1
|
Diaz de Villegas SC, Borbee EM, Abdelbaki PY, Fuess LE. Prior heat stress increases pathogen susceptibility in the model cnidarian Exaiptasia diaphana. Commun Biol 2024; 7:1328. [PMID: 39406834 PMCID: PMC11480339 DOI: 10.1038/s42003-024-07005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Anthropogenic climate change has significantly altered terrestrial and marine ecosystems globally, often in the form of climate-related events such as thermal anomalies and disease outbreaks. Although the isolated effects of these stressors have been well documented, a growing body of literature suggests that stressors often interact, resulting in complex effects on ecosystems. This includes coral reefs where sequential associations between heat stress and disease have had profound impacts. Here we used the model cnidarian Exaiptasia diaphana to investigate mechanisms linking prior heat stress to increased disease susceptibility. We examined anemone pathogen susceptibility and physiology (symbiosis, immunity, and energetics) following recovery from heat stress. We observed significantly increased pathogen susceptibility in anemones previously exposed to heat stress. Notably, prior heat stress reduced anemone energetic reserves (carbohydrate concentration), and activity of multiple immune components. Minimal effects of prior heat stress on symbiont density were observed. Together, results suggest changes in energetic availability might have the strongest effect on pathogen susceptibility and immunity following heat stress. The results presented here provide critical insight regarding the interplay between heat stress recovery and pathogen susceptibility in cnidarians and are an important first step towards understanding temporal associations between these stressors.
Collapse
|
2
|
Zarei S, Ghafoori H, Vahdatiraad L, Sohrabi T, Heidari B. Effects of HSP inducers on the gene expression of Heat Shock Proteins (HSPs) in cells extracted from sterlet sturgeon under temperature stress with antioxidant and immunity responses. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1409-1428. [PMID: 38658492 DOI: 10.1007/s10695-024-01347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Global warming has profound effects on the living conditions and metabolism of organisms, including fish. The metabolic rate of fish increases as the temperature increases within its thermal tolerance range. Temperature changes can trigger a range of physiological reactions, including the activation of the stress axis and the production of HSPs. Under stress conditions, HSPs play a crucial role in antioxidant systems, immune responses, and enzyme activation. This study examined the effects of heat shock products (HSPs) on fish under temperature stress. Various HSP inducers (HSPis), including Pro-Tex®, amygdalin, and novel synthetic compounds derived from pirano piranazole (SZ, MZ, HN-P1, and HN-P2), were evaluated in isolated cells of sterlet sturgeon (Acipenser ruthenus) treated with temperature changes (18, 22, and 26 °C). Cells from the liver, kidney, and gills were cultured in vitro in the presence and absence of temperature stress and treated with HSPi compounds. To assess HSP27, HSP70, and HSP90 expression patterns, Western blotting was used. The HSPis and HSPi + temperature stress treatments affected the antioxidant capacity and immune parameters, among other enzyme activities. The results showed that HSPi compounds increase cell survival in vitro, positively modulate HSP expression and antioxidant levels, and decrease immune parameters. HSPi can increase A. ruthenus tolerance to temperature stress. In addition, the results indicate that these compounds can reverse adverse temperature effects. Further research is needed to determine how these ecological factors affect fish species' health in vivo and in combination with other stressors.
Collapse
Affiliation(s)
- Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Hossein Ghafoori
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
- Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Leila Vahdatiraad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Tooraj Sohrabi
- Agricultural Research Education and Organization (AREEO), International Sturgeon Research Institute, Iranian Fisheries Sciences Research Institute, Tehran, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
- Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| |
Collapse
|
3
|
Zarei S, Ghafouri H, Vahdatiraad L, Heidari B, Sohrabi T. Enhancing resistance and cell survival in Acipenser ruthenus liver, gill, and kidney cells: The potential of heat shock protein inducers against PAH-benzo[a]pyrene stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9445-9460. [PMID: 38191735 DOI: 10.1007/s11356-024-31884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
The Caspian Sea has faced many environmental challenges, such as oil pollution. Heat shock proteins (HSPs) play a critical role in stress conditions and physiological changes caused by disease or injury. By evaluating the effects of various HSP inducers (HSPi), including Pro-Tex® (NOP: 800 mM), amygdalin (AMG: 80 mM), and a novel synthetic compound derived from pirano piranazole (SZ: 80 µm) on isolated cells from Sterlet Sturgeon (Acipenser ruthenus) treated with 75% IC50 PAH-benzo[a]pyrene (BaP; B75). This study examines whether there is a correlation between exposure to the BaP pollutant and HSPs in fish. In vitro, after culturing cells from the liver, kidney, and gills, they were treated with HSPi compounds in the presence and absence of BaP. Western blotting was used to assess HSP27, HSP70, and HSP90 expression patterns. A variety of enzyme activities were measured before (without treatment) and after treatment with HSPis and HSPi + B75, including cytochrome P450 (CYP450) activity, specific enzyme activity for acetylcholinesterase (AChE), antioxidant capacity, liver indicator enzymes, cortisol levels, and immunity parameters. When compared to the control group, cells treated with B75 showed the lowest AChE enzyme activity (p < 0.0001). CYP450 activity was highest in group B75, while HSPi caused the opposite effect (p < 0.0001). HSPi + B75 increased HSP levels and antioxidant parameters while decreasing cortisol and liver indicator enzymes (p < 0.0001). HSPi may be a powerful and reliable method for enhancing the resistance of A. ruthenus to BaP stresses before exposure. Treating cells with HSP-inducing compounds, such as NOP, AMG, and SZ, can assist them in managing stress and increase HSP (27, 70, and 90) protein expression. Furthermore, the study findings suggest that HSPis can also mitigate the adverse effects of stress, ultimately increasing cell survival and resistance.
Collapse
Affiliation(s)
- Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
- Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Leila Vahdatiraad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
- Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | - Tooraj Sohrabi
- International Sturgeon Research Institute, Agricultural Research Education and Organization (AREEO), Iranian Fisheries Sciences Research Institute, Tehran, Iran
| |
Collapse
|
4
|
Wang F, Wang X, Tang T, Duan Y, Mao T, Guo X, Wang Q, You J. De Novo RNA Sequencing and Transcriptome Analysis of Sclerotium rolfsii Gene Expression during Sclerotium Development. Genes (Basel) 2023; 14:2170. [PMID: 38136992 PMCID: PMC10743028 DOI: 10.3390/genes14122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Sclerotium rolfsii is a destructive soil-borne fungal pathogen that causes stem rot in cultivated plants. However, little is known about the genetic basis of sclerotium development. In this study, we conducted de novo sequencing of genes from three different stages of S. rolfsii (mycelia, early sclerotium formation, and late sclerotium formation) using Illumina HiSeqTM 4000. We then determined differentially expressed genes (DEGs) across the three stages and annotated gene functions. STEM and weighted gene-co-expression network analysis were used to cluster DEGs with similar expression patterns. Our analysis yielded an average of 25,957,621 clean reads per sample (22,913,500-28,988,848). We identified 8929, 8453, and 3744 DEGs between sclerotium developmental stages 1 versus 2, 1 versus 3, and 2 versus 3, respectively. Additionally, four significantly altered gene expression profiles involved 220 genes related to sclerotium formation, and two modules were positively correlated with early and late sclerotium formation. These results were supported by the outcomes of qPCR and RNA-sequencing conducted on six genes. This is the first study to provide a gene expression map during sclerotial development in S. rolfsii, which can be used to reduce the re-infection ability of this pathogen and provide new insights into the scientific prevention and control of the disease. This study also provides a useful resource for further research on the genomics of S. rolfsii.
Collapse
Affiliation(s)
- Fanfan Wang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Under-Forest Economy, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiaoyue Wang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Tao Tang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Yuanyuan Duan
- Hubei Engineering Research Center of Under-Forest Economy, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Ting Mao
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Xiaoliang Guo
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| | - Qingfang Wang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
- Hubei Engineering Research Center of Under-Forest Economy, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jingmao You
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China
| |
Collapse
|
5
|
Lee YH, Kim MS, Lee Y, Wang C, Yun SC, Lee JS. Synergistic adverse effects of microfibers and freshwater acidification on host-microbiota interactions in the water flea Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132026. [PMID: 37473567 DOI: 10.1016/j.jhazmat.2023.132026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Microfibers are the most common type of microplastics in freshwater environments. Anthropogenic climate stressors, such as freshwater acidification (FA), can interact with plastic pollution to disrupt freshwater ecosystems. However, the underlying mechanisms responsible for the interactive effects of microfibers and FA on aquatic organisms remain poorly understood. In this study, we investigated individual Daphnia magna-microbiota interactions affected by interactions between microfibers and FA (MFA). We found that the accumulated amount of microfibers in pH-treatment groups was significantly higher than in the control groups, resulting in negative consequences on reproduction, growth, and sex ratio. We also observed that MFA interactions induced immunity- and reproduction-related biological processes. In particular, the abundance of pathogenic bacteria increased only in MFA groups, indicating that MFA interactions can cause intestinal damage. Our integrated analysis of microbiomes and host transcriptomes revealed that synergistic adverse effects of MFAs are closely related to changes in microbial communities, suggesting that D. magna fitness and the microbial community are causally linked. These finding may help elucidate the toxicity mechanisms governing the responses of D. magna to microfibers and acidification interactions, and to host-microbiome-environment interactions.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chuxin Wang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seong Chan Yun
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
6
|
Vahdatiraad L, Heidari B, Zarei S, Sohrabi T, Ghafouri H. Biological responses of stellate sturgeon fingerlings (Acipenser stellatus) immersed in HSP inducer to salinity changes. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106145. [PMID: 37595360 DOI: 10.1016/j.marenvres.2023.106145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/15/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Changes in salinity is a stressful and energy-consuming process in fish which give rise to mortalities, especially in fish fingerlings that are more sensitive during the early stages of their life. In the present study, the effects of three salinities, 3‰ (downstream of river), 8‰ (estuarine), and 13‰ (the maximum salinity in the Caspian Sea), on HSP70 gene expression, cortisol level, immune response (lysozyme, complement C3, IgM), and antioxidant enzyme activities (SOD, CAT, T-AOC) of the stellate sturgeon fingerlings in the presence of HSP inducer compound (TEX-OE®) were evaluated. Our results showed that levels of plasma cortisol and heat shock protein (HSP70) in Acipenser stellatus fingerlings increased due to salinity changes. In the presence of the HSP inducer, HSP70 expression in both gill and liver was significantly increased, whereas cortisol level was notably decreased. Exposure to salinity changes resulted in an increase in antioxidant defense activities (SOD, CAT, and T-AOC) and immune response (lysozyme, IgM, and C3) in the presence of an HSP inducer. In conclusion, an HSP-inducing compounds can have a positive effect in strengthening the immunity and antioxidant system of sturgeon fingerlings by increasing the expression of the HSP70 gene against salinity fluctuations and generally increase the body's physiological tolerance.
Collapse
Affiliation(s)
- Leila Vahdatiraad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Tooraj Sohrabi
- International Caspian Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| |
Collapse
|
7
|
Zhao M, Lin Z, Zheng Z, Yao D, Yang S, Zhao Y, Chen X, Aweya JJ, Zhang Y. The mechanisms and factors that induce trained immunity in arthropods and mollusks. Front Immunol 2023; 14:1241934. [PMID: 37744346 PMCID: PMC10513178 DOI: 10.3389/fimmu.2023.1241934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Besides dividing the organism's immune system into adaptive and innate immunity, it has long been thought that only adaptive immunity can establish immune memory. However, many studies have shown that innate immunity can also build immunological memory through epigenetic reprogramming and modifications to resist pathogens' reinfection, known as trained immunity. This paper reviews the role of mitochondrial metabolism and epigenetic modifications and describes the molecular foundation in the trained immunity of arthropods and mollusks. Mitochondrial metabolism and epigenetic modifications complement each other and play a key role in trained immunity.
Collapse
Affiliation(s)
- Mingming Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhongyang Lin
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| |
Collapse
|
8
|
Giamaki D, Tsiotsiou M, Oglou SC, Touraki M. Interactions of Bisphenol A with Artemia franciscana and the ameliorative effect of probiotics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104064. [PMID: 36640920 DOI: 10.1016/j.etap.2023.104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In the present study, the bidirectional interactions of Artemia franciscana with BPA, administered either alone or following treatment with the probiotics Bacillus subtilis, Lactococcus lactis or Lactobacillus plantarum, were evaluated. A 24 h exposure to BPA below LC50 induced oxidative stress to Artemia, indicated by diminished activity of superoxide dismutase, glutathione reductase, glutathione transferase and phenoloxidase, increased lipid peroxidation and decreased survival. Probiotic treatment prior to BPA exposure, led to increased survival, reduced lipid peroxidation and increased enzyme activities. BPA quantification in Artemia and its culture medium, showed a time dependent reduction in its levels, more evident in probiotic series, indicating its biotransformation. ESI-MS analysis confirmed the presence of the tentative BPA metabolites hydroquinone and BPA-sulfate, while BPA-disulfate formation was confirmed in only in the probiotic series. Our results provide evidence that probiotics alleviate the oxidative stress response induced by BPA, by enhancing the BPA biotransformation ability of Artemia.
Collapse
Affiliation(s)
- Despoina Giamaki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| | - Malamati Tsiotsiou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| | - Sevnta Chousein Oglou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| | - Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| |
Collapse
|
9
|
Kumar V, Roy S, Behera BK, Das BK. Heat Shock Proteins (Hsps) in Cellular Homeostasis: A Promising Tool for Health Management in Crustacean Aquaculture. Life (Basel) 2022; 12:1777. [PMID: 36362932 PMCID: PMC9699388 DOI: 10.3390/life12111777] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
Heat shock proteins (Hsps) are a family of ubiquitously expressed stress proteins and extrinsic chaperones that are required for viability and cell growth in all living organisms. These proteins are highly conserved and produced in all cellular organisms when exposed to stress. Hsps play a significant role in protein synthesis and homeostasis, as well as in the maintenance of overall health in crustaceans against various internal and external environmental stresses. Recent reports have suggested that enhancing in vivo Hsp levels via non-lethal heat shock, exogenous Hsps, or plant-based compounds, could be a promising strategy used to develop protective immunity in crustaceans against both abiotic and biotic stresses. Hence, Hsps as the agent of being an immune booster and increasing disease resistance will present a significant advancement in reducing stressful conditions in the aquaculture system.
Collapse
Affiliation(s)
| | | | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| |
Collapse
|
10
|
Bergami E, Krupinski Emerenciano A, Palmeira Pinto L, Reina Joviano W, Font A, Almeida de Godoy T, Silva JRMC, González-Aravena M, Corsi I. Behavioural, physiological and molecular responses of the Antarctic fairy shrimp Branchinecta gaini (Daday, 1910) to polystyrene nanoplastics. NANOIMPACT 2022; 28:100437. [PMID: 36332901 DOI: 10.1016/j.impact.2022.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution represents an emerging environmental issue in terrestrial Antarctica, especially in the Antarctic Peninsula and Maritime Antarctica, which have been recently recognized as hot spots for plastic litter. In these regions, freshwater (FW) environments such as lakes host isolated ecosystems and species that can be severely affected by increasing environmental and anthropogenic stressors, which include plastics that are still overlooked. In this study, we investigated for the first time the impact of nanoplastics on adults of the fairy shrimp Branchinecta gaini (Order Anostraca) populating Antarctic FW ecosystems, using surface charged polystyrene nanoparticles (PS NPs) as a proxy. Short-term acute toxicity (48 h) was investigated by exposing adults to carboxyl (-COOH, 60 nm) and amino-modified (-NH2, 50 nm) PS NPs at 1 and 5 μg mL-1. Biodisposition of PS NPs and lethal and sub-lethal effects (i.e., swimming, moulting, histology, gene expression) were assessed. Behaviour of PS NPs in Antarctic FW media was monitored through 48 h of exposure showing that both PS NPs kept their nanoscale size in the Antarctic FW media. Survival of fairy shrimp adults over short-term exposure was not affected, on the other hand an increase in moulting rate and alterations in the gut epithelium were observed upon exposure to both PS NPs. Significant alterations at the behavioural (ventilation rate) and molecular (up-regulation of Hsp70mit, Hsp83, Sod, P450) levels were related to PS NP surface charge and associated with PS-NH2 exposure only. Nanoplastics could represent a threat for Antarctic FW biodiversity and the Antarctic fairy shrimp could be a valuable model for assessing their impact on such remote and pristine aquatic ecosystems.
Collapse
Affiliation(s)
- E Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy.
| | - A Krupinski Emerenciano
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. L. Prestes 1524, São Paulo, SP 05508-000, Brazil
| | - L Palmeira Pinto
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. L. Prestes 1524, São Paulo, SP 05508-000, Brazil
| | - W Reina Joviano
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. L. Prestes 1524, São Paulo, SP 05508-000, Brazil
| | - A Font
- Scientific Department, Chilean Antarctic Institute, Plaza Muñoz Gamero 1055, 6200965 Punta Arenas, Chile
| | - T Almeida de Godoy
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. L. Prestes 1524, São Paulo, SP 05508-000, Brazil
| | - J R M C Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. L. Prestes 1524, São Paulo, SP 05508-000, Brazil
| | - M González-Aravena
- Scientific Department, Chilean Antarctic Institute, Plaza Muñoz Gamero 1055, 6200965 Punta Arenas, Chile
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
11
|
Xie W, Zhou QJ, Xu YX, Zhang M, Zhong SP, Lu LL, Qiu HT. Transcriptome analysis reveals potential key immune genes of Hong Kong oyster (Crassostrea hongkongensis) against Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 122:316-324. [PMID: 35122949 DOI: 10.1016/j.fsi.2022.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Hong Kong oyster (Crassostrea hongkongensis) is one of the main species of economic shellfish cultivated in the coastal areas of southern China. The cultivation of this shellfish may be adversely impacted by Vibrio parahaemolyticus, a harmful pathogenic bacterium for many mariculture species, as it usually exists on the surface of Hong Kong oysters. Although previous studies have discovered that oysters rely on non-specific immune system to fight pathogen invasion, the genes corresponding to the complex immune system against Vibrio is still not fully elucidated. Therefore, we conducted a transcriptome analysis on the gill from Hong Kong oysters at two time points (i.e., 12 h and 24 h after V. parahaemolyticus or PBS challenge) to identify potential immune genes against V. parahaemolyticus infection. A total of 61779 unigenes with the average length of 1221 bp were obtained, and the annotation information of 39917 unigenes were obtained from Nr, SwissProt, KEGG and COG/KOG. After a pairwise comparison between V. parahaemolyticus or PBS challenge at the two time points, three groups of differentially expressed genes induced by V. parahaemolyticus were captured and analyzed. GO and KEGG analyses showed that multiple immune-related genes played an important role in pathogen infection, including HSP70, PCDP3 and TLR4. Furthermore, genes annotation indicated that LITAF, TNFSF10, Duox2 and big defensin family are also involved in immune regulation. Our study provides a reference for further exploration the molecular mechanism that defenses the pathogen infection regarding the identified immune-related genes in Hong Kong oysters.
Collapse
Affiliation(s)
- Wei Xie
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Qi-Jia Zhou
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation (Nanning Normal University), Nanning, 530001, China.
| | - Yi-Xiao Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation (Nanning Normal University), Nanning, 530001, China
| | - Man Zhang
- School of Marine Sciences, Guangxi University, Nanning, 530001, China
| | - Sheng-Ping Zhong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Li-Li Lu
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection, Nanning, 530001, China
| | - Heng-Tong Qiu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation (Nanning Normal University), Nanning, 530001, China
| |
Collapse
|
12
|
Mahfuj S, Ppsk P, Bossier P, Norouzitallab P, Baruah K. Phloroglucinol shows prophylactic and metaphylactic effects against pathogenic stressors in Macrobrachium larvae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104302. [PMID: 34774877 DOI: 10.1016/j.dci.2021.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Vibriosis caused by Vibrio campbellii and related species is amongst the major hindrance to the sustainable expansion of giant freshwater prawn Macrobrachium rosenbergii larviculture. Induction of heat shock protein Hsp70 is a natural response of stressed organisms that protect against many insults including vibriosis in aquaculture animals. Therefore, there is a great interest in searching for natural compounds that could induce Hsp70 in animals in a non-invasive manner. Previously, in a series of in vivo studies, we have shown that the phenolic compound phloroglucinol could induce Hsp70 in aquaculture organisms Macrobrachium and Artemia. This led to a significant increase in the resistance of the animals towards subsequent challenges with V. parahemolyticus. As V. parahaemolyticus belongs to the Harveyi clade similar to V. campbellii, our above findings triggered the hypothesis that phloroglucinol is a potential anti-microbial agent that could protect the freshwater prawn against V. campbellii infection. The results presented here provide evidence that the Hsp70-inducing compound phloroglucinol could induce both metaphylactic and prophylactic effects against infection stress mediated by V. campbellii. The wide-spectrum property of the compound to both prevent the occurrence and reduce the spread of V. campbellii infection in prawn larvae without affecting the larval growth makes it a potential natural agent for health management and V. campbellii-mediated disease control in freshwater prawn larvae. Overall results add new information about the functional properties of phloroglucinol and advance our knowledge of this compound as a potential antimicrobial agent for the sustainable production of giant freshwater prawns.
Collapse
Affiliation(s)
- Sarower Mahfuj
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Patabandi Ppsk
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Peter Bossier
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Parisa Norouzitallab
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Aquaculture Nutraceuticals Research Group, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| |
Collapse
|
13
|
Kumar V, Roy S, Behera BK, Bossier P, Das BK. Acute Hepatopancreatic Necrosis Disease (AHPND): Virulence, Pathogenesis and Mitigation Strategies in Shrimp Aquaculture. Toxins (Basel) 2021; 13:524. [PMID: 34437395 PMCID: PMC8402356 DOI: 10.3390/toxins13080524] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Shrimp, as a high-protein animal food commodity, are one of the fastest growing food producing sectors in the world. It has emerged as a highly traded seafood product, currently exceeding 8 MT of high value. However, disease outbreaks, which are considered as the primary cause of production loss in shrimp farming, have moved to the forefront in recent years and brought socio-economic and environmental unsustainability to the shrimp aquaculture industry. Acute hepatopancreatic necrosis disease (AHPND), caused by Vibrio spp., is a relatively new farmed penaeid shrimp bacterial disease. The shrimp production in AHPND affected regions has dropped to ~60%, and the disease has caused a global loss of USD 43 billion to the shrimp farming industry. The conventional approaches, such as antibiotics and disinfectants, often applied for the mitigation or cure of AHPND, have had limited success. Additionally, their usage has been associated with alteration of host gut microbiota and immunity and development of antibiotic resistance in bacterial pathogens. For example, the Mexico AHPND-causing V. parahaemolyticus strain (13-306D/4 and 13-511/A1) were reported to carry tetB gene coding for tetracycline resistance gene, and V. campbellii from China was found to carry multiple antibiotic resistance genes. As a consequence, there is an urgent need to thoroughly understand the virulence mechanism of AHPND-causing Vibrio spp. and develop novel management strategies to control AHPND in shrimp aquaculture, that will be crucially important to ensure food security in the future and offer economic stability to farmers. In this review, the most important findings of AHPND are highlighted, discussed and put in perspective, and some directions for future research are presented.
Collapse
Affiliation(s)
- Vikash Kumar
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India; (S.R.); (B.K.B.); (B.K.D.)
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
| | - Suvra Roy
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India; (S.R.); (B.K.B.); (B.K.D.)
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India; (S.R.); (B.K.B.); (B.K.D.)
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India; (S.R.); (B.K.B.); (B.K.D.)
| |
Collapse
|
14
|
Anirudhan A, Okomoda VT, Mimi Iryani MT, Andriani Y, Abd Wahid ME, Tan MP, Danish-Daniel M, Wong LL, Tengku-Muhammad TS, Mok WJ, Sorgeloos P, Sung YY. Pandanus tectorius fruit extract promotes Hsp70 accumulation, immune-related genes expression and Vibrio parahaemolyticus tolerance in the white-leg shrimp Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2021; 109:97-105. [PMID: 33352338 DOI: 10.1016/j.fsi.2020.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 05/27/2023]
Abstract
Plants and herbal extracts are indispensable for controlling the spread of disease-causing bacteria, including those that infect aquatic organisms used in aquaculture. The use of plant or herbal extract is expected to be safe for aquatic animals and less harmful to the environment, as opposed to conventional therapeutic alternatives such as antibiotics that promote the occurrence of potential antibiotic-resistant bacteria when used improperly. The efficacy of Pandanus tectorius fruit extract in the regulation of Hsp70 expression, pro-phenoloxidase (ProPO), peroxinectin, penaeidin, crustin and transglutaminase, all immune peptides essential for Vibrio tolerance in white leg shrimp, Penaeus vannamei, was investigated in this study, which included the determination of the safety levels of the extract. Tolerance of shrimp against Vibrio parahaemolyticus, a pathogenic bacteria that causes Acute Hepatopancreas Necrosis Disease (AHPND), was assessed on the basis of median lethal dose challenge survival (LD50 = 106 cells/ml). Mortality was not observed 24 h after exposure of 0.5-6 g/L of the fruit extract, indicating that P. tectorius was not toxic to shrimp at these concentrations. A 24-h incubation of 2-6 g/L of the fruit extract increased shrimp tolerance to V. parahaemolyticus, with survival doubled when the maximum dose tested in this study was used. Concomitant with a rise in survival was the increase in immune-related proteins, with Hsp70, ProPO, peroxinectin, penaeidin, crustin and transglutaminase increased 10, 11, 11, 0.4, 8 and 13-fold respectively. Histological examination of the hepatopancreas and muscle tissues of Vibrio-infected shrimp primed with P. tectorius extract revealed reduced signs of histopathological degeneration, possibly due to the accumulation of Hsp70, a molecular chaperone crucial to cellular protein folding, tissue repair and immune response of living organisms, including Penaeid shrimp.
Collapse
Affiliation(s)
- Anupa Anirudhan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Victor Tosin Okomoda
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mat Taib Mimi Iryani
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yosie Andriani
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mohd Effendy Abd Wahid
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Min Pau Tan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Muhd Danish-Daniel
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Li Lian Wong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | | | - Wen Jye Mok
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Patrick Sorgeloos
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Campus Coupure - Blok F, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
15
|
Junprung W, Supungul P, Tassanakajon A. Structure, gene expression, and putative functions of crustacean heat shock proteins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103875. [PMID: 32987013 DOI: 10.1016/j.dci.2020.103875] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones with critical roles in the maintenance of cellular proteostasis. HSPs, which regulate protein folding and refolding, assembly, translocation, and degradation, are induced in response to physiological and environmental stressors. In recent years, HSPs have been recognized for their potential role in immunity; in particular, these proteins elicit a variety of immune responses to infection and modulate inflammation. This review focuses on delineating the structural and functional roles of crustacean HSPs in the innate immune response. Members of crustacean HSPs include high molecular weight HSPs (HSP90, HSP70, and HSP60) and small molecular weight HSPs (HSP21 and HSP10). The sequences and structures of these HSPs are highly conserved across various crustacean species, indicating strong evolutionary links among this group of organisms. The expression of HSP-encoding genes across different crustacean species is significantly upregulated upon exposure to a wide range of pathogens, emphasizing the important role of HSPs in the immune response. Functional studies of crustacean HSPs, particularly HSP70s, have demonstrated their involvement in the activation of several immune pathways, including those mediating anti-bacterial resistance and combating viral infections, upon heat exposure. The immunomodulatory role of HSPs indicates their potential use as an immunostimulant to enhance shrimp health for control of disease in aquaculture.
Collapse
Affiliation(s)
- Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Klong Luang, Pathum Thani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Han B, Baruah K, Nguyen DV, Williams DL, Devriendt B, Cox E, Bossier P. Beta-glucan's varying structure characteristics modulate survival and immune-related genes expression from Vibrio harveyi-infected Artemia franciscana in gnotobiotic conditions. FISH & SHELLFISH IMMUNOLOGY 2020; 102:307-315. [PMID: 32371255 DOI: 10.1016/j.fsi.2020.04.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
β-Glucans have long been used as an immunostimulant in aquaculture. However, the relationship of its structure to its immunomodulatory properties are poorly understood. In this study, the particle size and chemical structure of β-glucans extracted from wild-type strain of baker's yeast (Saccharomyces cerevisiae) and its null-mutant yeasts Gas1 were characterised. Using Sigma β-glucan as a reference, the immunomodulatory properties of these polysaccharides in the germ-free Artemia franciscana model system in the presence of Vibrio harveyi bacterial challenge were investigated. The survival of the A. franciscana nauplii, upon challenge with V. harveyi, was significantly higher in all three glucan-treated groups compared to the control. The glucan Gas1 with a lower degree of branching and shorter side chain length had the most prominent V. harveyi-protective effects. The particle size did not affect the nauplii survival when challenged with V. harveyi. Results also showed that the salutary effect of the tested glucans was associated with the upregulation of innate immune genes such as lipopolysaccharide and β-1,3-glucan-binding protein (lgbp), high mobility group box protein (hmgb), and prophenoloxidase (proPO). Interestingly, the up-regulation of superoxidase dismutase (sod) and glutathione-s-transferase (gst) was only observed in Gas1 treated group, indicating that Gas1 could function to induce higher reactive oxygen species and stronger immunomodulatory function in A. franciscana, and therefore higher survival rate. The expression of heat shock protein 70 (hsp70), peroxinectin (pxn), and down syndrome cell adhesion molecule (dscam) remain unaltered in response to glucan treatment. Taken together, this study provides insights into the structure-function relationship of β-glucan and the results confirmed that β-glucan can be an effective immunostimulant in aquaculture, especially the Gas1 glucan.
Collapse
Affiliation(s)
- Biao Han
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium.
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Dung Viet Nguyen
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - David L Williams
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| |
Collapse
|
17
|
Yaacob EN, Norouzitallab P, De Geest BG, Bajek A, Dierckens K, Bossier P, Vanrompay D. Recombinant DnaK Orally Administered Protects Axenic European Sea Bass Against Vibriosis. Front Immunol 2020; 10:3162. [PMID: 32117214 PMCID: PMC7033693 DOI: 10.3389/fimmu.2019.03162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/31/2019] [Indexed: 11/13/2022] Open
Abstract
Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture and is a hindering factor for successful sustainable aquaculture of this commercially valuable species. Priming of the innate immune system through administration of immunostimulants has become an important approach to control disease outbreaks in marine fish larviculture. This study was conducted to evaluate immunostimulation by Escherichia coli HSP70 (DnaK) in axenic European sea bass larvae in order to protect the larvae against vibriosis. DnaK stimulates the immune response in crustaceans and juvenile fish against bacterial infections. The use of axenic fish larvae allows to study immunostimulation in the absence of an interfering microbial community. At 7 days post-hatching, larvae received a single dose of alginate encapsulated recombinant DnaK. Two non-treated control groups in which animals either received empty alginate microparticles (C1) or no alginante microparticles (C2 and C3) were included in the study. Eighteen hours later, all larvae, except the ones from group C3 (non-infected control) were challenged with V. anguillarum (105 CFU, bath infection). Mortality was daily recorded until 120 h post infection and at 18, 24, and 36 h post infection, larvae were sampled for expression of immune related genes. Results showed that V. anguillarum induced an immune response in axenic sea bass larvae but that the innate immune response was incapable to protect the larvae against deadly septicaemic disease. In addition, we showed that administration of alginate encapsulated DnaK to axenic European sea bass larvae at DAH7 resulted in a significant, DnaK dose dependent, upreglation of immune sensor, regulatory and effector genes. Significant upregulation of cxcr4, cas1 and especially of hep and dic was correlated with significant higher survival rates in V. anguillarum infected larvae. In the future recombinant DnaK might perhaps be used as a novel immunostimulant in sea bass larviculture.
Collapse
Affiliation(s)
- Eamy Nursaliza Yaacob
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Aline Bajek
- Écloserie Marine de Gravelines, Gravelines, France
| | - Kristof Dierckens
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Kumar V, Roy S, Baruah K, Van Haver D, Impens F, Bossier P. Environmental conditions steer phenotypic switching in acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus, affecting PirA VP /PirB VP toxins production. Environ Microbiol 2020; 22:4212-4230. [PMID: 31867836 DOI: 10.1111/1462-2920.14903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Bacteria in nature are widely exposed to differential fluid shears which are often a trigger for phenotypic switches. The latter mediates transcriptional and translation remodelling of cellular metabolism impacting among others virulence, antimicrobial resistance and stress resistance. In this study, we evaluated the role of fluid shear on phenotypic switch in an acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus M0904 strain under both in vitro and in vivo conditions. The results showed that V. parahaemolyticus M0904 grown at lower shaking speed (110 rpm constant agitation, M0904/110), causing low fluid shear, develop cellular aggregates or floccules. These cells increased levan production (as verified by concanavalin binding) and developed differentially stained colonies on Congo red agar plates and resistance to antibiotics. In addition, the phenotypic switch causes a major shift in the protein secretome. At 120 rpm (M0904/120), PirAVP /PirBVP toxins are mainly produced, while at 110 rpm PirAVP /PirBVP toxins production is stopped and an alkaline phosphatase (ALP) PhoX becomes the dominant protein in the protein secretome. These observations are matched with a very strong reduction in virulence of M0904/110 towards two crustacean larvae, namely, Artemia and Macrobrachium. Taken together, our study provides substantial evidence for the existence of two phenotypic forms in AHPND V. parahaemolyticus strain displaying differential phenotypes. Moreover, as aerators and pumping devices are frequently used in shrimp aquaculture facilities, they can inflict fluid shear to the standing microbial agents. Hence, our study could provide a basis to understand the behaviour of AHPND-causing V. parahaemolyticus in aquaculture settings and open the possibility to monitor and control AHPND by steering phenotypes.
Collapse
Affiliation(s)
- Vikash Kumar
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.,ICAR - Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Suvra Roy
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.,ICAR - Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Kartik Baruah
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium.,Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Proteomics Core, B-9000, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Proteomics Core, B-9000, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
19
|
Roy S, Kumar V, Bossier P, Norouzitallab P, Vanrompay D. Phloroglucinol Treatment Induces Transgenerational Epigenetic Inherited Resistance Against Vibrio Infections and Thermal Stress in a Brine Shrimp ( Artemia franciscana) Model. Front Immunol 2019; 10:2745. [PMID: 31827471 PMCID: PMC6890837 DOI: 10.3389/fimmu.2019.02745] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023] Open
Abstract
Emerging, infectious diseases in shrimp like acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus and mortality caused by other Vibrio species such as Vibrio harveyi are worldwide related to huge economic losses in industrial shrimp production. As a strategy to prevent disease outbreaks, a plant-based phenolic compound could be used as a biocontrol agent. Here, using the brine shrimp (Artemia franciscana) as a model system, we showed that phloroglucinol treatment of the parental animals at early life stages resulted in transgenerational inherited increased resistance in their progeny against biotic stress, i.e., bacteria (V. parahaemolyticus AHPND strain and V. harveyi) and abiotic stress, i.e., lethal heat shock. Increased resistance was recorded in three subsequent generations. Innate immune-related gene expression profiles and potential epigenetic mechanisms were studied to discover the underlying protective mechanisms. Our results showed that phloroglucinol treatment of the brine shrimp parents significantly (P < 0.05) enhanced the expression of a core set of innate immune genes (DSCAM, proPO, PXN, HSP90, HSP70, and LGBP) in subsequent generations. We also demonstrated that epigenetic mechanisms such as DNA methylation, m6A RNA methylation, and histone acetylation and methylation (active chromatin marker i.e., H3K4Me3, H3K4me1, H3K27me1, H3 hyperacetylation, H3K14ac and repression marker, i.e., H3K27me3, H4 hypoacetylation) might play a role in regulation of gene expression leading toward the observed transgenerational inheritance of the resistant brine shrimp progenies. To our knowledge, this is the first report on transgenerational inheritance of a compound-induced robust protected phenotype in brine shrimp, particularly protected against AHPND caused by V. parahaemolyticus and vibriosis caused by V. harveyi. Results showed that epigenetic reprogramming is likely to play a role in the underlying mechanism.
Collapse
Affiliation(s)
- Suvra Roy
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Vikash Kumar
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Transcriptome analysis reveals molecular mechanisms of sclerotial development in the rice sheath blight pathogen Rhizoctonia solani AG1-IA. Funct Integr Genomics 2019; 19:743-758. [PMID: 31054140 DOI: 10.1007/s10142-019-00677-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/03/2023]
Abstract
Rhizoctonia solani AG1-IA is a soil-borne necrotrophic pathogen that causes devastating rice sheath blight disease in rice-growing regions worldwide. Sclerotia play an important role in the life cycle of R. solani AG1-IA. In this study, RNA sequencing was used to investigate the transcriptomic dynamics of sclerotial development (SD) of R. solani AG1-IA. Gene ontology and pathway enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to investigate the functions and pathways of differentially expressed genes (DEGs). Six cDNA libraries were generated, and more than 300 million clean reads were obtained and assembled into 15,100 unigenes. In total, 12,575 differentially expressed genes were identified and 34.62% (4353) were significantly differentially expressed with a FDR ≤ 0.01 and |log2Ratio| ≥ 1, which were enriched into eight profiles using Short Time-series Expression Miner. Furthermore, KEGG and gene ontology analyses suggest the DEGs were significantly enriched in several biological processes and pathways, including binding and catalytic functions, biosynthesis of ribosomes, and other biological functions. Further annotation of the DEGs using the Clusters of Orthologous Groups (COG) database found most DEGs were involved in amino acid transport and metabolism, as well as energy production and conversion. Furthermore, DEGs relevant to SD of R. solani AG1-IA were involved in secondary metabolite biosynthesis, melanin biosynthesis, ubiquitin processes, autophagy, and reactive oxygen species metabolism. The gene expression profiles of 10 randomly selected DEGs were validated by quantitative real-time reverse transcription PCR and were consistent with the dynamics in transcript abundance identified by RNA sequencing. The data provide a high-resolution map of gene expression during SD, a key process contributing to the pathogenicity of this devastating pathogen. In addition, this study provides a useful resource for further studies on the genomics of R. solani AG1-IA and other Rhizoctonia species.
Collapse
|
21
|
Fang Z, Sun Y, Zhang X, Wang G, Li Y, Wang Y, Zhang Z. Responses of HSP70 Gene to Vibrio parahaemolyticus Infection and Thermal Stress and Its Transcriptional Regulation Analysis in Haliotis diversicolor. Molecules 2019; 24:E162. [PMID: 30609869 PMCID: PMC6337134 DOI: 10.3390/molecules24010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
Heat-shock protein 70 (HSP70) is a molecular chaperone that plays critical roles in cell protein folding and metabolism, which helps to protect cells from unfavorable environmental stress. Haliotis diversicolor is one of the most important economic breeding species in the coastal provinces of south China. To date, the expression and transcriptional regulation of HSP70 in Haliotis diversicolor (HdHSP70) has not been well characterized. In this study, the expression levels of HdHSP70 gene in different tissues and different stress conditions were detected. The results showed that the HdHSP70 gene was ubiquitously expressed in sampled tissues and was the highest in hepatopancreas, followed by hemocytes. In hepatopancreas and hemocytes, the HdHSP70 gene was significantly up-regulated by Vibrio parahaemolyticus infection, thermal stress, and combined stress (Vibrio parahaemolyticus infection and thermal stress combination), indicating that HdHSP70 is involved in the stress response and the regulation of innate immunity. Furthermore, a 2383 bp of 5'-flanking region sequence of the HdHSP70 gene was cloned, and it contains a presumed core promoter region, a CpG island, a (TG)39 simple sequence repeat (SSR), and many potential transcription factor binding sites. The activity of HdHSP70 promoter was evaluated by driving the expression of luciferase gene in HEK293FT cells. A series of experimental results indicated that the core promoter region is located between -189 bp and +46 bp, and high-temperature stress can increase the activity of HdHSP70 promoter. Sequence-consecutive deletions of the luciferase reporter gene in HEK293FT cells revealed two possible promoter activity regions. To further identify the binding site of the key transcription factor in the two regions, two expression vectors with site-directed mutation were constructed. The results showed that the transcriptional activity of NF-1 site-directed mutation was significantly increased (p < 0.05), whereas the transcriptional activity of NF-κB site-directed mutation was significantly reduced. These results suggest that NF-1 and NF-κB may be two important transcription factors that regulate the expression of HdHSP70 gene.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yulong Sun
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xin Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yuting Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
22
|
Zhao C, Fu H, Sun S, Qiao H, Zhang W, Jin S, Jiang S, Xiong Y, Gong Y. A transcriptome study on Macrobrachium nipponense hepatopancreas experimentally challenged with white spot syndrome virus (WSSV). PLoS One 2018; 13:e0200222. [PMID: 29979781 PMCID: PMC6034857 DOI: 10.1371/journal.pone.0200222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
White spot syndrome virus (WSSV) is one of the most devastating pathogens of cultured shrimp, responsible for massive loss of its commercial products worldwide. The oriental river prawn Macrobrachium nipponense is an economically important species that is widely farmed in China and adult prawns can be infected by WSSV. However, the molecular mechanisms of the host pathogen interaction remain unknown. There is an urgent need to learn the host pathogen interaction between M. nipponense and WSSV which will be able to offer a solution in controlling the spread of WSSV. Next Generation Sequencing (NGS) was used in this study to determin the transcriptome differences by the comparison of control and WSSV-challenged moribund samples, control and WSSV-challenged survived samples of hepatopancreas in M. nipponense. A total of 64,049 predicted unigenes were obtained and classified into 63 functional groups. Approximately, 4,311 differential expression genes were identified with 3,308 genes were up-regulated when comparing the survived samples with the control. In the comparison of moribund samples with control, 1,960 differential expression genes were identified with 764 genes were up-regulated. In the contrast of two comparison libraries, 300 mutual DEGs with 95 up-regulated genes and 205 down-regulated genes. All the DEGs were performed GO and KEGG analysis, overall a total of 85 immune-related genes were obtained and these gene were groups into 13 functions and 4 KEGG pathways, such as protease inhibitors, heat shock proteins, oxidative stress, pathogen recognition immune receptors, PI3K/AKT/mTOR pathway, MAPK signaling pathway and Ubiquitin Proteasome Pathway. Ten genes that valuable in immune responses against WSSV were selected from those DEGs to furture discuss the response of host to WSSV. Results from this study contribute to a better understanding of the immune response of M. nipponense to WSSV, provide information for identifying novel genes in the absence of genome of M. nipponense. Furthermore, large number of transcripts obtained from this study could provide a strong basis for future genomic research on M. nipponense.
Collapse
Affiliation(s)
- Caiyuan Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- * E-mail:
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| |
Collapse
|
23
|
Kumar V, Baruah K, Nguyen DV, Smagghe G, Vossen E, Bossier P. Phloroglucinol-Mediated Hsp70 Production in Crustaceans: Protection against Vibrio parahaemolyticus in Artemia franciscana and Macrobrachium rosenbergii. Front Immunol 2018; 9:1091. [PMID: 29872432 PMCID: PMC5972194 DOI: 10.3389/fimmu.2018.01091] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 02/03/2023] Open
Abstract
The halophilic aquatic bacterium, Vibrio parahaemolyticus, is an important aquatic pathogen, also capable of causing acute hepatopancreatic necrosis disease (AHPND) in shrimp resulting in significant economic losses. Therefore, there is an urgent need to develop anti-infective strategies to control AHPND. The gnotobiotic Artemia model is used to establish whether a phenolic compound phloroglucinol is effective against the AHPND strain V. parahaemolyticus MO904. We found that pretreatment with phloroglucinol, at an optimum concentration (30 µM), protects axenic brine shrimp larvae against V. parahaemolyticus infection and induced heat shock protein 70 (Hsp70) production (twofolds or more) as compared with the control. We further demonstrated that the Vibrio-protective effect of phloroglucinol was caused by its prooxidant effect and is linked to the induction of Hsp70. In addition, RNA interference confirms that phloroglucinol-induced Hsp70 mediates the survival of brine shrimp larvae against V. parahaemolyticus infection. The study was validated in xenic Artemia model and in a Macrobrachium rosenbergii system. Pretreatment of xenic brine shrimp larvae (30 µM) and Macrobrachium larvae (5 µM) with phloroglucinol increases the survival of xenic brine shrimp and Macrobrachium larvae against subsequent V. parahaemolyticus challenge. Taken together, our study provides substantial evidence that the prooxidant activity of phloroglucinol induces Hsp70 production protecting brine shrimp, A. franciscana, and freshwater shrimp, M. rosenbergii, against the AHPND V. parahaemolyticus strain MO904. Probably, phloroglucinol treatment might become part of a holistic strategy to control AHPND in shrimp.
Collapse
Affiliation(s)
- Vikash Kumar
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - Kartik Baruah
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Dung Viet Nguyen
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Els Vossen
- Laboratory of Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Kang ZW, Liu FH, Liu X, Yu WB, Tan XL, Zhang SZ, Tian HG, Liu TX. The Potential Coordination of the Heat-Shock Proteins and Antioxidant Enzyme Genes of Aphidius gifuensis in Response to Thermal Stress. Front Physiol 2017; 8:976. [PMID: 29234290 PMCID: PMC5712418 DOI: 10.3389/fphys.2017.00976] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/15/2017] [Indexed: 12/27/2022] Open
Abstract
Aphidius gifuensis is one of the most important aphid natural enemies and has been successfully used to control Myzys persicae and other aphid species. High temperature in summer is one of the key barriers for the application of A. gifuensis in the field and greenhouse. In this work, we investigated the biological performance of A. gifuensis and the response of heat-shock proteins and antioxidant enzymes under high temperature. The results showed that A. gifuensis could not survive at 40°C and female exhibited a higher survival in 35°C. Furthermore, the short term exposure to high temperature negatively affected the performance of A. gifuensis especially parasitism efficiency. Under short-term heating, the expression of AgifsHSP, Agifl(2)efl, AgifHSP70, AgifHSP70-4 and AgifHSP90 showed an increased trend, whereas AgifHSP10 initially increased and then decreased. In 35°C, the expressions of Agifl(2)efl, AgifHSP70-4 and AgifHSP90 in female were higher than those in male, whereas the expression of AgifHSP70 exhibited an opposite trend. Besides the HSPs, we also quantified the expression levels of 11 antioxidant enzyme genes: AgifPOD, AgifSOD1, AgifSOD2, AgifSOD3, AgifCAT1, AgifCAT2, AgifGST1, AgifGST2, AgifGST3, AgifGST4 and AgifGST5. We found that the sex-specific expression of AgifSOD2, AgifSOD3, AgifPOD, AgifGST1 and AgifGST3 were highly consistent with sex-specific heat shock survival rates at 35°C. Furthermore, when the temperature was above 30°C, the activities of GST, SOD, CAT and POD were significantly increased; however, there was no significant difference of the CAT activity between the male and female at 35°C. Collectively, all of these results suggested that the protection of thermal damage is coordinated by HSPs and antioxidant enzymes in A. gifuensis. Based on the heat tolerance abilities of many aphid natural enemies, we also discussed an integrated application strategy of many aphid enemies in summer.
Collapse
Affiliation(s)
- Zhi-Wei Kang
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Fang-Hua Liu
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Liu
- Entomology Department, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Wen-Bo Yu
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiao-Ling Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for the Arid Areas, and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
singh L, Randhawa PK, Singh N, Jaggi AS. Redox signaling in remote ischemic preconditioning-induced cardioprotection: Evidences and mechanisms. Eur J Pharmacol 2017; 809:151-155. [DOI: 10.1016/j.ejphar.2017.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
|
26
|
Yuan K, Yuan FH, He HH, Bi HT, Weng SP, He JG, Chen YH. Heat shock 70 kDa protein cognate 5 involved in WSSV toleration of Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:9-20. [PMID: 28193450 DOI: 10.1016/j.dci.2017.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
The expression levels of 97 unigenes encoding heat shock proteins of Litopenaeus vannamei was scanned, and ten of them were significantly induced by white spot syndrome virus (WSSV). Among these genes, heat shock 70 kDa protein cognate 5 (LvHSC70-5) was upregulated to the highest extent and subjected to further studies. Subcellular localization assay revealed that LvHSC70-5 was located in the mitochondria. Aside from WSSV infection, unfolded protein response activation and thermal stress could also upregulate LvHSC70-5. Results of reporter gene assay demonstrated that promoter of LvHSC70-5 was activated by L. vannamei heat shock factor protein 1, activating transcription factor 4 and thermal stress. A decrease in the expression of LvHSC70-5 could reduce the aggregation of proteins in hemocytes and the cumulative mortality of WSSV-infected L. vannamei. LvHSC70-5 in L. vannamei hemocytes was upregulated by mild thermal stress. In addition, mild thermal stress, decreased the copy number of WSSV in shrimp muscle and the cumulative mortality of WSSV-infected L. vannamei. Therefore, collecting results suggested that LvHSC70-5 should be involved in WSSV toleration of shrimp L. vannamei.
Collapse
Affiliation(s)
- Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hong-Hui He
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hai-Tao Bi
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC)/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Yi-Hong Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC)/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
27
|
Giarma E, Amanetidou E, Toufexi A, Touraki M. Defense systems in developing Artemia franciscana nauplii and their modulation by probiotic bacteria offer protection against a Vibrio anguillarum challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 66:163-172. [PMID: 28478257 DOI: 10.1016/j.fsi.2017.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The alterations of immune responses of Artemia franciscana nauplii as a function of culture time and after a challenge with the pathogen Vibrio anguillarum were studied. The effect of the administration of the probiotic bacteria Bacillus subtilis, Lactobacillus plantarum and Lactococcus lactis either alone or in combination with the pathogen was evaluated. The activity of the antioxidant enzymes superoxide dismutase (SOD), Glutathione reductase (GRed), Glutathione transferase (GST) and Phenoloxidase (PO) presented a significant increase as a function of culture time, appeared elevated following probiotic administration and were depleted 48 h following the experimental challenge. Lipid peroxidation reached peak levels at 48 h of culture, when nauplii start feeding and returned to lower values at 144 h, remaining however significantly higher than control (P < 0.05). The three probiotics significantly reduced lipid peroxidation in comparison with the corresponding control, while challenge with the pathogen resulted in its threefold increase. Survival of nauplii remained high throughout culture and was either increased or remained at control levels following the administration of the probiotics. The challenge with the pathogen resulted in a significantly decreased survival of 15.3% for the positive control, while in the probiotic treated series survival values were not significantly different from the negative control (P > 0.05). Following a combined administration of each probiotic and the pathogen the activities of all enzymes tested were significantly lower (P < 0.001) than the negative control (no treatment), but higher than the positive control (challenge, no probiotic). Lipid peroxidation was significantly lower in the probiotic treated series in comparison to the positive control (P < 0.001). The results of the present study provide evidence that major alterations take place as a function of culture time of Artemia nauplii. In addition the pathogen induces an oxidative stress response. The probiotics B. subtilis, L. plantarum and L. lactis protect Artemia against a V. anguillarum challenge by enhancing its immune responses thus contributing to reduced oxidative damage and increased survival.
Collapse
Affiliation(s)
- Eleni Giarma
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece
| | - Eleni Amanetidou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece
| | - Alexia Toufexi
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece
| | - Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| |
Collapse
|
28
|
Baruah K, Norouzitallab P, Phong HPPD, Smagghe G, Bossier P. Enhanced resistance against Vibrio harveyi infection by carvacrol and its association with the induction of heat shock protein 72 in gnotobiotic Artemia franciscana. Cell Stress Chaperones 2017; 22:377-387. [PMID: 28303510 PMCID: PMC5425368 DOI: 10.1007/s12192-017-0775-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 02/05/2023] Open
Abstract
Induction of HSP72 is a natural response of stressed organisms that protects against many insults including bacterial diseases in farm (aquatic) animals. It would therefore be of great health benefit to search for natural compounds that are clinically safe yet able to induce HSP72 in animals. The phenolic compound carvacrol, an approved food component, had been shown in in vitro study to act as a co-inducer of HSP72, enhancing HSP72 production only in combination with a bona fide stress compared to the compound alone. However, in vitro model systems do not completely represent an in vivo physiology. Here, using the well-established gnotobiotic Artemia model system, we determined whether carvacrol could induce HSP72 in vivo, whether this putative effect could generate resistance in Artemia against biotic/abiotic stress and also unraveled the mechanism behind the possible HSP72-inducing effect of carvacrol. The gnotobiotic system is crucial for such studies because it avoids the interference of any extraneous factors on host-compound interaction. Here, carvacrol was shown to be a potent HSP72 inducer. Induction of HSP72 was associated with the generation of resistance in Artemia larvae against subsequent lethal heat stress or pathogenic Vibrio harveyi. Our results also provided new insight on the mode of HSP72 inducing action of carvacrol, in which the initial generation of reactive molecule H2O2 by the compound plays a key role. Overall results add new information about the bioactivity of carvacrol and advance our knowledge of this compound as potential prophylactic agent for controlling Vibrio infection in aquaculture animals.
Collapse
Affiliation(s)
- Kartik Baruah
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Parisa Norouzitallab
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience EngineeringGhent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ho Phuong Pham Duy Phong
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
29
|
The Role of Heat Shock Proteins in Response to Extracellular Stress in Aquatic Organisms. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Heat Shock Proteins in Aquaculture Disease Immunology and Stress Response of Crustaceans. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
31
|
He J, Wang J, Xu M, Wu C, Liu H. The cooperative expression of Heat Shock Protein 70 KD and 90 KD gene in juvenile Larimichthys crocea under Vibrio alginolyticus stress. FISH & SHELLFISH IMMUNOLOGY 2016; 58:359-369. [PMID: 27678510 DOI: 10.1016/j.fsi.2016.09.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
Heat shock proteins (HSPs) play significant roles in the immune response of fish in defending against diverse environmental threats or stresses. In this study, two complete HSP70 and HSP90 genes of Larimichthys crocea (designated as LycHSP70 and LycHSP90) were identified and characterized (GenBank accession no. KT456551 and KT456552). The complete open reading frame (ORF) fragments of LycHSP70 and LycHSP90 were 1917 bp and 2151 bp, encoding 638 and 716 amino acids residues respectively. Many significant functional domains and motifs were found, such as Hsp70 family signatures, Hsp90 family signatures, ATP-GTP binding site and EEVD motif regions, and they were associated with relative functions. Phylogenetic relationship and BLASTp analysis interpreted that they were unambiguously assigned to HSP70 and HSP90 family. The total length DNA of LycHSP70 was 7889bp, LycHSP90 was 5618 bp, and the gene location mapping were analyzed based on the whole-genomic DNA sequence of L. crocea. LycHSP70 and LycHSP90 were constantly expressed in eight tested tissues, with their expression peaks appearing in liver. Spleen, brain and head kidney also witnessed higher expression level. LycHSP70 and LycHSP90 were significantly induced by pathogenic bacteria V. alginolyticus, and they were both up-regulated in liver and spleen from 0 to 72 h post-injection. All the findings would contribute to better understanding the biologic function of HSPs in defending against pathogenic bacteria challenge and further exploring the innate immune response in fish.
Collapse
Affiliation(s)
- Jianyu He
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Junru Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Mengshan Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Huihui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
32
|
Preconditioning is hormesis part I: Documentation, dose-response features and mechanistic foundations. Pharmacol Res 2016; 110:242-264. [DOI: 10.1016/j.phrs.2015.12.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
|
33
|
Schmitz M, Douxfils J, Mandiki SNM, Morana C, Baekelandt S, Kestemont P. Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2016; 55:550-558. [PMID: 27346159 DOI: 10.1016/j.fsi.2016.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/11/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Hyperosmotic stress has often been investigated from osmoregulation perspectives while the effects of such stress on the immune capacity remain largely unexplored. In this study, striped catfish were submitted to three salinity profiles (freshwater, low saline water, saline water) during 20 days, followed by infection with a virulent bacteria, Edwardsiella ictaluri, responsible for the enteric septicaemia of catfish. Osmoregulatory (plasma osmolality, gill Na(+)K(+)ATPase), immune (blood cells, lysozyme activity, complement activity, respiratory burst) parameters and mortality rate were investigated. In addition, abundances of heat shock protein 70 and high mobility group box 1 were explored. With elevated salinity, plasma osmolality severely increased while gill Na(+)K(+)ATPase slightly increased. Salinity alone stimulated the number of granulocytes, lysozyme activity and respiratory burst but depleted the number of thrombocytes. Salinity in combination with infection stimulated the number of monocytes and ACH50. On the contrary, erythrocytes, hematocrit, heat shock protein 70 and high mobility group box 1 did not significantly vary with salinity profiles. Then, salinity induced earlier onset on mortalities after E. ictaluri inoculation whereas cumulative mortality reach 79.2%, 67.0% and 91.7% respectively in freshwater, low saline water and saline water. In conclusion, salinity stimulates several immune functions in striped catfish but prolonged exposure to excessive hyperosmotic condition may lead to excessive inflammatory response and death.
Collapse
Affiliation(s)
- Mélodie Schmitz
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium.
| | - Jessica Douxfils
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| | - Syaghalirwa N M Mandiki
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| | - Cédric Morana
- Katholieke Universiteit Leuven, Department of Earth and Environmental Sciences, Leuven, Belgium
| | - Sébastien Baekelandt
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| | - Patrick Kestemont
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| |
Collapse
|
34
|
Dziewięcka M, Karpeta-Kaczmarek J, Augustyniak M, Majchrzycki Ł, Augustyniak-Jabłokow MA. Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. JOURNAL OF HAZARDOUS MATERIALS 2016; 305:30-40. [PMID: 26642444 DOI: 10.1016/j.jhazmat.2015.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/31/2015] [Accepted: 11/15/2015] [Indexed: 05/14/2023]
Abstract
Graphene and its oxidized form-graphene oxide (GO) have become exceptionally popular in industry and medicine due to their unique properties. However, there are suspicions that GO can cause adverse effects. Therefore, comprehensive knowledge on its potential toxicity is essential. This research assesses the in vivo toxicity of pure and manganese ion contaminated GO, which were injected into the hemolymph of Acheta domesticus. The activity of catalase (CAT) and gluthiathione peroxidases (GSTPx) as well as heat shock protein (HSP 70) and total antioxidant capacity (TAC) levels were measured at consecutive time points-1h, 24h, 48h and 72h after injection. Neither pure GO nor GO contaminated with manganese were neutral to the organism. The results proved the intensification of oxidative stress after GO injection, which was confirmed by increased enzyme activity. The organism seems to cope with this stress, especially in the first 24h after injection. In the following days, increasing HSP 70 levels were observed, which might suggest the synthesis of new proteins and the removal of old and damaged ones. With that in mind, the potential toxicity of the studied material, which could lead to serious and permanent damage to the organism, should still be taken into consideration.
Collapse
Affiliation(s)
- Marta Dziewięcka
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland.
| | - Julia Karpeta-Kaczmarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Łukasz Majchrzycki
- Institute of Physics, Poznan University of Technology, Nieszawska 13a, 60-965 Poznan, Poland; Wielkopolska Centre of Advanced Technology, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland
| | | |
Collapse
|
35
|
Norouzitallab P, Baruah K, Biswas P, Vanrompay D, Bossier P. Probing the phenomenon of trained immunity in invertebrates during a transgenerational study, using brine shrimp Artemia as a model system. Sci Rep 2016; 6:21166. [PMID: 26876951 PMCID: PMC4753410 DOI: 10.1038/srep21166] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/15/2016] [Indexed: 01/05/2023] Open
Abstract
The invertebrate’s innate immune system was reported to show some form of adaptive features, termed trained immunity. However, the memory characteristics of innate immune system and the mechanisms behind such phenomena remain unclear. Using the invertebrate model Artemia, we verified the possibility or impossibility of trained immunity, examining the presence or absence of enduring memory against homologous and heterologous antigens (Vibrio spp.) during a transgenerational study. We also determined the mechanisms behind such phenomenon. Our results showed the occurrence of memory and partial discrimination in Artemia’s immune system, as manifested by increased resistance, for three successive generations, of the progenies of Vibrio-exposed ancestors towards a homologous bacterial strain, rather than to a heterologous strain. This increased resistance phenotype was associated with elevated levels of hsp70 and hmgb1 signaling molecules and alteration in the expression of key innate immunity-related genes. Our results also showed stochastic pattern in the acetylation and methylation levels of H4 and H3K4me3 histones, respectively, in the progenies whose ancestors were challenged. Overall results suggest that innate immune responses in invertebrates have the capacity to be trained, and epigenetic reprogramming of (selected) innate immune effectors is likely to have central place in the mechanisms leading to trained immunity.
Collapse
Affiliation(s)
- Parisa Norouzitallab
- Laboratory of Aquaculture &Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Ghent 9000, Belgium.,Lab of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure 653, Ghent 9000, Belgium
| | - Kartik Baruah
- Laboratory of Aquaculture &Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Ghent 9000, Belgium
| | - Priyanka Biswas
- Laboratory of Aquaculture &Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Ghent 9000, Belgium
| | - Daisy Vanrompay
- Lab of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure 653, Ghent 9000, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture &Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Ghent 9000, Belgium
| |
Collapse
|
36
|
Baruah K, Duy Phong HPP, Norouzitallab P, Defoirdt T, Bossier P. The gnotobiotic brine shrimp (Artemia franciscana) model system reveals that the phenolic compound pyrogallol protects against infection through its prooxidant activity. Free Radic Biol Med 2015; 89:593-601. [PMID: 26459033 DOI: 10.1016/j.freeradbiomed.2015.10.397] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 01/06/2023]
Abstract
The phenolic compound pyrogallol is the functional unit of many polyphenols and currently there has been a growing interest in using this compound in human and animal health owing to its health-promoting effects. The biological actions of pyrogallol moiety (and polyphenols) in inducing health benefitting effects have been studied; however, the mechanisms of action remain unclear yet. Here, we aimed at unravelling the underlying mechanism of action behind the protective effects of pyrogallol against bacterial infection by using the gnotobiotically-cultured brine shrimp Artemia franciscana and pathogenic bacteria Vibrio harveyi as host-pathogen model system. The gnotobiotic test system represents an exceptional system for carrying out such studies because it eliminates any possible interference of microbial communities (naturally present in the experimental system) in mechanistic studies and furthermore facilitates the interpretation of the results in terms of a cause effect relationship. We provided clear evidences suggesting that pyrogallol pretreament, at an optimum concentration, induced protective effects in the brine shrimp against V. harveyi infection. By pretreating brine shrimp with pyrogallol in the presence or absence of an antioxidant enzyme mixture (catalase and superoxide dismutase), we showed that the Vibrio-protective effect of the compound was caused by its prooxidant action (e.g. generation of hydrogen peroxide, H2O2). We showed further that generation of prooxidant is linked to the induction of heat shock protein Hsp70, which is involved in eliciting the prophenoloxidase and transglutaminase immune responses. The ability of pyrogallol to induce protective immunity makes it a potential natural protective agent that might be a potential preventive modality for different host-pathogen systems.
Collapse
Affiliation(s)
- Kartik Baruah
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Ghent 9000, Belgium.
| | - Ho Phuong Pham Duy Phong
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Ghent 9000, Belgium
| | - Parisa Norouzitallab
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Ghent 9000, Belgium
| | - Tom Defoirdt
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Ghent 9000, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Ghent 9000, Belgium
| |
Collapse
|
37
|
Dattilo S, Mancuso C, Koverech G, Di Mauro P, Ontario ML, Petralia CC, Petralia A, Maiolino L, Serra A, Calabrese EJ, Calabrese V. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing 2015; 12:20. [PMID: 26543490 PMCID: PMC4634585 DOI: 10.1186/s12979-015-0046-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Modulation of endogenous cellular defense mechanisms via the vitagene system represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. The possibility of high-throughoutput screening using proteomic techniques, particularly redox proteomics, provide more comprehensive overview of the interaction of proteins, as well as the interplay among processes involved in neuroprotection. Here by introducing the hormetic dose response concept, the mechanistic foundations and applications to the field of neuroprotection, we discuss the emerging role of heat shock protein as prominent member of vitagene network in neuroprotection and redox proteomics as a tool for investigating redox modulation of stress responsive vitagenes. Hormetic mechanisms are reviewed as possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the neurodegenerative disease process.
Collapse
Affiliation(s)
- Sandro Dattilo
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | - Cesare Mancuso
- />Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Guido Koverech
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | - Paola Di Mauro
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Maria Laura Ontario
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | | | - Antonino Petralia
- />Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Luigi Maiolino
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Agostino Serra
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Edward J. Calabrese
- />Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA USA
| | - Vittorio Calabrese
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| |
Collapse
|
38
|
Kim BY, Song HY, Kim MY, Lee BH, Kim KJ, Jo KJ, Kim SW, Lee SG, Lee BH. DISTINCTIVE LOCALIZATION OF GROUP 3 LATE EMBRYOGENESIS ABUNDANT SYNTHESIZING CELLS DURING BRINE SHRIMP DEVELOPMENT. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 89:169-180. [PMID: 25781424 DOI: 10.1002/arch.21234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Despite numerous studies on late embryogenesis abundant (LEA) proteins, their functions, roles, and localizations during developmental stages in arthropods remain unknown. LEA proteins protect crucial proteins against osmotic stress during the development and growth of various organisms. Thus, in this study, fluorescence in situ hybridization was used to determine the crucial regions protected against osmotic stress as well as the distinctive localization of group 3 (G3) LEA(+) cells during brine shrimp development. Several cell types were found to synthesize G3 LEA RNA, including neurons, muscular cells, APH-1(+) cells, and renal cells. The G3 LEA(+) neuronal cell bodies outside of the mushroom body projected their axonal bundles to the central body, but those inside the mushroom body projected their axonal bundles toward the deutocerebrum without innervating the central body. The cell bodies inside the mushroom body received axons of the G3 LEA(+) sensory cells at the medial ventral cup of the nauplius eye. Several glands were found to synthesize G3 LEA RNA during the nauplius stages of brine shrimp, including the sinus, antennal I and II, salt, and three ectodermal glands. This study provides the first demonstration of the formation of G3 LEA(+) sinus glands at the emergence stages of brine shrimp. These results suggest that G3 LEA protein is synthesized in several cell types. In particular, specific glands play crucial roles during the emergence and nauplius stages of brine shrimp.
Collapse
Affiliation(s)
- Bo Yong Kim
- School of Life Sciences and Biotechnology, Korea University, Korea
| | - Hwa Young Song
- School of Life Sciences and Biotechnology, Korea University, Korea
| | - Mi Young Kim
- School of Life Sciences and Biotechnology, Korea University, Korea
| | - Bong Hee Lee
- School of Life Sciences and Biotechnology, Korea University, Korea
| | - Kyung Joo Kim
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Korea
| | - Kyung Jin Jo
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Korea
| | - Suhng Wook Kim
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Korea
| | - Seung Gwan Lee
- Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Korea
| | | |
Collapse
|
39
|
Probing the protective mechanism of poly-ß-hydroxybutyrate against vibriosis by using gnotobiotic Artemia franciscana and Vibrio campbellii as host-pathogen model. Sci Rep 2015; 5:9427. [PMID: 25822312 PMCID: PMC4378509 DOI: 10.1038/srep09427] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023] Open
Abstract
The compound poly-ß-hydroxybutyrate (PHB), a polymer of the short chain fatty acid ß-hydroxybutyrate, was shown to protect experimental animals against a variety of bacterial diseases, (including vibriosis in farmed aquatic animals), albeit through undefined mechanisms. Here we aimed at unraveling the underlying mechanism behind the protective effect of PHB against bacterial disease using gnotobiotically-cultured brine shrimp Artemia franciscana and pathogenic Vibrio campbellii as host-pathogen model. The gnotobiotic model system is crucial for such studies because it eliminates any possible microbial interference (naturally present in any type of aquatic environment) in these mechanistic studies and furthermore facilitates the interpretation of the results in terms of a cause effect relationship. We showed clear evidences indicating that PHB conferred protection to Artemia host against V. campbellii by a mechanism of inducing heat shock protein (Hsp) 70. Additionally, our results also showed that this salutary effect of PHB was associated with the generation of protective innate immune responses, especially the prophenoloxidase and transglutaminase immune systems – phenomena possibly mediated by PHB-induced Hsp70. From overall results, we conclude that PHB induces Hsp70 and this induced Hsp70 might contribute in part to the protection of Artemia against pathogenic V. campbellii.
Collapse
|
40
|
Norouzitallab P, Baruah K, Muthappa DM, Bossier P. Non-lethal heat shock induces HSP70 and HMGB1 protein production sequentially to protect Artemia franciscana against Vibrio campbellii. FISH & SHELLFISH IMMUNOLOGY 2015; 42:395-399. [PMID: 25463291 DOI: 10.1016/j.fsi.2014.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Parisa Norouzitallab
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Gent 9000, Belgium
| | - Kartik Baruah
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Gent 9000, Belgium
| | - Dechamma M Muthappa
- Department of Fisheries Microbiology, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, Karnataka, India
| | - Peter Bossier
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Gent 9000, Belgium.
| |
Collapse
|
41
|
Norouzitallab P, Biswas P, Baruah K, Bossier P. Multigenerational immune priming in an invertebrate parthenogenetic Artemia to a pathogenic Vibrio campbellii. FISH & SHELLFISH IMMUNOLOGY 2015; 42:426-429. [PMID: 25433135 DOI: 10.1016/j.fsi.2014.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Affiliation(s)
- Parisa Norouzitallab
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Gent 9000, Belgium
| | - Priyanka Biswas
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Gent 9000, Belgium
| | - Kartik Baruah
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Gent 9000, Belgium
| | - Peter Bossier
- Lab of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Rozier 44, Gent 9000, Belgium.
| |
Collapse
|