1
|
Shafaati T, Gopal K. Forkhead box O1 transcription factor; a therapeutic target for diabetic cardiomyopathy. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13193. [PMID: 39206323 PMCID: PMC11349536 DOI: 10.3389/jpps.2024.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease including diabetic cardiomyopathy (DbCM) represents the leading cause of death in people with diabetes. DbCM is defined as ventricular dysfunction in the absence of underlying vascular diseases and/or hypertension. The known molecular mediators of DbCM are multifactorial, including but not limited to insulin resistance, altered energy metabolism, lipotoxicity, endothelial dysfunction, oxidative stress, apoptosis, and autophagy. FoxO1, a prominent member of forkhead box O transcription factors, is involved in regulating various cellular processes in different tissues. Altered FoxO1 expression and activity have been associated with cardiovascular diseases in diabetic subjects. Herein we provide an overview of the role of FoxO1 in various molecular mediators related to DbCM, such as altered energy metabolism, lipotoxicity, oxidative stress, and cell death. Furthermore, we provide valuable insights into its therapeutic potential by targeting these perturbations to alleviate cardiomyopathy in settings of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Tanin Shafaati
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Jia Y, Yu Y, Gao C, Li Y, Li C, Ding Z, Kong Q, Liu L. Roles of heat shock protein A12A in the development of diabetic cardiomyopathy. Cell Stress Chaperones 2024; 29:272-284. [PMID: 38485044 PMCID: PMC10972809 DOI: 10.1016/j.cstres.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/08/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024] Open
Abstract
Long-term hyperglycemia can lead to diabetic cardiomyopathy (DCM), a main lethal complication of diabetes. However, the mechanisms underlying DCM development have not been fully elucidated. Heat shock protein A12A (HSPA12A) is the atypic member of the Heat shock 70kDa protein family. In the present study, we found that the expression of HSPA12A was upregulated in the hearts of mice with streptozotocin-induced diabetes, while ablation of HSPA12A improved cardiac systolic and diastolic dysfunction and increased cumulative survival of diabetic mice. An increased expression of HSPA12A was also found in H9c2 cardiac cells following treatment with high glucose (HG), while overexpression of HSPA12A-enhanced the HG-induced cardiac cell death, as reflected by higher levels of propidium iodide cells, lactate dehydrogenase leakage, and caspase 3 cleavage. Moreover, the HG-induced increase of oxidative stress, as indicated by dihydroethidium staining, was exaggerated by HSPA12A overexpression. Further studies demonstrated that the HG-induced increases of protein kinase B and forkhead box transcription factors 1 phosphorylation were diminished by HSPA12A overexpression, while pharmacologically inhibition of protein kinase B further enhanced the HG-induced lactate dehydrogenase leakage in HSPA12A overexpressed cardiac cells. Together, the results suggest that hyperglycemia upregulated HSPA12A expression in cardiac cells, by which induced cell death to promote DCM development. Targeting HSPA12A may serve as a potential approach for DCM management.
Collapse
Affiliation(s)
- Yunxiao Jia
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yunhao Yu
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chenxi Gao
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chuanfu Li
- Departments of Surgery, East Tennessee State University, Johnson City, TN, USA
| | - Zhengnian Ding
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiuyue Kong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Foudad H, Latreche S, Trichine A. [Impact of smoking on the presence of diabetic cardiomyopathy]. Ann Cardiol Angeiol (Paris) 2023; 72:101595. [PMID: 37023682 DOI: 10.1016/j.ancard.2023.101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Type 2 diabetes is associated with an increased risk of coronary disease and is the leading cause of morbidity and mortality in this population. The main objective of our work is to study the correlation of left atrial volume index with coronary disease in type 2 diabetics. MATERIAL AND METHODS Cross-sectional, analytical, single-center study with prospective recruitment of 330 type 2 diabetic patients carried out at the Constantine Regional Military University Hospital over a period of 03 years (2016-2018) among which 18.8% (62 patients) are smokers. Early cardiac involvement represented by diastolic dysfunction was assessed by two-dimensional transthoracic echocardiography. Data were analyzed using Epi info 7.2.1.0 software to study the impact of smoking on the presence of left ventricular diastolic dysfunction. RESULTS The average age of our cohort is 52.7 ± 8.4 years, an average of 7.1 ± 1.3% of glycated hemoglobin, an average of 5.3 ± 4.3 years of diabetes duration, a sex ratio to 1.01. 34.8% of patients had left atrial volume index ≥ 34 ml/m2. The prevalence of coronary disease is 27.0%. In multivariate analysis; left atrial volume index is significantly correlated with coronary stenosis (OR = 1.75, 95% CI [1.60 - 2.05], p = 0.02). CONCLUSION The prevalence of cardiomyopathy is high in type 2 diabetes and smoking is significantly correlated with the presence of this diabetic cardiomyopathy.
Collapse
Affiliation(s)
- H Foudad
- Hôpital militaire de Constantine. Faculté de médecine de Constantine.
| | | | - A Trichine
- Hôpital militaire de Constantine. Faculté de médecine de Constantine
| |
Collapse
|
4
|
Naseem N, Ahmad MF, Malik S, Khan RH, Siddiqui WA. The potential of esculin in ameliorating Type-2 diabetes mellitus induced neuropathy in Wistar rats and probing its inhibitory mechanism of insulin aggregation. Int J Biol Macromol 2023; 242:124760. [PMID: 37156314 DOI: 10.1016/j.ijbiomac.2023.124760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Diabetic neuropathy encompasses multiple pathological disturbances, many of which coincide with the pathophysiological mechanisms of neurodegenerative disorders. In the present study, various biophysical techniques like Rayleigh light scattering assay, Thioflavin T assay, far-UV Circular Dichroism spectroscopy, Transmission electron microscopy have unveiled the anti-fibrillatory effect of esculin upon human insulin fibrillation. MTT cytotoxicity assay demonstrated the biocompatibility of esculin and in-vivo studies such as behavioral tests like hot plate test, tail immersion test, acetone drop test, plantar test were performed for validating diabetic neuropathy. Assessment of levels of serum biochemical parameters, oxidative stress parameters, pro-inflammatory cytokines as well as neuron specific markers was done in the current study. Rat brains were subjected to histopathology and their sciatic nerves were subjected to transmission electron microscopy to analyze myelin structure alterations. All these results reveal that esculin ameliorates diabetic neuropathy in experimental diabetic rats. Conclusively, our study demonstrates the anti-amyloidogenic potential of esculin in the form of inhibition of human insulin fibrillation, making it a promising candidate in combating neurodegenerative disorders in the near future and the results of various behavioral, biochemical, and molecular studies reveal that esculin possesses anti-lipidemic, anti-inflammatory, anti-oxidative and neuroprotective properties which help in ameliorating diabetic neuropathy in streptozotocin induced diabetic Wistar rats.
Collapse
Affiliation(s)
- Nida Naseem
- Research Lab-1, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Md Fahim Ahmad
- Research Lab-1, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sadia Malik
- Research Lab-3, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Rizwan Hasan Khan
- Research Lab-3, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| | - Waseem A Siddiqui
- Research Lab-1, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| |
Collapse
|
5
|
Non-alcoholic Fatty Liver Disease (NAFLD), Type 2 Diabetes, and Non-viral Hepatocarcinoma: Pathophysiological Mechanisms and New Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11020468. [PMID: 36831004 PMCID: PMC9953066 DOI: 10.3390/biomedicines11020468] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the incidence of non-viral hepatocellular carcinoma (HCC) has increased dramatically, which is probably related to the increased prevalence of metabolic syndrome, together with obesity and type 2 diabetes mellitus (T2DM). Several epidemiological studies have established the association between T2DM and the incidence of HCC and have demonstrated the role of diabetes mellitus as an independent risk factor for the development of HCC. The pathophysiological mechanisms underlying the development of Non-alcoholic fatty liver disease (NAFLD) and its progression to Non-alcoholic steatohepatitis (NASH) and cirrhosis are various and involve pro-inflammatory agents, oxidative stress, apoptosis, adipokines, JNK-1 activation, increased IGF-1 activity, immunomodulation, and alteration of the gut microbiota. Moreover, these mechanisms are thought to play a significant role in the development of NAFLD-related hepatocellular carcinoma. Early diagnosis and the timely correction of risk factors are essential to prevent the onset of liver fibrosis and HCC. The purpose of this review is to summarize the current evidence on the association among obesity, NASH/NAFLD, T2DM, and HCC, with an emphasis on clinical impact. In addition, we will examine the main mechanisms underlying this complex relationship, and the promising strategies that have recently emerged for these diseases' treatments.
Collapse
|
6
|
Rupee S, Rupee K, Singh RB, Hanoman C, Ismail AMA, Smail M, Singh J. Diabetes-induced chronic heart failure is due to defects in calcium transporting and regulatory contractile proteins: cellular and molecular evidence. Heart Fail Rev 2022; 28:627-644. [PMID: 36107271 DOI: 10.1007/s10741-022-10271-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Heart failure (HF) is a major deteriorating disease of the myocardium due to weak myocardial muscles. As such, the heart is unable to pump blood efficiently around the body to meet its constant demand. HF is a major global health problem with more than 7 million deaths annually worldwide, with some patients dying suddenly due to sudden cardiac death (SCD). There are several risk factors which are associated with HF and SCD which can negatively affect the heart synergistically. One major risk factor is diabetes mellitus (DM) which can cause an elevation in blood glucose level or hyperglycaemia (HG) which, in turn, has an insulting effect on the myocardium. This review attempted to explain the subcellular, cellular and molecular mechanisms and to a lesser extent, the genetic factors associated with the development of diabetes- induced cardiomyopathy due to the HG which can subsequently lead to chronic heart failure (CHF) and SCD. The study first explained the structure and function of the myocardium and then focussed mainly on the excitation-contraction coupling (ECC) processes highlighting the defects of calcium transporting (SERCA, NCX, RyR and connexin) and contractile regulatory (myosin, actin, titin and troponin) proteins. The study also highlighted new therapies and those under development, as well as preventative strategies to either treat or prevent diabetic cardiomyopathy (DCM). It is postulated that prevention is better than cure.
Collapse
|
7
|
Jafarynezhad F, Shahbazian M, Farhadi Z, Yadeghari M, Rezvani ME, Safari F, Azizian H. The G-Protein-Coupled Estrogen Receptor Agonist Prevents Cardiac Lipid Accumulation by Stimulating Cardiac Peroxisome Proliferator-Activated Receptor α: A Preclinical Study in Ovariectomized-Diabetic Rat Model. Int J Endocrinol Metab 2022; 20:e123560. [PMID: 36407026 PMCID: PMC9661540 DOI: 10.5812/ijem-123560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with cardiometabolic changes, and menopause exacerbates these conditions, leading to a greater risk of cardiovascular diseases (CVDs). The G protein-coupled estrogen receptor (GPER), which mediates the rapid effects of estrogen, has beneficial cardiac effects in both T2DM and menopause, but its mechanism of action is not well understood. OBJECTIVES This study aimed to determine whether G1 as a selective GPER-agonist has beneficial effects on cardiac lipid metabolism in ovariectomized rats with T2DM. METHODS Female Wistar rats were divided into 5 groups (n = 7 in each group): Sham-control (Sh-Ctl), T2DM, ovariectomized-T2DM (OVX-T2DM), OVX-T2DM-G1 (GPER-agonist), and OVX-T2DM-vehicle (OVX-T2DM-Veh). After stabilization of T2DM, G1 (200 μg/Kg) was administrated for 6 weeks. Then, the levels of free fatty acids (FFAs), CD36, peroxisome proliferator-activated receptor α (PPARα), and lipid accumulation in the cardiac tissue were determined. RESULTS Compared with the Sh-Ctl group, cardiac FFAs (P < 0.001), CD36 (P < 0.05), and lipid accumulation (P < 0.001) increased, and cardiac PPARα (P < 0.01) decreased in T2DM animals; ovariectomy intensified these changes. Also, cardiac FFAs, PPARα, and lipid accumulation (P < 0.05) significantly decreased in the OVX-T2DM-G1 group compared to the OVX-T2DM-Veh group. However, cardiac CD36 levels did not change. CONCLUSIONS G1 as a selective GPER-agonist affects lipid metabolism in T2DM animals. It also plays a vital role in improving cardiac metabolism during postmenopausal diabetic conditions.
Collapse
Affiliation(s)
- Faezeh Jafarynezhad
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Shahbazian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeinab Farhadi
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Yadeghari
- Department of Anatomy and Cell Biology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Azizian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Corresponding Author: Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
8
|
Lumori BAE, Nuwagira E, Abeya FC, Araye AA, Masette G, Mondo CK, Okello S, Muzoora C, Muyingo A. Association of body mass index with left ventricular diastolic dysfunction among ambulatory individuals with diabetes mellitus in rural Uganda: a cross-sectional study. BMC Cardiovasc Disord 2022; 22:279. [PMID: 35725371 PMCID: PMC9210682 DOI: 10.1186/s12872-022-02718-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Background Left ventricular diastolic dysfunction (LVDD) is a recognized complication of diabetes mellitus that precedes and is a risk factor for heart failure. We aimed to determine the prevalence of LVDD and its association with body mass index in ambulatory adults with diabetes mellitus in rural Uganda.
Methods We conducted a cross-sectional study, over 5 months, to enroll 195 ambulatory Ugandan adults living with diabetes mellitus for at least five years at Mbarara Regional Referral Hospital. We collected demographic, and clinical data and measured body mass index (BMI). Echocardiography was performed to determine LVDD by assessing the mitral inflow ventricular filling velocities (E/A and E/è ratios), tricuspid regurgitant jet peak velocity, and left atrium maximum volume index. We used logistic regression to estimate the odds ratio for the association of LVDD with BMI and evaluated the variation of associations by age and hypertension status.
Results Of the 195 participants, 141 (72.31%) were female, the mean age was 62 [standard deviation, 11.50] years, and the median duration of diabetes diagnosis was 10 [interquartile range, 7, 15] years. Eighty-six percent (n = 168) had LVDD with the majority (n = 127, 65.1%) of participants in the grade 1 category of LVDD. In the adjusted model, the odds of LVDD for each 1 kg/m2 increase in BMI was 1.11 [95% confidence interval 1.00, 1.25, p = 0.04]. The adjusted odds of LVDD among individuals aged ≥ 50 years with BMI ≥ 25 kg/m2 was 13.82 times the odds of LVDD in individuals aged < 50 years with BMI < 25 kg/m2. Conclusion LVDD is prevalent and positively associated with BMI among ambulatory Ugandan adults living with diabetes mellitus for at least five years. The association was higher for older overweight/obese than younger individuals with normal weight. Future studies should focus on the effect of weight loss on LVDD as a possible target for the prevention of heart failure.
Collapse
Affiliation(s)
| | - Edwin Nuwagira
- Department of Internal Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Fardous Charles Abeya
- Department of Internal Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Abdirahman Ali Araye
- Department of Internal Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Godfrey Masette
- Department of Microbiology and Immunology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Charles K Mondo
- Uganda Heart Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Samson Okello
- Department of Internal Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda.,Lown Scholars Program, Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health Systems, Charlottesville, VA, USA
| | - Conrad Muzoora
- Department of Internal Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Anthony Muyingo
- Department of Internal Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| |
Collapse
|
9
|
El-Azab MF, Wakiel AE, Nafea YK, Youssef ME. Role of cannabinoids and the endocannabinoid system in modulation of diabetic cardiomyopathy. World J Diabetes 2022; 13:387-407. [PMID: 35664549 PMCID: PMC9134026 DOI: 10.4239/wjd.v13.i5.387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/18/2021] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic complications, chiefly seen in long-term situations, are persistently deleterious to a large extent, requiring multi-factorial risk reduction strategies beyond glycemic control. Diabetic cardiomyopathy is one of the most common deleterious diabetic complications, being the leading cause of mortality among diabetic patients. The mechanisms of diabetic cardiomyopathy are multi-factorial, involving increased oxidative stress, accumulation of advanced glycation end products (AGEs), activation of various pro-inflammatory and cell death signaling pathways, and changes in the composition of extracellular matrix with enhanced cardiac fibrosis. The novel lipid signaling system, the endocannabinoid system, has been implicated in the pathogenesis of diabetes and its complications through its two main receptors: Cannabinoid receptor type 1 and cannabinoid receptor type 2, alongside other components. However, the role of the endocannabinoid system in diabetic cardiomyopathy has not been fully investigated. This review aims to elucidate the possible mechanisms through which cannabinoids and the endocannabinoid system could interact with the pathogenesis and the development of diabetic cardiomyopathy. These mechanisms include oxidative/ nitrative stress, inflammation, accumulation of AGEs, cardiac remodeling, and autophagy. A better understanding of the role of cannabinoids and the endocannabinoid system in diabetic cardiomyopathy may provide novel strategies to manipulate such a serious diabetic complication.
Collapse
Affiliation(s)
- Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed E Wakiel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yossef K Nafea
- Program of Biochemistry, McMaster University, Hamilton L8S 4L8, Ontario, Canada
| | - Mahmoud E Youssef
- Department of Pharmacology and Biochemistry, Delta University for Science and Technology, Mansoura 35511, New Cairo, Egypt
| |
Collapse
|
10
|
Wadie W, Ahmed GS, Shafik AN, El-Sayed M. Effects of insulin and sitagliptin on early cardiac dysfunction in diabetic rats. Life Sci 2022; 299:120542. [PMID: 35395243 DOI: 10.1016/j.lfs.2022.120542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
AIMS Cardiac affection is common in diabetic patients. Although insulin exerts a cardioprotective role, it may not be enough to totally prevent this affection. The current study aimed to compare the cardioprotective effect of insulin alone or combined with sitagliptin in a rat model of type 1 diabetes mellitus. MATERIALS AND METHODS Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg). Diabetic rats were treated with insulin (3 IU), insulin (6 IU), or insulin (3 IU) + sitagliptin (10 mg/kg) for 42 days. KEY FINDINGS Diabetic rats exhibited significant systolic and diastolic cardiac affection with significant elevation of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and brain natriuretic peptide (BNP) levels. Treatment with insulin prevented the deterioration of diabetes-induced cardiac condition, an effect that was significantly potentiated by the combined use of sitagliptin. SIGNIFICANCE The combined use of sitagliptin and insulin significantly improved the cardioprotective effect of insulin and prevented the early cardiac dysfunction in STZ diabetic rats.
Collapse
Affiliation(s)
- Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Gehad S Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amani N Shafik
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed El-Sayed
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
An insight into the mechanisms of COVID-19, SARS-CoV2 infection severity concerning β-cell survival and cardiovascular conditions in diabetic patients. Mol Cell Biochem 2022; 477:1681-1695. [PMID: 35235124 PMCID: PMC8889522 DOI: 10.1007/s11010-022-04396-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/16/2022] [Indexed: 01/08/2023]
Abstract
A significantly high percentage of hospitalized COVID-19 patients with diabetes mellitus (DM) had severe conditions and were admitted to ICU. In this review, we have delineated the plausible molecular mechanisms that could explain why there are increased clinical complications in patients with DM that become critically ill when infected with SARS-CoV2. RNA viruses have been classically implicated in manifestation of new onset diabetes. SARS-CoV2 infection through cytokine storm leads to elevated levels of pro-inflammatory cytokines creating an imbalance in the functioning of T helper cells affecting multiple organs. Inflammation and Th1/Th2 cell imbalance along with Th17 have been associated with DM, which can exacerbate SARS-CoV2 infection severity. ACE-2-Ang-(1-7)-Mas axis positively modulates β-cell and cardiac tissue function and survival. However, ACE-2 receptors dock SARS-CoV2, which internalize and deplete ACE-2 and activate Renin-angiotensin system (RAS) pathway. This induces inflammation promoting insulin resistance that has positive effect on RAS pathway, causes β-cell dysfunction, promotes inflammation and increases the risk of cardiovascular complications. Further, hyperglycemic state could upregulate ACE-2 receptors for viral infection thereby increasing the severity of the diabetic condition. SARS-CoV2 infection in diabetic patients with heart conditions are linked to worse outcomes. SARS-CoV2 can directly affect cardiac tissue or inflammatory response during diabetic condition and worsen the underlying heart conditions.
Collapse
|
12
|
Federico M, De la Fuente S, Palomeque J, Sheu SS. The role of mitochondria in metabolic disease: a special emphasis on heart dysfunction. J Physiol 2021; 599:3477-3493. [PMID: 33932959 PMCID: PMC8424986 DOI: 10.1113/jp279376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
Metabolic diseases (MetDs) embrace a series of pathologies characterized by abnormal body glucose usage. The known diseases included in this group are metabolic syndrome, prediabetes and diabetes mellitus types 1 and 2. All of them are chronic pathologies that present metabolic disturbances and are classified as multi-organ diseases. Cardiomyopathy has been extensively described in diabetic patients without overt macrovascular complications. The heart is severely damaged during the progression of the disease; in fact, diabetic cardiomyopathies are the main cause of death in MetDs. Insulin resistance, hyperglycaemia and increased free fatty acid metabolism promote cardiac damage through mitochondria. These organelles supply most of the energy that the heart needs to beat and to control essential cellular functions, including Ca2+ signalling modulation, reactive oxygen species production and apoptotic cell death regulation. Several aspects of common mitochondrial functions have been described as being altered in diabetic cardiomyopathies, including impaired energy metabolism, compromised mitochondrial dynamics, deficiencies in Ca2+ handling, increases in reactive oxygen species production, and a higher probability of mitochondrial permeability transition pore opening. Therefore, the mitochondrial role in MetD-mediated heart dysfunction has been studied extensively to identify potential therapeutic targets for improving cardiac performance. Herein we review the cardiac pathology in metabolic syndrome, prediabetes and diabetes mellitus, focusing on the role of mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Marilen Federico
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Medicas, UNLP, La Plata, Argentina
| | - Sergio De la Fuente
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Medicas, UNLP, La Plata, Argentina
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, CABA, Argentina
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
13
|
Zakaria NF, Hamid M, Khayat ME. Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients 2021; 13:nu13072229. [PMID: 34209599 PMCID: PMC8308393 DOI: 10.3390/nu13072229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acids are needed for general bodily function and well-being. Despite their importance, augmentation in their serum concentration is closely related to metabolic disorder, insulin resistance (IR), or worse, diabetes mellitus. Essential amino acids such as the branched-chain amino acids (BCAAs) have been heavily studied as a plausible biomarker or even a cause of IR. Although there is a long list of benefits, in subjects with abnormal amino acids profiles, some amino acids are correlated with a higher risk of IR. Metabolic dysfunction, upregulation of the mammalian target of the rapamycin (mTOR) pathway, the gut microbiome, 3-hydroxyisobutyrate, inflammation, and the collusion of G-protein coupled receptors (GPCRs) are among the indicators and causes of metabolic disorders generating from amino acids that contribute to IR and the onset of type 2 diabetes mellitus (T2DM). This review summarizes the current understanding of the true involvement of amino acids with IR. Additionally, the involvement of GPCRs in IR will be further discussed in this review.
Collapse
Affiliation(s)
- Nur Fatini Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
14
|
Eraky SM, Ramadan NM. Effects of omega-3 fatty acids and metformin combination on diabetic cardiomyopathy in rats through autophagic pathway. J Nutr Biochem 2021; 97:108798. [PMID: 34102283 DOI: 10.1016/j.jnutbio.2021.108798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
Diabetic cardiomyopathy is a primary cause of increased morbidity and mortality in diabetics. Evidence has suggested a pivotal role for interrupted mitochondrial dynamics and quality control machinery in the onset and development of diabetic cardiomyopathy. Sequestosome 1 (SQSTM1) is a major reporter of selective autophagic activity. Other than controlling the expression of genes involved in mitochondrial biogenesis, recently peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) was reported to directly affect SQSTM1 gene expression. Calcineurin, a pivotal mediator of cardiac hypertrophy, has been also linked to enhanced expression of SQSTM1. This study aimed to test the cardioprotective effects of adding ω-3 polyunsaturated fatty acids (PUFAs) to metformin in a rat model of type 2 diabetes mellitus and to evaluate the molecular mechanisms underlying their effects on mitochondrial quality. Diabetes was induced in male Sprague Dawley rats by a high-fat diet for 6 weeks, followed by a low-dose streptozotocin (35 mg/kg). Diabetic rats were either treated with metformin (150 mg/kg/d), ω-3 PUFAs (300 mg/kg/d), or their combination in the same doses for further 8 weeks. Along with metabolic and pathological derangements, we report that correlating with electron microscopic evidence of mitochondrial degeneration, gene expression of the autophagic indicators SQSTM1, PGC-1α, and calcineurin were decreased in the hearts of diabetic rats. Independent of its anti-hyperglycemic effects, metformin successfully preserved mitochondrial integrity and upregulated myocardial PGC-1α, calcineurin, and SQSTM1 gene expression. ω-3 PUFAs possess synergistic cardioprotection when added to metformin, suggested by improvements in myocardial ultrastructure, autophagic activity, and SQSTM1 gene expression.
Collapse
Affiliation(s)
- Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Use of Network Pharmacology to Explore the Mechanism of Gegen ( Puerariae lobatae Radix) in the Treatment of Type 2 Diabetes Mellitus Associated with Hyperlipidemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6633402. [PMID: 33953784 PMCID: PMC8068526 DOI: 10.1155/2021/6633402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023]
Abstract
Rapid increases in metabolic disorders, such as type 2 diabetes mellitus (T2DM) and hyperlipidemia, are becoming a substantial challenge to worldwide public health. Traditional Chinese medicine has a long history and abundant experience in the treatment of diabetes and hyperlipidemia, and Puerariae lobatae Radix (known as Gegen in Chinese) is one of the most prevalent Chinese herbs applied to treat these diseases. The underlying mechanism by which Gegen simultaneously treats diabetes and hyperlipidemia, however, has not been clearly elucidated to date. Therefore, we systematically explored the potential mechanism of Gegen in the treatment of T2DM complicated with hyperlipidemia based on network pharmacology. We screened the potential targets of Gegen, T2DM, and hyperlipidemia in several online databases. Then, the hub targets were analyzed by performing protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment assays, and finally, the complicated connections among compounds, targets, and pathways were visualized in Cytoscape. We found that isoflavones, including daidzein, genistein, and puerarin, as well as β-sitosterol, are the key active ingredients of Gegen responsible for its antidiabetic and antihyperlipidemia effects, which mainly target AKR1B1, EGFR, ESR, TNF, NOS3, MAPK3, PPAR, CYP19A1, INS, IL6, and SORD and multiple pathways, such as the PI3K-Akt signaling pathway; the AGE-RAGE signaling pathway in diabetic complications, fluid shear stress, and atherosclerosis; the PPAR signaling pathway; insulin resistance; the HIF-1 signaling pathway; the TNF signaling pathway; and others. These active ingredients also target multiple biological processes, including the regulation of glucose and lipid metabolism, the maintenance of metabolic homeostasis, and anti-inflammatory and antioxidant pathways. In conclusion, Gegen is a promising therapeutic phytomedicine for T2DM with hyperlipidemia that targets multiple proteins, biological processes, and pathways.
Collapse
|
16
|
Vitamin D 3 Supplementation Alleviates Left Ventricular Dysfunction in a Mouse Model of Diet-Induced Type 2 Diabetes: Potential Involvement of Cardiac Lipotoxicity Modulation. Cardiovasc Drugs Ther 2021; 36:245-256. [PMID: 33661433 DOI: 10.1007/s10557-021-07143-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the effectiveness of vitamin D3 supplementation, in secondary prevention, on cardiac remodeling and function, as well as lipid profile, in a mouse model of diet-induced type 2 diabetes. METHODS Mice were fed a high fat and sucrose diet for 10 weeks. Afterward, diet was maintained for 15 more weeks and two groups were formed, with and without cholecalciferol supplementation. A control group was fed with normal chow. Glucose homeostasis and cardiac function were assessed at baseline and at the 10th and 24th weeks. Animals were killed at the 10th and 25th weeks for plasma and cardiac sample analysis. Cardiac lipid profile was characterized by LC-MS/MS. RESULTS After 10 weeks of diet, mice exhibited pre-diabetes, mild left ventricle hypertrophy, and impaired longitudinal strain, but preserved myocardial circumferential as well as global diastolic and systolic cardiac function. After 15 more weeks of diet, animals presented with well-established type 2 diabetes, pathological cardiac hypertrophy, and impaired regional myocardial function. Cholecalciferol supplementation had no effect on glucose homeostasis but improved cardiac remodeling and regional myocardial function. After 25 weeks, non-supplemented mice exhibited increased myocardial levels of ceramides and diacylglycerol, both of which were normalized by vitamin D3 supplementation. CONCLUSION This work brought to light the beneficial effects of cholecalciferol supplementation, in secondary prevention, on cardiac remodeling and function in a mouse model of diet-induced type 2 diabetes. Those cardioprotective effects may be, at least in part, attributed to the modulation of myocardial levels of lipotoxic species by vitamin D.
Collapse
|
17
|
Gopal K, Chahade JJ, Kim R, Ussher JR. The Impact of Antidiabetic Therapies on Diastolic Dysfunction and Diabetic Cardiomyopathy. Front Physiol 2020; 11:603247. [PMID: 33364978 PMCID: PMC7750477 DOI: 10.3389/fphys.2020.603247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic cardiomyopathy is more prevalent in people with type 2 diabetes mellitus (T2DM) than previously recognized, while often being characterized by diastolic dysfunction in the absence of systolic dysfunction. This likely contributes to why heart failure with preserved ejection fraction is enriched in people with T2DM vs. heart failure with reduced ejection fraction. Due to revised mandates from major health regulatory agencies, all therapies being developed for the treatment of T2DM must now undergo rigorous assessment of their cardiovascular risk profiles prior to approval. As such, we now have data from tens of thousands of subjects with T2DM demonstrating the impact of major therapies including the sodium-glucose co-transporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 receptor (GLP-1R) agonists, and dipeptidyl peptidase 4 (DPP-4) inhibitors on cardiovascular outcomes. Evidence to date suggests that both SGLT2 inhibitors and GLP-1R agonists improve cardiovascular outcomes, whereas DPP-4 inhibitors appear to be cardiovascular neutral, though evidence is lacking to determine the overall utility of these therapies on diastolic dysfunction or diabetic cardiomyopathy in subjects with T2DM. We herein will review the overall impact SLGT2 inhibitors, GLP-1R agonists, and DPP-4 inhibitors have on major parameters of diastolic function, while also highlighting the potential mechanisms of action responsible. A more complete understanding of how these therapies influence diastolic dysfunction will undoubtedly play a major role in how we manage cardiovascular disease in subjects with T2DM.
Collapse
Affiliation(s)
- Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Jadin J Chahade
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Ryekjang Kim
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Xia ZH, Zhang SY, Chen YS, Li K, Chen WB, Liu YQ. Curcumin anti-diabetic effect mainly correlates with its anti-apoptotic actions and PI3K/Akt signal pathway regulation in the liver. Food Chem Toxicol 2020; 146:111803. [PMID: 33035629 DOI: 10.1016/j.fct.2020.111803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/30/2023]
Abstract
This study aimed to investigate the therapeutic effect of curcumin on type 2 diabetes and its underlying mechanisms. A type 2 diabetes mellitus rat model was established by providing high-fat diet and low doses of streptozotocin. Type 2 diabetes mellitus rats were treated with low dose and high dose of curcumin for 8 weeks. The results showed that high-dose curcumin significantly reduced fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase, liver coefficient, and malondialdehyde levels, and BCL2-Associated X expression in the type 2 diabetes mellitus rats. High-dose curcumin increased the levels of liver superoxide dismutase, catalase, and glutathione; as well as the expression of liver B-cell lymphoma-2, phosphatidylinositol 3-kinase, phosphorylated phosphatidylinositol 3-kinase, protein kinase B, and phosphorylated protein kinase B in type 2 diabetes mellitus rats. Furthermore, it ameliorated the histological structure of the liver and pancreas in diabetes mellitus model rats. However, low-dose curcumin had no significant effect on diabetes mellitus model rats. The results suggest that adequate doses of curcumin controls type 2 diabetes mellitus development as well as the mechanism involved in its anti-apoptotic actions and phosphatidylinositol 3-hydroxy kinase/protein kinase B signal pathway regulation in the liver.
Collapse
Affiliation(s)
- Zhen-Hong Xia
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sai-Ya Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu-Si Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ke Li
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wen-Bo Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
19
|
Costa GC, Montagnoli TL, Da Silva JS, de Alencar AKN, Reina Gamba LE, Alves BEO, da Silva MMC, Trachez MM, do Nascimento JHM, Pimentel-Coelho PM, Mendez-Otero R, Lima LM, Barreiro EJ, Sudo RT, Zapata-Sudo G. New Benzofuran N-Acylhydrazone Reduces Cardiovascular Dysfunction in Obese Rats by Blocking TNF-Alpha Synthesis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3337-3350. [PMID: 32884238 PMCID: PMC7443037 DOI: 10.2147/dddt.s258459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022]
Abstract
Introduction Diabetic obese patients are susceptible to the development of cardiovascular disease, including hypertension and cardiac dysfunction culminating in diabetic cardiomyopathy (DC), which represents a life-threatening health problem with increased rates of morbidity and mortality. The aim of the study is to characterize the effects of a new benzofuran N-acylhydrazone compound, LASSBio-2090, on metabolic and cardiovascular alterations in Zucker diabetic fatty (ZDF) rats presenting DC. Methods Male non-diabetic lean Zucker rats (ZL) and ZDF rats treated with vehicle (dimethylsulfoxide) or LASSBio-2090 were used in this study. Metabolic parameters, cardiovascular function, left ventricle histology and inflammatory protein expression were analyzed in the experimental groups. Results LASSBio-2090 administration in ZDF rats reduced glucose levels to 85.0 ± 1.7 mg/dL (p < 0.05). LASSBio-2090 also lowered the cholesterol and triglyceride levels from 177.8 ± 31.2 to 104.8 ± 5.3 mg/dL and from 123.0 ± 11.4 to 90.9 ± 4.8 mg/dL, respectively, in obese diabetic rats (p < 0.05). LASSBio-2090 normalized plasma insulin, insulin sensitivity and endothelial function in aortas from diabetic animals (p < 0.05). It also enhanced systolic and diastolic left-ventricular function and reverted myocardial remodeling by blocking the threefold elevation of TNF-α levels in hearts from ZDF rats. Conclusion LASSBio-2090 alleviates metabolic disturbance and cardiomyopathy in an obese and diabetic rat model, thus representing a novel strategy for the treatment of cardiovascular complications in obesity-associated type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Gizele Cabral Costa
- Programa de Pós-Graduação em Medicina (Cardiologia), Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Tadeu Lima Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jaqueline Soares Da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Allan Kardec Nogueira de Alencar
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Luis Eduardo Reina Gamba
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bryelle Eccard Oliveira Alves
- Programa de Pós-Graduação em Medicina (Cardiologia), Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marina Moraes Carvalho da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Margarete Manhães Trachez
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Hamilton M do Nascimento
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Rosália Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lidia Moreira Lima
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliezer J Barreiro
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Roberto Takashi Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Medicina (Cardiologia), Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
20
|
Shaher F, Qiu H, Wang S, Hu Y, Wang W, Zhang Y, Wei Y, AL-ward H, Abdulghani MAM, Alenezi SK, Baldi S, Zhou S. Associated Targets of the Antioxidant Cardioprotection of Ganoderma lucidum in Diabetic Cardiomyopathy by Using Open Targets Platform: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7136075. [PMID: 32775437 PMCID: PMC7397440 DOI: 10.1155/2020/7136075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Even with substantial advances in cardiovascular therapy, the morbidity and mortality rates of diabetic cardiomyopathy (DCM) continually increase. Hence, a feasible therapeutic approach is urgently needed. Objectives. This work is aimed at systemically reviewing literature and addressing cell targets in DCM through the possible cardioprotection of G. lucidum through its antioxidant effects by using the Open Targets Platform (OTP) website. Methods. The OTP website version of 19.11 was accessed in December 2019 to identify the studies in DCM involving G. lucidum. Results. Among the 157 cell targets associated with DCM, the mammalian target of rapamycin (mTOR) was shared by all evidence, drug, and text mining data with 0.08 score association. mTOR also had the highest score association 0.1 with autophagy in DCM. Among the 1731 studies of indexed PubMed articles on G. lucidum published between 1985 and 2019, 33 addressed the antioxidant effects of G. lucidum and its molecular signal pathways involving oxidative stress and therefore were included in the current work. Conclusion. mTOR is one of the targets by DCM and can be inhibited by the antioxidative properties of G. lucidum directly via scavenging radicals and indirectly via modulating mTOR signal pathways such as Wnt signaling pathway, Erk1/2 signaling, and NF-κB pathways.
Collapse
Affiliation(s)
- Fahmi Shaher
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Hongbin Qiu
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Shuqiu Wang
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yu Hu
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Weiqun Wang
- Department of Physiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yu Zhang
- Department of Pharmacology, College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yao Wei
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Hisham AL-ward
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Mahfoudh A. M. Abdulghani
- Department of Pharmacology and Toxicology, Unaizah College Pharmacy, Qassim University, Saudi Arabia
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College Pharmacy, Qassim University, Saudi Arabia
| | - Salem Baldi
- Department of Clinical Laboratory Diagnostics, College of Basic Medicine, Dalian Medical University, China
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
21
|
Wang J, Zhao YT, Zhang L, Dubielecka PM, Zhuang S, Qin G, Chin YE, Zhang S, Zhao TC. Irisin Improves Myocardial Performance and Attenuates Insulin Resistance in Spontaneous Mutation ( Leprdb ) Mice. Front Pharmacol 2020; 11:769. [PMID: 32581784 PMCID: PMC7283381 DOI: 10.3389/fphar.2020.00769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background Irisin, a newly identified peptide, is critical to regulating metabolism, thermogenesis, and reducing oxidative stresses. Our recent works demonstrated that irisin protected the heart against myocardial ischemic injury and preserved the function of mitochondria. However, whether irisin preserves myocardial performance and attenuates insulin resistance in type II diabetes remains unknown. Objective Effects of irisin on type II diabetes-induced cardiac dysfty unction and insulin resistance in db/db mice were studied. Methods: Homozygous db/db mice (n=5/each group) for spontaneous mutation (Leprdb) and heterozygous (heterozygous) mice (n=5/each group) for control were used to assess for cardiac performance and impairment of insulin resistance. Homozygous and heterozygous controls received a treatment with either irisin (100 mg/kg, intraperitoneal injection, every other day) or vehicle control (PBS) for 4 weeks at 16 weeks of age. Insulin tolerance test and glucose tolerance test were employed to determine insulin resistance in mice. Cardiac function was assessed by echocardiography. Metabolic features including hyperglycemia and body growth were also examined. Immunohistochemical analysis was employed to determine myocardial hypertrophy and interstitial fibrosis. Immunoblots were employed to determine the signaling pathway associated with irisin treatment. Results Homozygous db/db mice developed an impairment in insulin sensitivity as indicated by Insulin tolerance test (ITT), glucose tolerance test (GTT) (p<0.05 vs non-irisin treatment), hyperglycemia (p<0.05 vs heterozygous control), and hyperinsulinemia (serum insulin: 0.81 ± 0.065 ng/ml in heterozygous control vs. 8.33 ± 0.69 ng/ml in homozygous db/db control, p<0.0001), which were attenuated by the administration of irisin (serum insulin 8.32 ± 0.68 ng/ml in homozygous db/db control vs 6.56 ± 0.38 ng/ml in homozygous db/db irisin treatment, p<0.0001). Furthermore, as compared to heterozygous control, db/db mice manifested a depression in cardiac performance [ejection fraction (EF): 91.9% ± 0.44 in heterozygous control vs 79.1% ± 2.0 in homozygous db/db control, p< 0.001] in associated myocardial remodeling (cardiac fibrosis 1.89% ± 0.09 in heterozygous control vs. 5.39% ± 0.22 in homozygous db/db control, p<0.001). Notably, the depression of cardiac function in EF (79.2% ± 2.0 homozygous db/db control vs. 88.6% ± 1.9 in homozygous db/db + irisin, p<0.01) and fractional shortening (FS) (42.2% ± 1.8 in homozygous db/db control vs. 53.2% ± 2.7 in homozygous db/db+irisin, p<0.01) and remodeling were markedly attenuated by the administration of irisin. Western blotting shows that irisin treatment prevented an approximate two-fold decrease in p38 phosphorylation and increase in histone deacetylase 4 (HDAC4) in the homozygous db/db myocardium (p<0.05 vs homozygous db/db control). Conclusion Irisin preserves myocardial performance and insulin resistance in db/db mice, which is related to p38 phosphorylation and HDAC reduction.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, RI, United States
| | - Yu Tina Zhao
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, RI, United States.,University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Ling Zhang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yu Eugene Chin
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shouyan Zhang
- Department of Medicine, Luoyang Central Hospital, Zhengzhuo University, Luoyang, China
| | - Ting C Zhao
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, RI, United States.,Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| |
Collapse
|
22
|
Lazareva NV, Oshchepkova EV, Orlovsky AA, Tereschenko SN. [Clinical characteristics and quality assessment of the treatment of patients with chronic heart failure with diabetes mellitus]. TERAPEVT ARKH 2020; 92:37-44. [PMID: 32598696 DOI: 10.26442/00403660.2020.04.000474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 01/10/2023]
Abstract
AIM A study of the clinical and instrumental characteristics and quality of treatment of patients with chronic heart failure (CHF) with diabetes mellitus. MATERIALS AND METHODS The study was conducted by using the CHF register method, which is a computer program with remote access, which allows on-line data collection on patients who have been examined and treated in primary care and in hospitals. The study included 8272 patients with CHF IIIV FC (functional class) (New York Heart Association NYHA); among them 62% of patients were treated in hospital. RESULTS The study showed that the frequency of diabetes was 21%. The main causes of CHF in diabetic patients are coronary artery disease, myocardial infarction (in anamnesis) and hypertension. These patients are more often diagnosed with III and IV CHF FC according to (NYHA) and retained LV (left ventricular) ejection fraction. The reduced ejection fraction was observed in 6.8% of cases, and the frequency of the intermediate LV was significantly higher than among patients with CHF and with diabetes and accounted for 18.9%. At patients with CHF with diabetes in comparison with patients with CHF without diabetes, atherosclerosis of the peripheral arteries, stroke (in anamnesis) and chronic kidney disease of stage III and IV were significantly more common. CONCLUSION Under the treatment, patients with CHF with diabetes have higher levels of SBP (systolic blood pressure), lipids and glucose in the blood plasma, indicating a lack of quality of treatment and, accordingly, the doctors are not optimally performing the clinical guidelines on treating this category of patients.
Collapse
|
23
|
Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2020; 117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide. Therefore, new treatments are needed to target the metabolic disturbances and impaired mitochondrial bioenergetics underlying these cardiomyopathies in order to improve health outcomes in these patients. However, investigation of the underlying mechanisms and the identification of novel therapeutic targets have been hampered by the lack of appropriate animal disease models. Furthermore, interspecies variation precludes the use of animal models for studying certain disorders, whereas patient-derived primary cell lines have limited lifespan and availability. Fortunately, the discovery of human-induced pluripotent stem cells has provided a promising tool for modelling cardiomyopathies via human heart tissue in a dish. In this review article, we highlight the use of patient-derived iPSCs for studying the pathogenesis underlying cardiomyopathies associated with metabolic perturbations and impaired mitochondrial bioenergetics, as the ability of iPSCs for self-renewal and differentiation makes them an ideal platform for investigating disease pathogenesis in a controlled in vitro environment. Continuing progress will help elucidate novel mechanistic pathways, and discover novel therapies for preventing the onset and progression of heart failure, thereby advancing a new era of personalized therapeutics for improving health outcomes in patients with cardiomyopathy.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jasper Chua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Myu Mai Ja Kp
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Yong Loo Lin Medical School, National University of Singapore, 10 Medical Drive, Singapore 11759, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, Bloomsbury, London WC1E 6HX, UK.,Cardiovascular Research Centre, College of Medical and Health Sciences, Asia University, No. 500, Liufeng Road, Wufeng District, Taichung City 41354,Taiwan
| |
Collapse
|
24
|
Guo J, Yang C, Lin Y, Hu G, Wei J, Zhang X, Chen X, Li J. Enhanced peripheral blood miR-324-5p is associated with the risk of metabolic syndrome by suppressing ROCK1. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158727. [PMID: 32353552 DOI: 10.1016/j.bbalip.2020.158727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023]
Abstract
The current study aims to evaluate whether peripheral blood miR-324-5p could be used to differentiate patients with metabolic disorders and healthy controls. Our data showed that miR-324-5p levels were elevated in the peripheral blood of patients with hyperglycemia or hyperlipidemia. In addition, the expression of miR-324-5p was enhanced in the peripheral blood and liver of db/db mice. Further study indicated that overexpression of miR-324-5p reduced the activation of the AKT/GSK pathway and increased lipid accumulation, while the inhibition of miR-324-5p activated the AKT/GSK pathway and decreased lipid accumulation. A dual luciferase assay revealed that Rho-associated coiled-coil containing protein kinase 1 (ROCK1) was a target gene of miR-324-5p. In addition, silencing ROCK1 deteriorated lipid and glucose metabolism. More importantly, knockdown of ROCK1 reversed the miR-324-5p inhibitor-induced improvement of glucose and lipid metabolism. In summary, miR-324-5p plays a regulatory role in glucose and lipid metabolism by targeting ROCK1, which is involved in metabolic disorders. The use of miR-324-5p in diagnosing metabolic syndrome is worth investigating and may benefit patients.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Chunxiao Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Clinical Laboratory, China Japan Friendship Hospital, PR China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Gang Hu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Xin Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Xiehui Chen
- Department of Geriatrics Cardiovascular Medicine, FuWai Hospital, Chinese Academy of Medical Sciences, No. 12, LangShan Road, ShenZhen City, Guangdong Province 518112, PR China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
25
|
Uddin SJ, Afroz M, Zihad SMNK, Rahman MS, Akter S, Khan IN, Al-Rabbi SMS, Rouf R, Islam MT, Shilpi JA, Nahar L, Tiralongo E, Sarker SD. A Systematic Review on Anti-diabetic and Cardioprotective Potential of Gallic Acid: A Widespread Dietary Phytoconstituent. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1734609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shaikh Jamal Uddin
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mohasana Afroz
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | | | - Md. Shamim Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Sanzida Akter
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Ishaq N. Khan
- PK-Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25000, Pakistan
| | | | - Razina Rouf
- Department of Pharmacy, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, LiverpoolL3 3AF, UK
| | - Evelin Tiralongo
- School of Pharmacy and Pharmacology & Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, LiverpoolL3 3AF, UK
| |
Collapse
|
26
|
Schneider J, Han WH, Matthew R, Sauvé Y, Lemieux H. Age and sex as confounding factors in the relationship between cardiac mitochondrial function and type 2 diabetes in the Nile Grass rat. PLoS One 2020; 15:e0228710. [PMID: 32084168 PMCID: PMC7034865 DOI: 10.1371/journal.pone.0228710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Our study revisits the role of cardiac mitochondrial adjustments during the progression of type 2 diabetes mellitus (T2DM), while considering age and sex as potential confounding factors. We used the Nile Grass rats (NRs) as the animal model. After weaning, animals were fed either a Standard Rodent Chow Diet (SRCD group) or a Mazuri Chinchilla Diet (MCD group) consisting of high-fiber and low-fat content. Both males and females in the SRCD group, exhibited increased body mass, body mass index, and plasma insulin compared to the MCD group animals. However, the females were able to preserve their fasting blood glucose throughout the age range on both diets, while the males showed significant hyperglycemia starting at 6 months in the SRCD group. In the males, a higher citrate synthase activity-a marker of mitochondrial content-was measured at 2 months in the SRCD compared to the MCD group, and this was followed by a decline with age in the SRCD group only. In contrast, females preserved their mitochondrial content throughout the age range. In the males exclusively, the complex IV capacity expressed independently of mitochondrial content varied with age in a diet-specific pattern; the capacity was elevated at 2 months in the SRCD group, and at 6 months in the MCD group. In addition, females, but not males, were able to adjust their capacity to oxidize long-chain fatty acid in accordance with the fat content of the diet. Our results show clear sexual dimorphism in the variation of mitochondrial content and oxidative phosphorylation capacity with diet and age. The SRCD not only leads to T2DM but also exacerbates age-related cardiac mitochondrial defects. These observations, specific to male NRs, might reflect deleterious dietary-induced changes on their metabolism making them more prone to the cardiovascular consequences of aging and T2DM.
Collapse
Affiliation(s)
- Jillian Schneider
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca Matthew
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Sauvé
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Liu J, Xu L, Zhan X. LncRNA MALAT1 regulates diabetic cardiac fibroblasts through the Hippo-YAP signaling pathway. Biochem Cell Biol 2020; 98:537-547. [PMID: 32069074 DOI: 10.1139/bcb-2019-0434] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major diabetes-related microvascular disease. LncRNA MALAT1 is widely expressed in cardiomyocytes responding to hypoxia and high levels of glucose (high glucose). In this study, cardiac fibroblasts (CFs) were transfected with si-MALAT1 and exposed to high glucose. CFs in the high glucose groups were treated with 30 mmol/L glucose, and the control CFs were treated with 5.5 mmol/L glucose. The expression of MALAT1 in the nucleus and cytoplasm of CFs was detected. The biological behavior of CFs, as well as collagen production, activity of the Hippo-YAP pathway, and nuclear localization of YAP were measured. Mouse models of DCM were established to observe the pathological changes to myocardium and determine the levels of collagen I, Bax, and Bcl-2. The interaction between MALAT1 and YAP was analyzed, and CREB expression in the high-glucose treated CFs was detected. MALAT1 was upregulated in high-glucose CFs and located in the nucleus. High-glucose increased collagen production, inflammation, cell proliferation, cell invasiveness, and phosphorylation of MST1 and LATS1, and also promoted nuclear translocation of YAP. These trends in high-glucose treated CFs and the DCM mice were reversed by transfection with si-MALAT1. MALAT1 positively regulated the nuclear translocation of YAP by binding to CREB. CREB levels were increased in the high-glucose CFs, but decreased after silencing MALAT1. These results indicate that si-MALAT1 reduces inflammation and collagen accumulation in high-glucose CFs and DCM mice via the Hippo-YAP pathway and CREB.
Collapse
Affiliation(s)
- Jiangwen Liu
- Endocrine and Metabolic Diseases, Harbin Medical University, Harbin 150001, Heilongjiang, P.R. China
| | - Liang Xu
- Department of Cardiology, The First Hospital of Harbin, Harbin 150001, Heilongjiang, P.R. China
| | - Xiaorong Zhan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, P.R. China
| |
Collapse
|
28
|
Gabriel AF, Costa MC, Enguita FJ. Interactions Among Regulatory Non-coding RNAs Involved in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:79-104. [PMID: 32285406 DOI: 10.1007/978-981-15-1671-9_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-coding RNAs (ncRNAs) are important regulatory players in human cells that have been shown to modulate different cellular processes and biological functions through controlling gene expression, being also involved in pathological conditions such as cardiovascular diseases. Among them, long non-coding RNAs (lncRNAs) and circular (circRNAs) could act as competing endogenous RNAs (ceRNAs) sequestering other ncRNAs. This entangled network of interactions has been reported to trigger the decay of the targeted ncRNAs having important roles in gene regulation. Growing evidences have been demonstrated that the regulatory mechanism underlying the crosstalk between different ncRNA species, namely lncRNAs, circRNAs and miRNAs has also an important role in the pathophysiological processes of cardiovascular diseases. In this chapter, the main regulatory relationship among lncRNAs, circRNAs and miRNAs were summarized and their role in the control and development of cardiovascular diseases was highlighted.
Collapse
Affiliation(s)
- André F Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Cardiomics Unit, Centro de Cardiologia da Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marina C Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Cardiomics Unit, Centro de Cardiologia da Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal. .,Cardiomics Unit, Centro de Cardiologia da Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
29
|
Tao L, Huang X, Xu M, Yang L, Hua F. MiR-144 protects the heart from hyperglycemia-induced injury by regulating mitochondrial biogenesis and cardiomyocyte apoptosis. FASEB J 2019; 34:2173-2197. [PMID: 31907983 DOI: 10.1096/fj.201901838r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/25/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
Several lines of evidence have revealed the potential of microRNAs (miRNAs, miRs) as biomarkers for detecting diabetic cardiomyopathy, although their functions in hyperglycemic cardiac dysfunction are still lacking. In this study, mitochondrial biogenesis was markedly impaired induced by high glucose (HG), as evidenced by dysregulated mitochondrial structure, reduced mitochondrial DNA contents, and biogenesis-related mRNA levels, accompanied by increased cell apoptosis. MiR-144 was identified to be decreased in HG-induced cardiomyocytes and in streptozotocin (STZ)-challenged heart samples. Forced miR-144 expression enhanced mitochondrial biogenesis and suppressed cell apoptosis, while miR-144 inhibition exhibited the opposite results. Rac-1 was identified as a target gene of miR-144. Decreased Rac-1 levels activated AMPK phosphorylation and PGC-1α deacetylation, leading to increased mitochondrial biogenesis and reduced cell apoptosis. Importantly, the systemic neutralization of miR-144 attenuated mitochondrial disorder and ventricular dysfunction following STZ treatment. Additionally, plasma miR-144 decreased markedly in diabetic patients with cardiac dysfunction. The receiver-operator characteristic curve showed that plasma miR-144 could specifically predict diabetic patients developing cardiac dysfunction. In conclusion, this study provides strong evidence suggesting that miR-144 protects heart from hyperglycemia-induced injury by improving mitochondrial biogenesis and decreasing cell apoptosis via targeting Rac-1. Forced miR-144 expression might, thus, be a protective strategy for treating hyperglycemia-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, China
| | - Xiaoli Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, China
| | - Min Xu
- Department of Echocardiography, The Third Affiliated Hospital of Soochow University, Changzhou City, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, China
| |
Collapse
|
30
|
Yang X, Li X, Lin Q, Xu Q. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene 2019; 715:143995. [PMID: 31336140 DOI: 10.1016/j.gene.2019.143995] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Diabetic cardiomyopathy (DCM) refers to the myocardial dysfunction in the absence of coronary artery disease and hypertension. Recently, the role of microRNAs (miRs) in gene expression regulation has attracted much more attention. Studies have shown that the PI3K/Akt signaling pathway is involved in the growth, metabolism and apoptosis of myocardial cells. Therefore, this study aimed to explore the regulatory role of miR-203 in myocardial fibrosis in mice with DCM via involvement of the PI3K/Akt signaling pathway. Firstly, mouse model of diabetes mellitus (DM) was established and injected with agomir, antagomir or IGF-1 (PI3K/Akt signaling pathway activator) for investigating the role of miR-203 in PIK3CA and the PI3K/Akt signaling pathway. PIK3CA was identified as a target gene of miR-203, and overexpressed miR-203 inhibited the activation of PI3K/Akt signaling pathway. The obtained results indicated that up-regulation of miR-203 reduced myocardial hypertrophy, myocardial fibrosis, myocardial apoptosis, and levels of PIK3CA, PI3K, Akt, CoI I, CoI III, ANP, MDA and ROS in the myocardial tissues, by which DM-induced cardiac dysfunction and pathological changes could be ameliorated. Collectively, our present study highlighted that overexpression of miR-203 may function as a cardioprotective regulator in DCM by targeting PIK3CA via inactivation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xubin Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Xiaoshan Li
- Department of Ultrasonography, Guangzhou YueXiu District Hospital of Traditional Chinese Medicine, Guangzhou 510030, PR China
| | - Qiongyan Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Quanfu Xu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, PR China
| |
Collapse
|
31
|
Cinnamaldehyde Ameliorates High-Glucose–Induced Oxidative Stress and Cardiomyocyte Injury Through Transient Receptor Potential Ankyrin 1. J Cardiovasc Pharmacol 2019; 74:30-37. [DOI: 10.1097/fjc.0000000000000679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Kronlage M, Dewenter M, Grosso J, Fleming T, Oehl U, Lehmann LH, Falcão-Pires I, Leite-Moreira AF, Volk N, Gröne HJ, Müller OJ, Sickmann A, Katus HA, Backs J. O-GlcNAcylation of Histone Deacetylase 4 Protects the Diabetic Heart From Failure. Circulation 2019; 140:580-594. [PMID: 31195810 DOI: 10.1161/circulationaha.117.031942] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Worldwide, diabetes mellitus and heart failure represent frequent comorbidities with high socioeconomic impact and steadily growing incidence, calling for a better understanding of how diabetic metabolism promotes cardiac dysfunction. Paradoxically, some glucose-lowering drugs have been shown to worsen heart failure, raising the question of how glucose mediates protective versus detrimental cardiac signaling. Here, we identified a histone deacetylase 4 (HDAC4) subdomain as a molecular checkpoint of adaptive and maladaptive signaling in the diabetic heart. METHODS A conditional HDAC4 allele was used to delete HDAC4 specifically in cardiomyocytes (HDAC4-knockout). Mice were subjected to diabetes mellitus either by streptozotocin injections (type 1 diabetes mellitus model) or by crossing into mice carrying a leptin receptor mutation (db/db; type 2 diabetes mellitus model) and monitored for remodeling and cardiac function. Effects of glucose and the posttranslational modification by β-linked N-acetylglucosamine (O-GlcNAc) on HDAC4 were investigated in vivo and in vitro by biochemical and cellular assays. RESULTS We show that the cardio-protective N-terminal proteolytic fragment of HDAC4 is enhanced in vivo in patients with diabetes mellitus and mouse models, as well as in vitro under high-glucose and high-O-GlcNAc conditions. HDAC4-knockout mice develop heart failure in models of type 1 and type 2 diabetes mellitus, whereas wild-type mice do not develop clear signs of heart failure, indicating that HDAC4 protects the diabetic heart. Reexpression of the N-terminal fragment of HDAC4 prevents HDAC4-dependent diabetic cardiomyopathy. Mechanistically, the posttranslational modification of HDAC4 at serine (Ser)-642 by O-GlcNAcylation is an essential step for production of the N-terminal fragment of HDAC4, which was attenuated by Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632. Preventing O-GlcNAcylation at Ser-642 not only entirely precluded production of the N-terminal fragment of HDAC4 but also promoted Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632, pointing to a mutual posttranslational modification cross talk of (cardio-detrimental) phosphorylation at Ser-632 and (cardio-protective) O-GlcNAcylation at Ser-642. CONCLUSIONS In this study, we found that O-GlcNAcylation of HDAC4 at Ser-642 is cardio-protective in diabetes mellitus and counteracts pathological Ca2+/calmodulin-dependent protein kinase II signaling. We introduce a molecular model explaining how diabetic metabolism possesses important cardio-protective features besides its known detrimental effects. A deeper understanding of the here-described posttranslational modification cross talk may lay the groundwork for the development of specific therapeutic concepts to treat heart failure in the context of diabetes mellitus.
Collapse
Affiliation(s)
- Mariya Kronlage
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Matthias Dewenter
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Johannes Grosso
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Thomas Fleming
- Department of Internal Medicine I (T.F.), Heidelberg University, Germany
| | - Ulrike Oehl
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Lorenz H Lehmann
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Inês Falcão-Pires
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal (I.F.-P., A.F.L.-M.)
| | - Adelino F Leite-Moreira
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal (I.F.-P., A.F.L.-M.)
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany (N.V.)
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg (H.-J.G.).,Institute of Pathology, University of Marburg, Germany (H.-J.G.)
| | - Oliver J Müller
- Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Albert Sickmann
- Leibniz Institute for Analysical Sciences (ISAS), Dortmund, Germany (A.S.).,Medical Faculty, Medical Proteomics Center, Ruhr-University Bochum, Germany (A.S.).,Department of Chemistry, College of Physical Sciences, University of Aberdeen, United Kingdom (A.S.). Dr Müller is currently at the Department of Internal Medicine III, University of Kiel, Germany
| | - Hugo A Katus
- Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| | - Johannes Backs
- Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (M.K., M.D., J.G., U.O., L.H.L., J.B., L.H.L., O.J.M., H.A.K.)
| |
Collapse
|
33
|
Feng J, Zhao H, Du M, Wu X. The effect of apelin-13 on pancreatic islet beta cell mass and myocardial fatty acid and glucose metabolism of experimental type 2 diabetic rats. Peptides 2019; 114:1-7. [PMID: 30954534 DOI: 10.1016/j.peptides.2019.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Apelin, a new identified adipokine, and its G protein-coupled receptor named APJ are widely expressed in various tissues. Apelin has been found to play important roles in the physiopathology of multiple diseases. Our aim is to assess the effect of long-term apelin treatment on serum insulin level and pancreatic islet beta-cell mass in the late stage of type 2 diabetes without hyperinsulinemia and to investigate the role of apelin in myocardial fatty acid and glucose metabolism. In the present study, the high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats were given once daily intraperitoneal injection of apelin-13 (0.1 μmol/kg) for 10 weeks. We observed that apelin significantly improved serum insulin reduction and reduced hyperglycemia. Histologic analysis showed that long-term apelin treatment significantly increased pancreatic islet beta cell mass. Exogenous apelin failed to change dyslipidaemia of type 2 diabetic rats. Apelin treatment markedly decreased elevated myocardial FFA and glycogen content. Treatment of type 2 diabetic rats with apelin markedly reduced increased gene expressions of the cardiac fatty acid transporter CD36, CPT-1, and Peroxisome proliferator-activated receptor (PPAR)-α. Whereas the gene levels of citrate synthase and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α), a transcriptional coactivator, mediating mitochondrial biogenesis in heart were unaltered in response to exogenous apelin. Taken together, longer-term apelin treatment prevented pancreatic beta-cell loss or failure in experimental type 2 diabetic rats. Apelin can regulate myocardial metabolism. Apelin reduced myocadial fatty acid uptake and oxidation through inhibiting PPAR-α but did not affect myocardial mitochondrial biogenesis in type 2 diabetic rats.
Collapse
Affiliation(s)
- Jinghui Feng
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Hang Zhao
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Mengze Du
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Xiuping Wu
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
34
|
Meng J, Yang B. Protective Effect of Ganoderma (Lingzhi) on Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:181-199. [DOI: 10.1007/978-981-32-9421-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Cheng YJ, Imperatore G, Geiss LS, Saydah SH, Albright AL, Ali MK, Gregg EW. Trends and Disparities in Cardiovascular Mortality Among U.S. Adults With and Without Self-Reported Diabetes, 1988-2015. Diabetes Care 2018; 41:2306-2315. [PMID: 30131397 PMCID: PMC7849201 DOI: 10.2337/dc18-0831] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/23/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Cardiovascular disease (CVD) mortality has declined substantially in the U.S. The aims of this study were to examine trends and demographic disparities in mortality due to CVD and CVD subtypes among adults with and without self-reported diabetes. RESEARCH DESIGN AND METHODS We used the National Health Interview Survey (NHIS) (1985-2014) with mortality follow-up data through the end of 2015 to estimate nationally representative trends and disparities in major CVD, ischemic heart disease (IHD), stroke, heart failure, and arrhythmia mortality among adults ≥20 years of age by diabetes status. RESULTS Over a mean follow-up period of 11.8 years from 1988 to 2015 of 677,051 adults, there were significant decreases in major CVD death (all P values <0.05) in adults with and without diabetes except adults 20-54 years of age. Among adults with diabetes, 10-year relative changes in mortality were significant for major CVD (-32.7% [95% CI -37.2, -27.9]), IHD (-40.3% [-44.7, -35.6]), and stroke (-29.2% [-40.0, -16.5]), but not heart failure (-0.5% [-20.7, 24.7]), and arrhythmia (-12.0% [-29.4, 77.5]); the absolute decrease of major CVD among adults with diabetes was higher than among adults without diabetes (P < 0.001). Men with diabetes had larger decreases in CVD death than women with diabetes (P < 0.001). CONCLUSIONS Major CVD mortality in adults with diabetes has declined, especially in men. Large reductions were observed for IHD and stroke mortality, although heart failure and arrhythmia deaths did not change. All race and education groups benefitted to a similar degree, but significant gaps remained across groups.
Collapse
Affiliation(s)
- Yiling J Cheng
- Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Giuseppina Imperatore
- Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Linda S Geiss
- Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sharon H Saydah
- Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ann L Albright
- Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mohammed K Ali
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Edward W Gregg
- Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
36
|
Gong F, Gu J, Wang H. Up regulated Tmbim1 activation promotes high fat diet (HFD)-induced cardiomyopathy by enhancement of inflammation and oxidative stress. Biochem Biophys Res Commun 2018; 504:797-804. [PMID: 30217448 DOI: 10.1016/j.bbrc.2018.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
The prevalence of cardiomyopathy due to metabolic stress has up-regulated dramatically; nevertheless, its molecular mechanisms remain unclear. Here we suggested that transmembrane BAX inhibitor motif-containing 1 (Tmbim1) is down-regulated in the hearts of mice fed with high fat diet (HFD). We provided evidence that Tmbim1 knockout (KO) accelerated HFD-induced metabolic disorders in mice, as supported by the remarkable increase of fasting serum glucose and insulin levels. HFD-induced cardiac dysfunctions were greatly intensified by the loss of Tmbim1, along with higher levels of lactate dehydrogenase (LDH) and creatine kinase (CK) in serum. In addition, Tmbim1 deletion significantly enhanced lipid accumulation in heart of mice administrated with HFD. Furthermore, Tmbim1 knockout reinforced myocardial inflammation, evidenced by increasing the expression of pro-inflammatory cytokines (interleukin 1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α)), and the activation of nuclear factor-κB (NF-κB) signaling pathway. Tmbim1 deficiency strengthened oxidative damage in hearts of HFD-fed mice, accompanied with a significant reduction of nuclear factor-erythroid 2 related factor 2 (Nrf-2) pathway. In palmitate (PA)-treated primary cardiomyocytes, Tmbim1 ablation markedly enhanced cell inflammation and oxidative stress, which were abolished by the suppression of ROS generation and NF-κB activation. Taken together, these findings suggested that Tmbim1 might be a key suppressor of metabolic stress-induced cardiomyopathy, which could be a promising target for the treatment of metabolic syndrome-triggered myocardial damage and heart failure.
Collapse
Affiliation(s)
- Fen Gong
- Department of Surgical Outpatient, Jining No.1 People's Hospital, Jining, 272011, China
| | - Junfei Gu
- Department of Endocrinology, Vascular Disease Research Center, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Haijun Wang
- Department of Endocrinology, Yanan People`s Hospital, Yanan, 716000, China.
| |
Collapse
|
37
|
Pan J, Di YQ, Li YB, Chen CH, Wang JX, Zhao XF. Insulin and 20-hydroxyecdysone oppose each other in the regulation of phosphoinositide-dependent kinase-1 expression during insect pupation. J Biol Chem 2018; 293:18613-18623. [PMID: 30305395 DOI: 10.1074/jbc.ra118.004891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Insulin promotes larval growth of insects by stimulating the synthesis of the steroid hormone 20-hydroxyecdysone (20E), which induces pupation and apoptosis. However, the mechanism underlying the coordinate regulation of insect pupation and apoptosis by these two functionally opposing hormones is still unclear. Here, using the lepidopteran insect and serious agricultural pest Helicoverpa armigera (cotton bollworm) as a model, we report that phosphoinositide-dependent kinase-1 (PDK1) and forkhead box O (FoxO) play key roles in these processes. We found that the transcript levels of the PDK1 gene are increased during the larval feeding stages. Moreover, PDK1 expression was increased by insulin, but repressed by 20E. dsRNA-mediated PDK1 knockdown in the H. armigera larvae delayed pupation and resulted in small pupae and also decreased Akt/protein kinase B expression and increased FoxO expression. Furthermore, the PDK1 knockdown blocked midgut remodeling and decreased 20E levels in the larvae. Of note, injecting larvae with 20E overcame the effect of the PDK1 knockdown and restored midgut remodeling. FoxO overexpression in an H. armigera epidermal cell line (HaEpi) did not induce apoptosis, but promoted autophagy and repressed cell proliferation. These results reveal cross-talk between insulin and 20E and that both hormones oppose each other's activities in the regulation of insect pupation and apoptosis by controlling PDK1 expression and, in turn, FoxO expression. We conclude that sufficiently high 20E levels are a key factor for inducing apoptosis during insect pupation.
Collapse
Affiliation(s)
- Jing Pan
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yu-Qin Di
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yong-Bo Li
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Cai-Hua Chen
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
38
|
Xu W, Wang Y, Guo Y, Liu J, Ma L, Cao W, Yu B, Zhou Y. Fibroblast growth factor 19 improves cardiac function and mitochondrial energy homoeostasis in the diabetic heart. Biochem Biophys Res Commun 2018; 505:242-248. [PMID: 30243718 DOI: 10.1016/j.bbrc.2018.09.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 11/29/2022]
Abstract
In diabetic cardiomyopathy, mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation, leading to metabolic disturbances. Fibroblast growth factor 19 (FGF19) acts as a metabolic regulator and may have a cardioprotective role on diabetic cardiomyopathy. In this study, we investigated the effects of FGF19 on energy metabolism. FGF19 treatment of diabetic hearts exhibited higher glucose uptake and lower lipid profiles, suggesting changes in energy metabolism. The protective effects of FGF19 prevented ventricular dysfunction in diabetic hearts and improved mitochondrial function by the upregulation of PGC-1α expression. On the other side, knockdown of PGC-1α by siRNA attenuated the effects of FGF19 on the enhancement of mitochondrial function and energy efficiency. Taken together, these results show that FGF19 exhibited improved mitochondrial efficiency, which might be associated with higher cardiac contractility in diabetic hearts. It is also of note that modulation of PGC-1α, which is responsible for the activation by FGF19, may be a therapeutic target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Wei Xu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yongshun Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yibo Guo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jingjin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Lijia Ma
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Wei Cao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yuhong Zhou
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, China.
| |
Collapse
|
39
|
Sanches IC, Buzin M, Conti FF, Dias DDS, dos Santos CP, Sirvente R, Salemi VMC, Llesuy S, Irigoyen MC, De Angelis K. Combined aerobic and resistance exercise training attenuates cardiac dysfunctions in a model of diabetes and menopause. PLoS One 2018; 13:e0202731. [PMID: 30192778 PMCID: PMC6128534 DOI: 10.1371/journal.pone.0202731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/08/2018] [Indexed: 01/09/2023] Open
Abstract
The study aimed at evaluating the effects of combined aerobic and resistance exercise training on cardiac morphometry and function, oxidative stress and inflammatory parameters in diabetic ovariectomized rats. For this, female Wistar rats (10 weeks-old) were divided into 4 groups (n = 8): euglycemic (E), diabetic (streptozotocin, 50 mg/kg, iv) (D), diabetic ovariectomized (DO) and trained diabetic ovariectomized (TDO). The combined exercise training was performed on a treadmill and in a ladder adapted to rats (8 weeks, at 40-60% of maximal capacity). The left ventricle (LV) morphometry and function were evaluated by echocardiography. Oxidative stress and inflammatory markers were measured on ventricles tissue. The sedentary diabetic animals (D and DO) showed impaired systolic and diastolic functions, as well as increased cardiac overload, evaluated by myocardial performance index (MPI- D: 0.32 ± 0.05; DO: 0.39 ± 0.13 vs. E: 0.25 ± 0.07), in relation to E group. Systolic and MPI dysfunctions were exacerbated in DO when compared to D group. The DO group presented higher protein oxidation and TNF-α/IL-10 ratio than D groups. Glutathione redox ratio (GSH/GSSG) and IL-10 were decreased in both D and DO groups when compared to E group. Exercise training improved exercise capacity, systolic and diastolic functions and MPI (0.18±0.11). The TDO group showed reduced protein oxidation and TNF-α/IL-10 ratio and increased GSH/GSSG and IL-10 in relation to the DO group. These results showed that combined exercise training was able to attenuate the cardiac dysfunctions, probably by reducing inflammation and oxidative stress in an experimental model of diabetes and menopause.
Collapse
Affiliation(s)
| | - Morgana Buzin
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Filipe Fernandes Conti
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Danielle da Silva Dias
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Raquel Sirvente
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vera Maria Cury Salemi
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Susana Llesuy
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria-Cláudia Irigoyen
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Kátia De Angelis
- Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Departament of Physiology, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
40
|
Sangweni NF, Dludla PV, Mosa RA, Kappo AP, Opoku A, Muller CJF, Johnson R. Lanosteryl triterpenes from Protorhus longifolia as a cardioprotective agent: a mini review. Heart Fail Rev 2018; 24:155-166. [DOI: 10.1007/s10741-018-9733-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Abstract
Diabetes is a major risk factor for the development of heart failure. One of the hallmarks of diabetes is insulin resistance associated with hyperinsulinemia. The literature shows that insulin and adrenergic signaling is intimately linked to each other; however, whether and how insulin may modulate cardiac adrenergic signaling and cardiac function remains unknown. Notably, recent studies have revealed that insulin receptor and β2 adrenergic receptor (β2AR) forms a membrane complex in animal hearts, bringing together the direct contact between 2 receptor signaling systems, and forming an integrated and dynamic network. Moreover, insulin can drive cardiac adrenergic desensitization via protein kinase A and G protein-receptor kinases phosphorylation of the β2AR, which compromises adrenergic regulation of cardiac contractile function. In this review, we will explore the current state of knowledge linking insulin and G protein-coupled receptor signaling, especially β-adrenergic receptor signaling in the heart, with emphasis on molecular insights regarding its role in diabetic cardiomyopathy.
Collapse
|
42
|
Cernea S, Blendea C, Roiban AL, Benedek T. Cardio-renal Correlations and Epicardial Adipose Tissue in Patients with Type 2 Diabetes. JOURNAL OF INTERDISCIPLINARY MEDICINE 2018. [DOI: 10.1515/jim-2017-0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Aim: The aim of the study was to evaluate the correlation between renal function and heart function/echocardiographic parameters and epicardial adipose tissue thickness (EATT), respectively.
Material and methods: Fifty patients with type 2 diabetes (T2D) were included in this study. Several laboratory parameters were obtained (HbA1c, fasting blood glucose, LDL-cholesterol, creatinine) and eGFR was calculated. Anthropometric measurements were performed (weight, waist and hip circumferences, 4 skinfolds, based on which % body fat was calculated). Patients underwent echocardiographic assessment to evaluate structural and functional parameters, including EATT. Left ventricular mass (LVM) was calculated and the geometric changes of the left ventricle were evaluated.
Results: Forty-six per cent of the patients had a LV ejection fraction (EF) <55% and 34% had diastolic dysfunction. There were no significant differences between the three eGFR groups with regards to metabolic parameters, but LVEF was lower (53.0 ± 0.8%, 54.4 ± 2.4%, and 55.2 ± 1.5%, respectively) and EATT was higher (11.0 ± 1.0 mm, 8.58 ± 2.2 mm, and 7.63 ± 2.6 mm, respectively) with a lower eGFR (p = 0.04). More patients with eGFR <90 mL/min/1.73 m2 had cardiac hypertrophy compared with those with eGFR ≥90 mL/min/1.73 m2 (p = 0.04). EATT correlated positively with several anthropometric parameters, e.g. weight (r = 0.309, 95% CI: 0.022 to 0.549, p = 0.03), BMI (r = 0.398, 95% CI: 0.123 to 0.616, p = 0.004), and negatively with LVEF (r = −0.496, 95% CI: −0.687 to −0.242, p = 0.0003) and eGFR (r = −0.293, 95% CI: −0.531 to −0.013, p = 0.04). In patients with LVEF <55% vs. ≥55%, the EATT was significantly higher (9.5 ± 1.99 mm vs. 7.33 ± 2.37 mm, p = 0.013).
Conclusion: In patients with T2D decreased renal function was associated with lower LVEF and higher EATT. EATT was also higher in patients with reduced LVEF.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3/Internal Medicine IV , University of Medicine and Pharmacy , Tîrgu Mureş , Romania
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, County Emergency Clinical Hospital , Tîrgu Mureş , Romania
| | - Ciprian Blendea
- Clinic of Cardiology , University of Medicine and Pharmacy , Tîrgu Mureş , Romania
| | - Andrada Larisa Roiban
- Diabetes, Nutrition and Metabolic Diseases, County Emergency Clinical Hospital , Tîrgu Mureş , Romania
| | - Theodora Benedek
- Clinic of Cardiology , University of Medicine and Pharmacy , Tîrgu Mureş , Romania
| |
Collapse
|
43
|
Philouze C, Obert P, Nottin S, Benamor A, Barthez O, Aboukhoudir F. Dobutamine Stress Echocardiography Unmasks Early Left Ventricular Dysfunction in Asymptomatic Patients with Uncomplicated Type 2 Diabetes: A Comprehensive Two-Dimensional Speckle-Tracking Imaging Study. J Am Soc Echocardiogr 2018. [PMID: 29526563 DOI: 10.1016/j.echo.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Discrepancies are present in the literature on resting myocardial mechanics in patients with uncomplicated type 2 diabetes mellitus (T2DM). Data are noticeably sparse regarding circumferential function and torsional mechanics. Resting deformation imaging may not be sensitive enough to detect subtle dysfunctions. The aim of this study was thus to comprehensively evaluate myocardial mechanics in patients with T2DM at rest and to investigate whether dobutamine stress echocardiography could unmask functional alterations that would remain otherwise subtle at rest. METHODS Forty-four patients with T2DM and 35 healthy control subjects of similar age and sex were prospectively recruited. After conventional echocardiography, myocardial mechanics was evaluated at rest and during low-dose dobutamine stress echocardiography (target heart rate, 110 beats/min). RESULTS Patients with T2DM presented with altered global diastolic function but preserved systolic function. Deformation imaging indexes were similar between groups at rest, but significant differences were noticed under dobutamine infusion for longitudinal strain (-21.2 ± 2.4% vs -24.2 ± 2.5%, P < .001), circumferential strain (apex, -32.3 ± 5.3% vs -36.3 ± 5.3%, P = .002; papillary muscle, -25.6 ± 3.2% vs -28.0 ± 3.6%, P = .001; base, -23.2 ± 3.6% vs -25.3 ± 3.8%, P = .03), apical (11.2 ± 4.4° vs 14.1 ± 6.3°, P = .020) and basal (-12.2 ± 3.3° vs -14.3 ± 3.9°, P = .021) rotation, and twist (21.9 ± 5.9° vs 26.8 ± 8.3°, P = .007). Multivariate analysis identified epicardial fat, dyslipidemia, and fasting glycaemia as significant contributors to the changes from rest to dobutamine. CONCLUSIONS These findings demonstrate the usefulness of dobutamine stress echocardiography in establishing impairments in myocardial mechanics in patients with uncomplicated T2DM. Systemic metabolic disturbances and epicardial fat act as the main contributors to the blunted response to dobutamine stress in these patients.
Collapse
Affiliation(s)
- Clothilde Philouze
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-Ecology, Avignon University, Avignon, France
| | - Philippe Obert
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-Ecology, Avignon University, Avignon, France
| | - Stéphane Nottin
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-Ecology, Avignon University, Avignon, France
| | - Asma Benamor
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-Ecology, Avignon University, Avignon, France
| | - Olivier Barthez
- Cardiology Department, Duffaut Hospital Center, Avignon, France
| | - Falah Aboukhoudir
- EA4278 LaPEC, Laboratory of Cardiovascular Pharm-Ecology, Avignon University, Avignon, France; Cardiology Department, Duffaut Hospital Center, Avignon, France.
| |
Collapse
|
44
|
Resistance exercise improves cardiac function and mitochondrial efficiency in diabetic rat hearts. Pflugers Arch 2017; 470:263-275. [PMID: 29032504 DOI: 10.1007/s00424-017-2076-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022]
Abstract
Metabolic disturbance and mitochondrial dysfunction are a hallmark of diabetic cardiomyopathy (DC). Resistance exercise (RE) not only enhances the condition of healthy individuals but could also improve the status of those with disease. However, the beneficial effects of RE in the prevention of DC and mitochondrial dysfunction are uncertain. Therefore, this study investigated whether RE attenuates DC by improving mitochondrial function using an in vivo rat model of diabetes. Fourteen Otsuka Long-Evans Tokushima Fatty rats were assigned to sedentary control (SC, n = 7) and RE (n = 7) groups at 28 weeks of age. Long-Evans Tokushima Otsuka rats were used as the non-diabetic control. The RE rats were trained by 20 repetitions of climbing a ladder 5 days per week. RE rats exhibited higher glucose uptake and lower lipid profiles, indicating changes in energy metabolism. RE rats significantly increased the ejection fraction and fractional shortening compared with the SC rats. Isolated mitochondria in RE rats showed increase in mitochondrial numbers, which were accompanied by higher expression of mitochondrial biogenesis proteins such as proliferator-activated receptor-γ coactivator-1α and TFAM. Moreover, RE rats reduced proton leakage and reactive oxygen species production, with higher membrane potential. These results were accompanied by higher superoxide dismutase 2 and lower uncoupling protein 2 (UCP2) and UCP3 levels in RE rats. These data suggest that RE is effective at ameliorating DC by improving mitochondrial function, which may contribute to the maintenance of diabetic cardiac contractility.
Collapse
|
45
|
Silva FS, Bortolin RH, Araújo DN, Marques DE, Lima JPM, Rezende AA, Vieira WH, Silva NB, Medeiros KC, Ackermann PW, Abreu BJ, Dias FA. Exercise training ameliorates matrix metalloproteinases 2 and 9 messenger RNA expression and mitigates adverse left ventricular remodeling in streptozotocin-induced diabetic rats. Cardiovasc Pathol 2017; 29:37-44. [DOI: 10.1016/j.carpath.2017.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/30/2017] [Accepted: 05/16/2017] [Indexed: 01/22/2023] Open
|
46
|
Phosphoinositide 3-kinase (p110α) gene delivery limits diabetes-induced cardiac NADPH oxidase and cardiomyopathy in a mouse model with established diastolic dysfunction. Clin Sci (Lond) 2017; 131:1345-1360. [DOI: 10.1042/cs20170063] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Phosphoinositide 3-kinase [PI3K (p110α)] is able to negatively regulate the diabetes-induced increase in NADPH oxidase in the heart. Patients affected by diabetes exhibit significant cardiovascular morbidity and mortality, at least in part due to a cardiomyopathy characterized by oxidative stress and left ventricular (LV) dysfunction. Thus, PI3K (p110α) may represent a novel approach to protect the heart from diabetes-induced cardiac oxidative stress and dysfunction. In the present study, we investigated the therapeutic potential of a delayed intervention with cardiac-targeted PI3K gene therapy, administered to mice with established diabetes-induced LV diastolic dysfunction. Diabetes was induced in 6-week-old male mice by streptozotocin (STZ). After 8 weeks of untreated diabetes, LV diastolic dysfunction was confirmed by a reduction in echocardiography-derived transmitral E/A ratio. Diabetic and non-diabetic mice were randomly allocated to receive either recombinant adeno-associated viral vector-6 carrying a constitutively-active PI3K construct (recombinant adeno-associated-virus 6-constitutively active PI3K (p110α) (caPI3K) (rAAV6-caPI3K), single i.v. injection, 2 × 1011 vector genomes) or null vector, and were followed for a further 6 or 8 weeks. At study endpoint, diabetes-induced LV dysfunction was significantly attenuated by a single administration of rAAV6-caPI3K, administered 8 weeks after the induction of diabetes. Diabetes-induced impairments in each of LV NADPH oxidase, endoplasmic reticulum (ER) stress, apoptosis, cardiac fibrosis and cardiomyocyte hypertrophy, in addition to LV systolic dysfunction, were attenuated by delayed intervention with rAAV6-caPI3K. Hence, our demonstration that cardiac-targeted PI3K (p110α) gene therapy limits diabetes-induced up-regulation of NADPH oxidase and cardiac remodelling suggests new insights into promising approaches for the treatment of diabetic cardiomyopathy, at a clinically relevant time point (after diastolic dysfunction is manifested).
Collapse
|
47
|
Guo CA, Guo S. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure. J Endocrinol 2017; 233:R131-R143. [PMID: 28381504 PMCID: PMC9675292 DOI: 10.1530/joe-16-0679] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function.
Collapse
Affiliation(s)
- Cathy A Guo
- Department of Nutrition and Food ScienceCollege of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Shaodong Guo
- Department of Nutrition and Food ScienceCollege of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
48
|
Kain V, Halade GV. Metabolic and Biochemical Stressors in Diabetic Cardiomyopathy. Front Cardiovasc Med 2017; 4:31. [PMID: 28620607 PMCID: PMC5449449 DOI: 10.3389/fcvm.2017.00031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/28/2017] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) or diabetes-induced cardiac dysfunction is a direct consequence of uncontrolled metabolic syndrome and is widespread in US population and worldwide. Despite of the heterogeneous and distinct features of DCM, the clinical relevance of DCM is now becoming established. DCM progresses to pathological cardiac remodeling with the higher risk of heart attack and subsequent heart failure in diabetic patients. In this review, we emphasize lipid substrate quality and the phenotypic, metabolic, and biochemical stressors of DCM in the rodent and human pathophysiology. We discuss lipoxygenase signaling in the inflammatory pathway with multiple contributing and confounding factors leading to DCM. Additionally, emerging biochemical pathways are emphasized to make progress toward therapeutic advancement to treat DCM.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
49
|
Lee WS, Kim J. Diabetic cardiomyopathy: where we are and where we are going. Korean J Intern Med 2017; 32:404-421. [PMID: 28415836 PMCID: PMC5432803 DOI: 10.3904/kjim.2016.208] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/08/2017] [Indexed: 12/15/2022] Open
Abstract
The global burden of diabetes mellitus and its related complications are currently increasing. Diabetes mellitus affects the heart through various mechanisms including microvascular impairment, metabolic disturbance, subcellular component abnormalities, cardiac autonomic dysfunction, and a maladaptive immune response. Eventually, diabetes mellitus can cause functional and structural changes in the myocardium without coronary artery disease, a disorder known as diabetic cardiomyopathy (DCM). There are many diagnostic tools and management options for DCM, although it is difficult to detect its development and effectively prevent its progression. In this review, we summarize the current research regarding the pathophysiology and pathogenesis of DCM. Moreover, we discuss emerging diagnostic evaluation methods and treatment strategies for DCM, which may help our understanding of its underlying mechanisms and facilitate the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Correspondence to Jaetaek Kim, M.D. Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea Tel: +82-2-6299-1397 Fax: +82-2-6299-1390 E-mail:
| |
Collapse
|
50
|
Sano M. Hemodynamic Effects of Sodium-Glucose Cotransporter 2 Inhibitors. J Clin Med Res 2017; 9:457-460. [PMID: 28496544 PMCID: PMC5412517 DOI: 10.14740/jocmr3011w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2017] [Indexed: 01/24/2023] Open
Abstract
It is widely accepted that obesity and type 2 diabetes mellitus (T2DM) increase the risk of heart failure (HF) independently of underlying coronary artery disease. The changes in myocardial structure or function associated with diabetes have been termed diabetic cardiomyopathy. Corresponding to changes in the risk factors for HF, an epidemiologic transition is underway from HF with a reduced ejection fraction to HF with a preserved ejection fraction. Hyperglycemia can damage the myocardium, even before diagnosis of diabetes, but intensive glycemic control has no impact on the risk of HF in patients with T2DM. Recent clinical studies have demonstrated that sodium-glucose cotransporter 2 (SGLT2) inhibitors, which inhibit renal reabsorption of glucose, decrease the risk of HF in T2DM patients. The cardioprotective mechanisms involved appear to be multifactorial and have been the subject of considerable debate. This review focuses on the hemodynamic effects of SGLT2 inhibitors in T2DM patients and the mechanisms by which these drugs decrease the risk of HF.
Collapse
Affiliation(s)
- Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|