S which lacks TIR domain, and they can be clustered into five branches, i.e. TLR1 subfamily, TLR3 subfamily, TLR5 subfamily, TLR7 subfamily and TLR11 subfamily in phylogenetic tree. These TLR genes were expressed in all tested tissues and had high expression levels in immune-related tissues such as head-kidney and spleen or mucosa-related tissues such as intestine and pyloric caecum. The transcripts of TLR2a, TLR2b, TLR3, TLR13a, TLR14, TLR22 and TLR23 were all significantly up-regulated after stimulation with poly(I:C); TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR13a and TLR13b transcripts were all significantly up-regulated after stimulation with PGN; and TLR2a, TLR2b, TLR5M, TLR5S, TLR7, TLR8, TLR9, TLR13c, TLR14 and TLR22 transcripts were all significantly up-regulated after stimulation with LPS in isolated head kidney lymphocytes of mandarin fish. The findings in this study may provide a valuable basis for functional study on TLR genes in mandarin fish.
Collapse
Affiliation(s)
- Kai Lun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| | - Hui Jun Huo
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
13
|
Colgan TJ, Moran PA, Archer LC, Wynne R, Hutton SA, McGinnity P, Reed TE. Evolution and Expression of the Immune System of a Facultatively Anadromous Salmonid. Front Immunol 2021; 12:568729. [PMID: 33717060 PMCID: PMC7952528 DOI: 10.3389/fimmu.2021.568729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Vertebrates have evolved a complex immune system required for the identification of and coordinated response to harmful pathogens. Migratory species spend periods of their life-cycle in more than one environment, and their immune system consequently faces a greater diversity of pathogens residing in different environments. In facultatively anadromous salmonids, individuals may spend parts of their life-cycle in freshwater and marine environments. For species such as the brown trout Salmo trutta, sexes differ in their life-histories with females more likely to migrate to sea while males are more likely to stay and complete their life-cycle in their natal river. Salmonids have also undergone a lineage-specific whole genome duplication event, which may provide novel immune innovations but our current understanding of the differences in salmonid immune expression between the sexes is limited. We characterized the brown trout immune gene repertoire, identifying a number of canonical immune genes in non-salmonid teleosts to be duplicated in S. trutta, with genes involved in innate and adaptive immunity. Through genome-wide transcriptional profiling (“RNA-seq”) of male and female livers to investigate sex differences in gene expression amplitude and alternative splicing, we identified immune genes as being generally male-biased in expression. Our study provides important insights into the evolutionary consequences of whole genome duplication events on the salmonid immune gene repertoire and how the sexes differ in constitutive immune expression.
Collapse
Affiliation(s)
- Thomas J Colgan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Peter A Moran
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Louise C Archer
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Robert Wynne
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Stephen A Hutton
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Marine Institute, Newport, Ireland
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Lee PT, Wen CM, Nan FH, Yeh HY, Lee MC. Immunostimulatory effects of Sarcodia suiae water extracts on Nile tilapia Oreochromis niloticus and its resistance against Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2020; 103:159-168. [PMID: 32416250 DOI: 10.1016/j.fsi.2020.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
In this study, water extracts of the red seaweed Sarcodia suiae were obtained using solid-liquid extraction (SLE) or pressurized liquid extraction (PLE) methods. The extracts were used to investigate immunostimulatory activity by measuring the phagocytic activity of Nile tilapia (Oreochromis niloticus) hepatic and splenic macrophages and the tilapia head kidney (THK) cell line, and modulation of immune-related genes in primary head kidney (HK) cells and THK cells. At 10 μg/ml, both extracts promoted the proliferation of hepatic and splenic macrophages. Expression levels of proinflammatory cytokines (IL-1β and IL-8), antimicrobial peptides (TP2 and TP4), and pattern recognition receptors (TLR5) were elevated in SLE extracts-treated primary HK leukocytes. Similarly, IL-1β, IL-8, and TNFα expression was also induced by SLE extract in THK cells. Phagocytic activity in primary HK cells and THK cells was induced by SLE extract 12 h and 24 h post-stimulation, while PLE extract only induced phagocytic activity in THK cells at early time points. SLE extract (100 μg/g body weight) increased the expression of IL-1β, IL-8, TNFα, TP2, TP4, TLR2 and TLR5 in the spleen and immunoprotective efficiency against Streptococcus agalactiae infection. Taken together, these results show that S. suiae can differentially stimulate the immune response of tilapia in vitro and in vivo and could potentially be used as an immunomodulator in tilapia culture.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Chiu-Ming Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung City, 81148, Taiwan, ROC
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Han-Yang Yeh
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC; Center of Excellence for Ocean Engineering, National Taiwan Ocean University Keelung City, Taiwan, ROC; Center of Excellence for the Oceans, National Taiwan Ocean University Keelung City, Taiwan, ROC.
| |
Collapse
|
15
|
Lulijwa R, Alfaro AC, Merien F, Burdass M, Meyer J, Venter L, Young T. Metabolic and immune responses of Chinook salmon (Oncorhynchus tshawytscha) smolts to a short-term poly (I:C) challenge. JOURNAL OF FISH BIOLOGY 2020; 96:731-746. [PMID: 31995234 DOI: 10.1111/jfb.14266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Polyinosinic:polycytidylic acid [poly (I:C)] was administered in vivo to Chinook salmon (Oncorhynchus tshawytscha) post-smolts to determine the immune responses on haematological and cellular functional parameters, including spleen (SP), head kidney (HK) and red blood cell (RBC) cytokine expression, as well as serum metabolomics. Poly (I:C) in vivo (24 h exposure) did not affect fish haematological parameters, leucocyte phagocytic activity and phagocytic index, reactive oxygen species and nitric oxide production. Gas chromatography-mass spectrometry-based metabolomics revealed that poly (I:C) significantly altered the serum biochemistry profile of 25 metabolites. Metabolites involved in the branched-chain amino acid/glutathione and transsulphuration pathways and phospholipid metabolism accumulated in poly (I:C)-treated fish, whereas those involved in the glycolytic and energy metabolism pathways were downregulated. At cytokine transcript level, poly (I:C) induced a significant upregulation of antiviral ifnγ in HK and Mx1 protein in HK, SP and RBCs. This study provides evidence for poly (I:C)-induced, immune-related biomarkers at metabolic and molecular levels in farmed O. tshawytscha in vivo. These findings provide insights into short-term effects of poly (I:C) at haematological, innate and adaptive immunity and metabolic levels, setting the stage for future studies.
Collapse
Affiliation(s)
- Ronald Lulijwa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- National Agricultural Research Organisation (NARO), Rwebitaba Zonal Agricultural Research and Development Institute (Rwebitaba-ZARDI), Fort Portal, Uganda
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Fabrice Merien
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Mark Burdass
- Nelson Marlborough Institute of Technology (NMIT), Nelson, New Zealand
| | - Jill Meyer
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
16
|
Rebl A, Rebl H, Verleih M, Haupt S, Köbis JM, Goldammer T, Seyfert HM. At Least Two Genes Encode Many Variants of Irak3 in Rainbow Trout, but Neither the Full-Length Factor Nor Its Variants Interfere Directly With the TLR-Mediated Stimulation of Inflammation. Front Immunol 2019; 10:2246. [PMID: 31616422 PMCID: PMC6763605 DOI: 10.3389/fimmu.2019.02246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023] Open
Abstract
The interleukin-1-receptor-associated kinase 3 (IRAK3) is known in mammals as a negative feedback regulator of NF-κB-mediated innate-immune mechanisms. Our RNA-seq experiments revealed a prototypic 1920-nt sequence encoding irak3 from rainbow trout (Oncorhynchus mykiss), as well as 20 variants that vary in length and nucleotide composition. Based on the DNA-sequence information from two closely related irak3 genes from rainbow trout and an irak3-sequence fragment from Atlantic salmon retrieved from public databases, we elucidated the underlying genetic causes for this striking irak3 diversity. Infecting rainbow trout with a lethal dose of Aeromonas salmonicida enhanced the expression of all variants in the liver, head kidney, and peripheral blood leucocytes. We analyzed the functional impact of the full-length factor and selected structural variants by overexpressing them in mammalian HEK-293 cells. The full-length factor enhanced the basal activity of NF-κB, but did not dampen the TLR2-signaling-induced levels of NF-κB activation. Increasing the basal NF-κB-activity through Irak3 apparently does not involve its C-terminal domain. However, more severely truncated factors had only a minor impact on the activity of NF-κB. The TLR2-mediated stimulation did not alter the spatial distribution of Irak3 inside the cells. In salmonid CHSE-214 cells, we observed that the Irak3-splice variant that prominently expresses the C-terminal domain significantly quenched the stimulation-dependent production of interleukin-1β and interleukin-8, but not the production of other immune regulators. We conclude that the different gene and splice variants of Irak3 from trout play distinct roles in the activation of immune-regulatory mechanisms.
Collapse
Affiliation(s)
- Alexander Rebl
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Marieke Verleih
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Stephanie Haupt
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Judith M Köbis
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Tom Goldammer
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Hans-Martin Seyfert
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| |
Collapse
|
17
|
Jin S, Zhao X, Wang H, Su J, Wang J, Ding C, Li Y, Xiao T. Molecular characterization and expression of TLR7 and TLR8 in barbel chub (Squaliobarbus curriculus): Responses to stimulation of grass carp reovirus and lipopolysaccharide. FISH & SHELLFISH IMMUNOLOGY 2018; 83:292-307. [PMID: 30218823 DOI: 10.1016/j.fsi.2018.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
The barbel chub (Squaliobarbus curriculus) is a kind of small size commercial fish species that is widely spread in Asia and has shown significant resistance to disease. In this study, the full-length cDNA sequences of Toll-like receptor (TLR) 7 and 8 from S. curriculus, designated as ScTLR7 and ScTLR8, were cloned, and their differences in the structure and the responses to the grass carp (GCRV) infection and lipopolysaccharide stimulation were investigated. The full-length 3715 base pair (bp) cDNA of ScTLR7 contained a complete open reading frame of 3162 bp and encoded a putative polypeptide of 1053 amino acid residues. The full-length 4624 base pair (bp) cDNA of ScTLR8 contained a complete open reading frame of 3072 bp and encoded a putative polypeptide of 1023 amino acid residues. ScTLR7 and ScTLR8 consisted of N-terminal signal peptide, leucine-rich repeats (LRRs), and Toll/IL-1 Receptors domain. LRR motifs of ScTLR7 and ScTLR8 bend into horseshoe-like solenoid structure, while the number of LRRs between the two genes is different. Phylogenetic analysis showed that both the ScTLR7 and ScTLR8 were closely clustered with Ctenopharyngodon idellus and Megalobrama amblycephala. Quantitative real-time polymerase chain reaction analysis showed that the expression levels of ScTLR7 in S. curriculus were most abundant in the brain followed by the spleen and heart, and the lowest in the intestine. The highest expression level of ScTLR8 was observed in spleen and the lowest in the liver. After LPS stimulation, the relative expression levels of both ScTLR7 and ScTLR8 exhibited an overall trend of up-regulation. The expression levels of type I-IFN showed an overall trend of down-regulation at time points of 12, 24, 72 and 168 h compared to that of 6 h after LPS stimulation. Compared to 6 h post GCRV infection, the transcription level of ScTLR7 was up-regulated from 12 to 168 h, and transcription levels of ScTLR8, MyD88, and type I-IFN were firstly up-regulated from 12 to 72 h, and then down-regulated from 72 to 168 h. Correlation analysis showed that expression level of ScTLR7 in the spleen was significantly positively correlated with that of MyD88 (Pearson correlation coefficient: 0.909, P: 0.033), and a significantly positive correlation was also observed between expression levels of MyD88 and type I IFN (Pearson correlation coefficient: 0.962, P: 0.009), after GCRV stimulation. These results indicate that ScTLR7 and ScTLR8 may play important roles in the responses to the grass carp (GCRV) infection and lipopolysaccharide stimulation and trigger different downstream immune signal pathways.
Collapse
Affiliation(s)
- Shengzhen Jin
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xin Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Hongquan Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China
| | - Jianming Su
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jing'an Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| |
Collapse
|
18
|
Shan S, Liu R, Jiang L, Zhu Y, Li H, Xing W, Yang G. Carp Toll-like receptor 8 (Tlr8): An intracellular Tlr that recruits TIRAP as adaptor and activates AP-1 pathway in immune response. FISH & SHELLFISH IMMUNOLOGY 2018; 82:41-49. [PMID: 30077802 DOI: 10.1016/j.fsi.2018.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Toll-like receptor 8 (Tlr8) is a member of intracellular TLRs family and play a critical role in the innate immunity. In the present study, we aimed to identify tlr8 from common carp (Cyprinus carpio L.), and explored its expression profile, localization, adaptor, and signaling pathways. A novel tlr8 cDNA sequence (Cctlr8) was identified from the carp, containing a signal peptide, a LRR-N-terminal (LRR-NT), 14 leucine-rich repeats, a LRR-C-terminal (LRR-CT), a transmembrane region and a TIR domain. Phylogenetic analysis revealed that CcTlr8 exhibited closest relationship to that of Ctenopharyngodon idella and Danio. rerio. Subcellular localization analysis indicated that CcTlr8 was localized to the endoplasmic reticulum in both HeLa cells and EPC cells. Quantitative Real-Time PCR analysis demonstrated that Cctlr8 was constitutively expressed in all the examined tissues, with the highest expression observed in the spleen. After poly (I:C) injection, the expression of Cctlr8 was significantly up-regulated in all the tested tissues. In addition, the expression of Cctlr8 was up-regulated in both PBLs and HKLs following poly (I:C) stimulation. The results of immuofluorescence and coimmunoprecipitation analysis indicated that CcTlr8 might recruit TIRAP as the adaptor. Furthermore, Luciferase reporter assays revealed that CcTlr8 could activate AP-1 in 293 T cells. Taken altogether, these findings lay the foundations for future research to investigate the mechanisms underlying fish tlr8.
Collapse
Affiliation(s)
- Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Lei Jiang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Yaoyao Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Weixian Xing
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
19
|
Muñoz-Flores C, Astuya A, Roa F, Romero A, Acosta J, Sánchez O, Toledo J. Activation of membrane-bound and soluble Toll-like Receptors 5 in Salmo salar depends on the MyD88 signalling pathway. Biochim Biophys Acta Gen Subj 2018; 1862:2215-2225. [DOI: 10.1016/j.bbagen.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/29/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
|
20
|
Bornhöfft KF, Goldammer T, Rebl A, Galuska SP. Siglecs: A journey through the evolution of sialic acid-binding immunoglobulin-type lectins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:219-231. [PMID: 29751010 DOI: 10.1016/j.dci.2018.05.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 05/11/2023]
Abstract
Siglecs (sialic acid-binding immunoglobulin-type lectins) are a family of immune regulatory receptors predominantly found on the cells of the hematopoietic system. A V-set Ig-like domain mediates the recognition of different sialylated glycoconjugates, which can lead to the activation or inhibition of the immune response, depending on the involved Siglecs. Siglecs are categorized into two subgroups: one including all CD33-related Siglecs and the other consisting of Siglec-1 (Sialoadhesin), Siglec-2 (CD22), Siglec-4 (myelin-associated glycoprotein, MAG) and Siglec-15. In contrast to the members of the CD33-related Siglecs, which share ∼50-99% sequence identity, Siglecs of the other subgroup show quite low homology (approximately 25-30% sequence identity). Based on the published sequences and functions of Siglecs, we performed phylogenetic analyses and sequence alignments to reveal the conservation of Siglecs throughout evolution. Therefore, we focused on the presence of Siglecs in different classes of vertebrates (fishes, amphibians, birds, reptiles and mammals), offering a bridge between the presence of different Siglecs and the biological situations of the selected animals.
Collapse
Affiliation(s)
- Kim F Bornhöfft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
21
|
Nie L, Cai SY, Shao JZ, Chen J. Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals. Front Immunol 2018; 9:1523. [PMID: 30034391 PMCID: PMC6043800 DOI: 10.3389/fimmu.2018.01523] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/19/2018] [Indexed: 01/18/2023] Open
Abstract
The innate immune system is the first line of defense against pathogens, which is initiated by the recognition of pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs). Among all the PRRs identified, the toll-like receptors (TLRs) are the most ancient class, with the most extensive spectrum of pathogen recognition. Since the first discovery of Toll in Drosophila melanogaster, numerous TLRs have been identified across a wide range of invertebrate and vertebrate species. It seems that TLRs, the signaling pathways that they initiate, or related adaptor proteins are essentially conserved in a wide variety of organisms, from Porifera to mammals. Molecular structure analysis indicates that most TLR homologs share similar domain patterns and that some vital participants of TLR signaling co-evolved with TLRs themselves. However, functional specification and emergence of new signaling pathways, as well as adaptors, did occur during evolution. In addition, ambiguities and gaps in knowledge still exist regarding the TLR network, especially in lower organisms. Hence, a systematic review from the comparative angle regarding this tremendous signaling system and the scenario of evolutionary pattern across Animalia is needed. In the current review, we present overview and possible evolutionary patterns of TLRs in non-mammals, hoping that this will provide clues for further investigations in this field.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
22
|
Zhou Z, Lin Z, Pang X, Shan P, Wang J. MicroRNA regulation of Toll-like receptor signaling pathways in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2018; 75:32-40. [PMID: 29408644 DOI: 10.1016/j.fsi.2018.01.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 06/07/2023]
Abstract
The innate immune system is the first line defense mechanism that recognizes, responds to, controls or eliminates invading pathogens. Toll-like receptors (TLRs) are a critical family of pattern recognition receptors (PRRs) tightly regulated by complex mechanisms involving many molecules to ensure a beneficial outcome in response to foreign invaders. MicroRNAs (miRNAs), a transcriptional and posttranscriptional regulator family in a wide range of biological processes, have been identified as new molecules related to the regulation of TLR-signaling pathways in immune responses. To date, at least 22 TLR types have been identified in more than a dozen different fish species. However, the functions and underlying mechanisms of miRNAs in the regulation of inflammatory responses related to the TLR-signaling pathway in fish is lacking. In this review, we summarize the regulation of miRNA expression profiles in the presence of TLR ligands or pathogen infections in teleost fish. We focus on the effects of miRNAs in regulating TLR-signaling pathways by targeting multiple molecules, including TLRs themselves, TLR-associated signaling proteins, and TLR-induced cytokines. An understanding of the relationship between the TLR-signaling pathways and miRNAs may provide new insights for drug intervention to manipulate immune responses in fish.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Zhijuan Lin
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China; Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xin Pang
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Peipei Shan
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Jianxun Wang
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
23
|
Moore LJ, Jarungsriapisit J, Nilsen TO, Stefansson S, Taranger GL, Secombes CJ, Morton HC, Patel S. Atlantic salmon adapted to seawater for 9 weeks develop a robust immune response to salmonid alphavirus upon bath challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 74:573-583. [PMID: 29353080 DOI: 10.1016/j.fsi.2017.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Pancreas disease (PD) caused by salmonid alphavirus (SAV) is the most serious viral disease in Norwegian aquaculture. Study of the immune response to SAV will aid preventative measures including vaccine development. The innate immune response was studied in Atlantic salmon infected by either bath immersion (BI) or by intra-muscular (i.m.) injection (IM) with SAV subtype 3, two and nine weeks after seawater transfer (Phases A and B respectively). Phase A results have been previously published (Moore et al., 2017) and Phase B results are presented here together with a comparison of results achieved in Phase A. There was a rapid accumulation of infected fish in the IM-B (IM Phase B) group and all fish sampled were SAV RNA positive by 7 dpi (days post infection). In contrast, only a few SAV RNA positive (infected) fish were identified at 14, 21 and 28 dpi in the BI-B (BI Phase B) group. Differences in the transcription of several immune genes were apparent when compared between the infected fish in the IM-B and BI-B groups. Transcription of the analysed genes peaked at 7 dpi in the IM-B group and at 14 dpi in the BI-B group. However, this latter finding was difficult to interpret due to the low prevalence of SAV positive fish in this group. Additionally, fish positive for SAV RNA in the BI-B group showed higher transcription of IL-1β, IFNγ and CXCL11_L1, all genes associated with the inflammatory response, compared to the IM-B group. Histopathological changes in the heart were restricted to the IM-B group, while (immune) cell filtration into the pancreas was observed in both groups. Compared to the Phase A fish that were exposed to SAV3 two weeks after seawater transfer, the Phase B fish in the current paper, showed a higher and more sustained innate immune gene transcription in response to the SAV3 infection. In addition, the basal transcription of several innate immune genes in non-infected control fish in Phase B (CT-B) was also significantly different when compared to Phase A control fish (CT-A).
Collapse
Affiliation(s)
- L J Moore
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - J Jarungsriapisit
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway; Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - T O Nilsen
- Uni Research Environment, Uni Research, Thormøhlensgt. 49B, 5006 Bergen, Norway
| | - S Stefansson
- Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - G L Taranger
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - C J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK
| | - H C Morton
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - S Patel
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway.
| |
Collapse
|
24
|
Robertsen B. The role of type I interferons in innate and adaptive immunity against viruses in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:41-52. [PMID: 28196779 DOI: 10.1016/j.dci.2017.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
Type I IFNs (IFN-I) are cytokines, which play a crucial role in innate and adaptive immunity against viruses of vertebrates. In essence, IFN-I are induced and secreted upon host cell recognition of viral nucleic acids and protect other cells against infection by inducing antiviral proteins. Atlantic salmon possesses an extraordinary repertoire of IFN-I genes encompassing at least six different classes (IFNa, IFNb, IFNc, IFNd, IFNe and IFNf) most of which are encoded by several genes. This review describes recent research on the functions of salmon IFNa, IFNb, IFNc and IFNd. As in mammals, expression of different salmon IFN-I in response to virus infection is dependent on their promoters, properties of the virus and the cell's expression of nucleic acid receptors and interferon regulatory factors (IRFs). While IFNa mainly display local antiviral activity, IFNb and IFNc show systemic antiviral activity. In addition, salmon appears to possess several IFN-I receptors, which show selectivity in binding different IFN-I. This complexity in IFN-I and receptors allows for a large variation in functions of the salmon IFN-I. Studies with intramuscular injection of IFN expression plasmids have recently provided surprising results, which may be of relevance for application of IFN-I in prophylaxis against virus infection. Firstly, injection of IFNc plasmid protected salmon presmolts against virus infection for at least 10 weeks. Secondly, IFN plasmids showed potent adjuvant activity when injected together with a DNA vaccine against infectious salmon anemia virus (ISAV).
Collapse
Affiliation(s)
- Børre Robertsen
- Norwegian College of Fishery Science, UiT-The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
25
|
Qi Z, Sun B, Zhang Q, Meng F, Xu Q, Wei Y, Gao Q. Molecular cloning, structural modeling, and expression analysis of MyD88 and IRAK4 of golden pompano (Trachinotus ovatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:19-24. [PMID: 28408332 DOI: 10.1016/j.dci.2017.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
MyD88 and IRAK4 are important components of TLR signaling pathways. However, information about MyD88 and IRAK4 is vacant in golden pompano (Trachinotus ovatus), a marine teleost with great commercial value. Thus, in this study the full lengths of trMyD88 and trIRAK4 were cloned from golden pompano using RT-PCR and RACE-PCR methods. trMyD88 was 1213 bp in length, encoding a putative protein of 288 amino acids (aa), consisting of a 99 aa of death domain at its N-terminal and a 137 aa of the TIR domain at its C-terminal. trIRAK4 was 1606 bp in length, encoding a putative protein of 469 aa, including an N-terminal death domain and a central kinase domain, connected by a ProST domain. Other domains or aa residues needed for their functions were also identified in trMyD88 and trIRAK4. Physicochemical features and 3-D structures of trMyD88 and trIRAK4 were also analyzed. Quantitative real-time PCR revealed that the 2 genes were ubiquitously expressed in tissues from healthy pompano, especially highly in the spleen and head kidney, indicating their roles in the immune response. Further, trMyD88 and trIRAK4 were up-regulated at 12 h after the Vibrio alginilyticus and polyI:C challenge and continued to 48 h post challenge. Our results demonstrated that MyD88 and IRAK4 played important roles in the golden pompano innate immune system, providing the basis for further study of the signaling pathways that these 2 genes are involved in.
Collapse
Affiliation(s)
- Zhitao Qi
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei Province, 434020, China; Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China.
| | - Baobao Sun
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi Autonomous Region 53004, China
| | - Qihuan Zhang
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei Province, 434020, China; Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Fancui Meng
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Qiaoqing Xu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei Province, 434020, China
| | - Youchuan Wei
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi Autonomous Region 53004, China.
| | - Qian Gao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
26
|
Arnemo M, Kavaliauskis A, Andresen AMS, Bou M, Berge GM, Ruyter B, Gjøen T. Effects of dietary n-3 fatty acids on Toll-like receptor activation in primary leucocytes from Atlantic salmon (Salmo salar). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1065-1080. [PMID: 28280951 DOI: 10.1007/s10695-017-0353-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The shortage of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the international markets has led to increasing substitution of fish oil by plant oils in Atlantic salmon (Salmo salar) feed and thereby reducing the EPA and DHA content in salmon. However, the minimum required levels of these fatty acids in fish diets for securing fish health are unknown. Fish were fed with 0, 1 or 2% EPA or DHA alone or in combination of both over a period, growing from 50 to 400 g. Primary head kidney leucocytes were isolated and stimulated with Toll-like receptor (TLR) ligands to determine if EPA and DHA deficiency can affect expression of important immune genes and eicosanoid production. Several genes related to viral immune response did not vary between groups. However, there was a tendency that the high-level EPA and DHA groups expressed lower levels of IL-1β in non-stimulated leucocytes. These leucocytes were also more responsive to the TLR ligands, inducing higher expression levels of IL-1β and Mx1 after stimulation. The levels of prostaglandin E2 and leukotriene B4 in serum and media from stimulated leucocytes were lower in both low and high EPA and DHA groups. In conclusion, leucocytes from low EPA and DHA groups seemed to be less responsive towards immunostimulants, like TLR ligands, indicating that low levels or absence of dietary EPA and DHA may have immunosuppressive effects.
Collapse
Affiliation(s)
- Marianne Arnemo
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway
| | - Arturas Kavaliauskis
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway
| | | | - Marta Bou
- Nofima, P. O. Box 210, 1431, Ås, Norway
| | | | | | - Tor Gjøen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
27
|
Hu Y, Yoshikawa T, Chung S, Hirono I, Kondo H. Identification of 2 novel type I IFN genes in Japanese flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2017; 67:7-10. [PMID: 28546019 DOI: 10.1016/j.fsi.2017.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Two novel type I interferon genes (JfIFN3 and JfIFN4) have been identified in Japanese flounder Paralichthys olivaceus. Open reading frames of JfIFN3 and JfIFN4 were 555bp and 528bp, encoding 184aa and 175aa, respectively. The genomic structures of JfIFN3 and JfIFN4 are composed of 5 exons and 4 introns. JfIFN4 has 2 conserved cysteine residues, while JfIFN3 has 4. JfIFN3 and JfIFN4 showed the highest amino acid sequence identities to turbot IFN1 (74%) and IFN2 (62%), respectively. Interestingly, JfIFN3 and JfIFN4 were clustered in distinct branches with JfIFN1 and JfIFN2, which have reported so far. The mRNA levels of JfIFN4 were apparently increased in the kidney and spleen at 3 h after ployI:C injection, while JfIFN1-3 were not detected by RT-PCR.
Collapse
Affiliation(s)
- Yiwen Hu
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan; National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, No. 1 of Haida Street, Zhoushan, Zhejiang 316022, China
| | - Takaki Yoshikawa
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Seangmin Chung
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan.
| |
Collapse
|
28
|
Lee PT, Bird S, Zou J, Martin SAM. Phylogeny and expression analysis of C-reactive protein (CRP) and serum amyloid-P (SAP) like genes reveal two distinct groups in fish. FISH & SHELLFISH IMMUNOLOGY 2017; 65:42-51. [PMID: 28336487 PMCID: PMC5446266 DOI: 10.1016/j.fsi.2017.03.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
The acute phase response (APR) is an early innate immune function that is initiated by inflammatory signals, leading to the release of acute phase proteins to the bloodstream to re-establish homeostasis following microbial infection. In this study we analysed the Atlantic salmon (Salmo salar) whole-genome database and identified five C-reactive protein (CRP)/serum amyloid P component (SAP) like molecules namely CRP/SAP-1a, CRP/SAP-1b, CRP/SAP-1c, CRP/SAP-2 and CRP/SAP-3. These CRP/SAP genes formed two distinct sub-families, a universal group (group I) present in all vertebrates and a fish/amphibian specific group (group II). Salmon CRP/SAP-1a, CRP/SAP-1b and CRP/SAP-1c and CRP/SAP-2 belong to the group I family whilst salmon CRP/SAP-3 is a member of group II. Gene expression analysis showed that the salmon CRP/SAP-1a as well as serum amyloid A-5 (SAA-5), one of the major acute phase proteins, were significantly up-regulated by recombinant cytokines (rIL-1β and rIFNγ) in primary head kidney cells whilst the other four CRP/SAPs remained refractory. Furthermore, SAA-5 was produced as the main acute phase protein (APP) in Atlantic salmon challenged with Aeromonas salmonicida (aroA(-) strain) whilst salmon CRP/SAPs remained unaltered. Overall, these data illustrate the potential different functions of expanded salmon CRP/SAPs to their mammalian homologues.
Collapse
Affiliation(s)
- P T Lee
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - S Bird
- Science & Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - J Zou
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - S A M Martin
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
29
|
Caballero-Solares A, Hall JR, Xue X, Eslamloo K, Taylor RG, Parrish CC, Rise ML. The dietary replacement of marine ingredients by terrestrial animal and plant alternatives modulates the antiviral immune response of Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2017; 64:24-38. [PMID: 28242361 DOI: 10.1016/j.fsi.2017.02.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/23/2017] [Indexed: 05/09/2023]
Abstract
The effects of replacing marine ingredients by terrestrial ingredients on the health of Atlantic salmon (Salmo salar) are poorly understood. During a 14-week trial, Atlantic salmon fed a fish meal-fish oil based diet (MAR) showed similar growth performance to others fed a plant protein/vegetable oil based diet (VEG), whereas poorer performance was observed in those fed an animal by-product meal/vegetable oil based diet (ABP). At the end of the trial, salmon were injected with either phosphate-buffered saline (PBS) or the viral mimic polyriboinosinic polyribocytidylic acid (pIC) and sampled for head kidney RNA after 24 h. The levels of 27 immune-related transcripts, and of 5 others involved in eicosanoid synthesis (including paralogues in both cases) were measured in the head kidney of the salmon using qPCR. All of the assayed immune-related genes and cox2 were pIC-induced, while the other eicosanoid synthesis-related genes were pIC-repressed. Linear regression was used to establish correlations between different immune transcripts, elucidating the cascade of responses to pIC and specialization among paralogues. Regarding the effect of diet on the antiviral immune response, pIC-treated fish fed diets ABP and VEG showed higher transcript levels of tlr3, irf1b, stat1a, isg15b, and gig1 compared to those fed diet MAR. We infer that the observed dietary immunomodulation could be due to the lower proportion of arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) in diets ABP and VEG. Furthermore, our results suggest a major role of dietary ARA in Atlantic salmon immunity, as low ARA proportion in diet VEG coincided with the highest pIC-induction of some immune transcripts (tlr7, stat1c, mxb, and gig1) and the lowest levels of transcripts encoding eicosanoid-synthesizing enzymes (5loxa, 5loxb, and pgds). In contrast, the high ARA/EPA ratio of diet ABP appeared to favor increased expression of transcripts involved in the synthesis of pro-inflammatory eicosanoids (5loxa and 5loxb) and chemotaxis (ccl19b). In conclusion, our findings show that nutritionally balanced plant-based diets may enhance the immune response of Atlantic salmon. Future studies should explore the possible advantages of plant-based diets in Atlantic salmon exposed to a viral infection.
Collapse
Affiliation(s)
- Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | | | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
30
|
Wei Y, Hu S, Sun B, Zhang Q, Qiao G, Wang Z, Shao R, Huang G, Qi Z. Molecular cloning and expression analysis of toll-like receptor genes (TLR7, TLR8 and TLR9) of golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2017; 63:270-276. [PMID: 28232281 DOI: 10.1016/j.fsi.2017.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/12/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Toll like receptor (TLR) 7, 8 and 9 are intracellular TLRs which play important roles in host immune defense against bacterial or virus pathogens. In this study, TLR7, 8 and 9 were identified from golden pompano (Trachinotus ovatus), a marine teleost with great economic values. Sequence analysis revealed that the three TLRs contained several conserved characteristic features, including signal peptides, 25 leucine-rich repeat (LRR) motifs, a transmembrane domain and a TIR motif. These three TLRs shared high sequence identity and similarity with their counterparts from other teleosts. The phylogenetic tree analysis showed the three TLRs were clustered well with their piscine counterparts, confirming the correctness of their nomenclatures and closed relationships during evolution. Quantitative real-time PCR revealed that the three TLRs were ubiquitously expressed in all the tested tissues from normal pompano, with high expression in spleen and head kidney, indicating their role in immune reaction. Further, pompano TLR7 and TLR8 was up-regulated in spleen and head kidney from 12 h to 48 h following polyI:C challenge, but remained no changes to Vibrio alginilyticus infection. In contrast, pompano TLR9 could be induced by V. alginilyticus infection but remained apathetic to polyI:C challenge. These results indicated that pompano TLR7, 8 and 9 might have distinct roles in response to bacterial or virus pathogens. Our results provided the basis for further study on ligand specificity and signaling pathways of fish TLRs which are required for elucidating the immune functions of fish TLRs.
Collapse
Affiliation(s)
- Youchuan Wei
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi Autonomous Region, 53004, China; Guangxi Institute of Oceanology, Guangxi Key Laboratory of Marine Biotechnology, Guangxi Autonomous Region, 536000, China.
| | - Shu Hu
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi Autonomous Region, 53004, China
| | - Baobao Sun
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi Autonomous Region, 53004, China; Guangxi Institute of Oceanology, Guangxi Key Laboratory of Marine Biotechnology, Guangxi Autonomous Region, 536000, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Guo Qiao
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Zisheng Wang
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Rong Shao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Guoqiang Huang
- Guangxi Institute of Oceanology, Guangxi Key Laboratory of Marine Biotechnology, Guangxi Autonomous Region, 536000, China
| | - Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China; Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China.
| |
Collapse
|
31
|
Moore LJ, Jarungsriapisit J, Nilsen TO, Stefansson S, Taranger GL, Secombes CJ, Morton HC, Patel S. Immune gene profiles in Atlantic salmon (salmo salar L.) post-smolts infected with SAV3 by bath-challenge show a delayed response and lower levels of gene transcription compared to injected fish. FISH & SHELLFISH IMMUNOLOGY 2017; 62:320-331. [PMID: 28137651 DOI: 10.1016/j.fsi.2017.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Salmonid alphavirus (SAV) causes pancreatic disease (PD) in salmonids in Northern Europe which results in large economic losses within the aquaculture industry. In order to better understand the underlying immune mechanisms during a SAV3 infection Atlantic salmon post-smolts were infected by either i.m.-injection or bath immersion and their immune responses compared. Analysis of viral loads showed that by 14 dpi i.m.-injected and bath immersion groups had 95.6% and 100% prevalence respectively and that both groups had developed the severe pathology typical of PD. The immune response was evaluated by using RT-qPCR to measure the transcription of innate immune genes involved in the interferon (IFN) response as well as genes associated with inflammation. Our results showed that IFNa transcription was only weakly upregulated, especially in the bath immersion group. Despite this, high levels of the IFN-stimulated genes (ISGs) such as Mx and viperin were observed. The immune response in the i.m.-injected group as measured by immune gene transcription was generally faster, and more pronounced than the response in the bath immersion group, especially at earlier time-points. The response in the bath immersion group started later as expected and appeared to last longer often exceeding the response in the i.m-injected fish at later time-points. High levels of transcription of many genes indicative of an active innate immune response were present in both groups.
Collapse
Affiliation(s)
- L J Moore
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - J Jarungsriapisit
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway; Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - T O Nilsen
- Uni Research Environment, Uni Research, Thormøhlensgt, 49B 5006 Bergen, Norway
| | - S Stefansson
- Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - G L Taranger
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - C J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK
| | - H C Morton
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway
| | - S Patel
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway.
| |
Collapse
|
32
|
Abo-Al-Ela HG, El-Nahas AF, Mahmoud S, Ibrahim EM. The extent to which immunity, apoptosis and detoxification gene expression interact with 17 alpha-methyltestosterone. FISH & SHELLFISH IMMUNOLOGY 2017; 60:289-298. [PMID: 27902922 DOI: 10.1016/j.fsi.2016.11.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
Innate immunity is the first line of defence against invasion by foreign pathogens. One widely used synthetic androgen for the production of all-male fish, particularly commercially valuable Nile tilapia, Oreochromis niloticus, is 17 alpha-methyltestosterone (MT). The present study investigates the effect of MT on innate immunity, cellular apoptosis and detoxification and the mortality rate, during and after the feeding of fry with 0-, 40-and 60-mg MT/kg. Expression analysis was completed on interleukin 1 beta (il1β), interleukin 8 (il8), tumour necrosis factor alpha (tnfα), CXC2- and CC-chemokines, interferon (ifn), myxovirus resistance (mx), toll-like receptor 7 (tlr7), immunoglobulin M heavy chain (IgM heavy chain), vitellogenin (vtg), cellular apoptosis susceptibility (cas) and glutathione S-transferase α1 (gstα1). Expression analysis revealed that MT had a significant impact on these genes, and this impact varied from induction to repression during and after the treatment. Linear regression analysis showed a significant association between the majority of the tested gene transcript levels and mortality rates on the 7th and 21st days of hormonal treatment and 2 weeks following hormonal cessation. The results are thoroughly discussed in this article. This is the first report concerning the hazardous effect of MT on a series of genes involved in immunity, apoptosis and detoxification in the Nile tilapia fry.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Animal Health Research Institute, Shibin Al-Kom Branch, Agriculture Research Centre, El-Minufiya, Egypt; Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| | - Abeer F El-Nahas
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Essam M Ibrahim
- Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| |
Collapse
|
33
|
Altmann S, Korytář T, Kaczmarzyk D, Nipkow M, Kühn C, Goldammer T, Rebl A. Toll-like receptors in maraena whitefish: Evolutionary relationship among salmonid fishes and patterns of response to Aeromonas salmonicida. FISH & SHELLFISH IMMUNOLOGY 2016; 54:391-401. [PMID: 27131902 DOI: 10.1016/j.fsi.2016.04.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
Toll-like receptors (TLRs) interact directly with particular pathogenic structures and are thus highly important to innate immunity. The present manuscript characterises a suite of 14 TLRs in maraena whitefish (Coregonus maraena), a salmonid species with increasing importance for aquaculture. Whitefish TLRs were structurally and evolutionary analysed. The results revealed a close relationship with TLRs from salmonid fish species rainbow trout and Atlantic salmon. Profiling the baseline expression of TLR genes in whitefish indicated that mainly members of the TLR11 family were highly expressed across all investigated tissues. A stimulation model with inactivated Aeromonas salmonicida was used to induce inflammation in the peritoneal cavity of whitefish. This bacterial challenge induced the expression of pro-inflammatory cytokine genes and evoked a strong influx of granulated cells of myeloid origin into the peritoneal cavity. As a likely consequence, the abundance of TLR-encoding transcripts increased moderately in peritoneal cells, with the highest levels of transcripts encoding non-mammalian TLR22a and a soluble TLR5 variant. In the course of inflammation, the proportion of granulated cells increased in peripheral blood accompanied by elevated TLR copy numbers in spleen and simultaneously reduced TLR copy numbers in head kidney at day 3 post-stimulation. Altogether, the present study provides in-vivo evidence for relatively modest TLR response patterns, but marked trafficking of myeloid cells as an immunophysiological consequence of A. salmonicida inflammation in whitefish. The present results contribute to improved understanding of the host-pathogen interaction in salmonid fish.
Collapse
Affiliation(s)
- Simone Altmann
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tomáš Korytář
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Immunology, Laboratory for Comparative Immunology, Südufer 10, 17493 Greifswald, Insel Riems, Germany; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Danuta Kaczmarzyk
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; School of Biotechnology, KTH-Royal Institute of Technology, Department of Proteomics, Roslagstullsbacken 21, 10450 Stockholm, Sweden
| | - Mareen Nipkow
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Carsten Kühn
- State Research Centre for Agriculture and Fishery (LFA M-V), Institute for Fishery, Fischerweg 408, Rostock, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
34
|
Xu C, Evensen Ø, Munang'andu H. De Novo Transcriptome Analysis Shows That SAV-3 Infection Upregulates Pattern Recognition Receptors of the Endosomal Toll-Like and RIG-I-Like Receptor Signaling Pathways in Macrophage/Dendritic Like TO-Cells. Viruses 2016; 8:114. [PMID: 27110808 PMCID: PMC4848607 DOI: 10.3390/v8040114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
A fundamental step in cellular defense mechanisms is the recognition of “danger signals” made of conserved pathogen associated molecular patterns (PAMPs) expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs). In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG) to identify PRRs together with the network pathway of differentially expressed genes (DEGs) that recognize salmonid alphavirus subtype 3 (SAV-3) infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L) headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs) 3 and 8 together with RIG-I-like receptors (RLRs) and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs) genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I), melanoma differentiation association 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). The study points to possible involvement of the tripartite motif containing 25 (TRIM25) and mitochondrial antiviral signaling protein (MAVS) in modulating RIG-I signaling being the first report that links these genes to the RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN) regulatory factors (IRFs) 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon.
Collapse
Affiliation(s)
- Cheng Xu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146 Dep NO-0033 Oslo, Norway.
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146 Dep NO-0033 Oslo, Norway.
| | - Hetron Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146 Dep NO-0033 Oslo, Norway.
| |
Collapse
|
35
|
Li XP, Sun L. TLR7 is required for optimal immune defense against bacterial infection in tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2015; 47:93-99. [PMID: 26327112 DOI: 10.1016/j.fsi.2015.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/28/2015] [Accepted: 08/26/2015] [Indexed: 06/04/2023]
Abstract
In mammals as well as in teleost, toll-like receptor 7 (TLR7) is known to be involved in antiviral immunity by recognizing viral RNA. However, the antibacterial potential of fish TLR7 is unclear. In this study, we analyzed the TLR7 of tongue sole (Cynoglossus semilaevis), CsTLR7, and examined its potential involvement in antibacterial immunity. CsTLR7 is composed of 1052 amino acid residues and shares 64.0%-75.9% overall sequence identities with known teleost TLR7. CsTLR7 possesses a toll/interleukin-1 receptor domain and six leucine-rich repeats. Constitutive expression of CsTLR7 occurred in relatively high levels in kidney, spleen and liver. Bacterial infection upregulated CsTLR7 expression, whereas viral infection downregulated CsTLR7 expression. Knockdown of CsTLR7 significantly enhanced bacterial dissemination in the tissues of tongue sole. Treatment of tongue sole with the imidazoquinoline compound R848 (TLR7 activator) and the endosomal acidification inhibitor chloroquine (TLR7 inhibitor) caused enhanced and reduced resistance against bacterial infection respectively. These results indicate that CsTLR7 plays an essential role in the antibacterial immunity of tongue sole.
Collapse
Affiliation(s)
- Xue-peng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Oceanography Laboratory, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Oceanography Laboratory, Qingdao, China.
| |
Collapse
|
36
|
Zhang DL, Yu DH, Chen J, Chen C, Wang ZY. Co-expression of march5b and tlr7 in large yellow croaker Larimichthys crocea in response to Cryptocaryon irritans infection. JOURNAL OF FISH BIOLOGY 2015; 87:360-370. [PMID: 26179830 DOI: 10.1111/jfb.12726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 07/01/2014] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
In this study, molecular characteristics of march5b and co-expression of march5b and tlr7 in response to the infection of Cryptocaryon irritans in the large yellow croaker Larimichthys crocea were investigated. The full-length complementary (c)DNA of march5b was 1314 bp, including an open reading frame of 846 bp encoding a polypeptide of 281 amino acids, and the full-length genomic sequence was composed of 23,577 nucleotides, including six exons and five introns. The putative March5b protein contained a RINGv motif and four transmembrane domains. The march5b transcripts were broadly distributed in all detected tissues, with a strong expression in blood, brain and gills, and a weak expression in kidney by quantitative PCR analysis. The expression of march5b and tlr7 in the skin, gills, spleen and head kidney changed in the same manner at most time points post-primary infection with C. irritans. Significant increase was observed in the skin with march5b at days 2 and 3 by 26.10 and 6.88 fold, respectively, and with tlr7 at day 3 by 57.68 fold, when compared with the control. Their expressions, however, were decreased in the gills, especially at day 3 (march5b by 8.9%, tlr7 by 22.06%). In the spleen and head kidney, march5b and tlr7 transcripts were up-regulated early, then noticeably declined at day 3. These results suggested that march5b and tlr7 are co-expressed in response to parasite infection and March5b probably catalyses ubiquitination of some proteins of TLR7 signalling pathway.
Collapse
Affiliation(s)
- D L Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - D H Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - J Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - C Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Z Y Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| |
Collapse
|
37
|
Sensors of Infection: Viral Nucleic Acid PRRs in Fish. BIOLOGY 2015; 4:460-93. [PMID: 26184332 PMCID: PMC4588145 DOI: 10.3390/biology4030460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/25/2022]
Abstract
Viruses produce nucleic acids during their replication, either during genomic replication or transcription. These nucleic acids are present in the cytoplasm or endosome of an infected cell, or in the extracellular space to be sensed by neighboring cells during lytic infections. Cells have mechanisms of sensing virus-generated nucleic acids; these nucleic acids act as flags to the cell, indicating an infection requiring defense mechanisms. The viral nucleic acids are called pathogen-associated molecular patterns (PAMPs) and the sensors that bind them are called pattern recognition receptors (PRRs). This review article focuses on the most recent findings regarding nucleic acids PRRs in fish, including: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), cytoplasmic DNA sensors (CDSs) and class A scavenger receptors (SR-As). It also discusses what is currently known of the downstream signaling molecules for each PRR family and the resulting antiviral response, either type I interferons (IFNs) or pro-inflammatory cytokine production. The review highlights what is known but also defines what still requires elucidation in this economically important animal. Understanding innate immune systems to virus infections will aid in the development of better antiviral therapies and vaccines for the future.
Collapse
|
38
|
Lee PT, Zou J, Holland JW, Martin SAM, Scott CJW, Kanellos T, Secombes CJ. Functional characterisation of a TLR accessory protein, UNC93B1, in Atlantic salmon (Salmo salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:38-48. [PMID: 25576824 DOI: 10.1016/j.dci.2014.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Toll-like receptors (TLRs) are indispensable components of the innate immune system, which recognise conserved pathogen associated molecular patterns (PAMPs) and induce a series of defensive immune responses to protect the host. Biosynthesis, localisation and activation of TLRs are dependent on TLR accessory proteins. In this study, we identified the accessory protein, UNC93B1, from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs aided by the conserved gene synteny of genes flanking UNC93B1 in fish, birds and mammals. Phylogenetic analysis showed that salmon UNC93B1 grouped with other vertebrate UNC93B1 molecules, and had highest amino acid identity and similarity to zebrafish UNC93B1. The salmon UNC93B1 gene organisation was also similar in structure to mammalian UNC93B1. Our gene expression studies revealed that salmon UNC93B1 was more highly expressed in spleen, liver and gill tissues but was expressed at a lower level in head kidney tissue in post-smolts relative to parr. Moreover, salmon UNC93B1 mRNA transcripts were up-regulated in vivo in spleen tissue from polyI:C treated salmon and in vitro in polyI:C or IFNγ stimulated Salmon Head Kidney-1 (SHK-1) cells. Initial studies into the functional role of salmon UNC93B1 in fish TLR signalling found that both wild type salmon UNC93B1 and a molecule with a site-directed mutation (H424R) co-immunoprecipitated with salmon TLR19, TLR20a and TLR20d. Overall, these data illustrate the potential importance of UNC93B1 as an accessory protein in fish TLR signalling.
Collapse
Affiliation(s)
- P T Lee
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - J Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - J W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - S A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - C J W Scott
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - T Kanellos
- Animal Health Division, Zoetis, 23-25 avenue du Dr. Lannelongue, Paris Cedex 14 75668, France
| | - C J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| |
Collapse
|
39
|
Huang L, Fan Y, Zhou Y, Jiang N, Liu W, Meng Y, Zeng L. Cloning, sequence analysis and expression profiles of Toll-like receptor 7 from Chinese giant salamander Andrias davidianus. Comp Biochem Physiol B Biochem Mol Biol 2015; 184:52-7. [PMID: 25754925 DOI: 10.1016/j.cbpb.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 02/02/2023]
Abstract
The Chinese giant salamander, Andrias davidianus, is the largest extant amphibian species in the world, which is of significance due to its specific position in the evolutionary history of vertebrates. Currently, limited information about the innate immune system of this animal is known. In this study, the toll-like receptor 7 (TLR7), designated CgsTLR7, was cloned from Chinese giant salamander, A. davidianus. The full-length cDNA of CgsTLR7 is 3747 bp, with an open reading frame of 3150 bp, encoding 1049 amino acids. The TLR family motifs, including the leucine-rich repeat (LRR) and Toll/interleukin (IL)-1 receptor (TIR) domain are conserved in CgsTLR7, which includes 19 LRRs and a TIR domain. The predicted amino acid sequence of CgsTLR7 has 71%, 65%, 63% and 55% identity with turtle, chicken, human and fugu TLR7 homologues, respectively. Phylogenetic analysis showed that CgsTLR7 is closest to that of frog TLR7 among the examined species. Quantitative real-time PCR analysis revealed broad expression of CgsTLR7 in tissues from apparently healthy Chinese giant salamanders with the highest expression in the liver and the lowest expression in the intestine. The mRNA expression was up-regulated and reached a peak level in the kidney, liver and spleen at 12 h, 24 h and 48 h after infecting the animals with the giant salamander iridovirus (GSIV), respectively. These results suggest that CgsTLR7 has a conserved gene structure and might play an important role in immune regulation against viral infections in the Chinese giant salamander.
Collapse
Affiliation(s)
- Lili Huang
- College of Fisheries and Biosciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Lingbing Zeng
- College of Fisheries and Biosciences, Shanghai Ocean University, Shanghai 201306, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.
| |
Collapse
|
40
|
Lee PT, Zou J, Holland JW, Martin SAM, Collet B, Kanellos T, Secombes CJ. Identification and characterisation of TLR18-21 genes in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2014; 41:549-559. [PMID: 25450999 DOI: 10.1016/j.fsi.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
Teleost fish possess many types of toll-like receptor (TLR) some of which exist in other vertebrate groups and some that do not (ie so-called "fish-specific" TLRs). In this study, we identified in Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs seven TLRs that are not found in mammals, including six types of fish-specific TLRs (one TLR18, one TLR19, and four TLR20 members (two of which are putative soluble forms (s)) and one TLR21. Phylogenetic analysis revealed that teleost TLR19-21 are closely related with murine TLR11-TLR13, whilst teleost TLR18 groups with mammalian TLR1, 2, 6 and 10. A typical TLR protein domain structure was found in all these TLRs with the exception of TLR20b(s) and TLR20c(s). TLR-GFP expression plasmids transfected into SHK-1 cells showed that salmon TLR19, TLR20a and TLR20d were preferentially localised to the intracellular compartment. Real time PCR analysis suggested that salmon TLR19-TLR21 are mainly expressed in immune related organs, such as spleen, head kidney and gills, while TLR18 transcripts are more abundant in muscle. In vitro stimulation of primary head kidney cells with type I IFN, IFNγ and IL-1β had no impact on TLR expression. Infectious salmon anaemia virus (ISAV) infection, in vivo, down-regulated TLR20a, TLR20b(s), TLR20d and TLR21 in infected salmon kidney tissue. In contrast, up-regulation of TLR19 and TLR20a expression was found in posterior kidney in rainbow trout with clinical proliferative kidney disease (PKD).
Collapse
Affiliation(s)
- P T Lee
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - J Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - J W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - S A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - B Collet
- Marine Scotland, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - T Kanellos
- Zoetis International Service, 23-25 Avenue du Dr. Lannelongue 75668 Paris Cedex 14, France
| | - C J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
41
|
Zhang J, Kong X, Zhou C, Li L, Nie G, Li X. Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways. FISH & SHELLFISH IMMUNOLOGY 2014; 41:380-8. [PMID: 25241605 DOI: 10.1016/j.fsi.2014.09.022] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/05/2014] [Accepted: 09/14/2014] [Indexed: 05/22/2023]
Abstract
Pattern recognition receptors (PRRs) recognize the conserved molecular structure of pathogens and trigger the signaling pathways that activate immune cells in response to pathogen infection. Toll-like receptors (TLRs) are the first and best characterized innate immune receptors. To date, at least 20 TLR types (TLR1, 2, 3, 4, 5M, 5S, 7, 8, 9, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, and 26) have been found in more than a dozen of fish species. However, of the TLRs identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S, TLR9, TLR21, and TLR22. Some studies have suggested that TLR2, TLR5M, TLR5S, TLR9, and TLR21 could specifically recognize PAMPs from bacteria. In addition, other TLRs including TLR1, TLR4, TLR14, TLR18, and TLR25 may also be sensors of bacteria. TLR signaling pathways in fish exhibit some particular features different from that in mammals. In this review, the ligand specificity and signal pathways of TLRs that recognize bacteria in fish are summarized. References for further studies on the specificity for recognizing bacteria using TLRs and the following reactions triggered are discussed. In-depth studies should be continuously performed to identify the ligand specificity of all TLRs in fish, particularly non-mammalian TLRs, and their signaling pathways. The discovery of TLRs and their functions will contribute to the understanding of disease resistance mechanisms in fish and provide new insights for drug intervention to manipulate immune responses.
Collapse
Affiliation(s)
- Jie Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Chuanjiang Zhou
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
42
|
Arnemo M, Kavaliauskis A, Gjøen T. Effects of TLR agonists and viral infection on cytokine and TLR expression in Atlantic salmon (Salmo salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:139-145. [PMID: 24736205 DOI: 10.1016/j.dci.2014.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/15/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
The development of efficient and cheap vaccines against several aquatic viruses is necessary for a sustainable fish farming industry. Toll-like receptor (TLR) ligands have already been used as good adjuvants in human vaccines. With more understanding of TLR expression, function, and ligand specificity in fish, more efficient adjuvants for fish viral vaccines can be developed. In this paper, we examine all known TLRs in Atlantic salmon (Salmo salar) and demonstrate that head kidney and spleen are the main organs expressing TLRs in salmon. We also show that adherent head kidney leucocytes from salmon are able to respond to many of the known agonists for human TLRs, and that viral infection can induce up-regulation of several TLRs. These findings substantiate these receptors' role in immune responses to pathogens in salmonids making their ligands attractive as vaccine adjuvant candidates.
Collapse
Affiliation(s)
- Marianne Arnemo
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, NO-0316 Oslo, Norway
| | - Arturas Kavaliauskis
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, NO-0316 Oslo, Norway
| | - Tor Gjøen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, NO-0316 Oslo, Norway.
| |
Collapse
|
43
|
Pietretti D, Wiegertjes GF. Ligand specificities of Toll-like receptors in fish: indications from infection studies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:205-222. [PMID: 23981328 DOI: 10.1016/j.dci.2013.08.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Toll like receptors (TLRs) are present in many different fish families from several different orders, including cyprinid, salmonid, perciform, pleuronectiform and gadiform representatives, with at least some conserved properties among these species. However, low conservation of the leucine-rich repeat ectodomain hinders predictions of ligand specificities of fish TLRs based on sequence information only. We review the presence of a TLR genes, and changes in their gene expression profiles as result of infection, in the context of different fish orders and fish families. The application of RT-qPCR and availability of increasing numbers of fish genomes has led to numerous gene expression studies, including studies on TLR gene expression, providing the most complete dataset to date. Induced changes of gene expression may provide (in)direct evidence for the involvement of a particular TLR in the reaction to a pathogen. Especially when findings are consistent across different studies on the same fish species or consistent across different fish species, up-regulation of TLR gene expression could be a first indication of functional relevance. We discuss TLR1, TLR2, TLR4, TLR5 and TLR9 as presumed sensors of bacterial ligands and discuss as presumed sensors of viral ligands TLR3 and TLR22, TLR7 and TLR8. More functional studies are needed before conclusions on ligands specific to (groups of) fish TLRs can be drawn, certainly true for studies on non-mammalian TLRs. Future studies on the conservation of function of accessory molecules, in conjunction with TLR molecules, may bring new insight into the function of fish TLRs.
Collapse
Affiliation(s)
- Danilo Pietretti
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|