1
|
Zhang J, Wang X, Li K, Rao W, Jiao X, Liang W, Gao H, Wang D, Cao Y, Wei X, Yang J. Hyperosmotic Stress Induces Inflammation and Excessive Th17 Response to Blunt T-Cell Immunity in Tilapia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1877-1890. [PMID: 38700398 DOI: 10.4049/jimmunol.2300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024]
Abstract
Despite the advances in study on osmotic physiology in bony fish, the mechanism by which the immune system, especially T-cell immunity, adapts and responds to osmotic stress remains unknown. In the current study, we investigated the response of T cells to hyperosmotic stress in the bony fish Nile tilapia (Oreochromis niloticus). As a euryhaline fish, tilapia was able to adapt to a wide range of salinities; however, hypertonic stress caused inflammation and excessive T-cell activation. Furthermore, hypertonic stress increased the expression of IL-17A in T cells, upregulated the transcription factor RORα, and activated STAT3 signaling, along with IL-6- and TGF-β1-mediated pathways, revealing an enhanced Th17 response in this early vertebrate. These hypertonic stress-induced events collectively resulted in an impaired antibacterial immune response in tilapia. Hypertonic stress elevated the intracellular ROS level, which in turn activated the p38-MK2 signaling pathway to promote IL-17A production by T cells. Both ROS elimination and the p38-MK2 axis blockade diminished the increased IL-17A production in T cells under hypertonic conditions. Moreover, the produced proinflammatory cytokines further amplified the hypertonic stress signaling via the MKK6-p38-MK2 axis-mediated positive feedback loop. To our knowledge, these findings represent the first description of the mechanism by which T-cell immunity responds to hypertonic stress in early vertebrates, thus providing a novel perspective for understanding the adaptive evolution of T cells under environmental stress.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaodan Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenzhuo Rao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
2
|
Wang Q, Liu Y, Zhang M, Yang M, Liang J, Zuo X, Wang S, Jia X, Zhao H, Jiang H, Lin Q, Qin Q. Slc43a2 + T cell metastasis from spleen to brain in RGNNV infected teleost. SCIENCE CHINA. LIFE SCIENCES 2024; 67:733-744. [PMID: 38388846 DOI: 10.1007/s11427-023-2473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 02/24/2024]
Abstract
The origin of T cells in the teleost's brain is unclear. While viewing the central nervous system (CNS) as immune privileged has been widely accepted, previous studies suggest that T cells residing in the thymus but not in the spleen of the teleost play an essential role in communicating with the peripheral organs. Here, we identified nine T cell subpopulations in the thymus and spleen of orange-spotted grouper (Epinephelus coioices) through single-cell RNA-sequencing analysis. After viral CNS infection with red-spotted grouper nervous necrosis virus (RGNNV), the number of slc43a2+ T cells synchronously increased in the spleen and brain. During the infection tests in asplenic zebrafish (tlx1▲ zebrafish model), no increase in the number of slc43a2+ T cells was observed in the brain. Single-cell transcriptomic analysis indicated that slc43a2+ T cells mature and functionally differentiate within the spleen and then migrate into the brain to trigger an immune response. This study suggests a novel route for T cell migration from the spleen to the brain during viral infection in fish.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China
- Joint University Laboratory of Guangdong Province, Hong Kong and Marco Region on Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Minlin Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiantao Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoling Zuo
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xianze Jia
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China
| | - Han Jiang
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
- Joint University Laboratory of Guangdong Province, Hong Kong and Marco Region on Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Stølen Ugelvik M, Mennerat A, Mæhle S, Dalvin S. Repeated exposure affects susceptibility and responses of Atlantic salmon ( Salmo salar) towards the ectoparasitic salmon lice ( Lepeophtheirus salmonis). Parasitology 2023; 150:990-1005. [PMID: 37705306 PMCID: PMC10941223 DOI: 10.1017/s0031182023000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Atlantic salmon (Salmo salar) is repeatedly exposed to and infected with ectoparasitic salmon lice (Lepeophtheirus salmonis) both in farms and in nature. However, this is not reflected in laboratory experiments where fish typically are infected only once. To investigate if a previous lice infection affects host response to subsequent infections, fish received 4 different experimental treatments; including 2 groups of fish that had previously been infected either with adult or infective salmon lice larvae (copepodids). Thereafter, fish in all treatment groups were infected with either a double or a single dose of copepodids originating from the same cohort. Fish were sampled when lice had developed into the chalimus, the pre-adult and the adult stage, respectively. Both the specific growth rate and cortisol levels (i.e. a proxy for stress) of the fish differed between treatments. Lice success (i.e. ability to infect and survive on the host) was higher in naïve than in previously infected fish (pre-adult stage). The expression of immune and wound healing transcripts in the skin also differed between treatments, and most noticeable was a higher upregulation early in the infection in the group previously infected with copepodids. However, later in the infection, the least upregulation was observed in this group, suggesting that previous exposure to salmon lice affects the response of Atlantic salmon towards subsequent lice infections.
Collapse
Affiliation(s)
- Mathias Stølen Ugelvik
- Institute of Marine Research, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Adele Mennerat
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Stig Mæhle
- Institute of Marine Research, Bergen, Norway
| | | |
Collapse
|
4
|
Cao J, Xu H, Yu Y, Xu Z. Regulatory roles of cytokines in T and B lymphocytes-mediated immunity in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104621. [PMID: 36801469 DOI: 10.1016/j.dci.2022.104621] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/05/2023]
Abstract
T and B lymphocytes (T and B cells) are immune effector cells that play critical roles in adaptive immunity and defend against external pathogens in most vertebrates, including teleost fish. In mammals, the development and immune response of T and B cells is associated with cytokines including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors during pathogenic invasion or immunization. Given that teleost fish have evolved a similar adaptive immune system to mammals with T and B cells bearing unique receptors (B-cell receptors (BCRs) and T-cell receptors (TCRs)) and that cytokines in general have been identified, whether the regulatory roles of cytokines in T and B cell-mediated immunity are evolutionarily conserved between mammalians and teleost fish is a fascinating question. Thus, the purpose of this review is to summarize the current knowledge of teleost cytokines and T and B cells as well as the regulatory roles of cytokines on these two types of lymphocytes. This may provide important information on the parallelisms and dissimilarities of the functions of cytokines in bony fish versus higher vertebrates, which may aid in the evaluation and development of adaptive immunity-based vaccines or immunostimulants.
Collapse
Affiliation(s)
- Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haoyue Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
5
|
Nervous Necrosis Virus (NNV) Booster Vaccination Increases Senegalese Sole Survival and Enhances Immunoprotection. Animals (Basel) 2022; 13:ani13010051. [PMID: 36611661 PMCID: PMC9817516 DOI: 10.3390/ani13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
A re-immunization programme has been tested to improve the protective response elicited in sole by a previously developed BEI-inactivated betanodavirus vaccine. The vaccine was prepared using a reassortant RGNNV/SJNNV strain which is highly pathogenic for sole, and vaccination assays were performed by intraperitoneal injection. Experimental design included a prime- and a booster-vaccination group, which consisted of individuals that received a second vaccine injection at 30 days post vaccination), and their respective controls. A month after prime/booster vaccination, fish were challenged by intramuscular injection with the homologous NNV strain. Samples were collected at different times post vaccination and post challenge to assess the immune response and viral replication. Booster dose enhanced the protection against NNV infection because a significant increase in survival was recorded when compared with prime-vaccinated individuals (relative percent survival 77 vs. 55). In addition, a clear decrease in viral replication in the brain of challenged sole was observed. During the immune induction period, no differences in IgM production were observed between prime- and booster-vaccinated fish, and the expression of the antigen presenting cells (APC)-related molecule MHC class II antigen was the only differential stimulation recorded in the re-immunized individuals. However, a significant upregulation of mhcII and the lymphocytes T helper (Th) marker cd4 was observed after the challenge in the booster-vaccinated group, suggesting these cells play a role in the protection conferred by the booster injection. In addition, after viral infection, re-immunized fish showed specific and neutralizing antibody production and overexpression of other immune-related genes putatively involved in the control of NNV replication.
Collapse
|
6
|
Jiang X, Xing J, Tang X, Sheng X, Chi H, Zhan W. CD4-1 and CD8α T lymphocytes subsets in spotted sea bass (Lateolabrax maculatus) and comparison on antigenicity of T lymphocytes subsets in other three marine fish species. FISH & SHELLFISH IMMUNOLOGY 2022; 131:487-497. [PMID: 36210001 DOI: 10.1016/j.fsi.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
CD4 and CD8 molecules play an important role in the identification of T lymphocytes, and diverse among fish species. In this study, CD4-1 and CD8α gene of spotted sea bass (Lateolabrax maculatus) were cloned, polyclonal antibodies against CD4-1 (CD4-1 pAbs) and CD8α (CD8α pAbs) were produced, respectively. And the variations in CD4-1+ and CD8α+ T-lymphocytes in spotted sea bass and the cross-reactivity with leukocytes in pearl gentian grouper (Epinephelus fuscoguttatus x E. lanceolatus), schlegel's black rockfish (Sebastes schlegelii) and flounder (Paralichthys olivaceus) were investigated using CD4-1 pAbs and CD8α pAbs. The results showed that CD4-1 molecule ORF was 1413 bp and CD8α was 690 bp, both molecules are transmembrane glycoproteins with high amino acid homology to grouper. The CD4-1 pAbs specifically recognized both the CD4-1 recombinant and natural proteins, as does the CD8α pAbs to CD8α molecule, and no cross-reactivity between the two antibodies. CD4-1+ and CD8α+ T lymphocytes were detected in peripheral blood, spleen and head kidney leukocytes in spotted sea bass. In cross-reactivity assay with other three fish, CD4-1 pAbs could recognize the lymphocytes from pearl gentian grouper and schlegel's black rockfish, both with highest proportions in the spleen leukocytes, 5.3 ± 0.4% and 2.6 ± 0.3%, respectively, and CD8α pAbs could only recognize the lymphocytes in pearl gentian grouper, and no cross-reactivities to lymphocytes of flounder. These data suggested that the CD4-1 and CD8α molecules varied by fish species in the genes features and antigenicity, which might result in the diversities of T lymphocytes subpopulations. This will be a key to elucidating the classification and evolution of T lymphocytes in fish.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
7
|
Ugelvik MS, Dalvin S. The effect of different intensities of the ectoparasitic salmon lice (Lepeophtheirus salmonis) on Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2022; 45:1133-1147. [PMID: 35612902 PMCID: PMC9544591 DOI: 10.1111/jfd.13649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/01/2023]
Abstract
The effect of different intensities of the ectoparasitic salmon lice (Lepeophtheirus salmonis) on stress, growth and the expression of immune and wound healing transcripts in the skin of Atlantic salmon (Salmo salar) was investigated. Lice infection success and survival were similar at the chalimus and preadult stage in the low and high dose group, but infection success and survival were significantly lower in the high than in the low dose group at the adult stage. The expression of investigated transcripts was not correlated to lice intensities, but several of them were significantly differently expressed locally in the skin at the site of lice attachment in infected fish compared to controls. This included an up-regulation of pro-inflammatory markers at the site of lice attachment (e.g., interleukin 1-beta, interleukin 8 and the acute phase protein serum amyloid A), a reduction of markers of adaptive immunity (cluster of differentiation 8-alpha and immunoglobulin M) and decreased expression of the anti-inflammatory cytokine interleukin 10.
Collapse
|
8
|
Tian HF, Xing J, Tang XQ, Chi H, Sheng XZ, Zhan WB. Cluster of differentiation antigens: essential roles in the identification of teleost fish T lymphocytes. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:303-316. [PMID: 37073166 PMCID: PMC10077257 DOI: 10.1007/s42995-022-00136-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/25/2022] [Indexed: 05/03/2023]
Abstract
Cluster of differentiation (CD) antigens are cell surface molecules expressed on leukocytes and other cells associated with the immune system. Antibodies that react with CD antigens are known to be one of the most essential tools for identifying leukocyte subpopulations. T lymphocytes, as an important population of leukocytes, play essential roles in the adaptive immune system. Many of the CD antigens expressed on T lymphocytes are used as surface markers for T lymphocyte classification, including CD3, CD4 and CD8 molecules. In this review, we summarize the recent advances in the identification of CD molecules on T lymphocytes in teleosts, with emphasis on the functions of CD markers in the classification of T lymphocyte subsets. We notice that genes encoding CD3, co-receptors CD4 and CD8 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. T lymphocytes can be divided into CD4+ and CD8+ cells discriminated by the expression of CD4 and CD8 molecules in teleost, which are functionally similar to mammalian helper T cells (Th) and cytotoxic T cells (Tc), respectively. Further studies are still needed on the particular characteristics of teleost T cell repertoires and adaptive responses, and results will facilitate the health management and development of vaccines for fish.
Collapse
Affiliation(s)
- Hong-fei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Xiao-qian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Xiu-zhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Wen-bin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
9
|
Wu S, Huang J, Li Y, Liu Z, Zhao L. Integrated Analysis of lncRNA and circRNA Mediated ceRNA Regulatory Networks in Skin Reveals Innate Immunity Differences Between Wild-Type and Yellow Mutant Rainbow Trout ( Oncorhynchus mykiss). Front Immunol 2022; 13:802731. [PMID: 35655786 PMCID: PMC9152293 DOI: 10.3389/fimmu.2022.802731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Fish skin is a vital immune organ that forms the first protective barrier preventing entry of external pathogens. Rainbow trout is an important aquaculture fish species that is farmed worldwide. However, our knowledge of innate immunity differences between wild-type (WR_S) and yellow mutant rainbow trout (YR_S) remains limited. In this study, we performed whole transcriptome analysis of skin from WR_S and YR_S cultured in a natural flowing water pond. A total of 2448 mRNAs, 1630 lncRNAs, 22 circRNAs and 50 miRNAs were found to be differentially expressed (DE). Among these DEmRNAs, numerous key immune-related genes, including ifih1, dhx58, trim25, atp6v1e1, tap1, tap2, cd209, hsp90a.1, nlrp3, nlrc3, and several other genes associated with metabolism (gstp1, nampt, naprt and cd38) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEmRNAs revealed that many were significantly enriched in innate immune-related GO terms and pathways, including NAD+ADP-ribosyltransferase activity, complement binding, immune response and response to bacterium GO terms, and RIG-I-like receptor signaling, NOD-like receptor signaling and phagosome KEGG pathways. Furthermore, the immune-related competing endogenous RNA networks were constructed, from which we found that lncRNAs MSTRG.11484.2, MSTRG.32014.1 and MSTRG.29012.1 regulated at least three immune-related genes (ifih1, dhx58 and irf3) through PC-5p-43254_34, PC-3p-28352_70 and bta-miR-11987_L-1R-1_1ss8TA, and tap2 was regulated by two circRNAs (circRNA5279 and circRNA5277) by oni-mir-124a-2-p5_1ss13GA. The findings expand our understanding of the innate immune system of rainbow trout, and lay the foundation for further study of immune mechanisms and disease resistance breeding.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Vallejos-Vidal E, Reyes-López FE, Sandino AM, Imarai M. Sleeping With the Enemy? The Current Knowledge of Piscine Orthoreovirus (PRV) Immune Response Elicited to Counteract Infection. Front Immunol 2022; 13:768621. [PMID: 35464421 PMCID: PMC9019227 DOI: 10.3389/fimmu.2022.768621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Piscine orthoreovirus (PRV) is a virus in the genus Orthoreovirus of the Reoviridae family, first described in 2010 associated with Heart and Skeletal Muscle Inflammation (HSMI) in Atlantic salmon (Salmo salar). Three phases of PRV infection have been described, the early entry and dissemination, the acute dissemination phase, and the persistence phase. Depending on the PRV genotype and the host, infection can last for life. Mechanisms of immune response to PRV infection have been just beginning to be studied and the knowledge in this matter is here revised. PRV induces a classical antiviral immune response in experimental infection of salmonid erythrocytes, including transcriptional upregulation of ifn-α, rig-i, mx, and pkr. In addition, transcript upregulation of tcra, tcrb, cd2, il-2, cd4-1, ifn-γ, il-12, and il-18 has been observed in Atlantic salmon infected with PRV, indicating that PRV elicited a Th1 type response probably as a host defense strategy. The high expression levels of cd8a, cd8b, and granzyme-A in PRV-infected fish suggest a positive modulatory effect on the CTL-mediated immune response. This is consistent with PRV-dependent upregulation of the genes involved in antigen presentation, including MHC class I, transporters, and proteasome components. We also review the potential immune mechanisms associated with the persistence phenotype of PRV-infected fish and its consequence for the development of a secondary infection. In this scenario, the application of a vaccination strategy is an urgent and challenging task due to the emergence of this viral infection that threatens salmon farming.
Collapse
Affiliation(s)
- Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Felipe E Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana María Sandino
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
11
|
Liang C, Sheng X, Tang X, Xing J, Chi H, Zhan W. Structural characteristics and mucosal immune response of the interbranchial lymphoid tissue in the gills of flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 123:388-398. [PMID: 35334297 DOI: 10.1016/j.fsi.2022.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
A specialized lymphoepithelial tissue termed the interbranchial lymphoid tissue (ILT) is recently identified in several fish species. However, the structural variation and mucosal immune functions of the ILT remain largely unknown. In this study, the anti-Zap-70 MAb was firstly determined to specifically recognize ZAP-70 protein, and CD4-1+, CD4-2+ and CD8β+ T-cells, but not IgM+ B cells, in peripheral blood leucocytes of flounder (Paralichthys olivaceus). Then we found that aggregates of Zap-70+ cells were located in the epithelium covering the bottom of the interbranchial cleft and along the afferent and efferent edges of the filaments in a cross view, where a meshwork of epithelial cells containing diffused lymphoid cells was exhibited, confirming these structures as the ILT; In a sagittal view, Zap-70+ cells were situated at the base of the filaments (here named as proximal ILT, pILT) and in the interlamellar epithelium (named as distal ILT, dILT). Also, a few IgM+ B cells were distributed at these sites. The lymphoepithelium within pILT and dILT was very thin with a low number of Zap-70+ cells in premetamorphosis and postclimax larvae of flounder, and got thicker containing much more Zap-70+ cells in juvenile and adult individuals. The aggregates of CD4-1+/Zap-70+, CD4-2+/Zap-70+, and CD8β+/Zap-70+ T-cell subsets were identified in the ILT. Post bath vaccination with inactivated Edwardsiella tarda and then intraperitoneal injection of EdU, the amounts of EdU+ and Zap-70+ cells obviously increased at 3 d and 7 d, and co-localization of EdU+/Zap-70+ cells identified the presence of proliferative T cells; meanwhile, MHC class II-expressing cells were increased. These findings indicated that the ILT in gills of flounder was an important site for the induction of local T cell-mediated immunity, which would lead to a better understanding of mucosal immunity and defense mechanisms of teleost fish.
Collapse
Affiliation(s)
- Chengcheng Liang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| |
Collapse
|
12
|
Wu L, Gao A, Li L, Chen J, Li J, Ye J. A Single-Cell Transcriptome Profiling of Anterior Kidney Leukocytes From Nile Tilapia ( Oreochromis niloticus). Front Immunol 2021; 12:783196. [PMID: 35027916 PMCID: PMC8750066 DOI: 10.3389/fimmu.2021.783196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Teleost fish anterior kidney (AK) is an important hematopoietic organ with multifarious immune cells, which have immune functions comparable to mammalian bone marrow. Myeloid and lymphoid cells locate in the AK, but the lack of useful specific gene markers and antibody-based reagents for the cell subsets makes the identification of the different cell types difficult. Single-cell transcriptome sequencing enables single-cell capture and individual library construction, making the study on the immune cell heterogeneity of teleost fish AK possible. In this study, we examined the transcriptional patterns of 11,388 AK leukocytes using 10× Genomics single-cell RNA sequencing (scRNA-seq). A total of 22 clusters corresponding to five distinct immune cell subsets were identified, which included B cells, T cells, granulocytes, macrophages, and dendritic cells (DCs). However, the subsets of myeloid cells (granulocytes, macrophages, and DCs) were not identified in more detail according to the known specific markers, even though significant differences existed among the clusters. Thereafter, we highlighted the B-cell subsets and identified them as pro/pre B cells, immature/mature B cells, activated B/plasmablasts, or plasma cells based on the different expressions of the transcription factors (TFs) and cytokines. Clustering of the differentially modulated genes by pseudo-temporal trajectory analysis of the B-cell subsets showed the distinct kinetics of the responses of TFs to cell conversion. Moreover, we classified the T cells and discovered that CD3+CD4-CD8-, CD3+CD4+CD8+, CD4+CD8-, and CD4-CD8+ T cells existed in AK, but neither CD4+CD8- nor CD4-CD8+ T cells can be further classified into subsets based on the known TFs and cytokines. Pseudotemporal analysis demonstrated that CD4+CD8- and CD4-CD8+ T cells belonged to different states with various TFs that might control their differentiation. The data obtained above provide a valuable and detailed resource for uncovering the leukocyte subsets in Nile tilapia AK, as well as more potential markers for identifying the myeloid and lymphoid cell types.
Collapse
Affiliation(s)
- Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Along Gao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lan Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jianlin Chen
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI, United States
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Sukeda M, Shiota K, Kondo M, Nagasawa T, Nakao M, Somamoto T. Innate cell-mediated cytotoxicity of CD8 + T cells against the protozoan parasite Ichthyophthirius multifiliis in the ginbuna crucian carp, Carassius auratus langsdorfii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103886. [PMID: 33045272 DOI: 10.1016/j.dci.2020.103886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Cytotoxic T cells are known to have the ability to kill microbe-infected host cells, which makes them essential in the adaptive immunity processes of various vertebrates. In this study, we demonstrated innate cell-mediated cytotoxicity of CD8+ T cells against protozoan parasites found in the ginbuna crucian carp. When isolated effector cells such as CD8+, CD4+ (CD4-1+), or CD8- CD4- (double-negative, DN), from naïve ginbuna crucian carp were co-incubated with target parasites (Ichthyophthirius multifiliis), CD8+ cells from the kidney and gill showed the highest cytotoxic activity. On the other hand, DN cells, which include macrophages and CD4- CD8- lymphocytes, showed the lowest cytotoxic activity against I. multifiliis. Additionally, the cytotoxic activity of CD8+ cells was found to significantly decrease in the presence of a membrane separating the effector cells from I. multifiliis. Furthermore, the serine protease inhibitor 3,4-dichloroisocoumarin and perforin inhibitor concanamycin A significantly inhibited the cytotoxic activity of CD8+ cells. These results demonstrate that CD8+ T cells of ginbuna crucian carp can kill extracellular parasites in a contact-dependent manner via serine proteases and perforin. Therefore, we conclude that CD8+ T cells play an essential role in anti-parasite innate immunity of teleost fish.
Collapse
Affiliation(s)
- Masaki Sukeda
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Koumei Shiota
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
14
|
Veenstra KA, Hodneland K, Fischer S, Takehana K, Belmonte R, Fischer U. Cellular Immune Responses in Rainbow Trout ( Onchorhynchus mykiss) Following Vaccination and Challenge Against Salmonid Alphavirus (SAV). Vaccines (Basel) 2020; 8:vaccines8040725. [PMID: 33276596 PMCID: PMC7761581 DOI: 10.3390/vaccines8040725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/25/2023] Open
Abstract
Viral disease outbreaks remain a significant limiting factor for aquaculture. The majority of licensed vaccines used in the industry are administered as oil-adjuvanted formulations carrying inactivated whole pathogens. Cell-mediated immune responses, in particular those based on virus-specific cytotoxic T-cells (CTLs) to conventional inactivated oil-based vaccines, are largely unexplored. As vaccines cannot be optimized against viral pathogens if knowledge of host cellular immune mechanisms remains unknown, in this study we examined fundamental cell-mediated immune responses after vaccination of rainbow trout with an oil-adjuvanted inactivated vaccine against salmonid alphavirus (SAV) and after infection with SAV. A unique in vitro model system was developed to examine MHC class I restricted CTL responses in a clonal line of rainbow trout. The levels of cell-mediated cytotoxicity were compared to pathology, virus load, specific antibody response, changes in immune cell populations, and mRNA expression. Our results hint that different protective mechanisms are being triggered by infection compared to vaccination. While vaccination itself did not cause a strong cytotoxic or humoral response, subsequent challenge of vaccinated fish resulted in significantly stronger and faster specific cytotoxicity, alongside reduced viral titers and pathology. Hence, testing a vaccine on the capacity to induce cell-mediated cytotoxicity will still require a challenge test. Examination of cellular markers additionally indicates that the initial innate response induced by the vaccine could play an important role in steering adaptive mechanisms.
Collapse
Affiliation(s)
- Kimberly A. Veenstra
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kjartan Hodneland
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Susanne Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kota Takehana
- Nagano Prefectural Fisheries Experimental Station, 2871 Oaza-Nakagawate, Akashina, Azumino-shi, Nagano 399-7102, Japan;
| | - Rodrigo Belmonte
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Uwe Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
- Correspondence: ; Tel.: +49-38351-71175
| |
Collapse
|
15
|
Kim SW, Kim SJ, Oh MJ. Efficacy of live NNV immersion vaccine immunized at low temperature in sevenband grouper, Epinephelus septemfasciatus. Virus Res 2020; 292:198227. [PMID: 33186642 DOI: 10.1016/j.virusres.2020.198227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
The objective of this study was to investigate safety and efficacy using a low-temperature immunization protocol with NNV in sevenband grouper, Epinephelus septemfasciatus. Further, NNV specific antibody post immunization and intramuscularly challenge was also evaluated. Immunization at low temperature resulted in a low titer virus infection in brain tissues without any clinical symptoms of infection such as sluggish behavior and/or spinning, rotating swimming being observed, and no mortality was observed. Post challenge, NNV titer NNV giving an RPS of 100 %, increased in brain tissues of naïve (non-immunized) sevenband grouper NNV giving an RPS of 100 %, with a cumulative mortality of 100 % at 25 days post-infection. No mortality or disease symptoms NNV giving an RPS of 100 %, as NNV giving and of 100 %, observed in the groups immunized at low temperature with live NNV giving an RPS of 100 %. NNV giving an RPS of 100 %. NNV specific antibody was not detected in live NNV vaccinated sevenband grouper. This is the first study that confirms that field-scale NNV immersion vaccine can protect sevenband grouper against lethal infection with NNV at natural seawater temperature under the gradually increased from 14.3-24.8 °C.
Collapse
Affiliation(s)
- Si-Woo Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea; Gyengsangbuk-do Fishery Technology Center, Pohang, Republic of Korea
| | - Soo-Jin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea; Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), Busan, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
16
|
Yamaguchi T, Chang CJ, Karger A, Keller M, Pfaff F, Wangkahart E, Wang T, Secombes CJ, Kimoto A, Furihata M, Hashimoto K, Fischer U, Dijkstra JM. Ancient Cytokine Interleukin 15-Like (IL-15L) Induces a Type 2 Immune Response. Front Immunol 2020; 11:549319. [PMID: 33193315 PMCID: PMC7658486 DOI: 10.3389/fimmu.2020.549319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Related interleukin-2, -15, and -15-like (IL-2, -15, and -15L) are ancient cytokines, with all three genes surviving in extant fish and some mammals. The present study is the first to identify IL-15L functions, namely in rainbow trout. In isolated trout splenocytes, and in vivo, purified recombinant IL-15L+IL-15Rα molecules induced expression of IL-4 and IL-13 homologs, which are markers of type 2 immunity. In contrast, trout IL-15 stimulated type 1 immunity markers, thus IL-15 and IL-15L can have opposing functions. Trout IL-15L was more dependent on "in trans" presentation by the receptor chain IL-15Rα than IL-15, and stimulated CD4-CD8-(IgM-) lymphocytes from thymus and spleen. We propose an important role for IL-15L early in the type 2 immunity cytokine cascade. Trout IL-2 and IL-15 exhibited features reminiscent of their mechanistic and functional dichotomy observed in mammals; for example, IL-15 but not IL-2 required a receptor alpha chain (only IL-15Rα in the case of fish) for its stability, and only IL-15 was efficient in stimulating lymphocytes from mucosal tissues. Data suggest that IL-15L and IL-15 may be particularly effective in stimulating innate lymphocyte type 2 cells (ILC2) and natural killer (NK) cells, respectively, but further identification of the cell types is needed. An interesting finding different from in mammals was the efficient stimulation of CD4+CD8+ thymocytes by IL-2. In short, this study presents fundamental information on the evolution of the IL-2/15/15L cytokine family.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Chia Jung Chang
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Azusa Kimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, Nagano, Japan
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Uwe Fischer
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
17
|
Midttun HLE, Vindas MA, Whatmore PJ, Øverli Ø, Johansen IB. Effects of Pseudoloma neurophilia infection on the brain transcriptome in zebrafish (Danio rerio). JOURNAL OF FISH DISEASES 2020; 43:863-875. [PMID: 32542843 DOI: 10.1111/jfd.13198] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Laboratory zebrafish are commonly infected with the intracellular, brain-infecting microsporidian parasite Pseudoloma neurophilia. Chronic P. neurophilia infections induce inflammation in meninges, brain and spinal cord, and have been suggested to affect neural functions since parasite clusters reside inside neurons. However, underlying neural and immunological mechanisms associated with infection have not been explored. Utilizing RNA-sequencing analysis, we found that P. neurophilia infection upregulated 175 and downregulated 45 genes in the zebrafish brain, compared to uninfected controls. Four biological pathways were enriched by the parasite, all of which were associated with immune function. In addition, 14 gene ontology (GO) terms were enriched, eight of which were associated with immune responses and five with circadian rhythm. Surprisingly, no differentially expressed genes or enriched pathways were specific for nervous system function. Upregulated immune-related genes indicate that the host generally show a pro-inflammatory immune response to infection. On the other hand, we found a general downregulation of immune response genes associated with anti-pathogen functions, suggesting an immune evasion strategy by the parasite. The results reported here provide important information on host-parasite interaction and highlight possible pathways for complex effects of parasite infections on zebrafish phenotypes.
Collapse
Affiliation(s)
- Helene L E Midttun
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Marco A Vindas
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Paul J Whatmore
- Faculty of Science, Health, Education and Engineering, Genecology Research Center, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Øyvind Øverli
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Ida B Johansen
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
18
|
Flores-Kossack C, Montero R, Köllner B, Maisey K. Chilean aquaculture and the new challenges: Pathogens, immune response, vaccination and fish diversification. FISH & SHELLFISH IMMUNOLOGY 2020; 98:52-67. [PMID: 31899356 DOI: 10.1016/j.fsi.2019.12.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
In Chile, the salmon and trout farmed fishing industries have rapidly grown during the last years, becoming one of the most important economic sources for the country. However, infectious diseases caused by bacteria, virus, mycoses and parasites, result in losses of up to 700 million dollars per year for the Chilean aquaculture production with the consequent increase of antibiotic and antiparasitic usage. After 30 years of its first appearance, the main salmon health problem is still the salmonid rickettsial septicaemia (SRS), which together with other disease outbreaks, reveal that vaccines do not provide acceptable levels of long-lasting immune protection in the field. On the other hand, due to the large dependence of the industry on salmonids production, the Chilean government promoted the Aquaculture diversification program by 2009, which includes new species such as Merluccius australis, Cilus gilberti and Genypterus chilensis, however, specific research regarding the immune system and vaccine development are issues that still need to be addressed and must be considered as important as the farm production technologies for new fish species. Based on the experience acquired from the salmonid fish farming, should be mandatory an effort to study the immune system of the new species to develop knowledge for vaccination approaches, aiming to protect these aquaculture species before diseases outbreaks may occur. This review focuses on the current status of the Chilean aquaculture industry, the challenges related to emerging and re-emerging microbial pathogens on salmonid fish farming, and the resulting needs in the development of immune protection by rational designed vaccines. We also discussed about what we have learn from 25 years of salmonid researches and what can be applied to the new Chilean farmed species on immunology and vaccinology.
Collapse
Affiliation(s)
- C Flores-Kossack
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile
| | - R Montero
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - B Köllner
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - K Maisey
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola (CBA), Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
19
|
Xing J, Zhang Z, Luo K, Tang X, Sheng X, Zhan W. T and B lymphocytes immune responses in flounder (Paralichthys olivaceus) induced by two forms of outer membrane protein K from Vibrio anguillarum: Subunit vaccine and DNA vaccine. Mol Immunol 2019; 118:40-51. [PMID: 31841966 DOI: 10.1016/j.molimm.2019.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
To further elucidate the roles of T and B lymphocytes in fish subunit and DNA candidate vaccines for immunisation, the immune responses of T and B lymphocytes to recombinant protein (rOmpK) and plasmid OmpK (pOmpK) from Vibrio anguillarum plus cyclosporine A (CsA) were investigated in flounder (Paralichthys olivaceus). The results showed that in the rOmpK-immunised groups, the percentages of CD4-1+ and CD4-2+ T (PCD4-1+ and PCD4-2+ T) lymphocytes significantly increased to a peak on days 5 or 7. The percentages of IgM+ B (PIgM+ B) lymphocytes and specific antibodies markedly increased to a peak at weeks 4 or 5. The nine immune-related genes were significantly up-regulated and the expression levels of CD4-1, CD4-2 and MHC II genes were higher than that of CD8α, CD8β and MHC I genes. The CD4+ T lymphocytes, IgM+ B lymphocytes, and specific antibodies were significantly inhibited by CsA. Therefore, the responses of CD4+ T lymphocytes influenced the responses of the B lymphocytes and antibodies. In the pOmpK-immunised groups, the PCD4-1+, PCD4-2+, and PCD8β+ T lymphocytes significantly increased to a peak on days 11 or 14, days 9 or 11, and days 7 or 9, respectively. The PIgM+ B lymphocytes and specific antibodies significantly increased to a peak at weeks 5 or 6. Immune related genes upregulated, and CD4+ and CD8+ T lymphocytes, IgM+ B lymphocytes and specific antibodies all suppressed by CsA, suggesting that the responses of T lymphocytes subpopulations influenced B lymphocytes and antibodies responses. Therefore, the subpopulations of T lymphocytes played an important role in the immune responses induced by subunit and DNA candidate vaccines of OmpK and regulated the immune responses of B lymphocytes in flounder.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| | - Zhiqi Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Keke Luo
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China.
| |
Collapse
|
20
|
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. FISH & SHELLFISH IMMUNOLOGY 2019; 95:422-439. [PMID: 31669897 DOI: 10.1016/j.fsi.2019.10.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Fumio Takizawa
- Laboratory of Marine Biotechnology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, 2871 Akashina-nakagawate, Azumino-shi, Nagano-ken, 399-7102, Japan
| | - Veronica Soto-Lampe
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Uwe Fischer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
21
|
Taylor EB, Chinchar VG, Quiniou SMA, Wilson M, Bengtén E. Cloning and characterization of antiviral cytotoxic T lymphocytes in channel catfish, Ictalurus punctatus. Virology 2019; 540:184-194. [PMID: 31929000 DOI: 10.1016/j.virol.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/10/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Abstract
To determine the role of piscine anti-viral cytotoxic cells, we analyzed the response of channel catfish to Ictalurid herpesvirus 1, commonly designated channel catfish virus (CCV). Peripheral blood leukocytes (PBL) from catfish immunized with MHC-matched, CCV-infected G14D cells (G14D-CCV) showed marked lysis of G14D-CCV but little to no lysis of uninfected allogenic (3B11) or syngeneic (G14D) cells. Expansion of effectors by in vitro culture in the presence of irradiated G14D-CCV cells generated cultures with enhanced cytotoxicity and often broader target range. Cytotoxic effectors expressed rearranged TCR genes, perforin, granzyme, and IFN-γ. Four clonal cytotoxic lines were developed and unique TCR gene rearrangements including γδ were detected. Furthermore, catfish CTL clones were either CD4+/CD8- or CD4-/CD8-. Two CTL lines showed markedly enhanced killing of G14D-CCV targets, while the other two lines displayed a broader target range. Collectively, catfish virus-specific CTL display unique features that illustrate the diversity of the ectothermic vertebrate immune response.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - V Gregory Chinchar
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Stoneville, MS, 38776, USA
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
22
|
Mookerjee-Basu J, Hua X, Ge L, Nicolas E, Li Q, Czyzewicz P, Zhongping D, Peri S, FuxmanBass JI, Walhout AJM, Kappes DJ. Functional Conservation of a Developmental Switch in Mammals since the Jurassic Age. Mol Biol Evol 2019; 36:39-53. [PMID: 30295892 DOI: 10.1093/molbev/msy191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ThPOK is a "master regulator" of T lymphocyte lineage choice, whose presence or absence is sufficient to dictate development to the CD4 or CD8 lineages, respectively. Induction of ThPOK is transcriptionally regulated, via a lineage-specific silencer element, SilThPOK. Here, we take advantage of the available genome sequence data as well as site-specific gene targeting technology, to evaluate the functional conservation of ThPOK regulation across mammalian evolution, and assess the importance of motif grammar (order and orientation of TF binding sites) on SilThPOK function in vivo. We make three important points: First, the SilThPOK is present in marsupial and placental mammals, but is not found in available genome assemblies of nonmammalian vertebrates, indicating that it arose after divergence of mammals from other vertebrates. Secondly, by replacing the murine SilThPOK in situ with its marsupial equivalent using a knockin approach, we demonstrate that the marsupial SilThPOK supports correct CD4 T lymphocyte lineage-specification in mice. To our knowledge, this is the first in vivo demonstration of functional equivalency for a silencer element between marsupial and placental mammals using a definitive knockin approach. Finally, we show that alteration of the position/orientation of a highly conserved region within the murine SilThPOK is sufficient to destroy silencer activity in vivo, demonstrating that motif grammar of this "solid" synteny block is critical for silencer function. Dependence of SilThPOK function on motif grammar conserved since the mid-Jurassic age, 165 Ma, suggests that the SilThPOK operates as a silenceosome, by analogy with the previously proposed enhanceosome model.
Collapse
Affiliation(s)
- Jayati Mookerjee-Basu
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Xiang Hua
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Lu Ge
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Emmanuelle Nicolas
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Qin Li
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Philip Czyzewicz
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Dai Zhongping
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Suraj Peri
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Juan I FuxmanBass
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Dietmar J Kappes
- Blood Cell Development and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
23
|
Dahle MK, Jørgensen JB. Antiviral defense in salmonids - Mission made possible? FISH & SHELLFISH IMMUNOLOGY 2019; 87:421-437. [PMID: 30708056 DOI: 10.1016/j.fsi.2019.01.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases represent one of the major threats for salmonid aquaculture. Survival from viral infections are highly dependent on host innate antiviral immune defense, where interferons are of crucial importance. Neutralizing antibodies and T cell effector mechanisms mediate long-term antiviral protection. Despite an immune cell repertoire comparable to higher vertebrates, farmed fish often fail to mount optimal antiviral protection. In the quest to multiply and spread, viruses utilize a variety of strategies to evade or escape the host immune system. Understanding the specific interplay between viruses and host immunity at depth is crucial for developing successful vaccination and treatment strategies in mammals. However, this knowledge base is still limited for pathogenic fish viruses. Here, we have focused on five RNA viruses with major impact on salmonid aquaculture: Salmonid alphavirus, Infectious salmon anemia virus, Infectious pancreatic necrosis virus, Piscine orthoreovirus and Piscine myocarditis virus. This review explore the protective immune responses that salmonids mount to these viruses and the existing knowledge on how the viruses counteract and/or bypass the immune response, including their IFN antagonizing effects and their mechanisms to establish persisting infections.
Collapse
Affiliation(s)
- Maria K Dahle
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway.
| |
Collapse
|
24
|
Tajimi S, Kondo M, Nakanishi T, Nagasawa T, Nakao M, Somamoto T. Generation of virus-specific CD8 + T cells by vaccination with inactivated virus in the intestine of ginbuna crucian carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:37-44. [PMID: 30579936 DOI: 10.1016/j.dci.2018.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Although a previous study using ginbuna crucian carp suggested that cell-mediated immunity can be induced by the oral administration of inactivated viruses, which are exogenous antigens, there is no direct evidence that CD8+ cytotoxic T cells (CTLs) in teleost fish are generated by vaccination with exogenous antigens. In the present study, we investigated whether antigen-specific CD8+ CTLs in ginbuna crucian carp can be elicited by intestinal immunization with an exogenous antigen without any adjuvant. The IFNγ-1 and T-bet mRNA expressions were up-regulated in intestinal leukocytes following the administration of formalin-inactivated crucian hematopoietic necrosis virus (FI-CHNV), whereas the down-regulation of these genes was observed in kidney leukocytes. Furthermore, an increase in the percentage of proliferating CD8+ cells was detected in the posterior portion of the hindgut, suggesting that the virus-specific CTLs are locally generated in this site. In addition, cell-mediated cytotoxicity against CHNV-infected syngeneic cells and the in vivo inhibition of viral replication were induced by immunization with FI-CHNV. Unexpectedly, intraperitoneal immunization with FI-CHNV induced a type I helper T cell (Th1)-response in the intestine, but not in the kidney; however, its effect was slightly lower than that reported after intestinal immunization. These findings suggest that the posterior portion of the intestine is an important site for generating virus-specific CTLs by vaccination with the inactivated vaccine.
Collapse
Affiliation(s)
- Seisuke Tajimi
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, 252-8510, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
25
|
Xing J, Luo K, Xiao Y, Tang X, Zhan W. Influence of CD4-1 +, CD4-2 + and CD8 + T lymphocytes subpopulations on the immune response of B lymphocytes in flounder (Paralichthys olivaceus) immunized with thymus-dependent or thymus-independent antigen. FISH & SHELLFISH IMMUNOLOGY 2019; 84:979-986. [PMID: 30395993 DOI: 10.1016/j.fsi.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
In order to elucidate the influence of T lymphocytes subpopulations on B lymphocytes immune response, in this paper, CD4-1+, CD4-2+, CD8+ T lymphocytes and B lymphocytes responses to thymus-independent (TI) or thymus-dependent (TD) antigen plus immunosuppressant were investigated in flounder (Paralichthys olivaceus). The results showed that in LPS-immunized group, the percentages of CD4-1+, CD4-2+, CD8β+ T (PCD4-1+ T, PCD4-2+ T and PCD8β+ T) lymphocytes in peripheral blood leucocytes (PBLs) had no significant variations, the percentages of IgM+ B (PIgM+ B) lymphocytes and LPS-specific antibodies (LA) significantly increased and peaked at 3rd or 4th week post-injection; CsA had no inhibition on both T/B lymphocytes and LA; RaPa only suppressed the PIgM+ B lymphocytes and LA, and the inhibition maximum (Imax) were about 35% and 20%, respectively. In KLH-immunized group, the PCD4-1+, PCD4-2+ and PCD8β+ T lymphocytes significantly increased and peaked at 3rd or 5th day, successively the PIgM+ B lymphocytes and KLH-specific antibodies (KA) significantly increased to the peak at 5th week; the PCD4-1+, PCD4-2+ T and PIgM+ B lymphocytes and LA were inhibited significantly by both CsA and RaPa, and the Imax on them were 13%-33%, 11%-25%, 19%-34%, 22%-26%, respectively, while the PCD8β+ T lymphocytes showed no significant suppression. The results indicated that the suppression of PIgM+ B lymphocytes in KLH + CsA group was not directly derived from CsA, but due to the suppression of T lymphocytes, especially CD4+ T lymphocytes subpopulations. The results showed for the first time that, similar to higher vertebrates, T lymphocytes didn't respond to TI antigen, moreover, T lymphocyte subpopulations had a regulation on the immune response of B lymphocyte for TD antigen in flounder.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| | - Keke Luo
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China
| | - Yue'e Xiao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China.
| |
Collapse
|
26
|
Liu L, Gao S, Luan W, Zhou J, Wang H. Generation and functional evaluation of a DNA vaccine co-expressing Cyprinid herpesvirus-3 envelope protein and carp interleukin-1 beta. FISH & SHELLFISH IMMUNOLOGY 2018; 80:223-231. [PMID: 29886142 DOI: 10.1016/j.fsi.2018.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) infection in carp causes a fatal and highly contagious disease that results in huge economic losses in common and koi carp aquaculture worldwide. Thus the development of an effective vaccine to protect carp stocks against the CyHV3 virus is imperative. In this study, we immunized common carps with a DNA vaccine consisting of a plasmid that co-expresses the CyHV-3 envelope protein ORF25 and the carp IL-1β gene in order to evaluate the adjuvant potential of IL-1β. Our result shows that antibodies specific to ORF25 can be detected as early as one week after intramuscular injection of the DNA vaccine at low dosage. Moreover, the co-expression of IL-1β can enhance the potency of the vaccine, as demonstrated by a higher antibody level after the third immunizations. Importantly, the DNA vaccine reduced mortality in carps when they were immunized prior to a CyHV-3 challenge, as compared to negative control groups. However, despite being able to induce higher neutralizing antibody titres, the co-expression of IL-1β in the DNA vaccine did not significantly improve the overall survival of immunized fish following virus challenge. Furthermore, the DNA vaccine can protect carps from tissue damage and histopathological alteration caused by viral infection. These strongly suggests that the vaccine can efficiently elicit protective immunity against CyHV-3 infection. In conclusion, the DNA vaccine formulated with the pIRES-ORF25-IL-1β DNA construct can protect carp against CyHV-3 infection and has potential applicability in the aquaculture industry.
Collapse
Affiliation(s)
- Lifan Liu
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Changchun, 130118, China
| | - Shan Gao
- Liaoyuan Academy of Agricultural Sciences, Liaoyuan, 136200, China
| | - Weimin Luan
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Changchun, 130118, China
| | - Jingxiang Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hao Wang
- Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
27
|
Scapigliati G, Fausto AM, Picchietti S. Fish Lymphocytes: An Evolutionary Equivalent of Mammalian Innate-Like Lymphocytes? Front Immunol 2018; 9:971. [PMID: 29867952 PMCID: PMC5949566 DOI: 10.3389/fimmu.2018.00971] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/18/2018] [Indexed: 12/23/2022] Open
Abstract
Lymphocytes are the responsible of adaptive responses, as they are classically described, but evidence shows that subpopulations of mammalian lymphocytes may behave as innate-like cells, engaging non-self rapidly and without antigen presentation. The innate-like lymphocytes of mammals have been mainly identified as γδT cells and B1-B cells, exert their activities principally in mucosal tissues, may be involved in human pathologies and their functions and tissue(s) of origin are not fully understood. Due to similarities in the morphology and immunobiology of immune system between fish and mammals, and to the uniqueness of having free-living larval stages where the development can be precisely monitored and engineered, teleost fish are proposed as an experimental model to investigate human immunity. However, the homology between fish lymphocytes and mammalian innate-like lymphocytes is an issue poorly considered in comparative immunology. Increasing experimental evidence suggests that fish lymphocytes could have developmental, morphological, and functional features in common with innate-like lymphocytes of mammals. Despite such similarities, information on possible links between conventional fish lymphocytes and mammalian innate-like lymphocytes is missing. The aim of this review is to summarize and describe available findings about the similarities between fish lymphocytes and mammalian innate-like lymphocytes, supporting the hypothesis that mammalian γδT cells and B1-B cells could be evolutionarily related to fish lymphocytes.
Collapse
Affiliation(s)
- Giuseppe Scapigliati
- Dipartimento per l'Innovazione nei sistemi biologici, agroalimentari e forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Anna M Fausto
- Dipartimento per l'Innovazione nei sistemi biologici, agroalimentari e forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Simona Picchietti
- Dipartimento per l'Innovazione nei sistemi biologici, agroalimentari e forestali, Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
28
|
Xing J, Wang L, Zhen M, Tang X, Zhan W. Variations of T and B lymphocytes of flounder ( Paralichthys olivaceus ) after Hirame novirhabdovirus infection and immunization. Mol Immunol 2018; 96:19-27. [DOI: 10.1016/j.molimm.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/20/2023]
|
29
|
Gye HJ, Oh MJ, Nishizawa T. Lack of nervous necrosis virus (NNV) neutralizing antibodies in convalescent sevenband grouper Hyporthodus septemfasciatus after NNV infection. Vaccine 2018; 36:1863-1870. [PMID: 29503111 DOI: 10.1016/j.vaccine.2018.02.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 10/17/2022]
Abstract
Viral nervous necrosis (VNN) is caused by nervous necrosis viruses (NNVs) belonging to genus Betanodavirus (Nodaviridae). It is one of the most serious diseases in aquaculture industry worldwide. In the present study, the kinetics of NNV-infectivity and NNV-specific antibodies in convalescent sevenband grouper Hyporthodus septemfasciatus after NNV infection was determined. When fish were infected with NNV at 17.5 °C, and reared for 84 days at natural seawater temperature (increasing rate: approximately 0.1 °C/day), NNV infectivity peaked on day 14 with 107.80 TCID50/g at the highest, and declined to below the detection limit. When convalescent fish were reared at 27 °C, and re-infected with NNV at 104.3 or 106.3 TCID50/fish, no mortality was observed although NNV multiplied up to 108.80 and 107.80 TCID50/g at the highest, respectively, suggesting NNV-specific immune response. It also revealed that convalescent fish were re-infected by NNV although NNV multiplication was strongly regulated. Interestingly, NNV-specific antibodies were detectable in 20% and ≥80% of convalescent fish before and after re-infection with NNV, respectively. However, no NNV-neutralizing activity was detected before and after re-infection in almost all of the convalescent fish. Therefore, NNV-neutralizing antibodies might not be necessary for the protection of convalescent fish against NNV re-infection after previous NNV infection.
Collapse
Affiliation(s)
- Hyun Jung Gye
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Toyohiko Nishizawa
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea.
| |
Collapse
|
30
|
Comprehensive validation of T- and B-cell deficiency in rag1-null zebrafish: Implication for the robust innate defense mechanisms of teleosts. Sci Rep 2017; 7:7536. [PMID: 28790360 PMCID: PMC5548773 DOI: 10.1038/s41598-017-08000-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/06/2017] [Indexed: 11/08/2022] Open
Abstract
rag1−/− zebrafish have been employed in immunological research as a useful immunodeficient vertebrate model, but with only fragmentary evidence for the lack of functional adaptive immunity. rag1-null zebrafish exhibit differences from their human and murine counterparts in that they can be maintained without any specific pathogen-free conditions. To define the immunodeficient status of rag1−/− zebrafish, we obtained further functional evidence on T- and B-cell deficiency in the fish at the protein, cellular, and organism levels. Our developed microscale assays provided evidence that rag1−/− fish do not possess serum IgM protein, that they do not achieve specific protection even after vaccination, and that they cannot induce antigen-specific CTL activity. The mortality rate in non-vaccinated fish suggests that rag1−/− fish possess innate protection equivalent to that of rag1+/− fish. Furthermore, poly(I:C)-induced immune responses revealed that the organ that controls anti-viral immunity is shifted from the spleen to the hepatopancreas due to the absence of T- and B-cell function, implying that immune homeostasis may change to an underside mode in rag-null fish. These findings suggest that the teleost relies heavily on innate immunity. Thus, this model could better highlight innate immunity in animals that lack adaptive immunity than mouse models.
Collapse
|
31
|
Abstract
We first review fundamental insights into anti-ranavirus immunity learned with the Xenopus laevis/ranavirus FV3 model that are generally applicable to ectothermic vertebrates. We then further investigate FV3 genes involved in immune evasion. Focusing on FV3 knockout (KO) mutants defective for a putative viral caspase activation and recruitment domain-containing (CARD)-like protein (Δ64R-FV3), a β-hydroxysteroid dehydrogenase homolog (Δ52L-FV3), and an immediate-early18kDa protein (FV3-Δ18K), we assessed the involvement of these viral genes in replication, dissemination and interaction with peritoneal macrophages in tadpole and adult frogs. Our results substantiate the role of 64R and 52L as critical immune evasion genes, promoting persistence and dissemination in the host by counteracting type III IFN in tadpoles and type I IFN in adult frogs. Comparably, the substantial accumulation of genome copy numbers and exacerbation of type I and III IFN gene expression responses but deficient release of infectious virus suggests that 18K is a viral regulatory gene.
Collapse
Affiliation(s)
- Robert Jacques
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | - Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Sanchez Jazz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Torres-Luquis Odalys
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - De Jesús Andino Francisco
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
32
|
Cabon J, Louboutin L, Castric J, Bergmann S, Bovo G, Matras M, Haenen O, Olesen NJ, Morin T. Validation of a serum neutralization test for detection of antibodies specific to cyprinid herpesvirus 3 in infected common and koi carp (Cyprinus carpio). JOURNAL OF FISH DISEASES 2017; 40:687-701. [PMID: 27716953 DOI: 10.1111/jfd.12550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 05/18/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a serious infective, notifiable disease affecting common carp and varieties. In survivors, infection is generally characterized by a subclinical latency phase with restricted viral replication. The CyHV-3 genome is difficult to detect in such carrier fish that represent a potential source of dissemination if viral reactivation occurs. In this study, the analytical and diagnostic performance of an alternative serum neutralization (SN) method based on the detection of CyHV-3-specific antibodies was assessed using 151 serum or plasma samples from healthy and naturally or experimentally CyHV-3-infected carp. French CyHV-3 isolate 07/108b was neutralized efficiently by sera from carp infected with European, American and Taiwanese CyHV-3 isolates, but no neutralization was observed using sera specific to other aquatic herpesviruses. Diagnostic sensitivity, diagnostic specificity and repeatability of 95.9%, 99.0% and 99.3%, respectively, were obtained, as well as a compliance rate of 89.9% in reproducibility testing. Neutralizing antibodies were steadily detected in infected carp subjected to restrictive or permissive temperature variations over more than 25 months post-infection. The results suggest that this non-lethal diagnostic test could be used in the future to improve the epidemiological surveillance and control of CyHV-3 disease.
Collapse
Affiliation(s)
- J Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - L Louboutin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - J Castric
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| | - S Bergmann
- Friedrich Loeffler Institut (FLI), Insel Riems, Institute of Infectiology, Greifswald, Germany
| | - G Bovo
- Fish Virology Department, Istituto Zooprofilattico Sperimentale delle Venezie (IZS-Ve), Legnaro, Padova, Italy
| | - M Matras
- Department of Fish Diseases, National Veterinary Research Institute (NVRI) in Pulawy, Pulawy, Poland
| | - O Haenen
- Central Veterinary Institute (CVI) of WUR, NRL for Fish, Shellfish and Crustacean Diseases, Lelystad, The Netherlands
| | - N J Olesen
- Technical University of Denmark (DTU), National Veterinary Institute, Frederiksberg C, Denmark
| | - T Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, Université Bretagne Loire, Plouzané, France
| |
Collapse
|
33
|
Nanjo A, Shibata T, Saito M, Yoshii K, Tanaka M, Nakanishi T, Fukuda H, Sakamoto T, Kato G, Sano M. Susceptibility of isogeneic ginbuna Carassius auratus langsdorfii Temminck et Schlegel to cyprinid herpesvirus-2 (CyHV-2) as a model species. JOURNAL OF FISH DISEASES 2017; 40:157-168. [PMID: 27150547 DOI: 10.1111/jfd.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Herpesviral haematopoietic necrosis (HVHN), caused by cyprinid herpesvirus-2 (CyHV-2), has affected the commercial production of the goldfish Carassius auratus and gibelio carp Carassius auratus gibelio. High water temperature treatments are reported to reduce the mortality rate of infected goldfish and elicit immunity in the survivors. To define the mechanism by which this intervention induces resistance, clonal ginbuna Carassius auratus langsdorfii, which is closely related to both species and has been used in fish immunology, may represent a promising model species. In this study, we investigated the susceptibility of clonal ginbuna strains to CyHV-2 and the effect of high water temperature treatment on infected ginbuna and goldfish. Experimental intraperitoneal infection with CyHV-2 at 25 °C caused 100% mortality in ginbuna strains, which was accompanied by histopathological changes typical of HVHN. Both infected ginbuna S3n strain and goldfish, exposed to high temperature for 6 days [shifting from 25 °C (permissive) to 34 °C (non-permissive)], showed reduced mortalities after the 1st inoculation, and subsequent 2nd virus challenge to 0%, indicating induction of immunity. It was concluded that ginbuna showed a similar susceptibility and disease development in CyHV-2 infection compared to goldfish, suggesting that ginbuna can be a useful fish model for the study of CyHV-2 infection and immunity.
Collapse
Affiliation(s)
- A Nanjo
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - T Shibata
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - M Saito
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - K Yoshii
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - M Tanaka
- Saitama Fisheries Research Institute, Saitama, Japan
| | - T Nakanishi
- College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - H Fukuda
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - T Sakamoto
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - G Kato
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - M Sano
- Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
34
|
Dee CT, Nagaraju RT, Athanasiadis EI, Gray C, Fernandez Del Ama L, Johnston SA, Secombes CJ, Cvejic A, Hurlstone AFL. CD4-Transgenic Zebrafish Reveal Tissue-Resident Th2- and Regulatory T Cell-like Populations and Diverse Mononuclear Phagocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3520-3530. [PMID: 27694495 PMCID: PMC5073357 DOI: 10.4049/jimmunol.1600959] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
CD4+ T cells are at the nexus of the innate and adaptive arms of the immune system. However, little is known about the evolutionary history of CD4+ T cells, and it is unclear whether their differentiation into specialized subsets is conserved in early vertebrates. In this study, we have created transgenic zebrafish with vibrantly labeled CD4+ cells allowing us to scrutinize the development and specialization of teleost CD4+ leukocytes in vivo. We provide further evidence that CD4+ macrophages have an ancient origin and had already emerged in bony fish. We demonstrate the utility of this zebrafish resource for interrogating the complex behavior of immune cells at cellular resolution by the imaging of intimate contacts between teleost CD4+ T cells and mononuclear phagocytes. Most importantly, we reveal the conserved subspecialization of teleost CD4+ T cells in vivo. We demonstrate that the ancient and specialized tissues of the gills contain a resident population of il-4/13b-expressing Th2-like cells, which do not coexpress il-4/13a Additionally, we identify a contrasting population of regulatory T cell-like cells resident in the zebrafish gut mucosa, in marked similarity to that found in the intestine of mammals. Finally, we show that, as in mammals, zebrafish CD4+ T cells will infiltrate melanoma tumors and obtain a phenotype consistent with a type 2 immune microenvironment. We anticipate that this unique resource will prove invaluable for future investigation of T cell function in biomedical research, the development of vaccination and health management in aquaculture, and for further research into the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Christopher T Dee
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Raghavendar T Nagaraju
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Emmanouil I Athanasiadis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Caroline Gray
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom; and
| | | | - Simon A Johnston
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2RX, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom; and
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom
| | - Ana Cvejic
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, United Kingdom;
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Adam F L Hurlstone
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
35
|
Nur I, Abdelkhalek NK, Motobe S, Nakamura R, Tsujikura M, Somamoto T, Nakao M. Functional analysis of membrane-bound complement regulatory protein on T-cell immune response in ginbuna crucian carp. Mol Immunol 2015; 70:1-7. [PMID: 26688068 DOI: 10.1016/j.molimm.2015.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 12/12/2022]
Abstract
Complements have long been considered to be a pivotal component in innate immunity. Recent researches, however, highlight novel roles of complements in T-cell-mediated adaptive immunity. Membrane-bound complement regulatory protein CD46, a costimulatory protein for T cells, is a key molecule for T-cell immunomodulation. Teleost CD46-like molecule, termed Tecrem, has been newly identified in common carp and shown to function as a complement regulator. However, it remains unclear whether Tecrem is involved in T-cell immune response. We investigated Tecrem function related to T-cell responses in ginbuna crucian carp. Ginbuna Tecrem (gTecrem) proteins were detected by immunoprecipitation using anti-common carp Tecrem monoclonal antibody (mAb) and were ubiquitously expressed on blood cells including CD8α(+) and CD4(+) lymphocytes. gTecrem expression on leucocyte surface was enhanced after stimulation with the T-cell mitogen, phytohaemagglutinin (PHA). Coculture with the anti-Tecrem mAb significantly inhibited the proliferative activity of PHA-stimulated peripheral blood lymphocytes, suggesting that cross-linking of Tecrems on T-cells interferes with a signal transduction pathway for T-cell activation. These findings indicate that Tecrem may act as a T-cell moderator and imply that the complement system in teleost, as well as mammals, plays an important role for linking adaptive and innate immunity.
Collapse
Affiliation(s)
- Indriyani Nur
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; Aquaculture Department, Fisheries and Marine Science Faculty, Halu Oleo University, Kendari 93232, Indonesia
| | - Nevien K Abdelkhalek
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; Department of Internal Medicine, Infectious and Fish diseases, Faculty of Veterinary Medicine, El-Mansoura University, Egypt
| | - Shiori Motobe
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Ryota Nakamura
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Masakazu Tsujikura
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
36
|
Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM. Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to Mammals. BIOLOGY 2015; 4:814-59. [PMID: 26593954 PMCID: PMC4690019 DOI: 10.3390/biology4040814] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
A phenomenon already discovered more than 25 years ago is the possibility of naïve helper T cells to polarize into TH1 or TH2 populations. In a simplified model, these polarizations occur at opposite ends of an "immune 1-2 axis" (i1-i2 axis) of possible conditions. Additional polarizations of helper/regulatory T cells were discovered later, such as for example TH17 and Treg phenotypes; although these polarizations are not selected by the axis-end conditions, they are affected by i1-i2 axis factors, and may retain more potential for change than the relatively stable TH1 and TH2 phenotypes. I1-i2 axis conditions are also relevant for polarizations of other types of leukocytes, such as for example macrophages. Tissue milieus with "type 1 immunity" ("i1") are biased towards cell-mediated cytotoxicity, while the term "type 2 immunity" ("i2") is used for a variety of conditions which have in common that they inhibit type 1 immunity. The immune milieus of some tissues, like the gills in fish and the uterus in pregnant mammals, probably are skewed towards type 2 immunity. An i2-skewed milieu is also created by many tumors, which allows them to escape eradication by type 1 immunity. In this review we compare a number of i1-i2 axis factors between fish and mammals, and conclude that several principles of the i1-i2 axis system seem to be ancient and shared between all classes of jawed vertebrates. Furthermore, the present study is the first to identify a canonical TH2 cytokine locus in a bony fish, namely spotted gar, in the sense that it includes RAD50 and bona fide genes of both IL-4/13 and IL-3/ IL-5/GM-CSF families.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
37
|
Somamoto T, Miura Y, Nakanishi T, Nakao M. Local and systemic adaptive immune responses toward viral infection via gills in ginbuna crucian carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:81-87. [PMID: 25936589 DOI: 10.1016/j.dci.2015.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
Recent studies on fish immunity highlighted the significance of gills as mucosal immune tissues. To understand potential of gills as vaccination sites for inducing adaptive systemic immunity, we investigated virus-specific cell-mediated and humoral immune responses following a "per-gill infection method", which directly exposes virus only to gills. The viral load in crucian carp hematopoietic necrosis virus (CHNV)-infected gills decreased after peaking at a particular time point. Furthermore, the viral titers in the gills following the secondary infection were lower than that after the primary infection, indicating that local adaptive immunity helped the elimination of virus. Gene expression analysis demonstrated that IFN-γ in gills and perforin in kidney were increased after the gill infection. CD8(+) cells in kidney leukocytes increased after the secondary infection, whereas IgM(+) cells decreased. These results suggest that IFN-γ and CTL contribute in controlling CHNV-replication in gills and kidney. Gill infection could induce specific cell-mediated cytotoxicity of peripheral blood leukocytes (PBL) and secretion of CHNV-specific IgM in serum, indicating that local priming of the gill site can generate adaptive systemic immunity. Thus, the gills could be prospective antigen-sensitization sites for mucosal vaccination.
Collapse
Affiliation(s)
- Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | - Yuhei Miura
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Kanagawa, Fujisawa 252-8510, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
38
|
Zhang J, Li MF. ORF75 of megalocytivirus RBIV-C1: A global transcription regulator and an effective vaccine candidate. FISH & SHELLFISH IMMUNOLOGY 2015; 45:486-494. [PMID: 25982404 DOI: 10.1016/j.fsi.2015.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Megalocytivirus, a DNA virus belonging to the Iridoviridae family, is a severe pathogen to a wide range of marine and freshwater fish. In this study, using turbot (Scophthalmus maximus) as a host model, we examined the immunoprotective property of one megalocytivirus gene, ORF75, in the form of DNA vaccine (named pORF75). Immunofluorescence microscopy and RT-PCR analysis showed that P444, the protein encoded by ORF75, was naturally produced in the tissues of turbot during megalocytivirus infection, and that the vaccine gene in pORF75 was expressed in fish cells transfected with pORF75 and in the tissues of turbot immunized with pORF75. Following vaccination of turbot with pORF75, a high level of survival (73%) was observed against a lethal megalocytivirus challenge. Consistently, viral replication in the vaccinated fish was significantly inhibited. Immune response analysis showed that pORF75-vaccinated fish (i) exhibited upregulated expression of the genes involved in innate and adaptive immunity, (ii) possessed specific memory immune cells that showed significant response to secondary antigen stimulation, and (iii) produced specific serum antibodies which, when co-introduced into turbot with megalocytivirus, blocked viral replication. Furthermore, whole-genome transcriptome analysis revealed that ORF75 knockdown altered the transcription of 43 viral genes. Taken together, these results indicate that ORF75 encoded a highly protective immunogen that is also a global transcription regulator of megalocytivirus.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
39
|
Effects of 17 α-methyltestosterone on transcriptome, gonadal histology and sex steroid hormones in rare minnow Gobiocypris rarus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 15:20-7. [PMID: 26070167 DOI: 10.1016/j.cbd.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 11/23/2022]
Abstract
The 17α-methyltestosterone (MT), a synthetic androgen, is known for its interference effects on the endocrine system. Aiming to investigate the transcriptome profiling of gonads induced by MT and to understand the molecular mechanism by which MT causes adverse effects in fish, transcriptome profiling of gonads, gonadal histology and the sex steroid hormones in response to MT were analyzed in Gobiocypris rarus. Eight libraries, 4 from the ovary and 4 from the testis, were constructed and sequenced and then a total number of clean reads per sample ranging from 7.03 to 9.99 million were obtained. In females, a total of 191 transcripts were differentially regulated by MT, consisting of 102 up-regulated transcripts and 89 down-regulated transcripts. In males, 268 differentially expressed genes with 108 up-regulated and 160 down-regulated were detected upon MT exposure. Testosterone serves as the major sex steroid hormone content in G. rarus of both sexes. The concentrations of 17β-estradiol, testosterone and 11-ketotestosterone were significantly increased in females and decreased in males after MT exposure. Interestingly, MT caused a decreased number of vitellogenic oocytes in the ovary and spermatozoa in the testis. After MT exposure, four differentially expressed genes (ndufa4, slc1a3a, caskin-2 and rpt3) were found in G. rarus of both sexes. Overall, we suggest that MT seemed to affect genes involved in pathways related to physiological processes in the gonads of G. rarus. These processes include the electron transfer of Complex IV, endothelial cell activation, axon growth and guidance, and proteasome assembly and glutamate transport metabolic.
Collapse
|
40
|
Virus genomes and virus-host interactions in aquaculture animals. SCIENCE CHINA-LIFE SCIENCES 2015; 58:156-69. [DOI: 10.1007/s11427-015-4802-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
|
41
|
Yokozawa N, Nakamura O, Saito E, Tsutsui S. Ovarian cavity fluid of the viviparous surfperch Neoditrema ransonnetii suppresses the spontaneous cytotoxic activity of head-kidney leucocytes against xenogeneic targets. JOURNAL OF FISH BIOLOGY 2015; 86:139-147. [PMID: 25557427 DOI: 10.1111/jfb.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
In this study, the effect of ovarian cavity fluid (OCF) from a surfperch Neoditrema ransonnetii on the cytotoxic activity of leucocytes was investigated. In an assay targeting RTG-2, a cell line derived from rainbow trout Oncorhynchus mykiss gonads, leucocytes from both the spleen and head kidney showed spontaneous killing activity. Pre-incubation with OCF significantly suppressed the cytotoxic activity of head-kidney leucocytes towards RTG-2. This suppressive activity was due to the presence of low molecular-mass materials. These results suggest that OCF plays significant roles in pregnancy by its ability to modulate cytotoxicity with maternal leucocytes.
Collapse
Affiliation(s)
- N Yokozawa
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | | | | | | |
Collapse
|
42
|
Thomas D, Suo J, Ulshöfer T, Jordan H, de Bruin N, Scholich K, Geisslinger G, Ferreirós N. Nano-LC-MS/MS for the quantitation of prostanoids in immune cells. Anal Bioanal Chem 2014; 406:7103-16. [PMID: 25192790 DOI: 10.1007/s00216-014-8134-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/14/2014] [Accepted: 08/25/2014] [Indexed: 12/16/2022]
Abstract
Prostanoids, derivatives of arachidonic acid, are involved in inflammation and immune reactions. To understand the role of prostanoids produced by diverse immune cells, a highly sensitive quantitation method for prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), 6-keto prostaglandin F1α (6-keto PGF1α), prostaglandin F2α (PGF2α), and thromboxane B2 (TXB2) by means of nano-liquid chromatography-tandem mass spectrometry has been developed. It was validated according to the guidelines of the Food and Drug Administration (FDA) in terms of linearity, precision, accuracy, recovery, stability, and lower limit of quantitation (LLOQ). The LLOQ were 25 pg/mL in the injected solution (75 fg on column (o.c.)) for PGE2 and PGD2 and 37.5 pg/mL (112.5 fg on column) for 6-keto PGF1α, PGF2α, and TXB2, respectively. It was successfully applied to murine mast cells isolated from paws after zymosan injection and to CD4(+) and CD8(+) T lymphocytes from blood of sensitized versus non-sensitized mice in context of a delayed type hypersensitivity model. About 5,000 (T cells) to 40,000 (mast cells) cells were sufficient for quantitation. In the mast cells, the production of PGE2 increased at a significantly higher extent than the synthesis of the other prostanoids. The T lymphocytes did not show any difference in prostanoid production, no matter whether they were obtained from sensitized mice or non-sensitized mice.
Collapse
Affiliation(s)
- D Thomas
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, 60590, Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Edholm ES, Grayfer L, Robert J. Evolution of nonclassical MHC-dependent invariant T cells. Cell Mol Life Sci 2014; 71:4763-80. [PMID: 25117267 DOI: 10.1007/s00018-014-1701-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
Abstract
TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | | |
Collapse
|