1
|
Yuan X, Cheng J, Hu D, Wu Z, Wang L, Lin W, Li G. Local Gradients of Functional Connectivity Enable Precise Fingerprinting of Infant Brains During Dynamic Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629222. [PMID: 39763825 PMCID: PMC11702623 DOI: 10.1101/2024.12.19.629222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Brain functional connectivity patterns exhibit distinctive, individualized characteristics capable of distinguishing one individual from others, like fingerprint. Accurate and reliable depiction of individualized functional connectivity patterns during infancy is crucial for advancing our understanding of individual uniqueness and variability of the intrinsic functional architecture during dynamic early brain development, as well as its role in neurodevelopmental disorders. However, the highly dynamic and rapidly developing nature of the infant brain presents significant challenges in capturing robust and stable functional fingerprint, resulting in low accuracy in individual identification over ages during infancy using functional connectivity. Conventional methods rely on brain parcellations for computing inter-regional functional connections, which are sensitive to the chosen parcellation scheme and completely ignore important fine-grained, spatially detailed patterns in functional connectivity that encodes developmentally-invariant, subject-specific features critical for functional fingerprinting. To solve these issues, for the first time, we propose a novel method to leverage the high-resolution, vertex-level local gradient map of functional connectivity from resting-state functional MRI, which captures sharp changes and subject-specific rich information of functional connectivity patterns, to explore infant functional fingerprint. Leveraging a longitudinal dataset comprising 591 high-resolution resting-state functional MRI scans from 103 infants, our method demonstrates superior performance in infant individual identification across ages. Our method has unprecedentedly achieved 99% individual identification rates across three age-varied sub-datasets, with consistent and robust identification rates across different phase encoding directions, significantly outperforming atlas-based approaches with only around 70% accuracy. Further vertex-wise uniqueness and differential power analyses highlighted the discriminative identifiability of higher-order functional networks. Additionally, the local gradient-based functional fingerprints demonstrated reliable predictive capabilities for cognitive performance during infancy. These findings suggest the existence of unique individualized functional fingerprints during infancy and underscore the potential of local gradients of functional connectivity in capturing neurobiologically meaningful and fine-grained features of individualized characteristics for advancing normal and abnormal early brain development.
Collapse
Affiliation(s)
- Xinrui Yuan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jiale Cheng
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dan Hu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Eulau K, Hirsh-Pasek K. From behavioral synchrony to language and beyond. Front Integr Neurosci 2024; 18:1488977. [PMID: 39723335 PMCID: PMC11668775 DOI: 10.3389/fnint.2024.1488977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/30/2024] [Indexed: 12/28/2024] Open
Abstract
Decades of research on joint attention, coordinated joint engagement, and social contingency identify caregiver-child interaction in infancy as a foundation for language. These patterns of early behavioral synchrony contribute to the structure and connectivity of the brain in the temporoparietal regions typically associated with language skills. Thus, children attune to their communication partner and subsequently build cognitive skills directly relating to comprehension and production of language, literacy skills, and beyond. This has yielded marked interest in measuring this contingent, synchronous social behavior neurally. Neurological measures of early social interactions between caregiver and child have become a hotbed for research. In this paper, we review that research and suggest that these early neural couplings between adults and children lay the foundation for a broader cognitive system that includes attention, problem solving, and executive function skills. This review describes the role of behavioral synchrony in language development, asks what the relationship is between neural synchrony and language growth, and how neural synchrony may play a role in the development of a broader cognitive system founded in a socially-gated brain. We address the known neural correlates of these processes with an emphasis on work that examines the tight temporal contingency between communicative partners during these rich social interactions, with a focus on EEG and fNIRS and brief survey of MRI and MEG.
Collapse
Affiliation(s)
- Katherine Eulau
- Temple Infant and Child Laboratory, Temple University, Philadelphia, PA, United States
| | - Kathy Hirsh-Pasek
- Temple Infant and Child Laboratory, Temple University, Philadelphia, PA, United States
- The Brookings Institution, Washington, DC, United States
| |
Collapse
|
3
|
Stern JA, Kelsey CM, Yancey H, Grossmann T. Love on the developing brain: Maternal sensitivity and infants' neural responses to emotion in the dorsolateral prefrontal cortex. Dev Sci 2024; 27:e13497. [PMID: 38511516 PMCID: PMC11415551 DOI: 10.1111/desc.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Infancy is a sensitive period of development, during which experiences of parental care are particularly important for shaping the developing brain. In a longitudinal study of N = 95 mothers and infants, we examined links between caregiving behavior (maternal sensitivity observed during a mother-infant free-play) and infants' neural response to emotion (happy, angry, and fearful faces) at 5 and 7 months of age. Neural activity was assessed using functional Near-Infrared Spectroscopy (fNIRS) in the dorsolateral prefrontal cortex (dlPFC), a region involved in cognitive control and emotion regulation. Maternal sensitivity was positively correlated with infants' neural responses to happy faces in the bilateral dlPFC and was associated with relative increases in such responses from 5 to 7 months. Multilevel analyses revealed caregiving-related individual differences in infants' neural responses to happy compared to fearful faces in the bilateral dlPFC, as well as other brain regions. We suggest that variability in dlPFC responses to emotion in the developing brain may be one correlate of early experiences of caregiving, with implications for social-emotional functioning and self-regulation. RESEARCH HIGHLIGHTS: Infancy is a sensitive period of brain development, during which experiences with caregivers are especially important. This study examined links between sensitive maternal care and infants' neural responses to emotion at 5-7 months of age, using functional near-infrared spectroscopy (fNIRS). Experiences of sensitive care were associated with infants' neural responses to emotion-particularly happy faces-in the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Jessica A Stern
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Caroline M Kelsey
- Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Heath Yancey
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Tobias Grossmann
- Psychology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Tang X, Turesky TK, Escalante ES, Loh MY, Xia M, Yu X, Gaab N. Longitudinal associations between language network characteristics in the infant brain and school-age reading abilities are mediated by early-developing phonological skills. Dev Cogn Neurosci 2024; 68:101405. [PMID: 38875769 PMCID: PMC11225703 DOI: 10.1016/j.dcn.2024.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Reading acquisition is a prolonged learning process relying on language development starting in utero. Behavioral longitudinal studies reveal prospective associations between infant language abilities and preschool/kindergarten phonological development that relates to subsequent reading performance. While recent pediatric neuroimaging work has begun to characterize the neural network underlying language development in infants, how this neural network scaffolds long-term language and reading acquisition remains unknown. We addressed this question in a 7-year longitudinal study from infancy to school-age. Seventy-six infants completed resting-state fMRI scanning, and underwent standardized language assessments in kindergarten. Of this larger cohort, forty-one were further assessed on their emergent word reading abilities after receiving formal reading instructions. Hierarchical clustering analyses identified a modular infant language network in which functional connectivity (FC) of the inferior frontal module prospectively correlated with kindergarten-age phonological skills and emergent word reading abilities. These correlations were obtained when controlling for infant age at scan, nonverbal IQ and parental education. Furthermore, kindergarten-age phonological skills mediated the relationship between infant FC and school-age reading abilities, implying a critical mid-way milestone for long-term reading development from infancy. Overall, our findings illuminate the neurobiological mechanisms by which infant language capacities could scaffold long-term reading acquisition.
Collapse
Affiliation(s)
- Xinyi Tang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Ted K Turesky
- Harvard Graduate School of Education, Harvard University, Cambridge, MA 02138, USA
| | - Elizabeth S Escalante
- Harvard Graduate School of Education, Harvard University, Cambridge, MA 02138, USA; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Megan Yf Loh
- Harvard Graduate School of Education, Harvard University, Cambridge, MA 02138, USA
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xi Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Nadine Gaab
- Harvard Graduate School of Education, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Tang X, Turesky TK, Escalante ES, Loh MY, Xia M, Yu X, Gaab N. Longitudinal associations between language network characteristics in the infant brain and school-age reading abilities are mediated by early-developing phonological skills. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546194. [PMID: 38895379 PMCID: PMC11185523 DOI: 10.1101/2023.06.22.546194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Reading acquisition is a prolonged learning process relying on language development starting in utero. Behavioral longitudinal studies reveal prospective associations between infant language abilities and preschool/kindergarten phonological development that relates to subsequent reading performance. While recent pediatric neuroimaging work has begun to characterize the neural network underlying language development in infants, how this neural network scaffolds long-term language and reading acquisition remains unknown. We addressed this question in a 7-year longitudinal study from infancy to school-age. Seventy-six infants completed resting-state fMRI scanning, and underwent standardized language assessments in kindergarten. Of this larger cohort, forty-one were further assessed on their emergent word reading abilities after receiving formal reading instructions. Hierarchical clustering analyses identified a modular infant language network in which functional connectivity (FC) of the inferior frontal module prospectively correlated with kindergarten-age phonological skills and emergent word reading abilities. These correlations were obtained when controlling for infant age at scan, nonverbal IQ and parental education. Furthermore, kindergarten-age phonological skills mediated the relationship between infant FC and school-age reading abilities, implying a critical mid-way milestone for long-term reading development from infancy. Overall, our findings illuminate the neurobiological mechanisms by which infant language capacities could scaffold long-term reading acquisition.
Collapse
Affiliation(s)
- Xinyi Tang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 100875
| | - Ted K. Turesky
- Harvard Graduate School of Education, Harvard University, Cambridge, Massachusetts, USA, 02138
| | - Elizabeth S. Escalante
- Harvard Graduate School of Education, Harvard University, Cambridge, Massachusetts, USA, 02138
| | - Megan Yf Loh
- Harvard Graduate School of Education, Harvard University, Cambridge, Massachusetts, USA, 02138
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 100875
| | - Xi Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 100875
| | - Nadine Gaab
- Harvard Graduate School of Education, Harvard University, Cambridge, Massachusetts, USA, 02138
| |
Collapse
|
6
|
Turk-Browne NB, Aslin RN. Infant neuroscience: how to measure brain activity in the youngest minds. Trends Neurosci 2024; 47:338-354. [PMID: 38570212 DOI: 10.1016/j.tins.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/08/2024] [Accepted: 02/09/2024] [Indexed: 04/05/2024]
Abstract
The functional properties of the infant brain are poorly understood. Recent advances in cognitive neuroscience are opening new avenues for measuring brain activity in human infants. These include novel uses of existing technologies such as electroencephalography (EEG) and magnetoencephalography (MEG), the availability of newer technologies including functional near-infrared spectroscopy (fNIRS) and optically pumped magnetometry (OPM), and innovative applications of functional magnetic resonance imaging (fMRI) in awake infants during cognitive tasks. In this review article we catalog these available non-invasive methods, discuss the challenges and opportunities encountered when applying them to human infants, and highlight the potential they may ultimately hold for advancing our understanding of the youngest minds.
Collapse
Affiliation(s)
- Nicholas B Turk-Browne
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| | - Richard N Aslin
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Mariani Wigley ILC, Björnsdotter M, Scheinin NM, Merisaari H, Saunavaara J, Parkkola R, Bonichini S, Montirosso R, Karlsson L, Karlsson H, Tuulari JJ. Infants' sex affects neural responses to affective touch in early infancy. Dev Psychobiol 2023; 65:e22419. [PMID: 37860896 DOI: 10.1002/dev.22419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/26/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023]
Abstract
Social touch is closely related to the establishment and maintenance of social bonds in humans, and the sensory brain circuit for gentle brushing is already active soon after birth. Brain development is known to be sexually dimorphic, but the potential effect of sex on brain activation to gentle touch remains unknown. Here, we examined brain activation to gentle skin stroking, a tactile stimulation that resembles affective or social touch, in term-born neonates. Eighteen infants aged 11-36 days, recruited from the FinnBrain Birth Cohort Study, were included in the study. During natural sleep, soft brush strokes were applied to the skin of the right leg during functional magnetic resonance imaging (fMRI) at 3 cm/s velocity. We examined potential differences in brain activation between males (n = 10) and females (n = 8) and found that females had larger blood oxygenation level dependent (BOLD) responses (brushing vs. rest) in bilateral orbitofrontal cortex (OFC), right ventral striatum and bilateral inferior striatum, pons, and cerebellum compared to males. Moreover, the psychophysiological interactions (PPI) analysis, setting the left and right OFC as seed regions, revealed significant differences between males and females. Females exhibited stronger PPI connectivity between the left OFC and posterior cingulate or cuneus. Our work suggests that social touch neural responses are different in male and female neonates, which may have major ramifications for later brain, cognitive, and social development. Finally, many of the sexually dimorphic brain responses were subcortical, not captured by surface-based neuroimaging, indicating that fMRI will be a relevant technique for future studies.
Collapse
Affiliation(s)
| | - Malin Björnsdotter
- Department of Affective Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Center for Cognitive and Computational Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Harri Merisaari
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Department of Radiology, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Radiology, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Sabrina Bonichini
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
| | - Rosario Montirosso
- 0-3 Center for the at-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Linnea Karlsson
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
| | - Hasse Karlsson
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
| | - Jetro J Tuulari
- Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Liu J, Chen H, Cornea E, Gilmore JH, Gao W. Longitudinal developmental trajectories of functional connectivity reveal regional distribution of distinct age effects in infancy. Cereb Cortex 2023; 33:10367-10379. [PMID: 37585708 PMCID: PMC10545442 DOI: 10.1093/cercor/bhad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
Prior work has shown that different functional brain networks exhibit different maturation rates, but little is known about whether and how different brain areas may differ in the exact shape of longitudinal functional connectivity growth trajectories during infancy. We used resting-state functional magnetic resonance imaging (fMRI) during natural sleep to characterize developmental trajectories of different regions using a longitudinal cohort of infants at 3 weeks (neonate), 1 year, and 2 years of age (n = 90; all with usable data at three time points). A novel whole brain heatmap analysis was performed with four mixed-effect models to determine the best fit of age-related changes for each functional connection: (i) growth effects: positive-linear-age, (ii) emergent effects: positive-log-age, (iii) pruning effects: negative-quadratic-age, and (iv) transient effects: positive-quadratic-age. Our results revealed that emergent (logarithmic) effects dominated developmental trajectory patterns, but significant pruning and transient effects were also observed, particularly in connections centered on inferior frontal and anterior cingulate areas that support social learning and conflict monitoring. Overall, unique global distribution patterns were observed for each growth model indicating that developmental trajectories for different connections are heterogeneous. All models showed significant effects concentrated in association areas, highlighting the dominance of higher-order social/cognitive development during the first 2 years of life.
Collapse
Affiliation(s)
- Janelle Liu
- Department of Biomedical Sciences, and Imaging, Cedars–Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA 90048, United States
| | - Haitao Chen
- Department of Biomedical Sciences, and Imaging, Cedars–Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA 90048, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27514, United States
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, NC 27514, United States
| | - Wei Gao
- Department of Biomedical Sciences, and Imaging, Cedars–Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA 90048, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
9
|
Nielsen AN, Graham AM, Sylvester CM. Baby Brains at Work: How Task-Based Functional Magnetic Resonance Imaging Can Illuminate the Early Emergence of Psychiatric Risk. Biol Psychiatry 2023; 93:880-892. [PMID: 36935330 PMCID: PMC10149573 DOI: 10.1016/j.biopsych.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Psychiatric disorders are complex, often emerging from multiple atypical processes within specified domains over the course of development. Characterizing the development of the neural circuits supporting these domains may help break down the components of complex disorders and reveal variations in functioning associated with psychiatric risk. This review highlights the current and potential role of infant task-based functional magnetic resonance imaging (fMRI) in elucidating the developmental neurobiology of psychiatric disorders. Task-fMRI measures evoked brain activity in response to specific stimuli through changes in the blood oxygen level-dependent signal. First, we review extant studies using task fMRI from birth through the first few years of life and synthesize current evidence for when, where, and how different neural computations are performed across the infant brain. Neural circuits for sensory perception, the perception of abstract categories, and the detection of statistical regularities have been characterized with task fMRI in infants, providing developmental context for identifying and interpreting variation in the functioning of neural circuits related to psychiatric risk. Next, we discuss studies that specifically examine variation in the functioning of these neural circuits during infancy in relation to risk for psychiatric disorders. These studies reveal when maturation of specific neural circuits diverges, the influence of environmental risk factors, and the potential utility for task fMRI to facilitate early treatment or prevention of later psychiatric problems. Finally, we provide considerations for future infant task-fMRI studies with the potential to advance understanding of both functioning of neural circuits during infancy and subsequent risk for psychiatric disorders.
Collapse
Affiliation(s)
- Ashley N Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Sciences University, Portland, Oregon
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
10
|
Smith E, Xiao Y, Xie H, Manwaring SS, Farmer C, Thompson L, D'Souza P, Thurm A, Redcay E. Posterior superior temporal cortex connectivity is related to social communication in toddlers. Infant Behav Dev 2023; 71:101831. [PMID: 37012188 PMCID: PMC10330088 DOI: 10.1016/j.infbeh.2023.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 04/04/2023]
Abstract
The second year of life is a time when social communication skills typically develop, but this growth may be slower in toddlers with language delay. In the current study, we examined how brain functional connectivity is related to social communication abilities in a sample of 12-24 month-old toddlers including those with typical development (TD) and those with language delays (LD). We used an a-priori, seed-based approach to identify regions forming a functional network with the left posterior superior temporal cortex (LpSTC), a region associated with language and social communication in older children and adults. Social communication and language abilities were assessed using the Communication and Symbolic Behavior Scales (CSBS) and Mullen Scales of Early Learning. We found a significant association between concurrent CSBS scores and functional connectivity between the LpSTC and the right posterior superior temporal cortex (RpSTC), with greater connectivity between these regions associated with better social communication abilities. However, functional connectivity was not related to rate of change or language outcomes at 36 months of age. These data suggest an early marker of low communication abilities may be decreased connectivity between the left and right pSTC. Future longitudinal studies should test whether this neurobiological feature is predictive of later social or communication impairments.
Collapse
Affiliation(s)
- Elizabeth Smith
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, USA
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China; Department of Psychology, University of Maryland, USA
| | - Hua Xie
- Department of Psychology, University of Maryland, USA
| | - Stacy S Manwaring
- Department of Communication Sciences and Disorders, University of Utah, USA
| | - Cristan Farmer
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, USA
| | - Lauren Thompson
- Department of Speech and Hearing Sciences, Washington State University, USA
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, USA
| | | |
Collapse
|
11
|
Rajasilta O, Häkkinen S, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H, Tuulari JJ. Maternal psychological distress associates with alterations in resting-state low-frequency fluctuations and distal functional connectivity of the neonate medial prefrontal cortex. Eur J Neurosci 2023; 57:242-257. [PMID: 36458867 PMCID: PMC10108202 DOI: 10.1111/ejn.15882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Prenatal stress exposure (PSE) has been observed to exert a programming effect on the developing infant brain, possibly with long-lasting consequences on temperament, cognitive functions and the risk for developing psychiatric disorders. Several prior studies have revealed that PSE associates with alterations in neonate functional connectivity in the prefrontal regions and amygdala. In this study, we explored whether maternal psychological symptoms measured during the 24th gestational week had associations with neonate resting-state network metrics. Twenty-one neonates (nine female) underwent resting-state fMRI scanning (mean gestation-corrected age at scan 26.95 days) to assess fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo). The ReHo/fALFF maps were used in multiple regression analysis to investigate whether maternal self-reported anxiety and/or depressive symptoms associate with neonate functional brain features. Maternal psychological distress (composite score of depressive and anxiety symptoms) was positively associated with fALFF in the neonate medial prefrontal cortex (mPFC). Anxiety and depressive symptoms, assessed separately, exhibited similar but weaker associations. Post hoc seed-based connectivity analyses further showed that distal connectivity of mPFC covaried with PSE. No associations were found between neonate ReHo and PSE. These results offer preliminary evidence that PSE may affect functional features of the developing brain during gestation.
Collapse
Affiliation(s)
- Olli Rajasilta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Suvi Häkkinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Malin Björnsdotter
- The Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Center for Population Health Research, University of Turku and Turku University Hospital, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Center for Population Health Research, University of Turku and Turku University Hospital, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Oxford (Sigrid Juselius Fellowship), Oxford, UK
- Turku Collegium for Science and Medicine, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Can this data be saved? Techniques for high motion in resting state scans of first grade children. Dev Cogn Neurosci 2022; 58:101178. [PMID: 36434964 PMCID: PMC9694086 DOI: 10.1016/j.dcn.2022.101178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Motion remains a significant technical hurdle in fMRI studies of young children. Our aim was to develop a straightforward and effective method for obtaining and preprocessing resting state data from a high-motion pediatric cohort. This approach combines real-time monitoring of head motion with a preprocessing pipeline that uses volume censoring and concatenation alongside independent component analysis based denoising. We evaluated this method using a sample of 108 first grade children (age 6-8) enrolled in a longitudinal study of math development. Data quality was assessed by analyzing the correlation between participant head motion and two key metrics for resting state data, temporal signal-to-noise and functional connectivity. These correlations should be minimal in the absence of noise-related artifacts. We compared these data quality indicators using several censoring thresholds to determine the necessary degree of censoring. Volume censoring was highly effective at removing motion-corrupted volumes and ICA denoising removed much of the remaining motion artifact. With the censoring threshold set to exclude volumes that exceeded a framewise displacement of 0.3 mm, preprocessed data met rigorous standards for data quality while retaining a large majority of subjects (83 % of participants). Overall, results show it is possible to obtain usable resting-state data despite extreme motion in a group of young, untrained subjects.
Collapse
|
13
|
Perinatal and early childhood biomarkers of psychosocial stress and adverse experiences. Pediatr Res 2022; 92:956-965. [PMID: 35091705 DOI: 10.1038/s41390-022-01933-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/23/2023]
Abstract
The human brain develops through a complex interplay of genetic and environmental influences. During critical periods of development, experiences shape brain architecture, often with long-lasting effects. If experiences are adverse, the effects may include the risk of mental and physical disease, whereas positive environments may increase the likelihood of healthy outcomes. Understanding how psychosocial stress and adverse experiences are embedded in biological systems and how we can identify markers of risk may lead to discovering new approaches to improve patient care and outcomes. Biomarkers can be used to identify specific intervention targets and at-risk children early when physiological system malleability increases the likelihood of intervention success. However, identifying reliable biomarkers has been challenging, particularly in the perinatal period and the first years of life, including in preterm infants. This review explores the landscape of psychosocial stress and adverse experience biomarkers. We highlight potential benefits and challenges of identifying risk clinically and different sub-signatures of stress, and in their ability to inform targeted interventions. Finally, we propose that the combination of preterm birth and adversity amplifies the risk for abnormal development and calls for a focus on this group of infants within the field of psychosocial stress and adverse experience biomarkers. IMPACT: Reviews the landscape of biomarkers of psychosocial stress and adverse experiences in the perinatal period and early childhood and highlights the potential benefits and challenges of their clinical utility in identifying risk status in children, and in developing targeted interventions. Explores associations between psychosocial stress and adverse experiences in childhood with prematurity and identifies potential areas of assessment and intervention to improve outcomes in this at-risk group.
Collapse
|
14
|
Gard AM, Hein TC, Mitchell C, Brooks-Gunn J, McLanahan SS, Monk CS, Hyde LW. Prospective longitudinal associations between harsh parenting and corticolimbic function during adolescence. Dev Psychopathol 2022; 34:981-996. [PMID: 33487207 PMCID: PMC8310533 DOI: 10.1017/s0954579420001583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Childhood adversity is thought to undermine youth socioemotional development via altered neural function within regions that support emotion processing. These effects are hypothesized to be developmentally specific, with adversity in early childhood sculpting subcortical structures (e.g., amygdala) and adversity during adolescence impacting later-developing structures (e.g., prefrontal cortex; PFC). However, little work has tested these theories directly in humans. Using prospectively collected longitudinal data from the Fragile Families and Child Wellbeing Study (FFCWS) (N = 4,144) and neuroimaging data from a subsample of families recruited in adolescence (N = 162), the current study investigated the trajectory of harsh parenting across childhood (i.e., ages 3 to 9) and how initial levels versus changes in harsh parenting across childhood were associated with corticolimbic activation and connectivity during socioemotional processing. Harsh parenting in early childhood (indexed by the intercept term from a linear growth curve model) was associated with less amygdala, but not PFC, reactivity to angry facial expressions. In contrast, change in harsh parenting across childhood (indexed by the slope term) was associated with less PFC, but not amygdala, activation to angry faces. Increases in, but not initial levels of, harsh parenting were also associated with stronger positive amygdala-PFC connectivity during angry face processing.
Collapse
Affiliation(s)
- Arianna M. Gard
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Tyler C. Hein
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Serious Mental Illness Treatment Resource Evaluation Center, Office of Mental Health and Suicide Prevention, Department of Veterans Affairs, Ann Arbor, MI, USA
| | - Colter Mitchell
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jeanne Brooks-Gunn
- Teachers College and the College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Columbia Population Research Center, Columbia University, New York, NY, USA
| | - Sarah S. McLanahan
- Department of Sociology and Public Affairs, Princeton University, Princeton, NJ, USA
- Center for Research on Child Wellbeing, Princeton University, Princeton, NJ, USA
- Office of Population Research, Princeton University, Princeton, NJ, USA
| | - Christopher S. Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| | - Luke W. Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Naeem N, Zanca RM, Weinstein S, Urquieta A, Sosa A, Yu B, Sullivan RM. The Neurobiology of Infant Attachment-Trauma and Disruption of Parent-Infant Interactions. Front Behav Neurosci 2022; 16:882464. [PMID: 35935109 PMCID: PMC9352889 DOI: 10.3389/fnbeh.2022.882464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Current clinical literature and supporting animal literature have shown that repeated and profound early-life adversity, especially when experienced within the caregiver-infant dyad, disrupts the trajectory of brain development to induce later-life expression of maladaptive behavior and pathology. What is less well understood is the immediate impact of repeated adversity during early life with the caregiver, especially since attachment to the caregiver occurs regardless of the quality of care the infant received including experiences of trauma. The focus of the present manuscript is to review the current literature on infant trauma within attachment, with an emphasis on animal research to define mechanisms and translate developmental child research. Across species, the effects of repeated trauma with the attachment figure, are subtle in early life, but the presence of acute stress can uncover some pathology, as was highlighted by Bowlby and Ainsworth in the 1950s. Through rodent neurobehavioral literature we discuss the important role of repeated elevations in stress hormone corticosterone (CORT) in infancy, especially if paired with the mother (not when pups are alone) as targeting the amygdala and causal in infant pathology. We also show that following induced alterations, at baseline infants appear stable, although acute stress hormone elevation uncovers pathology in brain circuits important in emotion, social behavior, and fear. We suggest that a comprehensive understanding of the role of stress hormones during infant typical development and elevated CORT disruption of this typical development will provide insight into age-specific identification of trauma effects, as well as a better understanding of early markers of later-life pathology.
Collapse
Affiliation(s)
- Nimra Naeem
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Roseanna M. Zanca
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Sylvie Weinstein
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Alejandra Urquieta
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Anna Sosa
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Boyi Yu
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Regina M. Sullivan
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
D’Andrea CB, Kenley JK, Montez DF, Mirro AE, Miller RL, Earl EA, Koller JM, Sung S, Yacoub E, Elison JT, Fair DA, Dosenbach NU, Rogers CE, Smyser CD, Greene DJ. Real-time motion monitoring improves functional MRI data quality in infants. Dev Cogn Neurosci 2022; 55:101116. [PMID: 35636344 PMCID: PMC9157440 DOI: 10.1016/j.dcn.2022.101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/24/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Imaging the infant brain with MRI has improved our understanding of early neurodevelopment. However, head motion during MRI acquisition is detrimental to both functional and structural MRI scan quality. Though infants are typically scanned while asleep, they commonly exhibit motion during scanning causing data loss. Our group has shown that providing MRI technicians with real-time motion estimates via Framewise Integrated Real-Time MRI Monitoring (FIRMM) software helps obtain high-quality, low motion fMRI data. By estimating head motion in real time and displaying motion metrics to the MR technician during an fMRI scan, FIRMM can improve scanning efficiency. Here, we compared average framewise displacement (FD), a proxy for head motion, and the amount of usable fMRI data (FD ≤ 0.2 mm) in infants scanned with (n = 407) and without FIRMM (n = 295). Using a mixed-effects model, we found that the addition of FIRMM to current state-of-the-art infant scanning protocols significantly increased the amount of usable fMRI data acquired per infant, demonstrating its value for research and clinical infant neuroimaging. MRI studies of the infant brain are critical for studying early neurodevelopment. Head motion diminishes MRI data quality, which can adversely affect infant imaging. We show that real-time head motion monitoring improves fMRI scan quality in infants. Being able to monitor motion during fMRI acquisition improves scanning efficiency.
Collapse
|
17
|
A Descriptive Review of the Impact of Patient Motion in Early Childhood Resting-State Functional Magnetic Resonance Imaging. Diagnostics (Basel) 2022; 12:diagnostics12051032. [PMID: 35626188 PMCID: PMC9140169 DOI: 10.3390/diagnostics12051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Resting-state functional magnetic images (rs-fMRIs) can be used to map and delineate the brain activity occurring while the patient is in a task-free state. These resting-state activity networks can be informative when diagnosing various neurodevelopmental diseases, but only if the images are high quality. The quality of an rs-fMRI rapidly degrades when the patient moves during the scan. Herein, we describe how patient motion impacts an rs-fMRI on multiple levels. We begin with how the electromagnetic field and pulses of an MR scanner interact with a patient’s physiology, how movement affects the net signal acquired by the scanner, and how motion can be quantified from rs-fMRI. We then present methods for preventing motion through educational and behavioral interventions appropriate for different age groups, techniques for prospectively monitoring and correcting motion during the acquisition process, and pipelines for mitigating the effects of motion in existing scans.
Collapse
|
18
|
Santana CP, de Carvalho EA, Rodrigues ID, Bastos GS, de Souza AD, de Brito LL. rs-fMRI and machine learning for ASD diagnosis: a systematic review and meta-analysis. Sci Rep 2022; 12:6030. [PMID: 35411059 PMCID: PMC9001715 DOI: 10.1038/s41598-022-09821-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Autism Spectrum Disorder (ASD) diagnosis is still based on behavioral criteria through a lengthy and time-consuming process. Much effort is being made to identify brain imaging biomarkers and develop tools that could facilitate its diagnosis. In particular, using Machine Learning classifiers based on resting-state fMRI (rs-fMRI) data is promising, but there is an ongoing need for further research on their accuracy and reliability. Therefore, we conducted a systematic review and meta-analysis to summarize the available evidence in the literature so far. A bivariate random-effects meta-analytic model was implemented to investigate the sensitivity and specificity across the 55 studies that offered sufficient information for quantitative analysis. Our results indicated overall summary sensitivity and specificity estimates of 73.8% and 74.8%, respectively. SVM stood out as the most used classifier, presenting summary estimates above 76%. Studies with bigger samples tended to obtain worse accuracies, except in the subgroup analysis for ANN classifiers. The use of other brain imaging or phenotypic data to complement rs-fMRI information seems promising, achieving higher sensitivities when compared to rs-fMRI data alone (84.7% versus 72.8%). Finally, our analysis showed AUC values between acceptable and excellent. Still, given the many limitations indicated in our study, further well-designed studies are warranted to extend the potential use of those classification algorithms to clinical settings.
Collapse
Affiliation(s)
- Caio Pinheiro Santana
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil.
| | - Emerson Assis de Carvalho
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
- Department of Computing, Federal Institute of Education, Science and Technology of South of Minas Gerais (IFSULDEMINAS), Machado, 37750-000, Brazil
| | - Igor Duarte Rodrigues
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | - Guilherme Sousa Bastos
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | - Adler Diniz de Souza
- Institute of Mathematics and Computation, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | | |
Collapse
|
19
|
Pollatou A, Filippi CA, Aydin E, Vaughn K, Thompson D, Korom M, Dufford AJ, Howell B, Zöllei L, Martino AD, Graham A, Scheinost D, Spann MN. An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field. Dev Cogn Neurosci 2022; 54:101083. [PMID: 35184026 PMCID: PMC8861425 DOI: 10.1016/j.dcn.2022.101083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the community and the need for an academic society that bridges expertise in developmental neuroscience, clinical science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, rather than adapted, for the young brain.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney A Filippi
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Ezra Aydin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kelly Vaughn
- Department of Pediatrics, University of Texas Health Sciences Center, Houston, TX, USA
| | - Deanne Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Alice Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dustin Scheinost
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Kaplan S, Meyer D, Miranda-Dominguez O, Perrone A, Earl E, Alexopoulos D, Barch DM, Day TK, Dust J, Eggebrecht AT, Feczko E, Kardan O, Kenley JK, Rogers CE, Wheelock MD, Yacoub E, Rosenberg M, Elison JT, Fair DA, Smyser CD. Filtering respiratory motion artifact from resting state fMRI data in infant and toddler populations. Neuroimage 2022; 247:118838. [PMID: 34942363 PMCID: PMC8803544 DOI: 10.1016/j.neuroimage.2021.118838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 11/24/2022] Open
Abstract
The importance of motion correction when processing resting state functional magnetic resonance imaging (rs-fMRI) data is well-established in adult cohorts. This includes adjustments based on self-limited, large amplitude subject head motion, as well as factitious rhythmic motion induced by respiration. In adults, such respiration artifact can be effectively removed by applying a notch filter to the motion trace, resulting in higher amounts of data retained after frame censoring (e.g., "scrubbing") and more reliable correlation values. Due to the unique physiological and behavioral characteristics of infants and toddlers, rs-fMRI processing pipelines, including methods to identify and remove colored noise due to subject motion, must be appropriately modified to accurately reflect true neuronal signal. These younger cohorts are characterized by higher respiration rates and lower-amplitude head movements than adults; thus, the presence and significance of comparable respiratory artifact and the subsequent necessity of applying similar techniques remain unknown. Herein, we identify and characterize the consistent presence of respiratory artifact in rs-fMRI data collected during natural sleep in infants and toddlers across two independent cohorts (aged 8-24 months) analyzed using different pipelines. We further demonstrate how removing this artifact using an age-specific notch filter allows for both improved data quality and data retention in measured results. Importantly, this work reveals the critical need to identify and address respiratory-driven head motion in fMRI data acquired in young populations through the use of age-specific motion filters as a mechanism to optimize the accuracy of measured results in this population.
Collapse
Affiliation(s)
- Sydney Kaplan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Dominique Meyer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Oscar Miranda-Dominguez
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Anders Perrone
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA,Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Eric Earl
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA,Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deanna M. Barch
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA,Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Trevor K.M. Day
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Dust
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam T. Eggebrecht
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Omid Kardan
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Jeanette K. Kenley
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia E. Rogers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Muriah D. Wheelock
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Monica Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Jed T. Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Damien A. Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA,Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christopher D. Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA,Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
21
|
Zhou X, Planalp EM, Heinrich L, Pletcher C, DiPiero M, Alexander AL, Litovsky RY, Dean DC. Inhibitory Control in Children 4-10 Years of Age: Evidence From Functional Near-Infrared Spectroscopy Task-Based Observations. Front Hum Neurosci 2022; 15:798358. [PMID: 35046786 PMCID: PMC8762317 DOI: 10.3389/fnhum.2021.798358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Executive function (EF) is essential to child development, with associated skills beginning to emerge in the first few years of life and continuing to develop into adolescence and adulthood. The prefrontal cortex (PFC), which follows a neurodevelopmental timeline similar to EF, plays an important role in the development of EF. However, limited research has examined prefrontal function in young children due to limitations of currently available neuroimaging techniques such as functional resonance magnetic imaging (fMRI). The current study developed and applied a multimodal Go/NoGo task to examine the EF component of inhibitory control in children 4-10 years of age. Cortical activity was measured using a non-invasive and child-friendly neuroimaging technique - functional near-infrared spectroscopy (fNIRS). Children's response accuracy and reaction times were captured during the fNIRS session and compared with responses obtained using the standardized assessments from NIH Toolbox cognition battery. Results showed significant correlations between the behavioral measures during the fNIRS session and the standardized EF assessments, in line with our expectations. Results from fNIRS measures demonstrated a significant, age-independent effect of inhibitory control (IC) in the right PFC (rPFC), and an age-dependent effect in the left orbitofrontal cortex (lOFC), consistent with results in previous studies using fNIRS and fMRI. Thus, the new task designed for fNIRS was suitable for examining IC in young children, and results showed that fNIRS measures can reveal prefrontal IC function.
Collapse
Affiliation(s)
- Xin Zhou
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Lauren Heinrich
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Colleen Pletcher
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Marissa DiPiero
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States
- Division of Otolaryngology, Department of Surgery, University of Wisconsin–Madison, Madison, WI, United States
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison, Madison, WI, United States
- Division of Neonatology & Newborn Nursery, Department of Pediatrics, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
22
|
Dufford AJ, Spann M, Scheinost D. How prenatal exposures shape the infant brain: Insights from infant neuroimaging studies. Neurosci Biobehav Rev 2021; 131:47-58. [PMID: 34536461 DOI: 10.1016/j.neubiorev.2021.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Brain development during the prenatal period is rapid and unparalleled by any other time during development. Biological systems undergoing rapid development are at higher risk for disorganizing influences. Therefore, certain prenatal exposures impact brain development, increasing risk for negative neurodevelopmental outcome. While prenatal exposures have been associated with cognitive and behavioral outcomes later in life, the underlying macroscopic brain pathways remain unclear. Here, we review magnetic resonance imaging (MRI) studies investigating the association between prenatal exposures and infant brain development focusing on prenatal exposures via maternal physical health factors, maternal mental health factors, and maternal drug and medication use. Further, we discuss the need for studies to consider multiple prenatal exposures in parallel and suggest future directions for this body of research.
Collapse
Affiliation(s)
| | - Marisa Spann
- Columbia University Irving Medical Center, 622 West 168th Street, New York, NY, 10032, USA
| | - Dustin Scheinost
- Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
23
|
Nielsen AN, Wakschlag LS, Norton ES. Linking irritability and functional brain networks: A transdiagnostic case for expanding consideration of development and environment in RDoC. Neurosci Biobehav Rev 2021; 129:231-244. [PMID: 34302863 PMCID: PMC8802626 DOI: 10.1016/j.neubiorev.2021.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 01/13/2023]
Abstract
The National Institute of Mental Health Research Domain Criteria (RDoC) framework promotes the dimensional and transdiagnostic operationalization of psychopathology, but consideration of the neurodevelopmental foundations of mental health problems requires deeper examination. Irritability, the dispositional tendency to angry emotion that has both mood and behavioral elements, is dimensional, transdiagnostic, and observable early in life-a promising target for the identification of early neural indicators or risk factors for psychopathology. Here, we examine functional brain networks linked to irritability from preschool to adulthood and discuss how development and early experience may influence these neural substrates. Functional connectivity measured with fMRI varies according to irritability and indicates the atypical coordination of several functional networks involved in emotion generation, emotion perception, attention, internalization, and cognitive control. We lay out an agenda to improve our understanding and detection of atypical brain:behavior patterns through advances in the characterization of both functional networks and irritability as well as the consideration and operationalization of developmental and early life environmental influences on this pathway.
Collapse
Affiliation(s)
- Ashely N Nielsen
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, United States; Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, United States.
| | - Lauren S Wakschlag
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, United States; Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, United States
| | - Elizabeth S Norton
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, United States; Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| |
Collapse
|
24
|
Dufford AJ, Salzwedel AP, Gilmore JH, Gao W, Kim P. Maternal trait anxiety symptoms, frontolimbic resting-state functional connectivity, and cognitive development in infancy. Dev Psychobiol 2021; 63:e22166. [PMID: 34292595 PMCID: PMC10775911 DOI: 10.1002/dev.22166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 11/07/2022]
Abstract
Exposure to maternal anxiety symptoms during infancy has been associated with difficulties in development and greater risk for developing anxiety later in life. Although previous studies have examined associations between prenatal maternal distress, infant brain development, and developmental outcomes, it is still largely unclear if there are associations between postnatal anxiety, infant brain development, and cognitive development in infancy. In this study, we used resting-state functional magnetic resonance imaging to examine the association between maternal anxiety symptoms and resting-state functional connectivity in the first year of life. We also examine the association between frontolimbic functional connectivity and infant cognitive development. The sample consisted of 21 infants (mean age = 24.15 months, SD = 4.17) that were scanned during their natural sleep using. We test the associations between maternal trait anxiety symptoms and amygdala-anterior cingulate cortex (ACC) functional connectivity, a neural circuit implicated in early life stress exposure. We also test the associations between amygdala-ACC connectivity and cognitive development. We found a significant negative association between maternal trait anxiety symptoms and left amygdala-right ACC functional connectivity (p < .05, false discovery rate corrected). We found a significant negative association between left amygdala-right ACC functional connectivity and infant cognitive development (p < .05). These findings have potential implications for understanding the role of postpartum maternal anxiety symptoms in functional brain and cognitive development in infancy.
Collapse
Affiliation(s)
| | - Andrew P. Salzwedel
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - John H. Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pilyoung Kim
- Department of Psychology, University of Denver, Denver, Colorado, USA
| |
Collapse
|
25
|
Wang Q, Xu Y, Zhao T, Xu Z, He Y, Liao X. Individual Uniqueness in the Neonatal Functional Connectome. Cereb Cortex 2021; 31:3701-3712. [PMID: 33749736 DOI: 10.1093/cercor/bhab041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 01/01/2023] Open
Abstract
The functional connectome is highly distinctive in adults and adolescents, underlying individual differences in cognition and behavior. However, it remains unknown whether the individual uniqueness of the functional connectome is present in neonates, who are far from mature. Here, we utilized the multiband resting-state functional magnetic resonance imaging data of 40 healthy neonates from the Developing Human Connectome Project and a split-half analysis approach to characterize the uniqueness of the functional connectome in the neonatal brain. Through functional connectome-based individual identification analysis, we found that all the neonates were correctly identified, with the most discriminative regions predominantly confined to the higher-order cortices (e.g., prefrontal and parietal regions). The connectivities with the highest contributions to individual uniqueness were primarily located between different functional systems, and the short- (0-30 mm) and middle-range (30-60 mm) connectivities were more distinctive than the long-range (>60 mm) connectivities. Interestingly, we found that functional data with a scanning length longer than 3.5 min were able to capture the individual uniqueness in the functional connectome. Our results highlight that individual uniqueness is present in the functional connectome of neonates and provide insights into the brain mechanisms underlying individual differences in cognition and behavior later in life.
Collapse
Affiliation(s)
- Qiushi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yuehua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zhilei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
26
|
Ramirez JSB, Graham AM, Thompson JR, Zhu JY, Sturgeon D, Bagley JL, Thomas E, Papadakis S, Bah M, Perrone A, Earl E, Miranda-Dominguez O, Feczko E, Fombonne EJ, Amaral DG, Nigg JT, Sullivan EL, Fair DA. Maternal Interleukin-6 Is Associated With Macaque Offspring Amygdala Development and Behavior. Cereb Cortex 2021; 30:1573-1585. [PMID: 31665252 DOI: 10.1093/cercor/bhz188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Human and animal cross-sectional studies have shown that maternal levels of the inflammatory cytokine interleukin-6 (IL-6) may compromise brain phenotypes assessed at single time points. However, how maternal IL-6 associates with the trajectory of brain development remains unclear. We investigated whether maternal IL-6 levels during pregnancy relate to offspring amygdala volume development and anxiety-like behavior in Japanese macaques. Magnetic resonance imaging (MRI) was administered to 39 Japanese macaque offspring (Female: 18), providing at least one or more time points at 4, 11, 21, and 36 months of age with a behavioral assessment at 11 months of age. Increased maternal third trimester plasma IL-6 levels were associated with offspring's smaller left amygdala volume at 4 months, but with more rapid amygdala growth from 4 to 36 months. Maternal IL-6 predicted offspring anxiety-like behavior at 11 months, which was mediated by reduced amygdala volumes in the model's intercept (i.e., 4 months). The results increase our understanding of the role of maternal inflammation in the development of neurobehavioral disorders by detailing the associations of a commonly examined inflammatory indicator, IL-6, on amygdala volume growth over time, and anxiety-like behavior.
Collapse
Affiliation(s)
- Julian S B Ramirez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Alice M Graham
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Jacqueline R Thompson
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA
| | - Jennifer Y Zhu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Darrick Sturgeon
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Jennifer L Bagley
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA
| | - Elina Thomas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Samantha Papadakis
- Neuroscience Graduate Program, Oregon Health & Science University, Portland OR, USA
| | - Muhammed Bah
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Anders Perrone
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Eric Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | | | - Eric Feczko
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland OR, USA
| | - Eric J Fombonne
- Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Department of Pediatrics, Oregon Health & Science University, Portland OR, USA.,Institute for Development & Disability, Oregon Health & Science University, Portland OR, USA
| | - David G Amaral
- MIND Institute, University of California Davis, Davis CA, USA.,Department of Psychiatry and Behavioral Sciences, and Center for Neuroscience, University of California Davis, Davis CA, USA.,California National Primate Research Center, University of California Davis, Davis CA, USA
| | - Joel T Nigg
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA
| | - Elinor L Sullivan
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Department of Human Physiology, University of Oregon, Eugene OR, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Neuroscience Graduate Program, Oregon Health & Science University, Portland OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Advance Imaging Research Center, Oregon Health & Science University, Portland OR, USA
| |
Collapse
|
27
|
Mariani Wigley ILC, Mascheroni E, Peruzzo D, Giorda R, Bonichini S, Montirosso R. Neuroimaging and DNA Methylation: An Innovative Approach to Study the Effects of Early Life Stress on Developmental Plasticity. Front Psychol 2021; 12:672786. [PMID: 34079501 PMCID: PMC8165202 DOI: 10.3389/fpsyg.2021.672786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
DNA methylation plays a key role in neural cell fate and provides a molecular link between early life stress and later-life behavioral phenotypes. Here, studies that combine neuroimaging methods and DNA methylation analysis in pediatric population with a history of adverse experiences were systematically reviewed focusing on: targeted genes and neural correlates; statistical models used to examine the link between DNA methylation and neuroimaging data also considering early life stress and behavioral outcomes. We identified 8 studies that report associations between DNA methylation and brain structure/functions in infants, school age children and adolescents faced with early life stress condition (e.g., preterm birth, childhood maltreatment, low socioeconomic status, and less-than optimal caregiving). Results showed that several genes were investigated (e.g., OXTR, SLC6A4, FKBP5, and BDNF) and different neuroimaging techniques were performed (MRI and f-NIRS). Statistical model used ranged from correlational to more complex moderated mediation models. Most of the studies (n = 5) considered DNA methylation and neural correlates as mediators in the relationship between early life stress and behavioral phenotypes. Understanding what role DNA methylation and neural correlates play in interaction with early life stress and behavioral outcomes is crucial to promote theory-driven studies as the future direction of this research fields.
Collapse
Affiliation(s)
| | - Eleonora Mascheroni
- 0-3 Center for the At-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Sabrina Bonichini
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
| | - Rosario Montirosso
- 0-3 Center for the At-Risk Infant, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
28
|
Abstract
Prenatal alcohol exposure leads to alterations in cognition, behavior and underlying brain architecture. However, prior studies have not integrated structural and functional imaging data in children with prenatal alcohol exposure. The aim of this study was to characterize disruptions in both structural and functional brain network organization after prenatal alcohol exposure in very early life. A group of 11 neonates with prenatal alcohol exposure and 14 unexposed controls were investigated using diffusion weighted structural and resting state functional magnetic resonance imaging. Covariance networks were created using graph theoretical analyses for each data set, controlling for age and sex. Group differences in global hub arrangement and regional connectivity were determined using nonparametric permutation tests. Neonates with prenatal alcohol exposure and controls exhibited similar global structural network organization. However, global functional networks of neonates with prenatal alcohol exposure comprised of temporal and limbic hubs, while hubs were more distributed in controls representing an early default mode network. On a regional level, controls showed prominent structural and functional connectivity in parietal and occipital regions. Neonates with prenatal alcohol exposure showed regionally, predominant structural and functional connectivity in several subcortical regions and occipital regions. The findings suggest early functional disruption on a global and regional level after prenatal alcohol exposure and indicate suboptimal organization of functional networks. These differences likely underlie sensory dysregulation and behavioral difficulties in prenatal alcohol exposure.
Collapse
|
29
|
Graham AM, Marr M, Buss C, Sullivan EL, Fair DA. Understanding Vulnerability and Adaptation in Early Brain Development using Network Neuroscience. Trends Neurosci 2021; 44:276-288. [PMID: 33663814 PMCID: PMC8216738 DOI: 10.1016/j.tins.2021.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/15/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023]
Abstract
Early adversity influences brain development and emerging behavioral phenotypes relevant for psychiatric disorders. Understanding the effects of adversity before and after conception on brain development has implications for contextualizing current public health crises and pervasive health inequities. The use of functional magnetic resonance imaging (fMRI) to study the brain at rest has shifted understanding of brain functioning and organization in the earliest periods of life. Here we review applications of this technique to examine effects of early life stress (ELS) on neurodevelopment in infancy, and highlight targets for future research. Building on the foundation of existing work in this area will require tackling significant challenges, including greater inclusion of often marginalized segments of society, and conducting larger, properly powered studies.
Collapse
Affiliation(s)
- Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Mollie Marr
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Claudia Buss
- Department of Medical Psychology, Charité University of Medicine Berlin, Luisenstrasse 57, 10117 Berlin, Germany; Development, Health, and Disease Research Program, University of California, Irvine, 837 Health Sciences Drive, Irvine, California, 92697, USA
| | - Elinor L Sullivan
- Department of Psychiatry, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA; Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Ave., Beaverton, OR, 97006, USA
| | - Damien A Fair
- The Masonic Institute of the Developing Brain, The University of Minnesota, Department of Pediatrics, The University of Minnesota Institute of Child Development, The University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Turesky TK, Vanderauwera J, Gaab N. Imaging the rapidly developing brain: Current challenges for MRI studies in the first five years of life. Dev Cogn Neurosci 2021; 47:100893. [PMID: 33341534 PMCID: PMC7750693 DOI: 10.1016/j.dcn.2020.100893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/21/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
Rapid and widespread changes in brain anatomy and physiology in the first five years of life present substantial challenges for developmental structural, functional, and diffusion MRI studies. One persistent challenge is that methods best suited to earlier developmental stages are suboptimal for later stages, which engenders a trade-off between using different, but age-appropriate, methods for different developmental stages or identical methods across stages. Both options have potential benefits, but also biases, as pipelines for each developmental stage can be matched on methods or the age-appropriateness of methods, but not both. This review describes the data acquisition, processing, and analysis challenges that introduce these potential biases and attempts to elucidate decisions and make recommendations that would optimize developmental comparisons.
Collapse
Affiliation(s)
- Ted K Turesky
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Jolijn Vanderauwera
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Psychological Sciences Research Institute, Université Catholique De Louvain, Louvain-la-Neuve, Belgium; Institute of Neuroscience, Université Catholique De Louvain, Louvain-la-Neuve, Belgium
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Pierce LJ, Carmody Tague E, Nelson CA. Maternal stress predicts neural responses during auditory statistical learning in 26-month-old children: An event-related potential study. Cognition 2021; 213:104600. [PMID: 33509600 DOI: 10.1016/j.cognition.2021.104600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 01/11/2021] [Indexed: 01/25/2023]
Abstract
Exposure to high levels of early life stress have been associated with long-term difficulties in learning, behavior, and health, with particular impact evident in the language domain. While some have proposed that the increased stress of living in a low-income household mediates observed associations between socioeconomic status (SES) and child outcomes, considerable individual differences have been observed. The extent to which specific variables associated with socioeconomic status - in particular exposure to stressful life events - influence the neurocognitive mechanisms underlying language acquisition are not well understood. Auditory statistical learning, or the ability to segment a continuous auditory stream based on its statistical properties, develops during early infancy and is one mechanism thought to underlie language learning. The present study used an event-related potential (ERP) paradigm to test whether maternal stress, adjusting for socioeconomic variables (e.g., family income, maternal education) was associated with neurocognitive processes underlying statistical learning in a sample of 26-month-old children (n = 23) from predominantly low- to middle-income backgrounds. Event-related potentials were recorded while children listened to a continuous stream of tri-tone "words" in which tone elements varied in transitional probability. "Tone-words" were presented in random order, such that Tone 1 always predicted Tones 2 and 3 (transitional probability for Tone 3 = 1.0), but Tone 1 appeared randomly. A larger P2 amplitude was observed in response to Tone 3 compared to Tone 1, demonstrating that children implicitly tracked differences in transitional probabilities during passive listening. Maternal reports of stress at 26 months, adjusting for SES, were negatively associated with difference in P2 amplitude between Tones 1 and 3. These findings suggest that maternal stress, within a low-SES context, is associated with the manner in which children process statistical properties of auditory input.
Collapse
Affiliation(s)
- Lara J Pierce
- Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital, 1 Autumn Street, Boston, MA 02115, United States; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, United States.
| | - Erin Carmody Tague
- Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital, 1 Autumn Street, Boston, MA 02115, United States.
| | - Charles A Nelson
- Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital, 1 Autumn Street, Boston, MA 02115, United States; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, United States; Harvard Graduate School of Education, 13 Appian Way, Cambridge, MA 02138, United States.
| |
Collapse
|
32
|
King LS, Camacho MC, Montez DF, Humphreys KL, Gotlib IH. Naturalistic Language Input is Associated with Resting-State Functional Connectivity in Infancy. J Neurosci 2021; 41:424-434. [PMID: 33257324 PMCID: PMC7821865 DOI: 10.1523/jneurosci.0779-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/11/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The quantity and quality of the language input that infants receive from their caregivers affects their future language abilities; however, it is unclear how variation in this input relates to preverbal brain circuitry. The current study investigated the relation between naturalistic language input and the functional connectivity (FC) of language networks in human infancy using resting-state functional magnetic resonance imaging (rsfMRI). We recorded the naturalistic language environments of five- to eight-month-old male and female infants using the Linguistic ENvironment Analysis (LENA) system and measured the quantity and consistency of their exposure to adult words (AWs) and adult-infant conversational turns (CTs). Infants completed an rsfMRI scan during natural sleep, and we examined FC among regions of interest (ROIs) previously implicated in language comprehension, including the auditory cortex, the left inferior frontal gyrus (IFG), and the bilateral superior temporal gyrus (STG). Consistent with theory of the ontogeny of the cortical language network (Skeide and Friederici, 2016), we identified two subnetworks posited to have distinct developmental trajectories: a posterior temporal network involving connections of the auditory cortex and bilateral STG and a frontotemporal network involving connections of the left IFG. Independent of socioeconomic status (SES), the quantity of CTs was uniquely associated with FC of these networks. Infants who engaged in a larger number of CTs in daily life had lower connectivity in the posterior temporal language network. These results provide evidence for the role of vocal interactions with caregivers, compared with overheard adult speech, in the function of language networks in infancy.
Collapse
Affiliation(s)
- Lucy S King
- Department of Psychology, Stanford University, Stanford, California 94305
| | - M Catalina Camacho
- Division of Biology and Biomedical Science, Washington University in St. Louis, St. Louis, Missouri 63110
| | - David F Montez
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee 37235
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, California 94305
| |
Collapse
|
33
|
Wakschlag LS, Tandon D, Krogh-Jespersen S, Petitclerc A, Nielsen A, Ghaffari R, Mithal L, Bass M, Ward E, Berken J, Fareedi E, Cummings P, Mestan K, Norton ES, Grobman W, Rogers J, Moskowitz J, Alshurafa N. Moving the dial on prenatal stress mechanisms of neurodevelopmental vulnerability to mental health problems: A personalized prevention proof of concept. Dev Psychobiol 2020; 63:622-640. [PMID: 33225463 DOI: 10.1002/dev.22057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022]
Abstract
Prenatal stress exposure increases vulnerability to virtually all forms of psychopathology. Based on this robust evidence base, we propose a "Mental Health, Earlier" paradigm shift for prenatal stress research, which moves from the documentation of stress-related outcomes to their prevention, with a focus on infant neurodevelopmental indicators of vulnerability to subsequent mental health problems. Achieving this requires an expansive team science approach. As an exemplar, we introduce the Promoting Healthy Brain Project (PHBP), a randomized trial testing the impact of the Wellness-4-2 personalized prenatal stress-reduction intervention on stress-related alterations in infant neurodevelopmental trajectories in the first year of life. Wellness-4-2 utilizes bio-integrated stress monitoring for just-in-time adaptive intervention. We highlight unique challenges and opportunities this novel team science approach presents in synergizing expertise across predictive analytics, bioengineering, health information technology, prevention science, maternal-fetal medicine, neonatology, pediatrics, and neurodevelopmental science. We discuss how innovations across many areas of study facilitate this personalized preventive approach, using developmentally sensitive brain and behavioral methods to investigate whether altering children's adverse gestational exposures, i.e., maternal stress in the womb, can improve their mental health outlooks. In so doing, we seek to propel developmental SEED research towards preventive applications with the potential to reduce the pernicious effect of prenatal stress on neurodevelopment, mental health, and wellbeing.
Collapse
Affiliation(s)
- Lauren S Wakschlag
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Darius Tandon
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Institute for Public Health & Medicine Center for Community Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sheila Krogh-Jespersen
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Amelie Petitclerc
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Ashley Nielsen
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Rhoozbeh Ghaffari
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Department of Materials Science & Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Leena Mithal
- Department of Materials Science & Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,Department of Pediatrics (Infectious Diseases), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Bass
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Erin Ward
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Institute for Public Health & Medicine Center for Community Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jonathan Berken
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Feinberg School of Medicine, Chicago, IL, USA
| | - Elveena Fareedi
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Peter Cummings
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Karen Mestan
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics (Neonatology), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth S Norton
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Department of Communication Sciences & Disorders, School of Communication, Northwestern University, Chicago, IL, USA
| | - William Grobman
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Department of Obstetrics & Gynecology (Maternal-Fetal Medicine), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John Rogers
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Department of Materials Science & Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Judith Moskowitz
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| | - Nabil Alshurafa
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA.,Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Computer Science, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| |
Collapse
|
34
|
Prenatal stress exposure and multimodal assessment of amygdala-medial prefrontal cortex connectivity in infants. Dev Cogn Neurosci 2020; 46:100877. [PMID: 33220629 PMCID: PMC7689043 DOI: 10.1016/j.dcn.2020.100877] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/23/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Non-human animal research shows stress alters amygdala–medial prefrontal cortex (mPFC) connectivity. It is unclear how prenatal stress may alter human infant connectivity. Prenatal stress was associated with decreased amygdala–mPFC functional connectivity. Prenatal stress was associated with increased amygdala–mPFC structural connectivity. This work provides insight into how stress contributes to neurodevelopmental risk.
Stressful experiences are linked to neurodevelopment. There is growing interest in the role of stress in the connectivity between the amygdala and medial prefrontal cortex (mPFC), a circuit that subserves automatic emotion regulation. However, the specific timing and mechanisms that underlie the association between stress and amygdala–mPFC connectivity are unclear. Many factors, including variations in fetal exposure to maternal stress, appear to affect early developing brain circuitry. However, few studies have examined the associations of stress and amygdala–mPFC connectivity in early life, when the brain is most plastic and sensitive to environmental influence. In this longitudinal pilot study, we characterized the association between prenatal stress and amygdala–mPFC connectivity in young infants (approximately age 5 weeks). A final sample of 33 women who provided data on preconception and prenatal stress during their pregnancy returned with their offspring for a magnetic resonance imaging scan session, which enabled us to characterize amygdala–mPFC structural and functional connectivity as a function of prenatal stress. Increased prenatal stress was associated with decreased functional connectivity and increased structural connectivity between the amygdala and mPFC. These results provide insight into the influence of prenatal maternal stress on the early development of this critical regulatory circuitry.
Collapse
|
35
|
Morales-Muñoz I, Nolvi S, Virta M, Karlsson H, Paavonen EJ, Karlsson L. The longitudinal associations between temperament and sleep during the first year of life. Infant Behav Dev 2020; 61:101485. [PMID: 32956980 DOI: 10.1016/j.infbeh.2020.101485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/29/2022]
Abstract
Temperament and sleep in infants are related but also distinct concepts. The longitudinal effects of temperament on sleep in infancy remain unclear, although this information is potentially important for the prevention and treatment of early sleep problems. We examined how various temperament features influence sleep development during the first year of life in a large birth cohort. This study comprised mother-infant dyads with complete longitudinal data on sleep, temperament and sociodemographic measurements at six and 12 months (N = 1436). We observed that higher infant Negative Affectivity was related to several sleep problems, and that many subscales of Negative Affectivity and Orienting/Regulation predicted worse sleep and deterioration in sleep problems from six to 12 months. Few associations between Surgency and sleep were found. Our findings highlight especially Negative Affectivity as a risk factor for persistent and increasing sleep problems, and also the specific importance of the fine-grained aspects of temperament in predicting infant sleep development.
Collapse
Affiliation(s)
- Isabel Morales-Muñoz
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland; Institute for Mental Health, School of Psychology, University of Birmingham, United Kingdom.
| | - Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku; Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Germany; Turku Institute for Advanced Studies, Department of Psychology and Speech-Language Pathology, University of Turku, Finland
| | - Minna Virta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku; Department of Psychiatry, Turku University Hospital and University of Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - E Juulia Paavonen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland; Pediatric Research Center, Child Psychiatry, University of Helsinki and Helsinki University Hospital, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Child Psychiatry, Turku University Hospital and University of Turku, Finland
| |
Collapse
|
36
|
Rajasilta O, Tuulari JJ, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J, Häkkinen S, Merisaari H, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H. Resting-state networks of the neonate brain identified using independent component analysis. Dev Neurobiol 2020; 80:111-125. [PMID: 32267069 DOI: 10.1002/dneu.22742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) has been successfully used to probe the intrinsic functional organization of the brain and to study brain development. Here, we implemented a combination of individual and group independent component analysis (ICA) of FSL on a 6-min resting-state data set acquired from 21 naturally sleeping term-born (age 26 ± 6.7 d), healthy neonates to investigate the emerging functional resting-state networks (RSNs). In line with the previous literature, we found evidence of sensorimotor, auditory/language, visual, cerebellar, thalmic, parietal, prefrontal, anterior cingulate as well as dorsal and ventral aspects of the default-mode-network. Additionally, we identified RSNs in frontal, parietal, and temporal regions that have not been previously described in this age group and correspond to the canonical RSNs established in adults. Importantly, we found that careful ICA-based denoising of fMRI data increased the number of networks identified with group-ICA, whereas the degree of spatial smoothing did not change the number of identified networks. Our results show that the infant brain has an established set of RSNs soon after birth.
Collapse
Affiliation(s)
- Olli Rajasilta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Oxford, Oxford, UK.,Turku Collegium for Science and Medicine, University of Turku, Turku, Finland
| | - Malin Björnsdotter
- The Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Suvi Häkkinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Child Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
37
|
Abstract
Significant advances in the field of neonatal imaging has resulted in the generation of large complex data sets of relevant information for routine daily clinical practice, and basic and translational research. The evaluation of this data is a complex task for the neonatal imager who must distinguish normal and incidental findings from clinically significant abnormalities which are often adjunctive data points applicable to clinical evaluation and treatment. This review provides an overview of the imaging manifestations of disease processes commonly encountered in the neonatal brain. Since MRI is currently the highest yield technique for the diagnosis and characterization of the normal and abnormal brain, it is therefore the focus of the majority of this review. When applicable, discussion of some of the pertinent known pathophysiology and neuropathological aspects of disease processes are reviewed.
Collapse
|
38
|
Warren SM, Chou YH, Steklis HD. Potential for Resting-State fMRI of the Amygdala in Elucidating Neural Mechanisms of Adaptive Self-Regulatory Strategies: A Systematic Review. Brain Connect 2020; 10:3-17. [PMID: 31950847 DOI: 10.1089/brain.2019.0700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evolutionary-developmental theories consider the evolved mechanisms underlying adaptive behavioral strategies shaped in response to early environmental cues. Identifying neural mechanisms mediating processes of conditional adaptation in humans is an active area of research. Resting-state functional magnetic resonance imaging (RS-fMRI) captures functional connectivity theorized to represent the underlying functional architecture of the brain. This allows for investigating how underlying functional brain connections are related to early experiences during development, as well as current traits and behaviors. This review explores the potential of RS-fMRI of the amygdala (AMY) for advancing research on the neural mechanisms underlying adaptive strategies developed in early adverse environments. RS-fMRI studies of early life stress (ELS) and AMY functional connectivity within the frame of evolutionary theories are reviewed, specifically regarding the development of self-regulatory strategies. The potential of RS-fMRI for investigating the effects of ELS on developmental trajectories of self-regulation is discussed.
Collapse
Affiliation(s)
- Shannon M Warren
- Norton School of Family & Consumer Sciences, The University of Arizona, Tucson, Arizona
| | - Ying-Hui Chou
- Department of Psychology, Graduate Interdisciplinary Program in Cognitive Science, Arizona Center on Aging, BIO5 Institute, Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, Arizona
| | - Horst Dieter Steklis
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| |
Collapse
|
39
|
Nguyen T, Bánki A, Markova G, Hoehl S. Studying parent-child interaction with hyperscanning. PROGRESS IN BRAIN RESEARCH 2020; 254:1-24. [DOI: 10.1016/bs.pbr.2020.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Dufford AJ, Kim P, Evans GW. The impact of childhood poverty on brain health: Emerging evidence from neuroimaging across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 150:77-105. [DOI: 10.1016/bs.irn.2019.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
A decade of infant neuroimaging research: What have we learned and where are we going? Infant Behav Dev 2019; 58:101389. [PMID: 31778859 DOI: 10.1016/j.infbeh.2019.101389] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
Abstract
The past decade has seen the emergence of neuroimaging studies of infant populations. Incorporating imaging has resulted in invaluable insights about neurodevelopment at the start of life. However, little has been enquired of the experimental specifications and study characteristics of typical findings. This review systematically screened empirical studies that used electroencephalography (EEG), magnetoencephalography (MEG), functional near-infrared spectroscopy (fNIRS), and functional magnetic resonance imaging (fMRI) on infants (max. age of 24 months). From more than 21,000 publications, a total of 710 records were included for analyses. With the exception of EEG studies, infant studies with MEG, fNIRS, and fMRI were most often conducted around birth and at 12 months. The vast majority of infant studies came from North America, with very few studies conducted in Africa, certain parts of South America, and Southeast Asia. Finally, longitudinal neuroimaging studies were inclined to adopt EEG, followed by fMRI, fNIRS, and MEG. These results show that there is compelling need for studies with larger sample sizes, studies investigating a broader range of infant developmental periods, and studies from under- and less-developed regions in the world. Addressing these shortcomings in the future will provide a more representative and accurate understanding of neurodevelopment in infancy.
Collapse
|
42
|
Nolvi S, Bridgett DJ, Korja R, Kataja EL, Junttila N, Karlsson H, Karlsson L. Trajectories of maternal pre- and postnatal anxiety and depressive symptoms and infant fear: Moderation by infant sex. J Affect Disord 2019; 257:589-597. [PMID: 31330484 DOI: 10.1016/j.jad.2019.07.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/05/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prior work has examined the links between pre- and postnatal maternal distress and infant negative affectivity; however, there is little understanding about how the continuity of infant exposure to pre- and postnatal maternal distress relates to infant development. This study investigated the continuity of maternal pre- and postnatal depressive and anxiety symptoms and their relations with infant fear among 391 mother-infant dyads. An additional aim was to consider infant sex as a moderating factor. METHODS Maternal anxiety and depressive symptoms were measured during gestational weeks 14, 24 and 34 and 3 and 6 months postpartum. Subsequently, infant fear was measured using mother reports (IBQ-R) at 6 months and in a laboratory setting (Lab-TAB Masks episode) at 8 months. Using growth mixture modeling, a three-class model describing the course of maternal symptoms across pregnancy and the early postnatal period was identified, consisting of mothers with "Consistently Low Distress", "Prenatal-Only Distress", and "Consistently High Distress". RESULTS Infant girls exposed to prenatal-only maternal distress were higher in observed fear than infant boys exposed to prenatal-only distress. Infant girls exposed to consistently high distress also showed lower observed fear than their counterparts exposed to prenatal-only maternal distress. LIMITATIONS The main limitation of the study is the relatively small group size within the Consistently High subgroup. CONCLUSIONS The findings suggest that girls might be particularly sensitive to maternal distress, and that prenatal-only and continuous distress exposure are differentially related to female infant fear.
Collapse
Affiliation(s)
- Saara Nolvi
- FinnBrain Birth Cohort Study, Department of Clinical Medicine, Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Medical Psychology, Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany..
| | - David J Bridgett
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Department of Clinical Medicine, Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Eeva-Leena Kataja
- FinnBrain Birth Cohort Study, Department of Clinical Medicine, Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Niina Junttila
- Department of Teacher Education, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Department of Clinical Medicine, Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Department of Clinical Medicine, Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Child Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
43
|
Hodkinson DJ, Mongerson CRL, Jennings RW, Bajic D. Neonatal functional brain maturation in the context of perioperative critical care and pain management: A case report. Heliyon 2019; 5:e02350. [PMID: 31485532 PMCID: PMC6716350 DOI: 10.1016/j.heliyon.2019.e02350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/03/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Remarkable plasticity during the first year of life imparts heighted vulnerability of the developing infant brain. Application of resting-state functional magnetic resonance imaging (rs-fMRI) in infants may contribute to our understanding of neuroplastic changes associated with therapeutic interventions and/or brain insults. In addition to showing clinically relevant incidental brain MRI findings, the objective of our pilot study was to test feasibility of rs-fMRI methods at this early age in the context of pediatric perioperative critical care. METHODS We report the case of a former 33-week premature infant born with long-gap esophageal atresia that underwent complex perioperative critical care (Foker process) requiring prolonged post-operative sedation and whom presented with incidental subdural hematoma. Rs-fMRI data was acquired before (at 1-month corrected age) and after (at 2.25-months corrected age) complex perioperative care. We evaluated resting-state functional connectivity (RSFC) using graph theory to explore the complex structure of brain networks. RESULTS A transient increase in head circumference coincided temporally with lifting of sedation and initiation of sedation drugs weaning, and qualified for hydrocephalus (93%) but not macrocephaly (>95%). RSFC analysis identified networks spatially consistent with those previously described in the literature, with notable pre-post-treatment qualitative differences in correlated and anticorrelated spontaneous brain activity. DISCUSSION Current definitions of macrocephaly may require lower threshold criteria for monitoring of critically ill infants. Although we demonstrate that available rs-fMRI could be effectively applied in a critically ill infant in the setting of brain pathology, future group-level studies should investigate RSFC to evaluate maintenance of network homeostasis during development of both healthy and critically ill infants.
Collapse
Affiliation(s)
- Duncan Jack Hodkinson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Bader 3, Boston, MA
- Harvard Medical School, 25 Shattuck St., Boston, MA
| | - Chandler Rebecca Lee Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Bader 3, Boston, MA
| | - Russell William Jennings
- Harvard Medical School, 25 Shattuck St., Boston, MA
- Esophageal and Airway Treatment Center, Department of Surgery, Boston Children's Hospital, 300 Longwood Ave., Boston, MA
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Bader 3, Boston, MA
- Harvard Medical School, 25 Shattuck St., Boston, MA
| |
Collapse
|
44
|
Hipwell AE, Tung I, Northrup J, Keenan K. Transgenerational associations between maternal childhood stress exposure and profiles of infant emotional reactivity. Dev Psychopathol 2019; 31:887-898. [PMID: 31025614 PMCID: PMC6620149 DOI: 10.1017/s0954579419000324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Childhood exposure to stress can induce prolonged negative effects on health, which in turn confer risks for the next generation, but greater specificity is needed to inform intervention. A first step is to measure individual differences in emotional reactivity to stress early in life in ways that can account for heterogeneity in child exposure. The present study tested the hypothesis that mothers' childhood exposure to stress would be differentially associated with patterns of positive and negative emotional reactivity in their offspring, suggesting transmission of stress response across generations. Participants were 268 young mothers (age 14-23 years) followed longitudinally since childhood, and their infants aged 3-9 months. Latent class analysis of infant emotions expressed before and during the still-face paradigm yielded five subgroups that varied in valence, intensity, and reactivity. After accounting for sociodemographic factors, infant temperament, and postpartum depression, multinomial regression models showed that, relative to an emotionally regulated still-face response, infants showing low negative reactivity were more likely to have mothers exposed to childhood emotional abuse, and infants showing high and increasing negative reactivity were more likely to have mothers exposed to childhood emotional neglect. Mechanisms by which early maternal stress exposure influences emotional reactivity in offspring are discussed.
Collapse
Affiliation(s)
- Alison E Hipwell
- Department of Psychiatry,University of Pittsburgh,Pittsburgh, PA,USA
| | - Irene Tung
- Department of Psychiatry,University of Pittsburgh,Pittsburgh, PA,USA
| | - Jessie Northrup
- Department of Psychiatry,University of Pittsburgh,Pittsburgh, PA,USA
| | - Kate Keenan
- Department of Psychiatry and Behavioral Neuroscience,University of Chicago,Chicago, IL,USA
| |
Collapse
|
45
|
Garrison L, Morley S, Chambers CD, Bakhireva LN. Forty Years of Assessing Neurodevelopmental and Behavioral Effects of Prenatal Alcohol Exposure in Infants: What Have We Learned? Alcohol Clin Exp Res 2019; 43:1632-1642. [PMID: 31206743 DOI: 10.1111/acer.14127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
It has been known for over 4 decades that prenatal alcohol exposure (PAE) can adversely affect neurodevelopment and behavior (NDB). Yet, early detection of altered NDB due to PAE continues to present a major clinical challenge. Identification of altered NDB in the first 2 years of life, before higher-order cognitive processes develop, invites early interventions for affected children to improve long-term outcomes. Studies published in English from January of 1980 to July of 2018 were identified in PubMed/MEDLINE. The review focused on prospective birth cohort studies which used standardized NDB assessments in children up to 2 years of age, wherein PAE was the main exposure and NDB was the main outcome. NDB was categorized into the domains of neurocognitive, adaptive, and self-regulation based on the 2016 Updated Clinical Guidelines for Diagnosing fetal alcohol spectrum disorder. An initial search resulted in 1,867 articles for which we reviewed abstracts; 114 were selected for full-text review; and 3 additional abstracts were identified through review of references in eligible publications. Thirty-one publications met criteria and were included: of these, 24 reported neurocognitive outcomes, 24 reported adaptive behavior outcomes, and 12 reported outcomes in the domain of self-regulation. Although self-regulation was assessed in the fewest number of studies, 8/12 (75%) reported PAE-associated deficits. In contrast, results were mixed for the other 2 domains: 13/24 (54%) of the selected studies that included neurocognitive outcomes showed poorer performance following PAE, and 8/24 (33%) studies that assessed adaptive functioning found significant differences between PAE and comparison infants. There is considerable evidence to support the value of early-life assessments of infant NDB when PAE is known or suspected. More studies focusing on infant self-regulation, in particular, are needed to determine the utility of early evaluation of this critical developmental domain in infants with PAE.
Collapse
Affiliation(s)
- Laura Garrison
- Department of Pharmacy Practice and Administrative Sciences, Substance Use Research and Education Center, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
| | - Sarah Morley
- Health Sciences Library and Informatics Center, University of New Mexico, Albuquerque, New Mexico
| | - Christina D Chambers
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Ludmila N Bakhireva
- Department of Pharmacy Practice and Administrative Sciences, Substance Use Research and Education Center, University of New Mexico College of Pharmacy, Albuquerque, New Mexico.,Department of Family and Community Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
46
|
Chorna O, Emery L, Hamm E, Moore-Clingenpeel M, Shrivastava H, Miller A, Richard C, Maitre NL. Standardized music therapy with and without acclimatization, to improve EEG data acquisition in young children with and without disability. J Neurosci Methods 2019; 321:12-19. [DOI: 10.1016/j.jneumeth.2019.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 11/15/2022]
|
47
|
Sato JR, Biazoli CE, Salum GA, Gadelha A, Crossley N, Vieira G, Zugman A, Picon FA, Pan PM, Hoexter MQ, Amaro E, Anés M, Moura LM, Del'Aquilla MAG, Mcguire P, Rohde LA, Miguel EC, Bressan RA, Jackowski AP. Associations between children's family environment, spontaneous brain oscillations, and emotional and behavioral problems. Eur Child Adolesc Psychiatry 2019; 28:835-845. [PMID: 30392120 DOI: 10.1007/s00787-018-1240-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/20/2018] [Indexed: 12/31/2022]
Abstract
The family environment in childhood has a strong effect on mental health outcomes throughout life. This effect is thought to depend at least in part on modifications of neurodevelopment trajectories. In this exploratory study, we sought to investigate whether a feasible resting-state fMRI metric of local spontaneous oscillatory neural activity, the fractional amplitude of low-frequency fluctuations (fALFF), is associated with the levels of children's family coherence and conflict. Moreover, we sought to further explore whether spontaneous activity in the brain areas influenced by family environment would also be associated with a mental health outcome, namely the incidence of behavioral and emotional problems. Resting-state fMRI data from 655 children and adolescents (6-15 years old) were examined. The quality of the family environment was found to be positively correlated with fALFF in the left temporal pole and negatively correlated with fALFF in the right orbitofrontal cortex. Remarkably, increased fALFF in the temporal pole was associated with a lower incidence of behavioral and emotional problems, whereas increased fALFF in the orbitofrontal cortex was correlated with a higher incidence.
Collapse
Affiliation(s)
- João Ricardo Sato
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangu, Santo André, SP, CEP 09210-580, Brazil. .,Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil. .,Department of Radiology, School of Medicine, University of Sao Paulo, São Paulo, Brazil. .,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil. .,Institute of Radiology (InRad), School of Medicine, University of Sao Paulo, São Paulo, Brazil.
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, Av. dos Estados, 5001, Bairro Bangu, Santo André, SP, CEP 09210-580, Brazil.,Department of Radiology, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Giovanni Abrahão Salum
- Hospital de Clinicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Ary Gadelha
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | | | - Gilson Vieira
- Bioinformatics Program, Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, Brazil.,Department of Radiology, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - André Zugman
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Felipe Almeida Picon
- Hospital de Clinicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Pedro Mario Pan
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Marcelo Queiroz Hoexter
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, School of Medicine, University of Sao Paulo, São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Edson Amaro
- Institute of Radiology (InRad), School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Mauricio Anés
- Hospital de Clinicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Luciana Monteiro Moura
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Marco Antonio Gomes Del'Aquilla
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Philip Mcguire
- Institute of Psychiatry, King's College London, London, UK
| | - Luis Augusto Rohde
- Hospital de Clinicas de Porto Alegre and Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Euripedes Constantino Miguel
- Department of Psychiatry, School of Medicine, University of Sao Paulo, São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Rodrigo Affonseca Bressan
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Andrea Parolin Jackowski
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| |
Collapse
|
48
|
VanTieghem MR, Tottenham N. Neurobiological Programming of Early Life Stress: Functional Development of Amygdala-Prefrontal Circuitry and Vulnerability for Stress-Related Psychopathology. Curr Top Behav Neurosci 2019; 38:117-136. [PMID: 28439771 PMCID: PMC5940575 DOI: 10.1007/7854_2016_42] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early adverse experiences are associated with heighted vulnerability for stress-related psychopathology across the lifespan. While extensive work has investigated the effects of early adversity on neurobiology in adulthood, developmental approaches can provide further insight on the neurobiological mechanisms that link early experiences and long-term mental health outcomes. In the current review, we discuss the role of emotion regulation circuitry implicated in stress-related psychopathology from a developmental and transdiagnostic perspective. We highlight converging evidence suggesting that multiple forms of early adverse experiences impact the functional development of amygdala-prefrontal circuitry. Next, we discuss how adversity-induced alterations in amygdala-prefrontal development are associated with symptoms of emotion dysregulation and psychopathology. Additionally, we discuss potential mechanisms through which protective factors may buffer the effects of early adversity on amygdala-prefrontal development to confer more adaptive long-term outcomes. Finally, we consider limitations of the existing literature and make suggestions for future longitudinal and translational research that can better elucidate the mechanisms linking early adversity, neurobiology, and emotional phenotypes. Together, these findings may provide further insight into the neuro-developmental mechanisms underlying the emergence of adversity-related emotional disorders and facilitate the development of targeted interventions that can ameliorate risk for psychopathology in youth exposed to early life stress.
Collapse
Affiliation(s)
- Michelle R VanTieghem
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1990 Amsterdam Ave, MC 5501, New York, NY, 10027, USA.
| | - Nim Tottenham
- Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1990 Amsterdam Ave, MC 5501, New York, NY, 10027, USA
| |
Collapse
|
49
|
Wakschlag LS, Roberts MY, Flynn RM, Smith JD, Krogh-Jespersen S, Kaat AJ, Gray L, Walkup J, Marino BS, Norton ES, Davis MM. Future Directions for Early Childhood Prevention of Mental Disorders: A Road Map to Mental Health, Earlier. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY : THE OFFICIAL JOURNAL FOR THE SOCIETY OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY, AMERICAN PSYCHOLOGICAL ASSOCIATION, DIVISION 53 2019; 48:539-554. [PMID: 30916591 PMCID: PMC6750224 DOI: 10.1080/15374416.2018.1561296] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mental disorders are the predominant chronic diseases of youth, with substantial life span morbidity and mortality. A wealth of evidence demonstrates that the neurodevelopmental roots of common mental health problems are present in early childhood. Unfortunately, this has not been translated to systematic strategies for improving population-level mental health at this most malleable neurodevelopmental period. We lay out a translational Mental Health, Earlier road map as a key future direction for prevention of mental disorder. This paradigm shift aims to reduce population attributable risk of mental disorder emanating from early life, by preventing, attenuating, or delaying onset/course of chronic psychopathology via the promotion of self-regulation in early childhood within large-scale health care delivery systems. The Earlier Pillar rests on a "science of when to worry" that (a) optimizes clinical assessment methods for characterizing probabilistic clinical risk beginning in infancy via deliberate incorporation of neurodevelopmental heterogeneity, and (b) universal primary-care-based screening targeting patterns of dysregulated irritability as a robust transdiagnostic marker of vulnerability to life span mental health problems. The core of the Healthier Pillar is provision of low-intensity selective intervention promoting self-regulation for young children with developmentally atypical patterns of irritability within an implementation science framework in pediatric primary care to ensure highest population impact and sustainability. These Mental Health, Earlier strategies hold much promise for transforming clinical outlooks and ensuring young children's mental health and well-being in a manner that reverberates throughout the life span.
Collapse
Affiliation(s)
- Lauren S. Wakschlag
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University
- Institute for Innovations in Developmental Sciences, Northwestern University
| | - Megan Y. Roberts
- Institute for Innovations in Developmental Sciences, Northwestern University
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University
| | - Rachel M. Flynn
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University
- Institute for Innovations in Developmental Sciences, Northwestern University
| | - Justin D. Smith
- Institute for Innovations in Developmental Sciences, Northwestern University
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University
| | - Sheila Krogh-Jespersen
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University
- Institute for Innovations in Developmental Sciences, Northwestern University
| | - Aaron J. Kaat
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University
- Institute for Innovations in Developmental Sciences, Northwestern University
| | - Larry Gray
- Institute for Innovations in Developmental Sciences, Northwestern University
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - John Walkup
- Institute for Innovations in Developmental Sciences, Northwestern University
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Bradley S. Marino
- Institute for Innovations in Developmental Sciences, Northwestern University
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Elizabeth S. Norton
- Institute for Innovations in Developmental Sciences, Northwestern University
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University
| | - Matthew M. Davis
- Institute for Innovations in Developmental Sciences, Northwestern University
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| |
Collapse
|
50
|
Kelly CJ, Hughes EJ, Rutherford MA, Counsell SJ. Advances in neonatal MRI of the brain: from research to practice. Arch Dis Child Educ Pract Ed 2019; 104:106-110. [PMID: 29563140 DOI: 10.1136/archdischild-2018-314778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Christopher J Kelly
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Emer J Hughes
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|