1
|
Jia H, Sosso GC. Transparent Machine Learning Model to Understand Drug Permeability through the Blood-Brain Barrier. J Chem Inf Model 2024; 64:8718-8728. [PMID: 39558528 PMCID: PMC11632763 DOI: 10.1021/acs.jcim.4c01217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
The blood-brain barrier (BBB) selectively regulates the passage of chemical compounds into and out of the central nervous system (CNS). As such, understanding the permeability of drug molecules through the BBB is key to treating neurological diseases and evaluating the response of the CNS to medical treatments. Within the last two decades, a diverse portfolio of machine learning (ML) models have been regularly utilized as a tool to predict, and, to a much lesser extent, understand, several functional properties of medicinal drugs, including their propensity to pass through the BBB. However, the most numerically accurate models to date lack in transparency, as they typically rely on complex blends of different descriptors (or features or fingerprints), many of which are not necessarily interpretable in a straightforward fashion. In fact, the "black-box" nature of these models has prevented us from pinpointing any specific design rule to craft the next generation of pharmaceuticals that need to pass (or not) through the BBB. In this work, we have developed a ML model that leverages an uncomplicated, transparent set of descriptors to predict the permeability of drug molecules through the BBB. In addition to its simplicity, our model achieves comparable results in terms of accuracy compared to state-of-the-art models. Moreover, we use a naive Bayes model as an analytical tool to provide further insights into the structure-function relation that underpins the capacity of a given drug molecule to pass through the BBB. Although our results are computational rather than experimental, we have identified several molecular fragments and functional groups that may significantly impact a drug's likelihood of permeating the BBB. This work provides a unique angle to the BBB problem and lays the foundations for future work aimed at leveraging additional transparent descriptors, potentially obtained via bespoke molecular dynamics simulations.
Collapse
Affiliation(s)
- Hengjian Jia
- Department of Chemistry, University
of Warwick, Coventry CV1 1DT, U.K.
| | - Gabriele C. Sosso
- Department of Chemistry, University
of Warwick, Coventry CV1 1DT, U.K.
| |
Collapse
|
2
|
Hu J, Li Y, Dong C, Wei H, Liao K, Wei J, Zhao C, Chaudhary A, Chen J, Xu H, Zhong K, Liang SH, Wang L, Ye W. Discovery and evaluation of a novel 18F-labeled vasopressin 1a receptor PET ligand with peripheral binding specificity. Acta Pharm Sin B 2024; 14:4014-4027. [PMID: 39309503 PMCID: PMC11413668 DOI: 10.1016/j.apsb.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 09/25/2024] Open
Abstract
The arginine-vasopressin (AVP) hormone plays a pivotal role in regulating various physiological processes, such as hormone secretion, cardiovascular modulation, and social behavior. Recent studies have highlighted the V1a receptor as a promising therapeutic target. In-depth insights into V1a receptor-related pathologies, attained through in vivo imaging and quantification in both peripheral organs and the central nervous system (CNS), could significantly advance the development of effective V1a inhibitors. To address this need, we develop a novel V1a-targeted positron emission tomography (PET) ligand, [18F]V1A-2303 ([18F]8), which demonstrates favorable in vitro binding affinity and selectivity for the V1a receptor. Specific tracer binding in peripheral tissues was also confirmed through rigorous cell uptake studies, autoradiography, biodistribution assessments. Furthermore, [18F]8 was employed in PET imaging and arterial blood sampling studies in healthy rhesus monkeys to assess its brain permeability and specificity, whole-body distribution, and kinetic properties. Our research indicated [18F]8 as a valuable tool for noninvasively studying V1a receptors in peripheral organs, and as a foundational element for the development of next-generation, brain-penetrant ligands specifically designed for the CNS.
Collapse
Affiliation(s)
- Junqi Hu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Junjie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ke Zhong
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Steven H. Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
3
|
Liang L, Liu Z, Yang X, Zhang Y, Liu H, Chen Y. Prediction of blood-brain barrier permeability using machine learning approaches based on various molecular representation. Mol Inform 2024; 43:e202300327. [PMID: 38864837 DOI: 10.1002/minf.202300327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024]
Abstract
The assessment of compound blood-brain barrier (BBB) permeability poses a significant challenge in the discovery of drugs targeting the central nervous system. Conventional experimental approaches to measure BBB permeability are labor-intensive, cost-ineffective, and time-consuming. In this study, we constructed six machine learning classification models by combining various machine learning algorithms and molecular representations. The model based on ExtraTree algorithm and random partitioning strategy obtains the best prediction result, with AUC value of 0.932±0.004 and balanced accuracy (BA) of 0.837±0.010 for the test set. We employed the SHAP method to identify important features associated with BBB permeability. In addition, matched molecular pair (MMP) analysis and representative substructure derivation method were utilized to uncover the transformation rules and distinctive structural features of BBB permeable compounds. The machine learning models proposed in this work can serve as an effective tool for assessing BBB permeability in the drug discovery for central nervous system disease.
Collapse
Affiliation(s)
- Li Liang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Zhiwen Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Xinyi Yang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
4
|
Noor MAA, Haq MM, Chowdhury MAR, Tayara H, Shim H, Chong KT. In Silico Exploration of Novel EGFR Kinase Mutant-Selective Inhibitors Using a Hybrid Computational Approach. Pharmaceuticals (Basel) 2024; 17:1107. [PMID: 39338272 PMCID: PMC11434943 DOI: 10.3390/ph17091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Targeting epidermal growth factor receptor (EGFR) mutants is a promising strategy for treating non-small cell lung cancer (NSCLC). This study focused on the computational identification and characterization of potential EGFR mutant-selective inhibitors using pharmacophore design and validation by deep learning, virtual screening, ADMET (Absorption, distribution, metabolism, excretion and toxicity), and molecular docking-dynamics simulations. A pharmacophore model was generated using Pharmit based on the potent inhibitor JBJ-125, which targets the mutant EGFR (PDB 5D41) and is used for the virtual screening of the Zinc database. In total, 16 hits were retrieved from 13,127,550 molecules and 122,276,899 conformers. The pharmacophore model was validated via DeepCoy, generating 100 inactive decoy structures for each active molecule and ADMET tests were conducted using SWISS ADME and PROTOX 3.0. Filtered compounds underwent molecular docking studies using Glide, revealing promising interactions with the EGFR allosteric site along with better docking scores. Molecular dynamics (MD) simulations confirmed the stability of the docked conformations. These results bring out five novel compounds that can be evaluated as single agents or in combination with existing therapies, holding promise for treating the EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Md Ali Asif Noor
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Md Mazedul Haq
- Research Center of Bioactive Materials, Department of Bioactive Material Sciences, Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.M.H.); (M.A.R.C.)
| | - Md Arifur Rahman Chowdhury
- Research Center of Bioactive Materials, Department of Bioactive Material Sciences, Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Republic of Korea; (M.M.H.); (M.A.R.C.)
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - HyunJoo Shim
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
5
|
Kusmiati K, Fanani A, Nurkanto A, Purnaningsih I, Mamangkey J, Ramadhani I, Nurcahyanto DA, Simanjuntak P, Afiati F, Irawan H, Puteri AL, Ewaldo MF, Juanssilfero AB. Profile and in silico analysis of metabolite compounds of the endophytic fungus Alternaria alternata K-10 from Drymoglossum piloselloides as antioxidants and antibacterials. Heliyon 2024; 10:e27978. [PMID: 38524563 PMCID: PMC10958433 DOI: 10.1016/j.heliyon.2024.e27978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
Endophytic fungi are known for producing secondary metabolites with valuable biological activities, including antiviral, anticancer, antibacterial, and antioxidant properties. This study aims to evaluate an endophytic fungus from Dragon Scales leaves (Drymoglossum piloselloides) and analyze its metabolites as antioxidants and antibacterials. In this study, an endophytic fungus was isolated from the leaves of Dragon Scales (D. piloselloides) and identified using molecular analysis of the Internal Transcribed Spacer (ITS) ribosomal RNA locus. The fungus was authenticated as Alternaria alternata strain K-10. Crude extracts were obtained using n-hexane and ethyl acetate and analyzed via GC-MS Shimadzu-QP 2010 Ultra with NIST spectral library. Antibacterial activity was observed against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa using the paper disc method, showing inhibition zones of 8.7-9.3 mm and 8.8-9.4 mm for ethyl acetate and n-hexane extracts, respectively. Ethyl acetate and n-hexane extracts exhibited strong antioxidant potential against 2,2-diphenyl-1-picrylhydrazil (DPPH) radical (IC50 values of 50.99 μg mL-1 and 74.44 μg mL-1, respectively). GC-MS analysis revealed 40 compounds in both extracts, some of which, including 2-ethylhexyl ester benzoic acid, benzo-b-dihydropyran-6-hydroxy-4-4-5-7-8-pentamethyl, diethyl phthalate, and octadecanoic acid, were identified through in silico analysis and found to possess antioxidant properties. These findings hold implications for potential applications of the plant and its biological constituent to be developed as lead compounds in the medical sector.
Collapse
Affiliation(s)
- Kusmiati Kusmiati
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Asrul Fanani
- Research and Education Center for Bioinformatics, Indonesia Institute of Bioinformatics, Malang, 65162, Indonesia
| | - Arif Nurkanto
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Ismu Purnaningsih
- Directorate of Scientific Collection Management, The National Research and Innovation Agency (BRIN)- KST Soekarno, Jl Raya Bogor Km 46, Cibinong Bogor, 16911, Indonesia
| | - Jendri Mamangkey
- Department of Biology Education, Faculty of Education and Teacher Training, Universitas Kristen Indonesia, Jakarta, Indonesia
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, Indonesia
| | - Indriati Ramadhani
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Dian Alfian Nurcahyanto
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Partomuan Simanjuntak
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Indonesia
| | - Fifi Afiati
- Research Center for Applied Microbiology-Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Herman Irawan
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, Indonesia
| | - Ade Lia Puteri
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Muhammad Farrel Ewaldo
- Master's Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia Jl. Salemba Raya – Jakarta Pusat, Indonesia
| | - Ario Betha Juanssilfero
- Research Center for Applied Microbiology-Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| |
Collapse
|
6
|
Ismail CMKH, Abdul Hamid AA, Abdul Rashid NN, Lestari W, Mokhtar KI, Mustafa Alahmad BE, Abd Razak MRM, Ismail A. An ensemble docking-based virtual screening and molecular dynamics simulation of phytochemical compounds from Malaysian Kelulut Honey (KH) against SARS-CoV-2 target enzyme, human angiotensin-converting enzyme 2 (ACE-2). J Biomol Struct Dyn 2024:1-30. [PMID: 38279932 DOI: 10.1080/07391102.2024.2308762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The human angiotensin-converting enzyme 2 (ACE-2) receptor is a metalloenzyme that plays an important role in regulating blood pressure by modulating angiotensin II. This receptor facilitates SARS-CoV-2 entry into human cells via receptor-mediated endocytosis, causing the global COVID-19 pandemic and a major health crisis. Kelulut honey (KH), one of Malaysian honey recently gained attention for its distinct flavour and taste while having many nutritional and medicinal properties. Recent study demonstrates the antiviral potential of KH against SARS-CoV-2 by inhibiting ACE-2 in vitro, but the bioactive compound pertaining to the ACE-2 inhibition is yet unknown. An ensemble docking-based virtual screening was employed to screen the phytochemical compounds from KH with high binding affinity against the 10 best representative structures of ACE-2 that mostly formed from MD simulation. From 110 phytochemicals previously identified in KH, 27 compounds passed the ADMET analysis and proceeded to docking. Among the docked compound, SDC and FMN consistently exhibited strong binding to ACE-2's active site (-9.719 and -9.473 kcal/mol) and allosteric site (-7.305 and -7.464 kcal/mol) as compared to potent ACE-2 inhibitor, MLN 4760. Detailed trajectory analysis of MD simulation showed stable binding interaction towards active and allosteric sites of ACE-2. KH's compounds show promise in inhibiting SARS-CoV-2 binding to ACE-2 receptors, indicating potential for preventive use or as a supplement to other COVID-19 treatments. Additional research is needed to confirm KH's antiviral effects and its role in SARS-CoV-2 therapy, including prophylaxis and adjuvant treatment with vaccination.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Che Muhammad Khairul Hisyam Ismail
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Research Unit for Bioinformatics & Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Research Unit for Bioinformatics & Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | | | - Widya Lestari
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Khairani Idah Mokhtar
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Basma Ezzat Mustafa Alahmad
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mohd Ridzuan Mohd Abd Razak
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam, Selangor, Malaysia
| | - Azlini Ismail
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
7
|
Janicka M, Sztanke M, Sztanke K. Modeling the Blood-Brain Barrier Permeability of Potential Heterocyclic Drugs via Biomimetic IAM Chromatography Technique Combined with QSAR Methodology. Molecules 2024; 29:287. [PMID: 38257200 PMCID: PMC11154582 DOI: 10.3390/molecules29020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Penetration through the blood-brain barrier (BBB) is desirable in the case of potential pharmaceuticals acting on the central nervous system (CNS), but is undesirable in the case of drug candidates acting on the peripheral nervous system because it may cause CNS side effects. Therefore, modeling of the permeability across the blood-brain barrier (i.e., the logarithm of the brain to blood concentration ratio, log BB) of potential pharmaceuticals should be performed as early as possible in the preclinical phase of drug development. Biomimetic chromatography with immobilized artificial membrane (IAM) and the quantitative structure-activity relationship (QSAR) methodology were successful in modeling the blood-brain barrier permeability of 126 drug candidates, whose experimentally-derived lipophilicity indices and computationally-derived molecular descriptors (such as molecular weight (MW), number of rotatable bonds (NRB), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), topological polar surface area (TPSA), and polarizability (α)) varied by class. The QSARs model established by multiple linear regression showed a positive effect of the lipophilicity (log kw, IAM) and molecular weight of the compound, and a negative effect of the number of hydrogen bond donors and acceptors, on the log BB values. The model has been cross-validated, and all statistics indicate that it is very good and has high predictive ability. The simplicity of the developed model, and its usefulness in screening studies of novel drug candidates that are able to cross the BBB by passive diffusion, are emphasized.
Collapse
Affiliation(s)
- Małgorzata Janicka
- Department of Physical Chemistry, Faculty of Chemistry, Institute of Chemical Science, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Małgorzata Sztanke
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland;
| | - Krzysztof Sztanke
- Laboratory of Bioorganic Compounds Synthesis and Analysis, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Saunshi YB, David CG, Pushpadass HA, Emerald Franklin ME, Awachat VB, Kadakol VR. Characterization of withanolides and bacoside A-loaded proniosomes: effect on oxidative stress and survival under hypergravity in rodent model. Drug Dev Ind Pharm 2023; 49:748-758. [PMID: 38037324 DOI: 10.1080/03639045.2023.2286702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE This work provides characterization of withanolides and bacoside A proniosomes, and evaluating their potency in rat model for combating oxidative stress-induced blood-brain barrier (BBB) damage and their survival under hypergravity. SIGNIFICANCE The delivery system was aimed for sustained drug release in plasma and brain, which could improve their efficiency and provide a therapeutic approach to combat oxidative damage and restore BBB integrity. METHODS Proniosomes were prepared using withanolides extracted from the roots of W. somnifera and bacoside A derived from the leaf extract of B. monnieri by thin film hydration technique. In vitro release of withanolides and bacoside A from the proniosomes was studied. In vivo experiments were conducted in Wistar Albino rat model to evaluate the efficacy of drug-loaded proniosomes in improving the antioxidant activity in plasma and brain, restoring BBB integrity and combating hypergravity conditions. RESULTS The withanolides and bacoside A-loaded proniosomes showed slow and sustained release of just 62.0 ± 2.87 and 62.9 ± 3.41%, respectively, in 9 h period against the release of 98-99% for the extracts that served as control. Trials conducted in vivo revealed a significant (p < .05) increase in the activity of antioxidant enzymes in both plasma and brain. Also, minimal extravasation of Evans blue dye into the brain (15 ± 0.03 and 16 ± 0.03 ng/g in treated groups against 110 ± 0.01 ng/g in control) of the rats fed with drug-loaded proniosomes was indicative of minimal damage to BBB. Rats fed with drug-loaded proniosomes survived to the extent of 75-83.3% against simulated hypergravity as compared to the control group in which only 50% survived. CONCLUSION Proniosomes provided sustained release of drugs, which helped to protect BBB integrity, thereby combating hypergravity.
Collapse
Affiliation(s)
| | - Corbon Godfrey David
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | | | | | | |
Collapse
|
9
|
Shaker B, Lee J, Lee Y, Yu MS, Lee HM, Lee E, Kang HC, Oh KS, Kim HW, Na D. A machine learning-based quantitative model (LogBB_Pred) to predict the blood-brain barrier permeability (logBB value) of drug compounds. Bioinformatics 2023; 39:btad577. [PMID: 37713469 PMCID: PMC10560102 DOI: 10.1093/bioinformatics/btad577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
MOTIVATION Efficient assessment of the blood-brain barrier (BBB) penetration ability of a drug compound is one of the major hurdles in central nervous system drug discovery since experimental methods are costly and time-consuming. To advance and elevate the success rate of neurotherapeutic drug discovery, it is essential to develop an accurate computational quantitative model to determine the absolute logBB value (a logarithmic ratio of the concentration of a drug in the brain to its concentration in the blood) of a drug candidate. RESULTS Here, we developed a quantitative model (LogBB_Pred) capable of predicting a logBB value of a query compound. The model achieved an R2 of 0.61 on an independent test dataset and outperformed other publicly available quantitative models. When compared with the available qualitative (classification) models that only classified whether a compound is BBB-permeable or not, our model achieved the same accuracy (0.85) with the best qualitative model and far-outperformed other qualitative models (accuracies between 0.64 and 0.70). For further evaluation, our model, quantitative models, and the qualitative models were evaluated on a real-world central nervous system drug screening library. Our model showed an accuracy of 0.97 while the other models showed an accuracy in the range of 0.29-0.83. Consequently, our model can accurately classify BBB-permeable compounds as well as predict the absolute logBB values of drug candidates. AVAILABILITY AND IMPLEMENTATION Web server is freely available on the web at http://ssbio.cau.ac.kr/software/logbb_pred/. The data used in this study are available to download at http://ssbio.cau.ac.kr/software/logbb_pred/dataset.zip.
Collapse
Affiliation(s)
- Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jingyu Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yunhyeok Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eunee Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Epilepsy Research Institute, Seoul 03722, Republic of Korea
| | - Hoon-Chul Kang
- Department of Anatomy College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang-Seok Oh
- Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Stępnik K, Kukula-Koch W, Plazinski W, Rybicka M, Gawel K. Neuroprotective Properties of Oleanolic Acid-Computational-Driven Molecular Research Combined with In Vitro and In Vivo Experiments. Pharmaceuticals (Basel) 2023; 16:1234. [PMID: 37765042 PMCID: PMC10536188 DOI: 10.3390/ph16091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Oleanolic acid (OA), as a ubiquitous compound in the plant kingdom, is studied for both its neuroprotective and neurotoxic properties. The mechanism of acetylcholinesterase (AChE) inhibitory potential of OA is investigated using molecular dynamic simulations (MD) and docking as well as biomimetic tests. Moreover, the in vitro SH-SY5Y human neuroblastoma cells and the in vivo zebrafish model were used. The inhibitory potential towards the AChE enzyme is examined using the TLC-bioautography assay (the IC50 value is 9.22 μM). The CH-π interactions between the central fragment of the ligand molecule and the aromatic cluster created by the His440, Phe288, Phe290, Phe330, Phe331, Tyr121, Tyr334, Trp84, and Trp279 side chains are observed. The results of the in vitro tests using the SH-SY5Y cells indicate that the viability rate is reduced to 71.5%, 61%, and 43% at the concentrations of 100 µg/mL, 300 µg/mL, and 1000 µg/mL, respectively, after 48 h of incubation, whereas cytotoxicity against the tested cell line with the IC50 value is 714.32 ± 32.40 µg/mL. The in vivo tests on the zebrafish prove that there is no difference between the control and experimental groups regarding the mortality rate and morphology (p > 0.05).
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie–Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wojciech Plazinski
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Magda Rybicka
- Department of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, ul. Abrahama 58, 80-307 Gdańsk, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, ul. Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
| |
Collapse
|
11
|
Wanat K, Brzezińska E. Chromatographic Data in Statistical Analysis of BBB Permeability Indices. MEMBRANES 2023; 13:623. [PMID: 37504989 PMCID: PMC10384010 DOI: 10.3390/membranes13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Blood-brain barrier (BBB) permeability is an essential phenomena when considering the treatment of neurological disorders as well as in the case of central nervous system (CNS) adverse effects caused by peripherally acting drugs. The presented work contains statistical analyses and the correlation assessment of the analyzed group of active pharmaceutical ingredients (APIs) with their BBB-permeability data collected from the literature (such as computational log BB; Kp,uu,brain, and CNS+/- groups). A number of regression models were constructed in order to observe the connections between the APIs' physicochemical properties in combination with their retention data from the chromatographic experiments (TLC and HPLC) and the indices of bioavailability in the CNS. Conducted analyses confirm that descriptors significant in BBB permeability modeling are hydrogen bond acceptors and donors, physiological charge, or energy of the lowest unoccupied molecular orbital. These molecular descriptors were the basis, along with the chromatographic data from the TLC in log BB regression analyses. Normal-phase TLC data showed a significant contribution to the creation of the log BB regression model using the multiple linear regression method. The model using them showed a good predictive value at the level of R2 = 0.87. Models for Kp,uu,brain resulted in lower statistics: R2 = 0.56 for the group of 23 APIs with the participation of k IAM.
Collapse
Affiliation(s)
- Karolina Wanat
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland
| | - Elżbieta Brzezińska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
12
|
Noh K, Liu X, Wei C. Optimizing transcardial perfusion of small molecules and biologics for brain penetration and biodistribution studies in rodents. Biopharm Drug Dispos 2023; 44:71-83. [PMID: 35508078 DOI: 10.1002/bdd.2317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Abstract
Efficiently removing blood from the brain vasculature is critical to evaluate accurately the brain penetration and biodistribution of drug candidates, especially for biologics as their blood concentrations are substantially higher than the brain concentrations. Transcardial perfusion has been used widely to remove residual blood in the brain; however, the perfusion conditions (such as the perfusion rate and time) reported in the literature are quite varied, and the performance of these methods on blood removal has not been investigated thoroughly. In this study, the effectiveness of the perfusion conditions was assessed by measuring brain hemoglobin levels. Sodium nitrite (NaNO2 ) as an additive in the perfusate was evaluated at different concentrations. Blood removal was significantly improved with 2% NaNO2 over a 20 min perfusion in mouse without disrupting the integrity of the blood-brain barrier (BBB). In mice, the optimized perfusion method significantly lowered the measured brain-to-plasma ratio (Kp,brain ) for monoclonal antibodies due to the removal of blood contamination and small molecules with a moderate-to-high BBB permeability and with a high brain-unbound-fraction (fu,brain ) presumably due to flux out of the brain during perfusion. Perfusion with or without NaNO2 clearly removed the residual blood in rat brain but with no difference observed in Kp,brain between the perfusion groups with or without 2% NaNO2 . In conclusion, a perfusion method was successfully developed to evaluate the brain penetration of small molecules and biologics in rodents for the first time. The transcardial perfusion with 2% NaNO2 effectively removed the residual blood in the brain and significantly improved the assessment of brain penetration of biologics. For small molecules, however, transcardial perfusion may not be performed, as small molecule compounds could be washed away from the brain by the perfusion procedure.
Collapse
Affiliation(s)
- Keumhan Noh
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts, USA
| | - Cong Wei
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Tang Q, Nie F, Zhao Q, Chen W. A merged molecular representation deep learning method for blood-brain barrier permeability prediction. Brief Bioinform 2022; 23:6674486. [PMID: 36002937 DOI: 10.1093/bib/bbac357] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 12/30/2022] Open
Abstract
The ability of a compound to permeate across the blood-brain barrier (BBB) is a significant factor for central nervous system drug development. Thus, for speeding up the drug discovery process, it is crucial to perform high-throughput screenings to predict the BBB permeability of the candidate compounds. Although experimental methods are capable of determining BBB permeability, they are still cost-ineffective and time-consuming. To complement the shortcomings of existing methods, we present a deep learning-based multi-model framework model, called Deep-B3, to predict the BBB permeability of candidate compounds. In Deep-B3, the samples are encoded in three kinds of features, namely molecular descriptors and fingerprints, molecular graph and simplified molecular input line entry system (SMILES) text notation. The pre-trained models were built to extract latent features from the molecular graph and SMILES. These features depicted the compounds in terms of tabular data, image and text, respectively. The validation results yielded from the independent dataset demonstrated that the performance of Deep-B3 is superior to that of the state-of-the-art models. Hence, Deep-B3 holds the potential to become a useful tool for drug development. A freely available online web-server for Deep-B3 was established at http://cbcb.cdutcm.edu.cn/deepb3/, and the source code and dataset of Deep-B3 are available at https://github.com/GreatChenLab/Deep-B3.
Collapse
Affiliation(s)
- Qiang Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fulei Nie
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Wei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
14
|
Vallianatou T, Tsopelas F, Tsantili-Kakoulidou A. Prediction Models for Brain Distribution of Drugs Based on Biomimetic Chromatographic Data. Molecules 2022; 27:molecules27123668. [PMID: 35744794 PMCID: PMC9227077 DOI: 10.3390/molecules27123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
The development of high-throughput approaches for the valid estimation of brain disposition is of great importance in the early drug screening of drug candidates. However, the complexity of brain tissue, which is protected by a unique vasculature formation called the blood−brain barrier (BBB), complicates the development of robust in silico models. In addition, most computational approaches focus only on brain permeability data without considering the crucial factors of plasma and tissue binding. In the present study, we combined experimental data obtained by HPLC using three biomimetic columns, i.e., immobilized artificial membranes, human serum albumin, and α1-acid glycoprotein, with molecular descriptors to model brain disposition of drugs. Kp,uu,brain, as the ratio between the unbound drug concentration in the brain interstitial fluid to the corresponding plasma concentration, brain permeability, the unbound fraction in the brain, and the brain unbound volume of distribution, was collected from literature. Given the complexity of the investigated biological processes, the extracted models displayed high statistical quality (R2 > 0.6), while in the case of the brain fraction unbound, the models showed excellent performance (R2 > 0.9). All models were thoroughly validated, and their applicability domain was estimated. Our approach highlighted the importance of phospholipid, as well as tissue and protein, binding in balance with BBB permeability in brain disposition and suggests biomimetic chromatography as a rapid and simple technique to construct models with experimental evidence for the early evaluation of CNS drug candidates.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Correspondence: (T.V.); (A.T.-K.)
| | - Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece;
| | - Anna Tsantili-Kakoulidou
- Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
- Correspondence: (T.V.); (A.T.-K.)
| |
Collapse
|
15
|
Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res 2022; 39:1415-1455. [PMID: 35359241 PMCID: PMC9246765 DOI: 10.1007/s11095-022-03241-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Limited drug delivery to the brain is one of the major reasons for high failure rates of central nervous system (CNS) drug candidates. The blood–brain barrier (BBB) with its tight junctions, membrane transporters, receptors and metabolizing enzymes is a main player in drug delivery to the brain, restricting the entrance of the drugs and other xenobiotics. Current knowledge about the uptake transporters expressed at the BBB and brain parenchymal cells has been used for delivery of CNS drugs to the brain via targeting transporters. Although many transporter-utilizing (pro)drugs and nanocarriers have been developed to improve the uptake of drugs to the brain, their success rate of translation from preclinical development to humans is negligible. In the present review, we provide a systematic summary of the current progress in development of transporter-utilizing (pro)drugs and nanocarriers for delivery of drugs to the brain. In addition, we applied CNS pharmacokinetic concepts for evaluation of the limitations and gaps in investigation of the developed transporter-utilizing (pro)drugs and nanocarriers. Finally, we give recommendations for a rational development of transporter-utilizing drug delivery systems targeting the brain based on CNS pharmacokinetic principles.
Collapse
|
16
|
In vitro blood brain barrier models: An overview. J Control Release 2022; 343:13-30. [PMID: 35026351 DOI: 10.1016/j.jconrel.2022.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/22/2022]
Abstract
Understanding the composition and function of the blood brain barrier (BBB) enables the development of novel, innovative techniques for administering central nervous system (CNS) medications and technologies for improving the existing models. Scientific and methodological interest in the pathology of the BBB resulted in the formation of numerous in vitro BBB models. Once successfully studied and modelled, it would be a valuable tool for elucidating the mechanism of action of the CNS disorders prior to their manifestation and the pathogenic factors. Understanding the rationale behind the selection of the models as well as their working may enable the development of state-of-the-art drugs for treating and managing neurological diseases. Hence, to have realistic simulation of the BBB and test its drug permeability the microfluidics-based BBB-on-Chip model has been developed. To summarise, we aim to evaluate the advanced, newly developed and frequently used in vitro BBB models, thereby providing a brief overview of the components essential for in vitro BBB formation, the methods of chip fabrication and cell culturing, its applications and the recent advances in this technological field. This will be critical for developing CNS treatments with improved BBB penetrability and pharmacokinetic properties.
Collapse
|
17
|
Radan M, Djikic T, Obradovic D, Nikolic K. Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates. Eur J Pharm Sci 2021; 168:106056. [PMID: 34740787 DOI: 10.1016/j.ejps.2021.106056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/09/2021] [Accepted: 10/31/2021] [Indexed: 11/17/2022]
Abstract
Permeability assessment of small molecules through the blood-brain barrier (BBB) plays a significant role in the development of effective central nervous system (CNS) drug candidates. Since in vivo methods for BBB permeability estimation require a lot of time and resources, in silico and in vitro approaches are becoming increasingly popular nowadays for faster and more economical predictions in early phases of drug discovery. In this work, through application of in vitro parallel artificial membrane permeability assay (PAMPA-BBB) and in silico computational methods we aimed to examine the passive permeability of eighteen compounds, which affect serotonin and dopamine levels in the CNS. The data set was consisted of novel six human dopamine transporter (hDAT) substrates that were previously identified as the most promising lead compounds for further optimisation to achieve neuroprotective effect, twelve approved CNS drugs, and their related compounds. Firstly, PAMPA methods was used to experimentally determine effective BBB permeability (Pe) for all studied compounds and obtained results were further submitted for quantitative structure permeability relationship (QSPR) analysis. QSPR models were built by using three different statistical methods: stepwise multiple linear regression (MLR), partial least square (PLS), and support-vector machine (SVM), while their predictive capability was tested through internal and external validation. Obtained statistical parameters (MLR- R2pred=-0.10; PLS- R2pred=0.64, r2m=0.69, r/2m=0.44; SVM- R2pred=0.57, r2m=0.72, r/2m=0.55) indicated that the SVM model is superior over others. The most important molecular descriptors (H0p and SolvEMt_3D) were identified and used to propose structural modifications of the examined compounds in order to improve their BBB permeability. Moreover, steered molecular dynamics (SMD) simulation was employed to comprehensively investigate the permeability pathway of compounds through a lipid bilayer. Taken together, the created QSPR model could be used as a reliable and fast pre-screening tool for BBB permeability prediction of structurally related CNS compounds, while performed MD simulations provide a good foundation for future in silico examination.
Collapse
Affiliation(s)
- Milica Radan
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical, Chemistry, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Teodora Djikic
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical, Chemistry, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Darija Obradovic
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical, Chemistry, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Katarina Nikolic
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical, Chemistry, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| |
Collapse
|
18
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxon CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002085. [PMID: 34105297 PMCID: PMC8188209 DOI: 10.1002/advs.202002085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/06/2021] [Indexed: 05/04/2023]
Abstract
The prevalence of neurological/neurodegenerative diseases, such as Alzheimer's disease is known to be increasing due to an aging population and is anticipated to further grow in the decades ahead. The treatment of brain diseases is challenging partly due to the inaccessibility of therapeutic agents to the brain. An increasingly important observation is that the physiology of the brain alters during many brain diseases, and aging adds even more to the complexity of the disease. There is a notion that the permeability of the blood-brain barrier (BBB) increases with aging or disease, however, the body has a defense mechanism that still retains the separation of the brain from harmful chemicals in the blood. This makes drug delivery to the diseased brain, even more challenging and complex task. Here, the physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles. Also, recent and novel approaches are discussed for the delivery of therapeutic agents to the diseased brain using nanoparticle based or magnetic resonance imaging guided systems. Furthermore, the complement activation, toxicity, and immunogenicity of brain targeting nanoparticles as well as novel in vitro BBB models are discussed.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Andrew G. Leach
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- Division of Pharmacy and OptometryThe University of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUK
| | - Jayden Smith
- Cambridge Innovation Technologies Consulting (CITC) LimitedSt. John's Innovation CentreCowley RoadCambridgeCB4 0WSUK
| | - Stefano Pluchino
- Department of Clinical NeurosciencesClifford Allbutt Building – Cambridge Biosciences Campus and NIHR Biomedical Research CentreUniversity of CambridgeHills RoadCambridgeCB2 0HAUK
| | - Christopher R. Coxon
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityWilliam Perkin BuildingEdinburghEH14 4ASUK
| | - Muttuswamy Sivakumaran
- Department of HaematologyPeterborough City HospitalEdith Cavell CampusBretton Gate PeterboroughPeterboroughPE3 9GZUK
| | - James Downing
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Amos A. Fatokun
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 10Barcelona08028Spain
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| |
Collapse
|
19
|
Mahajan SD, Ordain NS, Kutscher H, Karki S, Reynolds JL. HIV Neuroinflammation: The Role of Exosomes in Cell Signaling, Prognostic and Diagnostic Biomarkers and Drug Delivery. Front Cell Dev Biol 2021; 9:637192. [PMID: 33869183 PMCID: PMC8047197 DOI: 10.3389/fcell.2021.637192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
Fifty to sixty percent of HIV-1 positive patients experience HIV-1 associated neurocognitive disorders (HAND) likely due to persistent inflammation and blood-brain barrier (BBB) dysfunction. The role that microglia and astrocytes play in HAND pathogenesis has been well delineated; however, the role of exosomes in HIV neuroinflammation and neuropathogenesis is unclear. Exosomes are 50-150 nm phospholipid bilayer membrane vesicles that are responsible for cell-to-cell communication, cellular signal transduction, and cellular transport. Due to their diverse intracellular content, exosomes, are well poised to provide insight into HIV neuroinflammation as well as provide for diagnostic and predictive information that will greatly enhance the development of new therapeutic interventions for neuroinflammation. Exosomes are also uniquely positioned to be vehicles to delivery therapeutics across the BBB to modulate HIV neuroinflammation. This mini-review will briefly discuss what is known about exosome signaling in the context of HIV in the central nervous system (CNS), their potential for biomarkers as well as their potential for vehicles to deliver various therapeutics to treat HIV neuroinflammation.
Collapse
Affiliation(s)
- Supriya D. Mahajan
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Nigel Smith Ordain
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hilliard Kutscher
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Institute for Laser, Photonics and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Anesthesiology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Shanta Karki
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jessica L. Reynolds
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
20
|
El Zahar NM, Sutton JM, Bartlett MG. Assessment of brain-to-blood drug distribution using liquid chromatography. Biomed Chromatogr 2021; 35:e5123. [PMID: 33783841 DOI: 10.1002/bmc.5123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
Delivery of already existing and new drugs under development to the brain necessitates passage across the blood-brain barrier (BBB) with its tight intercellular junctions, molecular components and transporter systems. Consequently, it is critical to identify the extent of brain permeation and the partitioning across the BBB. The interpretation of brain-to-blood ratios is considered to be a significant and fundamental approach for estimating drug penetration through BBB, the brain-targeting ability and central nervous system (CNS) pharmacokinetics. Among the different bioanalytical techniques, liquid chromatography with various detectors has been widely used for determination of these ratios. This review defines the different approaches for sample preparation, extraction techniques and liquid chromatography procedures concerned with the determination of drugs in blood and brain tissues and the assessment of brain-to-blood levels. These approaches are expanded to cover the analysis of several drug classes such as CNS-acting drugs, chemotherapeutics, antidiabetics, herbal medicinal products, radiopharmaceuticals, antibiotics and antivirals. Accordingly, stability in biological matrices and matrix effects are investigated. The different administration/formulation effects and the possible deviations in these ratios are also disscussed.
Collapse
Affiliation(s)
- Noha M El Zahar
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA.,Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai Governorate, Egypt
| | - J Michael Sutton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
21
|
Wu Z, Xian Z, Ma W, Liu Q, Huang X, Xiong B, He S, Zhang W. Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105943. [PMID: 33515846 DOI: 10.1016/j.cmpb.2021.105943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors. METHODS Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output. RESULTS The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed. CONCLUSIONS ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction.
Collapse
Affiliation(s)
- Zeyu Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| | - Zhaojun Xian
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wanru Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Qingsong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Xusheng Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baoyi Xiong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wencheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
22
|
Curcio M, Cirillo G, Rouaen JRC, Saletta F, Nicoletta FP, Vittorio O, Iemma F. Natural Polysaccharide Carriers in Brain Delivery: Challenge and Perspective. Pharmaceutics 2020; 12:E1183. [PMID: 33291284 PMCID: PMC7762150 DOI: 10.3390/pharmaceutics12121183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Targeted drug delivery systems represent valuable tools to enhance the accumulation of therapeutics in the brain. Here, the presence of the blood brain barrier strongly hinders the passage of foreign substances, often limiting the effectiveness of pharmacological therapies. Among the plethora of materials used for the development of these systems, natural polysaccharides are attracting growing interest because of their biocompatibility, muco-adhesion, and chemical versatility which allow a wide range of carriers with tailored physico-chemical features to be synthetized. This review describes the state of the art in the field of targeted carriers based on natural polysaccharides over the last five years, focusing on the main targeting strategies, namely passive and active transport, stimuli-responsive materials and the administration route. In addition, in the last section, the efficacy of the reviewed carriers in each specific brain diseases is summarized and commented on in terms of enhancement of either blood brain barrier (BBB) permeation ability or drug bioavailability in the brain.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Jourdin R. C. Rouaen
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Federica Saletta
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, NSW, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| |
Collapse
|
23
|
Ciura K, Ulenberg S, Kapica H, Kawczak P, Belka M, Bączek T. Assessment of blood–brain barrier permeability using micellar electrokinetic chromatography and P_VSA-like descriptors. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Cohen-Salmon M, Slaoui L, Mazaré N, Gilbert A, Oudart M, Alvear-Perez R, Elorza-Vidal X, Chever O, Boulay AC. Astrocytes in the regulation of cerebrovascular functions. Glia 2020; 69:817-841. [PMID: 33058289 DOI: 10.1002/glia.23924] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are the most numerous type of neuroglia in the brain and have a predominant influence on the cerebrovascular system; they control perivascular homeostasis, the integrity of the blood-brain barrier, the dialogue with the peripheral immune system, the transfer of metabolites from the blood, and blood vessel contractility in response to neuronal activity. These regulatory processes occur in a specialized interface composed of perivascular astrocyte extensions that almost completely cover the cerebral blood vessels. Scientists have only recently started to study how this interface is formed and how it influences cerebrovascular functions. Here, we review the literature on the astrocytes' role in the regulation of the cerebrovascular system. We cover the anatomy and development of the gliovascular interface, the known gliovascular functions, and molecular factors, the latter's implication in certain pathophysiological situations, and recent cutting-edge experimental tools developed to examine the astrocytes' role at the vascular interface. Finally, we highlight some open questions in this field of research.
Collapse
Affiliation(s)
- Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Leila Slaoui
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Noémie Mazaré
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Alice Gilbert
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Marc Oudart
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Rodrigo Alvear-Perez
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Xabier Elorza-Vidal
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Oana Chever
- Normandie University, UNIROUEN, INSERM, DC2N, IRIB, Rouen, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
25
|
Gu Y, Ren K, Wang L, Jiang C, Yao Q. Rg1 in combination with mannitol protects neurons against glutamate-induced ER stress via the PERK-eIF2 α-ATF4 signaling pathway. Life Sci 2020; 263:118559. [PMID: 33038374 DOI: 10.1016/j.lfs.2020.118559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
AIMS Ginseng and ginsenosides are known for their remarkable effects on the central nervous system. However, pharmacokinetic studies have suggested that the Ginsenoside Rg1 (Rg1) cannot be efficiently transported through the blood-brain barrier. To investigate the effects of Rg1 in combination with mannitol protects neurons against glutamate-induced ER stress via the PERK-eIF2 -ATF4 signaling pathway. MAIN METHODS Rg1, along with the BBB permeabilizer mannitol, exhibited a potent neuroprotective effect by significantly reducing the neurological scores and infarct volume in rats exposed to middle cerebral artery occlusion. We evaluated the effect of Rg1 on neuroprotection after MCAO, and also explored its potential mechanism of action. KEY FINDINGS Our results show that Rg1 reduced the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive neurons. This neuroprotection may be dependent, at least in part, on the preservation of the endoplasmic reticulum and mitochondrial function. Ischemia-induced brain injury is largely caused by the excessive release of glutamate, which results in excitotoxicity and cell death. Neurons were pretreated with Rg1 before inducing endoplasmic reticulum stress with glutamate. A reduction in the expression of Bax and a concomitant increase in Bcl2 expression prevented the induction of apoptosis. Furthermore, Rg1 downregulated the expression of endoplasmic reticulum stress genes. SIGNIFICANCE Our results indicate that Rg1 modulation of stress-responsive genes helps prevent glutamate-induced endoplasmic reticulum stress in neurons through the PERK-eIF2-α-ATF4 signaling pathway.
Collapse
Affiliation(s)
- Yanqing Gu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kewei Ren
- Department of Orthopedics, the Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin, China
| | - Liming Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Digital Medicine Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunzhi Jiang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Qingqiang Yao
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Digital Medicine Institute, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Longuespée R, Theile D, Fresnais M, Burhenne J, Weiss J, Haefeli WE. Approaching sites of action of drugs in clinical pharmacology: New analytical options and their challenges. Br J Clin Pharmacol 2020; 87:858-874. [PMID: 32881012 DOI: 10.1111/bcp.14543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical pharmacology is an important discipline for drug development aiming to define pharmacokinetics (PK), pharmacodynamics (PD) and optimum exposure to drugs, i.e. the concentration-response relationship and its modulators. For this purpose, information on drug concentrations at the anatomical, cellular and molecular sites of action is particularly valuable. In pharmacological assays, the limited accessibility of target cells in readily available samples (i.e. blood) often hampers mass spectrometry-based monitoring of the absolute quantity of a compound and the determination of its molecular action at the cellular level. Recently, new sample collection methods have been developed for the specific capture of rare circulating cells, especially for the diagnosis of circulating tumour cells. In parallel, new advances and developments in mass spectrometric instrumentation now allow analyses to be scaled down to the cellular level. Together, these developments may permit the monitoring of minute drug quantities and show their effect at the cellular level. In turn, such PK/PD associations on a cellular level would not only enrich our pharmacological knowledge of a given compound but also expand the basis for PK/PD simulations. In this review, we describe novel concepts supporting clinical pharmacology at the anatomical, cellular and molecular sites of action, and highlight the new challenges in mass spectrometry-based monitoring. Moreover, we present methods to tackle these challenges and define future needs.
Collapse
Affiliation(s)
- Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Delsing L, Herland A, Falk A, Hicks R, Synnergren J, Zetterberg H. Models of the blood-brain barrier using iPSC-derived cells. Mol Cell Neurosci 2020; 107:103533. [PMID: 32717317 DOI: 10.1016/j.mcn.2020.103533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
The blood-brain barrier (BBB) constitutes the interface between the blood and the brain tissue. Its primary function is to maintain the tightly controlled microenvironment of the brain. Models of the BBB are useful for studying the development and maintenance of the BBB as well as diseases affecting it. Furthermore, BBB models are important tools in drug development and support the evaluation of the brain-penetrating properties of novel drug molecules. Currently used in vitro models of the BBB include immortalized brain endothelial cell lines and primary brain endothelial cells of human and animal origin. Unfortunately, many cell lines and primary cells do not recreate physiological restriction of transport in vitro. Human-induced pluripotent stem cell (iPSC)-derived brain endothelial cells have proven a promising alternative source of brain endothelial-like cells that replicate tight cell layers with low paracellular permeability. Given the possibility to generate large amounts of human iPSC-derived brain endothelial cells they are a feasible alternative when modelling the BBB in vitro. iPSC-derived brain endothelial cells form tight cell layers in vitro and their barrier properties can be enhanced through coculture with other cell types of the BBB. Currently, many different models of the BBB using iPSC-derived cells are under evaluation to study BBB formation, maintenance, disruption, drug transport and diseases affecting the BBB. This review summarizes important functions of the BBB and current efforts to create iPSC-derived BBB models in both static and dynamic conditions. In addition, it highlights key model requirements and remaining challenges for human iPSC-derived BBB models in vitro.
Collapse
Affiliation(s)
- Louise Delsing
- Institute of Neuroscience and Physiology, Department of Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden; Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden.
| | - Anna Herland
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden; AIMES, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Jane Synnergren
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
28
|
Asha Spandana K, Bhaskaran M, Karri V, Natarajan J. A comprehensive review of nano drug delivery system in the treatment of CNS disorders. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020; 12:E192. [PMID: 32102252 PMCID: PMC7076453 DOI: 10.3390/pharmaceutics12020192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/01/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
Central nervous system (CNS) disorders encompass a vast spectrum of pathological conditions and represent a growing concern worldwide. Despite the high social and clinical interest in trying to solve these pathologies, there are many challenges to bridge in order to achieve an effective therapy. One of the main obstacles to advancements in this field that has hampered many of the therapeutic strategies proposed to date is the presence of the CNS barriers that restrict the access to the brain. However, adequate brain biodistribution and neuronal cells specific accumulation in the targeted site also represent major hurdles to the attainment of a successful CNS treatment. Over the last few years, nanotechnology has taken a step forward towards the development of therapeutics in neurologic diseases and different approaches have been developed to surpass these obstacles. The versatility of the designed nanocarriers in terms of physical and chemical properties, and the possibility to functionalize them with specific moieties, have resulted in improved neurotargeted delivery profiles. With the concomitant progress in biology research, many of these strategies have been inspired by nature and have taken advantage of physiological processes to achieve brain delivery. Here, the different nanosystems and targeting moieties used to achieve a neuronal delivery reported in the open literature are comprehensively reviewed and critically discussed, with emphasis on the most recent bioinspired advances in the field. Finally, we express our view on the paramount challenges in targeted neuronal delivery that need to be overcome for these promising therapeutics to move from the bench to the bedside.
Collapse
Affiliation(s)
- Ana P. Spencer
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Marília Torrado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Beatriz Custódio
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sara C. Silva-Reis
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia D. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
30
|
Synthesis, characterization and crystal structure of new tetrahydro-β-carboline as acetylcholinesterase inhibitor. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Reynolds JL, Mahajan SD. Transmigration of Tetraspanin 2 (Tspan2) siRNA Via Microglia Derived Exosomes across the Blood Brain Barrier Modifies the Production of Immune Mediators by Microglia Cells. J Neuroimmune Pharmacol 2019; 15:554-563. [PMID: 31823250 DOI: 10.1007/s11481-019-09895-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Microglia are implicated in the neuropathogenesis of HIV. Tetraspanin 2 (Tspan2) is closely related to CD9 and CD81 proteins, and are expressed on microglia cells. They have been implicated in cell fusion and adhesion and in the immune response, and neuroinflammation. Developing therapeutics that target microglia remains a challenge as these therapeutics must cross the Blood-Brain Barrier (BBB). Our goal was to use microglia derived exosomes as a vehicle to deliver siRNA across the BBB to target human telomerase reverse transcriptase immortalized human microglial cells (HTHU) latently infected by HIV (HTHU-HIV) and to evaluate if the knockdown of Tspan2 gene expression in changes the activation state of microglia cells, thereby modulating the neuroinflammatory response. A blood brain barrier (BBB) model that closely mimics and accurately reflects the characteristics and functional properties of the in vivo BBB was used to examine HTHU microglia exosome effects on BBB permeability, and their ability to migrate across the and delivery small interfering RNA (siRNA) to cells on the CNS side of the BBB model. Exosomes were loaded with Texas-Red control siRNA (20 pmol) or Cy5-Tspan2 siRNA and then placed in the apical side of the BBB model, 24 h after incubation, HTHU-HIV cells microglial cells on the lower chamber were either imaged for siRNA uptake or analyzed for gene expression induced modifications. HTHU exosomes transmigrate from the apical side of the BBB to deliver Texas-Red control siRNA or Cy5-Tspan2 siRNA to HTHU-HIV microglia cells on the CNS side of the BBB model. A dose dependent (5-40 pmol) increase in Cy5-Tspan2 uptake with a corresponding decrease in gene expression for Tspan2 occurred in HTHU-HIV microglia. A decrease in Tspan2 gene expression as a consequence of knockdown with Tspan2 siRNA at both 20 and 40 pmol concentrations resulted in a significant decrease in C-X-C motif chemokine 12 (CXCL12) and C-X-C chemokine receptor type 4 (CXCR4) gene expression in HTHU-HIV microglia. Furthermore, a decrease in the gene expression levels of the Interleukins, IL-13 and IL-10 and an increase in the gene expression levels for the Fc gamma receptor 2A(FCGR2A) and TNF-α occurred in HTHU-HIV microglial cells These data demonstrate that HTHU exosomes cross the BBB and are efficient delivery vehicles to the CNS. Moreover, modifying the expression levels of Tspan2, has downstream consequences that includes alterations in cytokines and microglia biomarkers. Graphical Abstract Microglia-derived exosomes loaded with Tspan2 siRNA transmigrate across the BBB and knockdown Tspan2 gene expression in human microglial cells latently infected by HIV. This knockdown increases CXCL12, CXCR4, FCGR2A and TNF-α while decreasing IL-13 and IL-10 gene expression in HTHU-HIV microglial cells. Modulating Tspan2 modulates microglia cytokines and phenotype biomarkers.
Collapse
Affiliation(s)
- Jessica L Reynolds
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
32
|
Bagchi S, Chhibber T, Lahooti B, Verma A, Borse V, Jayant RD. In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des Devel Ther 2019; 13:3591-3605. [PMID: 31695329 PMCID: PMC6805046 DOI: 10.2147/dddt.s218708] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
The blood-brain barrier (BBB) is comprised of brain microvascular endothelial central nervous system (CNS) cells, which communicate with other CNS cells (astrocytes, pericytes) and behave according to the state of the CNS, by responding against pathological environments and modulating disease progression. The BBB plays a crucial role in maintaining homeostasis in the CNS by maintaining restricted transport of toxic or harmful molecules, transport of nutrients, and removal of metabolites from the brain. Neurological disorders, such as NeuroHIV, cerebral stroke, brain tumors, and other neurodegenerative diseases increase the permeability of the BBB. While on the other hand, semipermeable nature of BBB restricts the movement of bigger molecules i.e. drugs or proteins (>500 kDa) across it, leading to minimal bioavailability of drugs in the CNS. This poses the most significant shortcoming in the development of therapeutics for CNS neurodegenerative disorders. Although the complexity of the BBB (dynamic and adaptable barrier) affects approaches of CNS drug delivery and promotes disease progression, understanding the composition and functions of BBB provides a platform for novel innovative approaches towards drug delivery to CNS. The methodical and scientific interests in the physiology and pathology of the BBB led to the development and the advancement of numerous in vitro models of the BBB. This review discusses the fundamentals of BBB structure, permeation mechanisms, an overview of all the different in-vitro BBB models with their advantages and disadvantages, and rationale of selecting penetration prediction methods towards the critical role in the development of the CNS therapeutics.
Collapse
Affiliation(s)
- Sounak Bagchi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX79106, USA
| | - Tanya Chhibber
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX79106, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX79106, USA
| | - Angela Verma
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX79106, USA
| | - Vivek Borse
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Rahul Dev Jayant
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX79106, USA
| |
Collapse
|
33
|
Ciura K, Dziomba S. Application of separation methods for in vitro prediction of blood-brain barrier permeability-The state of the art. J Pharm Biomed Anal 2019; 177:112891. [PMID: 31568968 DOI: 10.1016/j.jpba.2019.112891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/03/2023]
Abstract
Despite many efforts, drug discovery pipeline is still a highly inefficient process. Nowadays, when combinatorial chemistry enables to synthesize hundreds of new drugs candidates, methods for rapid assessment of biopharmaceutical parameters of new compounds are highly desired. Over one-third of drugs candidates is rejected because of unsatisfactory pharmacokinetic properties. In the drug discovery process, the blood-brain barrier (BBB) permeability plays a critical role for central nervous system active drugs candidates as well as non-central nervous system active drugs. For this reason, knowledge on the BBB permeability of compounds is essential in the development of new medicines. The review was focused on the application of different separation methods for BBB permeability assessment. Both chromatographic and electrophoretic methods were described. In the article, the advantages and limitations of well-established chromatographic methods like immobilized artificial membrane chromatography or micellar liquid chromatography, and less common techniques were discussed. Special attention was devoted to methods were microemulsion is used as mobile or pseudostationary phases.
Collapse
Affiliation(s)
- Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 107 Hallera Street, 80-416, Gdansk, Poland.
| | - Szymon Dziomba
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 107 Hallera Street, 80-416, Gdansk, Poland
| |
Collapse
|
34
|
Lipid Reshaping and Lipophagy Are Induced in a Modeled Ischemia-Reperfusion Injury of Blood Brain Barrier. Int J Mol Sci 2019; 20:ijms20153752. [PMID: 31370282 PMCID: PMC6696511 DOI: 10.3390/ijms20153752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Ischemic-reperfusion (I/R) injury induced a remodeling of protein and lipid homeostasis, under oxidative stress and inflammatory status. Starvation occurring during I/R is a condition leading to autophagy activation, which allows abnormal material clearance or amino acid, or both, and fatty acid (FA) recycling essential for survival. This study investigated the lipid reshaping, peroxidation, and related-signaling pathways, in rat brain endothelial cells (RBE4) subjected to 3 h of oxygen and glucose deprivation (OGD) and restoration of standard condition (I/R in vitro model). Lipids and proteins were analyzed after 1 or 24 h of oxygen and nutrient restoration. Together with the oxidative stress and inflammatory status, I/R injury induced a reshaping of neutral lipids and biogenesis of lipid droplets (LD) with excessive lipid storage. The increase of LC3-II/LC3-I ratio, an autophagy marker, and LC3 co-localization with LD suggest the activation of lipophagy machinery to counteract the cell engulfment. Lipophagy leads to cholesterol ester (CE) hydrolysis, increasing free cholesterol (FC) secretion, which occurred by specific transporters or unconventional exocytosis pathways, or both. Here, we propose that an unconventional spreading of FC and other lipid metabolites may influence the neurovascular unit (NVU) cells, contributing to Blood brain barrier (BBB) alteration or adaptation, or both, to the cumulative effects of several transient ischemia.
Collapse
|
35
|
Bhuvanendran S, Hanapi NA, Ahemad N, Othman I, Yusof SR, Shaikh MF. Embelin, a Potent Molecule for Alzheimer's Disease: A Proof of Concept From Blood-Brain Barrier Permeability, Acetylcholinesterase Inhibition and Molecular Docking Studies. Front Neurosci 2019; 13:495. [PMID: 31156375 PMCID: PMC6532548 DOI: 10.3389/fnins.2019.00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
Embelin is well-known in ethnomedicine and reported to have central nervous system activities. However, there is no report on blood-brain barrier (BBB) permeability of embelin. Here the BBB permeability of embelin was evaluated using in vitro primary porcine brain endothelial cell (PBEC) model of the BBB. Embelin was also evaluated for acetylcholinesterase (AChE) inhibitory activity and docking prediction for interaction with AChE and amyloid beta (Aβ) binding sites. Embelin was found to be non-toxic to the PBECs and did not disturb the PBEC barrier function. The PBECs showed restrictive tight junctions with average transendothelial electrical resistance of 365.37 ± 113.00 Ω.cm2, for monolayers used for permeability assays. Permeability assays were conducted from apical-to-basolateral direction (blood-to-brain side). Embelin showed apparent permeability (Papp) value of 35.46 ± 20.33 × 10−6 cm/s with 85.53% recovery. In vitro AChE inhibitory assay demonstrated that embelin could inhibit the enzyme. Molecular docking study showed that embelin binds well to active site of AChE with CDOCKER interaction energy of −65.75 kcal/mol which correlates with the in vitro results. Docking of embelin with Aβ peptides also revealed the promising binding with low CDOCKER interaction energy. Thus, findings from this study indicate that embelin could be a suitable molecule to be further developed as therapeutic molecule to treat neurological disorders particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Saatheeyavaane Bhuvanendran
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nur Aziah Hanapi
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
36
|
Development of Human in vitro Brain-blood Barrier Model from Induced Pluripotent Stem Cell-derived Endothelial Cells to Predict the in vivo Permeability of Drugs. Neurosci Bull 2019; 35:996-1010. [PMID: 31079318 DOI: 10.1007/s12264-019-00384-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/02/2019] [Indexed: 10/26/2022] Open
Abstract
An in vitro blood-brain barrier (BBB) model is critical for enabling rapid screening of the BBB permeability of the drugs targeting on the central nervous system. Though many models have been developed, their reproducibility and renewability remain a challenge. Furthermore, drug transport data from many of the models do not correlate well with the data for in vivo BBB drug transport. Induced-pluripotent stem cell (iPSC) technology provides reproducible cell resources for in vitro BBB modeling. Here, we generated a human in vitro BBB model by differentiating the human iPSC (hiPSC) line GM25256 into brain endothelial-type cells. The model displayed BBB characteristics including tight junction proteins (ZO-1, claudin-5, and occludin) and endothelial markers (von Willebrand factor and Ulex), as well as high trans-endothelial electrical resistance (TEER) (1560 Ω.cm2 ± 230 Ω.cm2) and γ-GTPase activity. Co-culture with primary rat astrocytes significantly increased the TEER of the model (2970 Ω.cm2 to 4185 Ω.cm2). RNAseq analysis confirmed the expression of key BBB-related genes in the hiPSC-derived endothelial cells in comparison with primary human brain microvascular endothelial cells, including P-glycoprotein (Pgp) and breast cancer resistant protein (BCRP). Drug transport assays for nine CNS compounds showed that the permeability of non-Pgp/BCRP and Pgp/BCRP substrates across the model was strongly correlated with rodent in situ brain perfusion data for these compounds (R2 = 0.982 and R2 = 0.9973, respectively), demonstrating the functionality of the drug transporters in the model. Thus, this model may be used to rapidly screen CNS compounds, to predict the in vivo BBB permeability of these compounds and to study the biology of the BBB.
Collapse
|
37
|
Sato K. [Consideration for future in vitro BBB models - technical development to investigate the drug delivery to the CNS]. Nihon Yakurigaku Zasshi 2019; 152:287-294. [PMID: 30531099 DOI: 10.1254/fpj.152.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Blood vessels in the central nervous system (CNS) limit the material exchange between blood and parenchyma by blood brain barrier (BBB). At present, no appropriate in vitro BBB models are available for the investigation whether or not the candidate compounds for new drugs could be delivered to the CNS. This causes huge difficulties of the development of CNS drugs and prediction of CNS adverse effects. In this review, I first outline the structures and functions of BBB, together with the parameters used for the quantification of BBB functions. I also introduce the history of in vitro BBB models used in the drug development so far, i.e., the transition from non-cell models to the models using primary culture of rodent cells, porcine, bovine, cell lines, etc. More recently, the application of human cells differentiated from human induced pluripotent stem cells and microfluidic engineering have already started. BBB is essential for the maintenance of brain homeostasis and the mechanisms of the BBB development will be clarified by reproducing functional BBB on the dish. The new in vitro models and the data may provide accurate prediction of drug delivery to the CNS and the improvement of the evaluation system for toxicity and safety, thereby leading to successful launch of new drugs on the market.
Collapse
|
38
|
Johnson SL, Kirk RD, DaSilva NA, Ma H, Seeram NP, Bertin MJ. Polyphenol Microbial Metabolites Exhibit Gut and Blood⁻Brain Barrier Permeability and Protect Murine Microglia against LPS-Induced Inflammation. Metabolites 2019; 9:metabo9040078. [PMID: 31010159 PMCID: PMC6523162 DOI: 10.3390/metabo9040078] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence supports the beneficial effects of polyphenol-rich diets, including the traditional Mediterranean diet, for the management of cardiovascular disease, obesity and neurodegenerative diseases. However, a common concern when discussing the protective effects of polyphenol-rich diets against diseases is whether these compounds are present in systemic circulation in their intact/parent forms in order to exert their beneficial effects in vivo. Here, we explore two common classes of dietary polyphenols, namely isoflavones and lignans, and their gut microbial-derived metabolites for gut and blood-brain barrier predicted permeability, as well as protection against neuroinflammatory stimuli in murine BV-2 microglia. Polyphenol microbial metabolites (PMMs) generally showed greater permeability through artificial gut and blood-brain barriers compared to their parent compounds. The parent polyphenols and their corresponding PMMs were evaluated for protective effects against lipopolysaccharide-induced inflammation in BV-2 microglia. The lignan-derived PMMs, equol and enterolactone, exhibited protective effects against nitric oxide production, as well as against pro-inflammatory cytokines (IL-6 and TNF-α) in BV-2 microglia. Therefore, PMMs may contribute, in large part, to the beneficial effects attributed to polyphenol-rich diets, further supporting the important role of gut microbiota in human health and disease prevention.
Collapse
Affiliation(s)
- Shelby L Johnson
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Riley D Kirk
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Nicholas A DaSilva
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Hang Ma
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Navindra P Seeram
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Matthew J Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
39
|
In Vitro Cell Models of the Human Blood-Brain Barrier: Demonstrating the Beneficial Influence of Shear Stress on Brain Microvascular Endothelial Cell Phenotype. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-8946-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 2018; 180:117-129. [PMID: 30032046 PMCID: PMC6201194 DOI: 10.1016/j.biomaterials.2018.07.014] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) regulates molecular trafficking, protects against pathogens, and prevents efficient drug delivery to the brain. Models to date failed to reproduce the human anatomical complexity of brain barriers, contributing to misleading results in clinical trials. To overcome these limitations, a novel 3-dimensional BBB microvascular network model was developed via vasculogenesis to accurately replicate the in vivo neurovascular organization. This microfluidic system includes human induced pluripotent stem cell-derived endothelial cells, brain pericytes, and astrocytes as self-assembled vascular networks in fibrin gel. Gene expression of membrane transporters, tight junction and extracellular matrix proteins, was consistent with computational analysis of geometrical structures and quantitative immunocytochemistry, indicating BBB maturation and microenvironment remodelling. Confocal microscopy validated microvessel-pericyte/astrocyte dynamic contact-interactions. The BBB model exhibited perfusable and selective microvasculature, with permeability lower than conventional in vitro models, and similar to in vivo measurements in rat brain. This robust and physiologically relevant BBB microvascular model offers an innovative and valuable platform for drug discovery to predict neuro-therapeutic transport efficacy in pre-clinical applications as well as recapitulate patient-specific and pathological neurovascular functions in neurodegenerative disease.
Collapse
Affiliation(s)
- Marco Campisi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA
| | - Yoojin Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA
| | - Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA
| | - Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Room NE47-321, Cambridge, MA, 02139, USA; Singapore-MIT Alliance for Research&Technology (SMART), BioSytems and Micromechanics (BioSyM), Singapore, Singapore.
| |
Collapse
|
41
|
Yu F, Selva Kumar ND, Choudhury D, Foo LC, Ng SH. Microfluidic platforms for modeling biological barriers in the circulatory system. Drug Discov Today 2018; 23:815-829. [PMID: 29357288 DOI: 10.1016/j.drudis.2018.01.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
Abstract
Microfluidic platforms have recently become popular as in vitro models because of their superiority in recapitulating microenvironments compared with conventional in vitro models. By providing various biochemical and biomechanical cues, healthy and diseased models at the organ level can be applied to disease progression and treatment studies. Microfluidic technologies are especially suitable for modeling biological barriers because the flow in the microchannels mimics the blood flow and body fluids at the interfaces of crucial organs, such as lung, intestine, liver, kidney, brain, and skin. These barriers have similar structures and can be studied with similar approaches for the testing of pharmaceutical compounds. Here, we review recent developments in microfluidic platforms for modeling biological barriers in the circulatory system.
Collapse
Affiliation(s)
- Fang Yu
- Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, #08-04, Innovis, Singapore 138634, Republic of Singapore
| | - Nivasini D/O Selva Kumar
- Institute of Molecular and Cell Biology, 61 Biopolis Dr, Singapore 138673, Republic of Singapore
| | - Deepak Choudhury
- Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, #08-04, Innovis, Singapore 138634, Republic of Singapore.
| | - Lynette C Foo
- Institute of Molecular and Cell Biology, 61 Biopolis Dr, Singapore 138673, Republic of Singapore
| | - Sum Huan Ng
- Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, #08-04, Innovis, Singapore 138634, Republic of Singapore
| |
Collapse
|
42
|
The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions. Future Med Chem 2018; 10:423-432. [PMID: 29380627 DOI: 10.4155/fmc-2017-0151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The research into the use of small molecules as drugs continues to be a key driver in the development of molecular databases, computer-aided drug design software and collaborative platforms. The evolution of computational approaches is driven by the essential criteria that a drug molecule has to fulfill, from the affinity to targets to minimal side effects while having adequate absorption, distribution, metabolism, and excretion (ADME) properties. A combination of ligand- and structure-based drug development approaches is already used to obtain consensus predictions of small molecule activities and their off-target interactions. Further integration of these methods into easy-to-use workflows informed by systems biology could realize the full potential of available data in the drug discovery and reduce the attrition of drug candidates.
Collapse
|
43
|
Blood-brain barrier permeability and neuroprotective effects of three main alkaloids from the fruits of Euodia rutaecarpa with MDCK-pHaMDR cell monolayer and PC12 cell line. Biomed Pharmacother 2017; 98:82-87. [PMID: 29245070 DOI: 10.1016/j.biopha.2017.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
The fruits of Euodia rutaecarpa (Euodiae Fructus, EF), the widely used traditional Chinese medicine, have various central nervous system effects. Alkaloids following as evodiamine (EDM), rutaecarpine (RCP) and dehydroevodiamine (DEDM) are the major substances in EF. The MDCK-pHaMDR cell monolayer model was utilized as a blood-brain barrier (BBB) surrogate model to study their BBB permeability. The transport samples were analyzed by high performance liquid chromatography and the apparent permeability coefficients (Papp) were calculated. EDM and RCP showed high permeability through BBB by passive diffusion, while DEDM showed moderate permeability with efflux mechanism related to P-glycoprotein (P-gp). EDM and RCP could also reduce the efflux of DEDM probably by inhibiting P-gp. The neuroprotective effects of the three alkaloids were then studied on the PC12 cell line injured by 1-methyl-4-phenylpyridinium ion (MPP+) or hydrogen peroxide (H2O2). EDM could significantly reduce MPP+ or H2O2-induced cell injury dose-dependently. RCP could increase the cell viability in MPP+ treated group while DEDM showed a protective effect against H2O2 injury. This study predicted the permeability of EDM, RCP and DEDM through BBB and discovered the neuroprotective substance basis of EF as a potential encephalopathy drug.
Collapse
|
44
|
The Blood-Brain Barrier Permeability of Six Indole Alkaloids from Uncariae Ramulus Cum Uncis in the MDCK-pHaMDR Cell Monolayer Model. Molecules 2017; 22:molecules22111944. [PMID: 29125571 PMCID: PMC6150385 DOI: 10.3390/molecules22111944] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 01/21/2023] Open
Abstract
Uncariae Ramulus Cum Uncis (URCU) is a widely used traditional Chinese medicine, and is reported to have various central nervous system effects. Alkaloids have been demonstrated to be the predominant pharmacological active components of URCU. In order to evaluate the blood-brain barrier (BBB) permeability and transport mechanism of six typical indole alkaloids from URCU, the MDCK-pHaMDR cell monolayer model was used as an in vitro surrogate model for BBB. The samples were analyzed by high-performance liquid chromatography, and the apparent permeability coefficients (Papp) were calculated. Among the six alkaloids, isorhynchophylline (2), isocorynoxeine (4), hirsutine (5) and hirsuteine (6) showed high permeability, with Papp values at 10−5 cm/s level in bidirectional transport. For rhynchophylline (1) and corynoxeine (3), they showed moderate permeability, with Papp values from the apical (AP) side to the basolateral (BL) side at 10−6 cm/s level and efflux ratio (Papp BL→AP/Papp AP→BL) above 2. The time- and concentration-dependency experiments indicated that the main mechanism for 2, 4, 5 and 6 through BBB was passive diffusion. The efflux mechanism involved in the transports of compounds 1 and 3 could be reduced significantly by verapamil, and molecular docking screening also showed that 1 and 3 had strong bindings to P-glycoprotein. This study provides useful information for predicting the BBB permeability for 1–6, as well as better understanding of their central nervous system pharmacological activities.
Collapse
|
45
|
Phan DTT, Bender RHF, Andrejecsk JW, Sobrino A, Hachey SJ, George SC, Hughes CCW. Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface. Exp Biol Med (Maywood) 2017; 242:1669-1678. [PMID: 28195514 PMCID: PMC5786363 DOI: 10.1177/1535370217694100] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood-brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer's disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood-brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood-brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood-brain barrier pathology, recent advances in the development of novel 3D blood-brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood-brain barrier, and provide an outlook on how these blood-brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood-Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer's disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB - something that until recently had not been well modeled by in vitro systems. Our hope is that this review will provide a launch pad for new ideas and methodologies that can provide us with truly physiological BBB models capable of yielding new insights into the function of this critical interface.
Collapse
Affiliation(s)
- Duc TT Phan
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - R Hugh F Bender
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jillian W Andrejecsk
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Agua Sobrino
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Stephanie J Hachey
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Christopher CW Hughes
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
46
|
Shen J, Zhao Z, Shang W, Liu C, Zhang B, Zhao L, Cai H. Ginsenoside Rg1 nanoparticle penetrating the blood-brain barrier to improve the cerebral function of diabetic rats complicated with cerebral infarction. Int J Nanomedicine 2017; 12:6477-6486. [PMID: 28919749 PMCID: PMC5592953 DOI: 10.2147/ijn.s139602] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetic cerebral infarction is with poorer prognosis and high rates of mortality. Ginsenoside Rg1 (Rg1) has a wide variety of therapeutic values for central nervous system (CNS) diseases for the neuron protective effects. However, the blood–brain barrier (BBB) restricts Rg1 in reaching the CNS. In this study, we investigated the therapeutic effects of Rg1 nanoparticle (PHRO, fabricated with γ-PGA, L-PAE (H), Rg1, and OX26 antibody), targeting transferrin receptor, on the diabetes rats complicated with diabetic cerebral infarction in vitro and in vivo. Dynamic light scattering analysis shows the average particle size of PHRO was 79±18 nm and the polydispersity index =0.18. The transmission electron microscope images showed that all NPs were spherical in shape with diameters of 89±23 nm. PHRO released Rg1 with sustained release manner and could promote the migration of cerebrovascular endothelial cells and tube formation and even penetrated the BBB in vitro. PHRO could penetrate the BBB with high concentration in brain tissue to reduce the cerebral infarction volume and promote neuronal recovery in vivo. PHRO was promising to be a clinical treatment of diabetes mellitus with cerebral infarction.
Collapse
Affiliation(s)
- Junyi Shen
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhiming Zhao
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Shang
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Chunli Liu
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Beibei Zhang
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Lingjie Zhao
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hui Cai
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
47
|
Li Y, Chen T, Miao X, Yi X, Wang X, Zhao H, Lee SMY, Zheng Y. Zebrafish: A promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacol Res 2017; 125:246-257. [PMID: 28867638 DOI: 10.1016/j.phrs.2017.08.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/17/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
The blood brain barrier (BBB) is the network of capillaries that controls the passage of substances from the blood into the brain and other parts of the central nervous system (CNS). As this barrier is the major obstacle for drug delivery into CNS, a credible BBB model is very necessary to assess the BBB permeability of novel neuroactive compounds including thousands of bioactive compounds which have been extracted from medicinal plants and have the potential for the treatment of CNS diseases. Increasing reports indicated that zebrafish has emerged as a timely, reproducible model for BBB permeability assessment. In this review, the development and functions of the BBB in zebrafish, such as its anatomical morphology, tight junctions, drug transporters and enzyme expression, are compared with those in mammals. The studies outlined in this review describe the utilization of the zebrafish as a BBB model to investigate the permeability and distribution of fluorescent dyes and drugs. Particularly, this review focuses on the use of zebrafish to evaluate the delivery of natural products and nanosized drug delivery systems across the BBB. Due to the highly conserved nature of both the structure and function of the BBB between zebrafish and mammals, zebrafish has the potential to be developed as a model for assessing and predicting the permeability of BBB to novel compounds.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tongkai Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaoqing Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiang Yi
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
48
|
In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070708. [PMID: 28665355 PMCID: PMC5551146 DOI: 10.3390/ijerph14070708] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 01/20/2023]
Abstract
Intestinal absorption and brain permeation constitute key parameters of toxicokinetics for pesticides, conditioning their toxicity, including neurotoxicity. However, they remain poorly characterized in humans. The present study was therefore designed to evaluate human intestine and brain permeation for a large set of pesticides (n = 338) belonging to various chemical classes, using an in silico graphical BOILED-Egg/SwissADME online method based on lipophilicity and polarity that was initially developed for drugs. A high percentage of the pesticides (81.4%) was predicted to exhibit high intestinal absorption, with a high accuracy (96%), whereas a lower, but substantial, percentage (38.5%) displayed brain permeation. Among the pesticide classes, organochlorines (n = 30) constitute the class with the lowest percentage of intestine-permeant members (40%), whereas that of the organophosphorus compounds (n = 99) has the lowest percentage of brain-permeant chemicals (9%). The predictions of the permeations for the pesticides were additionally shown to be significantly associated with various molecular descriptors well-known to discriminate between permeant and non-permeant drugs. Overall, our in silico data suggest that human exposure to pesticides through the oral way is likely to result in an intake of these dietary contaminants for most of them and brain permeation for some of them, thus supporting the idea that they have toxic effects on human health, including neurotoxic effects.
Collapse
|
49
|
Li Y, Miao X, Chen T, Yi X, Wang R, Zhao H, Lee SMY, Wang X, Zheng Y. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers. Colloids Surf B Biointerfaces 2017; 156:227-235. [PMID: 28544957 DOI: 10.1016/j.colsurfb.2017.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
With the wide application of nanotechnology to drug delivery systems, a simple, dynamic and visual in vivo model for high-throughput screening of novel formulations with fluorescence markers across biological barriers is desperately needed. In vitro cell culture models have been widely used, although they are far from a complimentary in vivo system. Mammalian animal models are common predictive models to study transport, but they are costly and time consuming. Zebrafish (Danio rerio), a small vertebrate model, have the potential to be developed as an "intermediate" model for quick evaluations. Based on our previously established coumarin 6 nanocrystals (C6-NCs), which have two different sizes, the present study investigates the transportation of C6-NCs across four biological barriers, including the chorion, blood brain barrier (BBB), blood retinal barrier (BRB) and gastrointestinal (GI) barrier, using zebrafish embryos and larvae as in vivo models. The biodistribution and elimination of C6 from different organs were quantified in adult zebrafish. The results showed that compared to 200nm C6-NCs, 70nm C6-NCs showed better permeability across these biological barriers. A FRET study suggested that intact C6-NCs together with the free dissolved form of C6 were absorbed into the larval zebrafish. More C6 was accumulated in different organs after incubation with small sized NCs via lipid raft-mediated endocytosis in adult zebrafish, which is consistent with the findings from in vitro cell monolayers and the zebrafish larvae model. C6-NCs could be gradually eliminated in each organ over time. This study demonstrated the successful application of zebrafish as a simple and dynamic model to simultaneously assess the transport of nanosized drug delivery systems across several biological barriers and biodistribution in different organs, especially in the brain, which could be used for central nervous system (CNS) drug and delivery system screening.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaoqing Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tongkai Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiang Yi
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
50
|
Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells. Fluids Barriers CNS 2017; 14:9. [PMID: 28407791 DOI: 10.1186/s12987-017-0059-0/figures/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/04/2017] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods. METHODS Induced pluripotent stem cells were seeded at defined densities and differentiated to BMECs using defined medium termed E6. Resultant purified BMEC phenotypes were assessed through trans-endothelial electrical resistance (TEER), fluorescein permeability, and P-glycoprotein and MRP family efflux transporter activity. Expression of endothelial markers and their signature tight junction proteins were confirmed using immunocytochemistry. The influence of co-culture with astrocytes and pericytes on purified BMECs was assessed via TEER measurements. The robustness of the differentiation method was confirmed across independent iPSC lines. RESULTS The use of E6 medium, coupled with updated culture methods, reduced the differentiation time of iPSCs to BMECs from thirteen to 8 days. E6-derived BMECs expressed GLUT-1, claudin-5, occludin, PECAM-1, and VE-cadherin and consistently achieved TEER values exceeding 2500 Ω × cm2 across multiple iPSC lines, with a maximum TEER value of 4678 ± 49 Ω × cm2 and fluorescein permeability below 1.95 × 10-7 cm/s. E6-derived BMECs maintained TEER above 1000 Ω × cm2 for a minimum of 8 days and showed no statistical difference in efflux transporter activity compared to BMECs differentiated by conventional means. The method was also found to support long-term stability of BMECs harboring biallelic PARK2 mutations associated with Parkinson's Disease. Finally, BMECs differentiated using E6 medium responded to inductive cues from astrocytes and pericytes and achieved a maximum TEER value of 6635 ± 315 Ω × cm2, which to our knowledge is the highest reported in vitro TEER value to date. CONCLUSIONS Given the accelerated differentiation, equivalent performance, and reduced cost to produce BMECs, our updated methods should make iPSC-derived in vitro BBB models more accessible for a wide variety of applications.
Collapse
Affiliation(s)
- Emma K Hollmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Amanda K Bailey
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Archit V Potharazu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - M Diana Neely
- Department of Pediatrics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN, 37232, USA
| | - Aaron B Bowman
- Department of Biochemistry, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
- Department of Pediatrics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN, 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN, 37232, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA.
| |
Collapse
|