1
|
Costa MP, de Souza ID, Giacomini MC, Zabeu GS, Jacomine JC, Wang L. Impact of S-PRG/Giomer and Bulk-fill technologies on the hygroscopic profile of resin composites under erosive condition. J Dent 2024; 152:105440. [PMID: 39481827 DOI: 10.1016/j.jdent.2024.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE The emergence of new resin composites (RCs) incorporating bioactive ingredients and/or used as bulk-fill materials aims to enhance restorative potential beyond just the mechanical properties. However, this innovation may affect their performance under clinically simulated conditions, such as erosive challenges (EC). This study evaluated the impact of different technologies on the hygroscopic properties of RCs. MATERIALS AND METHODS The evaluated materials were: Gold Label - GL (resin-modified glass-ionomer cement - control); Filtek Z350 - FZ (no bioactive control); Filtek One Bulk - FO (bulk-fill); Beautifil II - BII (bioactive/S-PRG); Beautifil Bulk - BB (bioactive/S-PRG + bulk-fill). Disk-shaped specimens (10 mm x1 mm) were prepared and evaluated by: 1) water sorption - WS and solubility - WSB (n = 10); 2) wettability - W (n = 6); 3) surface microhardness - SM (n = 6); 4) qualitative surface analysis by SEM (n = 3). Except for WS and WSB, tests were performed before and after EC. Data were analyzed by two-factor ANOVA and Tukey tests (p < 0.05). RESULTS Positive WS and negative WSB were observed for all materials. In terms of W, GL>BII>FZ>BB>FO. GL and BB exhibited similar/lower SM. EC hampered SM for all materials. CONCLUSIONS It may be concluded that the composition and proportion of monomers have a greater influence on the hygroscopic profile of resin composites than the incorporation of bioactive components. CLINICAL SIGNIFICANCE While renewed technologies have introduced components to enhance the performance and practicality of resin composites, actual clinical longevity depends on challenges such as erosive conditions. Bioactive ingredients seem to be beneficial without impairing the hygroscopic profile, whereas the monomers can interfere.
Collapse
Affiliation(s)
- Mylena Proença Costa
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Otávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil.
| | - Isabella Dorigheto de Souza
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Otávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil; Department of Orthodontics, Hospital for Rehabilitation of Craniofacial Anomalies, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | - Marina Ciccone Giacomini
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Otávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil.
| | - Giovanna Speranza Zabeu
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Otávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil; School of Dentistry, Centro Universitário Sagrado Coração - UNISAGRADO, Bauru, SP, Brazil.
| | - Juliana Carvalho Jacomine
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Otávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil.
| | - Linda Wang
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Otávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil.
| |
Collapse
|
2
|
Wei F, Bai T, Chen H, Sun G, Chen X, Zhu S. Light-curable urushiol enhanced bisphenol A glycidyl dimethacrylate dentin bonding agent. J Dent 2024; 148:105261. [PMID: 39047891 DOI: 10.1016/j.jdent.2024.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/07/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES The low durability of composite resin restorations can be attributed to the degradation of the resin dentin bonding interface. Owing to the presence of hydrophilic components in the adhesive, the integrity of the resin dentin bonding interface is easily compromised, which, in turn, leads to a reduction in bond strength. The hydrophilic nature of the adhesive leads to water sorption, phase separation, and leaching of the resin component. Therefore, hydrophobic adhesives could effectively be used to stabilize the integrity and durability of the resin dentin bonding interface. METHODS We synthesized a novel hydrophobic dentin adhesive by partially replacing bisphenol A glycidyl dimethacrylate (Bis-GMA) with a light-curable urushiol monomer. The properties of the produced adhesive, including the degree of conversion, viscosity, contact angle, water sorption/solubility, and mechanical strength, were comprehensively examined and compared to those of the commercially adhesive Adper Single Bond2 as a positive control. The adhesive properties were determined using microtensile bond strength measurements, laser confocal microscopy, scanning electron microscopy observations, and nanoleakage tests. Finally, the novel adhesive was subjected to biocompatibility testing to determine its potential cytotoxicity. RESULTS At a light-curable urushiol content of 20 %, the synthesized adhesive exhibited high degrees of conversion and hydrophobicity, low cytotoxicity, good mechanical properties, and outstanding adhesive strength. CONCLUSIONS The introduction of the light-curable urushiol into dentin adhesives can significantly enhance their hydrophobic, mechanical, and bonding properties, demonstrating potential to significantly improve restoration longevity. CLINICAL SIGNIFICANCE The integration of light-curable urushiol has endowed the experimental adhesives with several enhanced functionalities. These notable benefits underscore the suitability of this monomer for expanded applications in clinical practice.
Collapse
Affiliation(s)
- Fei Wei
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China
| | - Tingting Bai
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China
| | - Huan Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China
| | - Guangdi Sun
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China
| | - Xue Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province, PR China.
| |
Collapse
|
3
|
Hampe T, Liersch J, Wiechens B, Bürgers R, Krohn S. Bisphenol A release from CAD/CAM splint materials. Eur J Oral Sci 2024; 132:e12993. [PMID: 38778467 DOI: 10.1111/eos.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
This study aimed to investigate the bisphenol A (BPA) release from four CAD/CAM splint materials: three polycarbonate-based (DD BioSplint C, Splint Plus Biostar, Temp Premium Flexible) and one polymethylmethacrylate-based (Temp Basic) material. From each material, ten cylindrical samples (n = 40) were immersed in high-performance liquid chromatography (HPLC) grade water following ISO 10993-12 and incubated for 24 h in an incubation shaker at 37°C and 112 rpm. Following BPA derivatization, analysis was performed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). After 24 h of incubation, all investigated materials released significant amounts of BPA compared to water blanks. The material-dependent elution increased in the following order: DD BioSplint C < Splint Plus Biostar < Temp Basic < Temp Premium Flexible. Subtracting extraneous BPA, the concentrations ranged between 2.27 ng/mL and 12.65 ng/mL. After extrapolating the concentrations in relation to the average surface area of occlusal splints, the amount of BPA per mL exceeded the Tolerable Daily Intake (TDI) set by the European Union for a person weighing 70 kg by 1.32-6.16 times. Contrary to the release from previously investigated materials, BPA elution from CAD/CAM splint materials was highly elevated. Considering the increasing adaptation of CAD/CAM techniques, elution from them may represent a relevant BPA source in daily dental practice.
Collapse
Affiliation(s)
- Tristan Hampe
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Liersch
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernhard Wiechens
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
- Department of Orthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Bürgers
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Krohn
- Department of Prosthodontics, University Medical Center Göttingen, Göttingen, Germany
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Tauseef K, Amin F, Moin SF, Khurshid Z, Aslam K, Jabeen B. Evaluation of the Impact of Irradiance Lamps and Storage Media on Elution of TEGDMA from Dental Composites. Eur J Dent 2024. [PMID: 38788770 DOI: 10.1055/s-0044-1786876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVES The aim of this study was to evaluate and compare the effect of irradiance light and storage media on the elution of triethylene glycol dimethacrylate (TEGDMA) from conventional Filtek Z350XT 3M ESPE and two bulk-fill composites Shofu Beautifil-Bulk and Filtek Bulk fill flowable 3M ESPE using high-performance liquid chromatography (HPLC). MATERIALS AND METHODS Shofu Beautifil-Bulk, Filtek Bulk fill flowable 3M ESPE, and Filtek Z350XT 3M ESPE were the three types of composites used in this study. Disk shaped samples of 4-mm thickness and 10-mm diameter were fabricated using a stainless steel mold and were polymerized using light emitting diode (LED) and quartz tungsten halogen (QTH) lamps. After polymerization, the samples were immersed in ethanol, artificial saliva with betel quid extract, and distilled water for 1, 7, and 30 days, respectively. The elution of monomer TEGDMA was evaluated using HPLC. STATISTICAL ANALYSIS To evaluate the mean concentration difference, mixed way analysis of variance (ANOVA) was applied. Between different light, materials, and within the time duration, Tukey's post hoc test was used. A p value of 0.05 was considered significant. RESULTS During the first day of storage, a significant amount of monomer TEGDMA elution was seen in all the materials. The highest values observed to be in the disks cured with QTH lamp. However, the highest elution was seen when the disks were immersed in ethanol/water solution. While the most stable medium was distilled water, artificial saliva with betel nut extract also had a significant effect on the elution of TEGDMA. The highest value obtained was of Filtek Bulk fill flowable 3M ESPE after 30 days of immersion in both LED and QTH cured disks. CONCLUSION Filtek Bulk fill flowable 3M ESPE shows better properties in relation to the release of monomer TEGDMA as it releases less amount of monomer in the storage media. The release of monomer was highest in ethanol as compared to artificial saliva and distilled water with the passage of time.
Collapse
Affiliation(s)
- Kiran Tauseef
- Department of Dental Material, Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Faiza Amin
- Department of Dental Material, Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Faraz Moin
- Dr. Zafar H Zaidi Centre for Proteomics, University of Karachi, Karachi, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al Ahsa, Saudi Arabia
| | - Kashif Aslam
- Department of Prosthodontics, Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Bushra Jabeen
- Department of Prosthodontics, Dow International Dental College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
5
|
Süsgün Yıldırım Z, Batmaz SG. Monomer release, cell adhesion, and cell viability of indirect restorative materials manufactured with additive, subtractive, and conventional methods. J Oral Sci 2024; 66:9-14. [PMID: 37866923 DOI: 10.2334/josnusd.23-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
PURPOSE The aim of this study was to measure residual monomer, cell adhesion, and cell viability of 3-dimensional printable permanent resin (PR), hybrid ceramic block (HCB), and indirect composite (IC) produced with additive, subtractive, and conventional techniques. METHODS Five 8 × 8 × 2 mm3 samples of each material were prepared for each experiment. In a 24-h period, monomer release was analyzed with high-performance liquid chromatography, and cell viability and adhesion were evaluated with the water-soluble tetrazolium salt test. Data were analyzed with IBM SPSS Statistics 26.0 statistical software, and results were regarded as significant at α = 0.05. RESULTS Monomer release (triethylene glycol dimethacrylate, urethane dimethacrylate, and Bisphenol A glycerolate dimethacrylate) was significantly higher in the IC group. Mean cell viability was significantly lower in the HCB group than in the IC group. CONCLUSION All monomers in the tested materials were released at rates that were below clinical significance. Cell adhesion rates in the groups were similar. Cytotoxic response was classified as minor in the HCB and PR groups and non-cytotoxic in the IC group.
Collapse
Affiliation(s)
| | - Sevde Gül Batmaz
- Department of Restorative Dentistry, Faculty of Dentistry, Cukurova University
| |
Collapse
|
6
|
Ghodsi S, Shekarian M, Aghamohseni MM, Rasaeipour S, Arzani S. Resin cement selection for different types of fixed partial coverage restorations: A narrative systematic review. Clin Exp Dent Res 2023; 9:1096-1111. [PMID: 37427500 PMCID: PMC10728549 DOI: 10.1002/cre2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE The aim of this study was to review the selection criteria of resin cements for different types of partial coverage restorations (PCRs) and investigate if the type of restorations or restorative materials affect the type of selected resin cement. MATERIALS AND METHODS An electronic search (1991-2023) was performed in PubMed, Medline, Scopus, and Google Scholar databases by combinations of related keywords. RESULTS A total of 68 articles were included to review the selection criteria based on the advantages, disadvantages, indications, and performance of resin cements for different types of PCRs. CONCLUSIONS The survival and success of PCRs are largely affected by appropriate cement selection. Self-curing and dual-curing resin cements have been recommended for the cementation of metallic PCRs. The PCRs fabricated from thin, translucent, and low-strength ceramics could be adhesively bonded by light-cure conventional resin cements. Self-etching and self-adhesive cements, especially dual-cure types, are not generally indicated for laminate veneers.
Collapse
Affiliation(s)
- Safoura Ghodsi
- Dental Research Center, Dentistry Research Institute, Department of ProsthodonticsTehran University of Medical SciencesTehranIran
| | - Mina Shekarian
- Dental Research Center, Dental Research Institute, School of DentistryIsfahan University of Medical SciencesIsfahanIran
| | | | - Sasan Rasaeipour
- Fellowship in Implant DentistryTehran University of Medical SciencesTehranIran
| | - Sarah Arzani
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
7
|
Kulanthaivel S, Poppen J, Ribeiro Cunha S, Furman B, Whang K, Teixeira EC. Development of a Boron Nitride-Filled Dental Adhesive System. Polymers (Basel) 2023; 15:3512. [PMID: 37688138 PMCID: PMC10489713 DOI: 10.3390/polym15173512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
There is a dearth of adhesive systems capable of forming stable bonds between restorative materials and tooth surfaces. To address the concern, this study determined the effects of using methacrylate-functionalized boron nitride nanosheets (BNNSs) in a polymeric dental adhesive system. The bisphenol A glycidyl dimethacrylate (BisGMA):2 hydroxyethyl methacrylate (HEMA) (60:40) adhesive monomer blend with a photoinitiator was filled with 0 wt% (control), 0.1 wt%, and 1 wt% BNNSs and light cured. Fourier transform infrared spectroscopy was performed to determine the conversion degree of monomer double bonds (DoC). Water absorption and solubility were measured. Flexural strength and Youngs's modulus were evaluated to determine the mechanical properties of the composite adhesive system. Finally, dentin bond strength degradation and fracture mode were quantified with a microtensile bond test to confirm the bonding ability of the developed adhesive system. Results showed that the incorporation of BNNSs increased DoC (9.8% and 5.4% for 0.1 and 1 wt%, respectively), but it did not affect water sorption (101.9-119.72 (µg/mm3)), solubility (2.62-5.54 (µg/mm3)), Young's modulus (529.1-1716.1 MPa), or microtensile bond strength (46.66-54.72 MPa). Further studies are needed with varying BNNS loading percentages from 0.1 wt% to 1 wt% in order to more comprehensively determine the effect of BNNSs on dental adhesives.
Collapse
Affiliation(s)
- Senthilguru Kulanthaivel
- Department of Operative Dentistry, College of Dentistry & Dental Clinics, The University of Iowa, Iowa City, IA 52242, USA (J.P.)
| | - Jeremiah Poppen
- Department of Operative Dentistry, College of Dentistry & Dental Clinics, The University of Iowa, Iowa City, IA 52242, USA (J.P.)
| | - Sandra Ribeiro Cunha
- Department of Operative Dentistry, College of Dentistry & Dental Clinics, The University of Iowa, Iowa City, IA 52242, USA (J.P.)
| | | | - Kyumin Whang
- Department of Comprehensive Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Erica C. Teixeira
- Department of Operative Dentistry, College of Dentistry & Dental Clinics, The University of Iowa, Iowa City, IA 52242, USA (J.P.)
| |
Collapse
|
8
|
A Pilot Study on Monomer and Bisphenol A (BPA) Release from UDMA-Based and Conventional Indirect Veneering Composites. Polymers (Basel) 2022; 14:polym14214580. [PMID: 36365574 PMCID: PMC9656414 DOI: 10.3390/polym14214580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
This study aimed to investigate the release of common monomers from conventional (Dialog Vario, Enamel Plus HFO) and UDMA-based indirect veneering composites (VITA VM LC, GC Gradia). Ten cylindrical samples of each material were prepared (n = 40), immersed in HPLC grade water, and incubated for 24 h in an incubation shaker at 37 °C and 112 rpm. Extraction was performed following ISO 10993-12 and monomers were detected and quantified by HPLC-MS/MS. In all the samples, urethane dimethacrylate (UDMA) and bisphenol A (BPA) were quantifiable. Compared to water blanks, BPA levels were only elevated in the eluates from conventional composites. In all other samples, concentrations were in the range of extraneous BPA and were therefore clinically irrelevant. Low concentrations of Bisphenol A-glycidyl methacrylate (BisGMA) were found in one BPA-free composite and in both conventional materials. Statistical analyses showed that BPA-free materials released significantly less BisGMA and no BPA, while UDMA elution was comparable to elution from conventional materials. All measured concentrations were below reported effective cytotoxic concentrations. Considering these results, the substitution of BPA-derivatives with UDMA might be beneficial since BPA-associated adverse effects are ruled out. Further studies should be enrolled to test the biocompatibility of UDMA on cells of the oral environment.
Collapse
|
9
|
Hassan SA, Beleidy M, El-din YA. Biocompatibility and Surface Roughness of Different Sustainable Dental Composite Blocks: Comprehensive In Vitro Study. ACS OMEGA 2022; 7:34258-34267. [PMID: 36188235 PMCID: PMC9520711 DOI: 10.1021/acsomega.2c03745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The study purposed to investigate the biocompatibility and sustainability of two computer-aided design/computer-aided manufacturing (CAD/CAM) resin-based composites compared to a resin-modified ceramic in terms of surface roughness, biofilm formation, cytotoxicity, genotoxicity, and cellular changes observed under transmission electron microscopy (TEM). Three CAD/CAM blocks were used, two resin-based composites [Brilliant Crios (BC) and Cerasmart, (CS) and one hybrid ceramic (Vita Enamic (EN)]. Each block was sectioned into 10 × 12 × 2 mm specimens, followed by finishing and polishing. Each specimen was evaluated for surface roughness using 3D optical profilometry and scanned by scanning electron microscopy. Biofilm formation and its relation to surface roughness have been investigated for all tested materials. A Hep-2 cell line was used to investigate the viability through MTT assay. The cytotoxicity of the materials was measured at 24, 48, and 168 h. The activity of P53, caspase 3, and cytochrome C was evaluated to detect the genotoxicity of different groups, followed by TEM tracking of the cellular changes. Statistical analysis was implemented by utilizing a one-way analysis of variance test. The significance was set at P ≤ 0.05. With regard to the surface roughness, no statistically significant differences were shown between groups. BC possessed the highest biofilm formation value, followed by EN and CS, with no significance between them. No correlation between surface roughness of tested materials and biofilm formation was shown. Considering viability, the highest values were recorded for EN, whereas BC showed the lowest values. P53-fold changes in EN were significantly the lowest, indicating less genotoxicity. Within the current study's limitations, BC showed the highest biofilm formation. However, no significant surface roughness difference or correlation with biofilm formation was observed in tested materials. EN showed the lowest cytotoxicity and the highest viability. EN revealed the best compatibility performance among tested materials. On the contrary, the BC exhibited fewer preferences.
Collapse
Affiliation(s)
- Soha A. Hassan
- Associate
Professor of Cell Biology and Genetics Faculty of Dentistry-October
6 University, Giza 12511, Egypt
| | - Marwa Beleidy
- Lecturer
of Fixed Prosthodontics, Faculty of Dentistry, October 6 University, Giza 12511, Egypt
| | - Yasmine Alaa El-din
- Lecturer
of Oral & Maxillofacial Pathology, Faculty of Dentistry, October 6 University, Giza 12511, Egypt
| |
Collapse
|
10
|
Gilli M, Hollaert TG, Setbon HM, des Rieux A, Leprince JG. Quality of Cure in Depth of Commercially Available Bulk-fill Composites: A Layer-by-layer Mechanical and Biological Evaluation. Oper Dent 2022; 47:437-448. [PMID: 35917249 DOI: 10.2341/21-084-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/23/2022]
Abstract
Despite their popularity, the use of bulk-fill composites remains controversial, both in terms of their properties and their in-depth development. The objectives of the present work were (1) to provide a more comprehensive evaluation of the quality of cure in depth of commercially available bulk-fill composites by combining various key mechanical and biological characterization methods, (2) to evaluate the inter-material differences when optimally cured, and (3) to evaluate the efficiency of an antioxidant-N-acetyl-cysteine (NAC)-to restrain the adverse effects of the leached components on cell viability. Nine bulk-fill composites (including flowable and high-viscosity materials) were investigated and compared to two conventional resin-based composites, one flowable and one high-viscosity restorative material. The materials were injected or packed into Teflon molds of various configurations, up to 6 mm material thickness. They were then light-cured from the top for 20 seconds with Bluephase G2 (Ivoclar Vivadent, irradiance = 1050 mW/cm2). The following physicomechanical properties were measured for the upper (0-2 mm), intermediate (2-4 mm), and lower (4-6 mm) layers: degree of conversion using Raman Spectrometry (DC, in %), microhardness using a Vickers micro-indenter before (VHN dry) and after 24 hours of storage in ethanol (VHN EtOH), and flexural strength (in MPa) and flexural modulus (in GPa) using a three-point bend test. Each composite layer and an uncured layer were also stored for one week in a standard cell growth medium to generate conditioned media. Human dental pulp cells were then cultured for 24 hours with the latter and cell viability was measured using an MTS assay. A similar experiment was repeated with conditioned media produced in contact with uncured composites, with and without the addition of 4 mM NAC. The data were subjected to a Shapiro-Wilk test, then one-way ANOVA or Kruskal-Wallis test, followed either by Tukey's test (inter-material comparison) or by Dunnett's or Dunn's test (comparison between layers relative to the upper one). The level of statistical significance was set at 0.05. Some materials (EverX, X-traF, VenusBF, X-traB) did not show any significant differences (p>0.05) for any of the properties considered between the intermediate layers compared to the upper one (considered as reference). Others displayed significant differences, at least for some properties, highlighting the value of combining various key mechanical and biological characterization methods when investigating the quality of cure in depth. Significant inter-material differences (p<0.05) were observed when comparing the properties of their upper layer, considered as "optimally" polymerized. Hence, one needs to consider the absolute property values, not only their relative evolution concerning layer thickness. Finally, the use of NAC appeared as beneficial to reduce the risk of harmful effects to dental pulp cells, especially in case of excessive thickness use, and may therefore be of potential interest as an additive to composites in the future.
Collapse
Affiliation(s)
- M Gilli
- *Matthieu Gilli, Adult and Child Dentistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium; DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - T G Hollaert
- Thibaut G Hollaert, Adult and Child Dentistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium; DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - H M Setbon
- Hugo M Setbon, private practice; DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - A des Rieux
- Anne des Rieux, DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - J G Leprince
- Julian G. Leprince, Adult and Child Dentistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium; DRIM Research Group & Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
11
|
German MJ. Developments in resin-based composites. Br Dent J 2022; 232:638-643. [PMID: 35562465 PMCID: PMC9106574 DOI: 10.1038/s41415-022-4240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022]
Abstract
With the phasing down of dental amalgam use in response to the Minamata Convention, it is likely that resin-based composite restoratives will be the dental material of choice for the direct restoration of compromised dentition in the UK, at least for the foreseeable future. The current materials have a finite lifespan, with failures predominately due to either secondary caries or fracture. Consequently, there is considerable in vitro research reported each year with the intention of producing improved materials. This review describes the recent research in materials designed to have low polymerisation shrinkage and increased mechanical properties. Also described is research into materials that are either antimicrobial or are designed to release ions into the surrounding oral environment, with the aim of stimulating remineralisation of the surrounding dental tissues. It is hoped that by describing this recent research, clinicians will be able to gain some understanding of the current research that will potentially lead to new products that they can use to improve patient treatment in the future. Provides an overview of recent research developments aimed at improving the performance of resin-based composites. Details the recent developments in monomers and fillers to produce resin-based composites that either have lower polymerisation shrinkage or better mechanical properties compared to current commercially available products. Describes recent research on developing resin-based composites that can act as potential sources of antimicrobial or remineralising agents.
Collapse
Affiliation(s)
- Matthew J German
- School of Dental Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Mulligan S, Hatton PV, Martin N. Resin-based composite materials: elution and pollution. Br Dent J 2022; 232:644-652. [PMID: 35562466 PMCID: PMC9106581 DOI: 10.1038/s41415-022-4241-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 11/14/2022]
Abstract
Pollution arises from all human activity and the provision of oral healthcare using resin-based composite restorative materials (RBCs) should be considered. This paper aims to provide a comprehensive review of the potential pollutant risk to the environment from the chemical compounds found in resin-based restorative materials, by including: 1) the principal pollutant compounds present in the resin matrix; 2) the degradation process of RBCs and its consequences; 3) the methods used for the detection and quantification of monomer elution and RBC microparticles; and 4) a review of the release mechanisms of eluates and RBC microparticles into the environment.RBCs are pollutants by virtue of the compounds created during the degradation processes. These are in the form of the constituent eluted monomers and microparticles. Their impact on the environment and biodiversity is unknown. These materials are currently one of the main direct-placement restorative materials and their success is unquestionable when used and maintained correctly. Mitigation strategies for reducing the impact of pollution on the environment should be considered and implemented by all stakeholders and processes in the supply chain, from manufacturing, clinical use and waste management.
Collapse
Affiliation(s)
- Steven Mulligan
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, The University of Sheffield, Sheffield, S10 2TA, UK
| | - Paul V Hatton
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, The University of Sheffield, Sheffield, S10 2TA, UK
| | - Nicolas Martin
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, The University of Sheffield, Sheffield, S10 2TA, UK.
| |
Collapse
|
13
|
Hampe T, Wiessner A, Frauendorf H, Alhussein M, Karlovsky P, Bürgers R, Krohn S. Monomer Release from Dental Resins: The Current Status on Study Setup, Detection and Quantification for In Vitro Testing. Polymers (Basel) 2022; 14:polym14091790. [PMID: 35566958 PMCID: PMC9100225 DOI: 10.3390/polym14091790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Improvements in mechanical properties and a shift of focus towards esthetic dentistry led to the application of dental resins in various areas of dentistry. However, dental resins are not inert in the oral environment and may release monomers and other substances such as Bisphenol-A (BPA) due to incomplete polymerization and intraoral degradation. Current research shows that various monomers present cytotoxic, genotoxic, proinflammatory, and even mutagenic effects. Of these eluting substances, the elution of BPA in the oral environment is of particular interest due to its role as an endocrine disruptor. For this reason, the release of residual monomers and especially BPA from dental resins has been a cause for public concern. The assessment of patient exposure and potential health risks of dental monomers require a reliable experimental and analytical setup. However, the heterogeneous study design applied in current research hinders biocompatibility testing by impeding comparative analysis of different studies and transfer to the clinical situation. Therefore, this review aims to provide information on each step of a robust experimental and analytical in vitro setup that allows the collection of clinically relevant data and future meta-analytical evaluations.
Collapse
Affiliation(s)
- Tristan Hampe
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
- Correspondence:
| | - Andreas Wiessner
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| | - Holm Frauendorf
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, 37077 Göttingen, Germany;
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany; (M.A.); (P.K.)
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany; (M.A.); (P.K.)
| | - Ralf Bürgers
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| | - Sebastian Krohn
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany; (A.W.); (R.B.); (S.K.)
| |
Collapse
|
14
|
Aldhafyan M, Silikas N, Watts DC. Influence of curing modes on monomer elution, sorption and solubility of dual-cure resin-cements. Dent Mater 2022; 38:978-988. [PMID: 35339295 DOI: 10.1016/j.dental.2022.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To explore the effect of two curing modes, for dual-cure resin cements, on their monomer elution, water sorption and solubility after 30 d water storage and 30 d dry reconditioning. METHODS Eight dual-cure resin-cements were investigated (Bifix SE, Nexus Third Generation, PANAVIA SA, PANAVIA V5, RelyX Ultimate Universal, RelyX Unicem 2, RelyX Universal and SpeedCEM Plus). Six disk-shaped specimens were made per curing mode: light-cure (LC) versus self-cure (SC) to measure amounts of eluted monomers after 30 d of water storage at 37 °C. Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC MS/MS) was performed to identify and quantify three eluted monomers (Bis-GMA, UDMA and TEGDMA). Water sorption/ solubility specimens were prepared according to ISO 4049. Specimens from each curing mode (LC/SC) were immersed separately in distilled water for 30 d and then reconditioned for 30 d; all at 37 °C. Mass change was measured at different time intervals. Data were analyzed via one-way ANOVA, Tukey post-hoc tests and independent sample t-tests (α = 0.05). RESULTS After 30 d of water storage, the three monomers Bis-GMA, UDMA and TEGDMA were detected in water. All monomers showed a variable extent of elution into water and were significantly higher (p < 0.0001) with SC compared to LC curing modes. BSE had the highest quantity of eluted monomers. After 30 d of water sorption (μg/mm3), all rein-cements showed significantly higher sorption (p < 0.05) of SC compared to LC curing modes except for PV5, RXU and CEM (p > 0.05). After 30 d of water solubility (μg/mm3), all resin-cements showed significantly higher solubility (p < 0.0001) of SC compared to LC curing mode. BSE had the highest water sorption and solubility. The total amounts of eluted monomers correlated positively with solubility: r2 = 0.95 for LC and r2 = 0.93 for SC. SIGNIFICANCE Whenever light access is possible, light curing remains beneficial to reduce the extent of resin degradation and related properties of dual-cure resin cements. BSE showed statistically the highest extent of eluted monomers, sorption and solubility.
Collapse
Affiliation(s)
- Mohammed Aldhafyan
- Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK; Division of Dental Biomaterials Science, College of Dentistry, King Saud University, Saudi Arabia
| | - Nikolaos Silikas
- Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK.
| | - David C Watts
- Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK; Photon Science Institute, University of Manchester, UK.
| |
Collapse
|
15
|
Felipe de Almeida Nobre C, Feitosa VP, Fronza BM, Cipriano Leal AM, Rocha MG, Roulet JF, Coelho Sinhoreti MA. Physicochemical properties of experimental resin-based composites using tris(trimethylsilyl)silane associated with diphenyl iodonium hexafluorophosphate (DPIHP) salt. J Mech Behav Biomed Mater 2022; 130:105169. [DOI: 10.1016/j.jmbbm.2022.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
|
16
|
Durner J, Schrickel K, Watts DC, Becker M, Draenert ME. Direct and indirect eluates from bulk fill resin-based-composites. Dent Mater 2022; 38:489-507. [DOI: 10.1016/j.dental.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
17
|
Frasheri I, Grimm A, Ern C, Hickel R, Folwaczny M. In-vitro cytocompatibility of self-adhesive dual-curing resin cements on human mesenchymal stem cells (hMSC) and periodontal ligament cells (PDL-hTERT). Dent Mater 2022; 38:376-383. [PMID: 34996633 DOI: 10.1016/j.dental.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/17/2021] [Accepted: 12/15/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Self-adhesive dual cured resin cements provide easier clinical application than conventional resin cements but release higher amounts of unreacted monomers, potentially affecting their biocompatibility. This study aimed to compare the cytotoxic effects of self-adhesive dual cured resin cements with two conventional resin cements. METHODS Samples of four resin cements, two self-adhesive dual cured cements (group A: RelyX Unicem, group B: SmartCem), and two conventional resin cements (group C: Panavia 2.0, group D: Variolink Esthetic DC) were prepared with a similar dimension under standardized polymerization conditions and stored in water. For each material 18 samples were used and cell cultures of human mesenchymal stem cells (hMSCs) or periodontal ligament cells (PDL-hTERT) were added under appropriate conditions. One experimental group (group E) was left untreated as control. A cell viability WST test, was performed in each experimental group at day 1, 7, 14 and 21. Moreover, microscopic examination of cells was performed using cell viability staining. RESULTS Viability of both cell types as determined by WST test was significantly impaired at all time periods by the four different cement materials compared to the untreated control. Comparison between the four materials revealed different inhibition of the viability of both, PDL-hTERT and hMSC cells (group C > group B > group A > group D; p < 0.0001). SIGNIFICANCE All resin-based cements caused significant impairment of cell viability, reflecting considerable cytotoxicity. Variolink caused significantly smaller changes of viability than the other tested materials.
Collapse
Affiliation(s)
- Iris Frasheri
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Alexandra Grimm
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Christina Ern
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
| |
Collapse
|
18
|
De Angelis F, Sarteur N, Buonvivere M, Vadini M, Šteffl M, D'Arcangelo C. Meta-analytical analysis on components released from resin-based dental materials. Clin Oral Investig 2022; 26:6015-6041. [PMID: 35870020 PMCID: PMC9525379 DOI: 10.1007/s00784-022-04625-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Resin-based materials are applied in every branch of dentistry. Due to their tendency to release substances in the oral environment, doubts have been raised about their actual safety. This review aims to provide a comprehensive analysis of the last decade literature regarding the concentrations of elutable substances released from dental resin-based materials in different type of solvents. MATERIALS AND METHODS All the literature published on dental journals between January 2010 and April 2022 was searched using international databases (PubMed, Scopus, Web of Science). Due to strict inclusion criteria, only 23 papers out of 877 were considered eligible. The concentration of eluted substances related to surface and volume of the sample was analyzed, considering data at 24 h as a reference. The total cumulative release was examined as well. RESULTS The most eluted substances were HEMA, TEGDMA, and BPA, while the less eluted were Bis-GMA and UDMA. Organic solvents caused significantly higher release of substances than water-based ones. A statistically significant inverse correlation between the release of molecules and their molecular mass was observed. A statistically significant positive correlation between the amount of released molecule and the specimen surface area was detected, as well as a weak positive correlation between the release and the specimen volume. CONCLUSIONS Type of solvent, molecular mass of eluates, and specimen surface and volume affect substances release from materials. CLINICAL RELEVANCE It could be advisable to rely on materials based on monomers with a reduced elution tendency for clinical procedures.
Collapse
Affiliation(s)
- Francesco De Angelis
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy.
| | - Nela Sarteur
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Matteo Buonvivere
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Mirco Vadini
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Michal Šteffl
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Camillo D'Arcangelo
- Unit of Restorative Dentistry and Endodontics, Department of Medical, Oral and Biotechnological Sciences, School of Dentistry, "G. D'Annunzio" University Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| |
Collapse
|
19
|
CHAMI VDO, GEBERT F, ASSAF DDC, CENTENO ACT, FERRAZZO VA, DURAND LB, MARQUEZAN M. Color stability of resin composites for orthodontic attachments: an in vitro study. Dental Press J Orthod 2022; 27:e2220432. [PMID: 35416865 PMCID: PMC9005111 DOI: 10.1590/2177-6709.27.1.e2220432.oar] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/10/2021] [Indexed: 12/22/2022] Open
Abstract
Objective: The aim of the present study was to evaluate the color stability of Filtek Z350 XT, Filtek Z250 XT, Z100 resin composites and Transbond XT orthodontic resin, all used in orthodontic attachments, when immersed in popular beverages. Methods: Thirty disk-shaped specimens of each resin composite (2 x 5mm) were manufactured and randomly divided into six groups according to immersion solutions: coffee, red wine, white wine, regular beer, dark beer and deionized water (control). The specimens were fully immersed in each of the solutions for six days at 37°C, representing approximately six months of consumption. The color measurements were evaluated by a reflection spectrophotometer, at baseline (before immersion) and after staining. L*a*b* coordinates were measured and the color change (ΔE00) was calculated using the CIEDE2000 formula. The data were analyzed by ANOVA/Tukey tests at a significance level of 0.05. Results: The resin composites immersed in white wine and regular beer showed either imperceptible or clinically acceptable ΔE00, and no difference from the control group (p= 0.4449 and p= 0.467 respectively). Immersion in coffee and red wine were considered clinically unacceptable and were significantly different from the control group (p= 0.0028 and p= 0.0475 respectively). Conclusion: Based on the results of the present study, the consumption of coffee and red wine may cause color change of the resin composite attachments above the visual acceptability threshold, and impair aesthetics during treatment.
Collapse
|
20
|
Ilie N, Diegelmann J. Impact of ultra-fast (3 s) light-cure on cell toxicity and viscoelastic behavior in a dental resin-based composite with RAFT-mediated polymerization. J Mech Behav Biomed Mater 2021; 124:104810. [PMID: 34500355 DOI: 10.1016/j.jmbbm.2021.104810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of the study was to determine the effects of ultra-fast (3 s) light-curing on the viscoelastic behaviour at clinically relevant frequencies, and cell toxicity, in a resin-based composite (RBC) with reversible addition-fragmentation-chain transfer (RAFT) mediated polymerization. METHODS Three different protocols were used to cure cylindrical samples (height = 4 mm, ϴ = 5 mm), including ultra-fast (3s) cure with high radiant emittance, 10 s and 20 s cure with moderate radiant emittance. The properties of the light curing device were evaluated in all curing protocols by spectrophotometry up to an exposure distance of 10 mm. The light transmission through the samples was determined in real-time with the same spectrophotometer. Absorbance was calculated as a function of wavelength. The quasi-static (indentation hardness/HIT, indentation modulus/EIT) and viscoelastic (storage modulus/E', loss modulus/E″, loss factor/tan δ) material behavior was determined in an instrumented indentation test with a DMA (Dynamic Mechanical Analysis) module for 10 frequencies (0.5-5 Hz) by profiling the center of the samples in 330 μm steps from top to bottom. Cellular toxicity on human gingival fibroblast (HGF-1) was assessed using a WST-1 colorimetric assay after incubation time of up to 3 months. One and multiple-way analysis of variance (ANOVA) with Tukey honestly significant difference (HSD) post-hoc tests (α = 0.05) were applied. RESULTS The irradiance transmitted through a 4 mm high sample was less than 7% of the incident irradiance, and the absorbance was similar for all curing protocols, showing a decrease with wavelength. Similar quasi-static and viscoelastic parameters were observed regardless of the curing protocol. HIT increased slightly and EIT, E', E″ and tan δ decreased with frequency. Occasionally, slightly higher confidence intervals were observed for the ultra-fast curing group, which were related to a potential accumulation of stress. The curing protocol had no effect on cell viability (p = 0.326) but the eluate age (p < 0.001, ηP2 = 0.879) did. None of the groups showed cell toxicity at any point in time with respect to the corresponding negative control. CONCLUSIONS The ultra-fast curing with high irradiance induced no cell toxicity and an equivalent viscoelastic behavior as with conventional curing protocols in a RAFT-modified RBC.
Collapse
Affiliation(s)
- Nicoleta Ilie
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU, Germany.
| | - Julia Diegelmann
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU, Germany
| |
Collapse
|
21
|
Durner J, Schrickel K, Watts DC, Becker M, Draenert ME. Direct and indirect monomer elution from an RBC product family. Dent Mater 2021; 37:1601-1614. [PMID: 34454738 DOI: 10.1016/j.dental.2021.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To develop a model for quantitative comparison of elutable substances by direct elution from resin-bonded composite (RBC) test specimens versus indirect elutability of substances from RBC-restored teeth. Furthermore, it was to be investigated whether the different composites of the Tetric® RBC product family release different types and amounts of substances. METHODS Four different composite materials from the Tetric® product family were studied. For each material subgroup ten human third molar teeth were prepared with standard Class-I occlusal cavities. These 'tooth group' specimens were provided with a three-step adhesive system (incorporating TEGDMA) and the respective composite restoration. Same sized control specimens, of each RBC restorative material, were prepared ('direct RBC' groups). All specimens were placed in individual elution chambers such that the elution media (ethanol/water, 3:1) only came into contact with either the tooth root or ¾ height of the 'direct RBC' materials. They were incubated at 37 °C for up to 7 d. Samples of the eluant were taken after 1, 2, 4 and 7 d and were analysed by high-temperature gas chromatography/mass spectrometry. RESULTS Bisphenol A ethoxylate dimethacrylate (bisEMA), bisphenol A glycidyldimethacrylate (bisGMA), tetraethylene glycol dimethacrylate (TEEGDMA), decan-1,10-diol dimethacrylate (DDDMA) were mostly found in the eluates of the 'direct RBC' groups in statistically significantly greater amounts than in the eluates of the 'tooth groups'. Such quantitative differences were also the case with eluates containing bisphenol A (BPA), dicyclohexyl phthalate (DCHP) and drometrizole, which are common in the environment. In contrast to the behavior found with all the other monomers, up to 3 orders of magnitude more triethylene glycol dimethacrylate (TEGDMA) was found in the 'tooth groups' compared to the 'direct RBC' groups, evidently released by the adhesive system. SIGNIFICANCE The release of most of the substances was clearly delayed in the 'tooth groups' indicative of their chronic, rather than acute, elution to the oral environment. A barrier function of the residual dentin layer and the adhesion layer can be inferred. The different release patterns of substances from the various composites of the RBC product family is a manifestation of their different and indication-specific compositions. Consideration of an overall restorative care (RBC plus adhesive) system, when assessing the total amount of released substances, is emphasized.
Collapse
Affiliation(s)
- Jürgen Durner
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Laboratory Becker and Colleagues, Führichstr. 70, 81671 München, Germany.
| | - Klaus Schrickel
- Thermo Fisher Scientific, Im Steingrund 4 - 6, 63303 Dreieich, Germany
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Marc Becker
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Laboratory Becker and Colleagues, Führichstr. 70, 81671 München, Germany
| | - Miriam E Draenert
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany
| |
Collapse
|
22
|
Roussou K, Nikolaidis AK, Ziouti F, Arhakis A, Arapostathis K, Koulaouzidou EA. Cytotoxic Evaluation and Determination of Organic and Inorganic Eluates from Restorative Materials. Molecules 2021; 26:molecules26164912. [PMID: 34443499 PMCID: PMC8399195 DOI: 10.3390/molecules26164912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Over the last years, diverse commercial resin-based composites have dominated as dental filling materials. The purpose of the present study was to determine organic and inorganic eluates from five restorative materials using GC/MS and ICP–OES and to compare the effect on cell survival of human gingival fibroblasts of a conventional and a bioactive resin. Five commercially available restorative materials were employed for this study: ActivaTM Bioactive Restorative, ENA HRi, Enamel plus HRi Biofunction, Fuji II LC Capsule, and Fuji IX Capsule. Disks that were polymerized with a curing LED light or left to set were immersed in: 1 mL methanol or artificial saliva for GC/MS analysis, 5mL deionized water for ICP–OES, and 5mL of culture medium for cell viability. Cell viability was investigated with a modified staining sulforhodamine B assay.The following organic substances were detected: ACP, BHT, BPA, 1,4-BDDMA, CQ, DBP, DMABEE, HEMA, MCE, MeHQ, MOPA, MS, TMPTMA, and TPSb and the ions silicon, aluminum, calcium, sodium, and barium. Activa Bioactive Restorative was found to be biocompatible. Elution of organic substances depended on material’s composition, the nature of the solvent and the storage time. Ions’ release depended on material’s composition and storage time. The newly introduced bioactive restorative was found to be more biocompatible.
Collapse
Affiliation(s)
- Konstantina Roussou
- Department of Pediatric Dentistry, School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.R.); (A.A.); (K.A.)
| | - Alexandros K. Nikolaidis
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.Z.); (E.A.K.)
- Correspondence: ; Tel.: +30-2310-999616
| | - Fani Ziouti
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.Z.); (E.A.K.)
| | - Aristidis Arhakis
- Department of Pediatric Dentistry, School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.R.); (A.A.); (K.A.)
| | - Konstantinos Arapostathis
- Department of Pediatric Dentistry, School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.R.); (A.A.); (K.A.)
| | - Elisabeth A. Koulaouzidou
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (F.Z.); (E.A.K.)
| |
Collapse
|
23
|
Atsuta I, Narimatsu I, Morimoto T, Cheng CH, Koyano K, Ayukawa Y. Assessment of the Soft-Tissue Seal at the Interface between the Base of the Fixed Denture Pontic and the Oral Mucosa. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3997. [PMID: 34300915 PMCID: PMC8306894 DOI: 10.3390/ma14143997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
Fixed dentures (bridges) are often selected as a treatment option for a defective prosthesis. In this study, we assess the contact condition between the base of the pontic and oral mucosa, and examine the effect of prosthetic preparation and material biocompatibility. The molars were removed and replaced with experimental implants with a free-end type bridge superstructure after one week. In Experiment 1, we assessed different types of prosthetic pre-treatment: (1) the untreated control group (Con: mucosa recovering from the tooth extraction); (2) the laser irradiation group (Las: mucosa recovering after the damage caused by a CO2 laser); and (3) the tooth extraction group (Ext: mucosa recovering immediately after the teeth extraction). In Experiment 2, five materials (titanium, zirconia, porcelain, gold-platinum alloy, and self-curing resin) were placed at the base of the bridge pontic. Four weeks after the placement of the bridge, the mucosa adjacent to the pontic base was histologically analyzed. In Experiment 1, the Con and Las groups exhibited no formation of an epithelial sealing structure on the pontic base. In the Ext group, adherent epithelium was observed. In Experiment 2, the sealing properties at the pontic interface were superior for titanium and the zirconia compared with those made of porcelain or gold-platinum alloy. In the resin group, a clear delay in epithelial healing was observed.
Collapse
Affiliation(s)
- Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan;
| | - Ikue Narimatsu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (I.N.); (C.-H.C.); (Y.A.)
| | | | - Chi-Hsiang Cheng
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (I.N.); (C.-H.C.); (Y.A.)
| | - Kiyoshi Koyano
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan;
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (I.N.); (C.-H.C.); (Y.A.)
| |
Collapse
|
24
|
Wang K, Yu Q, Wu D, Liu R, Ren X, Fu H, Zhang X, Pan Y, Huang S. JNK-mediated blockage of autophagic flux exacerbates the triethylene glycol dimethacrylate-induced mitochondrial oxidative damage and apoptosis in preodontoblast. Chem Biol Interact 2021; 339:109432. [PMID: 33684387 DOI: 10.1016/j.cbi.2021.109432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial dependent oxidative stress (OS) and subsequent cell death are considered as the major cytotoxicity caused by Triethylene glycol dimethacrylate (TEGDMA), a commonly monomer of many resin-based dental composites. Under OS microenvironment, autophagy serves as a cell homeostatic mechanism and maintains redox balance through degradation or turnover of cellular components in order to promote cell survival. However, whether autophagy is involved in the mitochondrial oxidative damage and apoptosis induced by TEGDMA, and the cellular signaling pathways underlying this process remain unclear. In the present study, we demonstrated that TEGDMA induced mouse preodontoblast cell line (mDPC6T) dysfunctional mitochondrial oxidative response. In further exploring the underlying mechanisms, we found that TEGDMA impaired autophagic flux, as evidenced by increased LC3-II expression and hindered p62 degradation, thereby causing both mitochondrial oxidative damage and cell apoptosis. These results were further verified by treatment with chloroquine (autophagy inhibitor) and rapamycin (autophagy promotor). More importantly, we found that the JNK/MAPK pathway was the key upstream regulator of above injury process. Collectively, our finding firstly demonstrated that TEGDMA induced JNK-dependent autophagy, thereby promoting mitochondrial dysfunction-associated oxidative damage and apoptosis in preodontoblast.
Collapse
Affiliation(s)
- Konghuai Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Qihao Yu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Danni Wu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Ruona Liu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xuekun Ren
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Hui Fu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaorong Zhang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yihuai Pan
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
25
|
Diemer F, Stark H, Helfgen EH, Enkling N, Probstmeier R, Winter J, Kraus D. In vitro cytotoxicity of different dental resin-cements on human cell lines. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:4. [PMID: 33471194 PMCID: PMC7817560 DOI: 10.1007/s10856-020-06471-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 12/08/2020] [Indexed: 05/07/2023]
Abstract
Adhesive resin-cements are increasingly used in modern dentistry. Nevertheless, released substances from resin materials have been shown to cause cellular toxic effects. Disc-shaped specimens from 12 different resin cements and one conventional zinc phosphate cement were prepared and used for direct stimulation of five different human cell lines via transwell cell culture system or in an indirect way using conditioned cell culture media. Cytotoxicity was determined using LDH and BCA assays. All tested cements led to a decrease of cell viability but to a distinct extent depending on cell type, luting material, and cytotoxicity assay. In general, cements exhibited a more pronounced cytotoxicity in direct stimulation experiments compared to stimulations using conditioned media. Interestingly, the conventional zinc phosphate cement showed the lowest impact on cell viability. On cellular level, highest cytotoxic effects were detected in osteoblastic cell lines. All resin cements reduced cell viability of human cells with significant differences depending on cell type and cement material. Especially, osteoblastic cells demonstrated a tremendous increase of cytotoxicity after cement exposure. Although the results of this in vitro study cannot be transferred directly to a clinical setting, it shows that eluted substances from resin cements may disturb osteoblastic homeostasis that in turn could lead to conditions favoring peri-implant bone destruction. Thus, the wide use of resin cements in every clinical situation should be scrutinized. A correct use with complete removal of all cement residues and a sufficient polymerization should be given the utmost attention in clinical usage.
Collapse
Affiliation(s)
- Freya Diemer
- Department of Oral Surgery, University of Bonn, Bonn, Germany
| | - Helmut Stark
- Department of Prosthodontics, Preclinical Education and Dental Materials Science, University of Bonn, Bonn, Germany
| | - Ernst-Heinrich Helfgen
- Department of Prosthodontics, Preclinical Education and Dental Materials Science, University of Bonn, Bonn, Germany
| | - Norbert Enkling
- Department of Prosthodontics, Preclinical Education and Dental Materials Science, University of Bonn, Bonn, Germany
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Rainer Probstmeier
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Dominik Kraus
- Department of Prosthodontics, Preclinical Education and Dental Materials Science, University of Bonn, Bonn, Germany.
| |
Collapse
|
26
|
Bangera M, Madhyastha P, Bhat K, Padma D, Naik D, Srikant N, Kotian R. Cytotoxicity of Silorane and Methacrylate based Dental Composites on Human Pulp Cells. JOURNAL OF OROFACIAL SCIENCES 2021. [DOI: 10.4103/jofs.jofs_312_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Correlation of the mechanical and biological response in light-cured RBCs to receiving a range of radiant exposures: Effect of violet light. J Dent 2020; 105:103568. [PMID: 33385531 DOI: 10.1016/j.jdent.2020.103568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE This study correlates the mechanical and biological response of commercially available resin-based composites (RBCs) to clinically relevant light-curing conditions. METHODS Two RBCs (Venus and Venus Pearl; Kulzer) that use different monomer and photo-initiator systems, but have a similar filler volume and shade, were exposed to either just blue light, or violet and blue light from two different LCUs (Translux Wave and Translux 2Wave; Kulzer). Distance and exposure times were adjusted so that both LCUs delivered 5 similar levels of radiant exposures (RE) between 1.5 J/cm²-25 J/cm² in the blue wavelength range. Thus, the violet light was additional light. The top and bottom of 2-mm thick specimens were subjected to a depth-sensing indentation test (Martens hardness/HM, Vickers hardness/HV, indentation modulus/YHU, mechanical work/Wtotal, plastic deformation work/Wplas, creep/Cr). The viability of human gingival fibroblasts was assessed after three days of exposure to RBC eluates. One and multiple-way analysis of variance (ANOVA), the Tukey honestly significant difference (HSD) post-hoc tests (α = 0.05), t-test and a Spearman correlation analysis were used. RESULTS As the RE increased, the mechanical properties increased at a greater rate at the top compared to the bottom of the RBCs. Values measured at the bottom of 2-mm increments approached the values measured at the top only when RE > 25 J/cm² of blue light was delivered. Toxicity decreased with RE and elution cycles and was lower for Venus Pearl. Within one RE level, addition of violet light resulted in significantly improved properties (in 131 out of 150 comparisons, p < 0.05). This effect was stronger for Venus Pearl. There was a good correlation between mechanical and biological parameters. This correlation decreased as the number of eluates increased. CLINICAL SIGNIFICANCE The mechanical and biological response to variation in RE is interrelated. The addition of violet light has a positive effect, particularly at low RE.
Collapse
|
28
|
Atalayin Ozkaya C, Tezel H, Armagan G, Tuzcu F, Sahbaz U, Dagci T. The effects of extended polymerization time for different resin composites on reactive oxygen species production and cell viability. J Oral Sci 2020; 63:46-49. [PMID: 33148930 DOI: 10.2334/josnusd.20-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The present study was conducted to determine oxidative stress and cell viability after contact with resin composites polymerized for different times. METHODS Disk-shaped specimens of Admira Fusion, Ceram X One Universal, Solare x and Filtek Z550 (n = 12) were prepared, and two subgroups with polymerization times of 20 and 40 s were employed. The specimens were incubated with mouse fibroblast cells for 48 and 72 h, and changes in reactive oxygen species (ROS) production and cellular viability were determined by an assay with a cell-permeable fluorescent dye, 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA), and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, respectively. RESULTS At 72 h, ROS production in the presence of Admira Fusion polymerized for 40 s was reduced relative to that in the presence of Admira Fusion polymerized for 20 s (P < 0.05). Cell viability was maximal in the Admira Fusion and Solare x groups and there was no difference relative to the control group at 48 h. Cell viability was higher in the Admira Fusion and Solare x groups polymerized for 40 s than for the same materials polymerized for 20 s at 72 h (P < 0.05). CONCLUSION Extension of the polymerizaton time has a material-specific effect and may be used as a strategy to increase the biocompability of resin composites.
Collapse
Affiliation(s)
| | - Huseyin Tezel
- Department of Restorative Dentistry, Ege University School of Dentistry
| | - Guliz Armagan
- Department of Biochemistry, Ege University Faculty of Pharmacy
| | - Fulya Tuzcu
- Department of Physiology, Ege University School of Medicine
| | - Ufuk Sahbaz
- Department of Physiology, Ege University School of Medicine
| | - Taner Dagci
- Department of Physiology, Ege University School of Medicine
| |
Collapse
|
29
|
Hürmüzlü F, Kılıç V. Analysis of Monomer Elution from Bulk-fill and Nanocomposites Cured with Different Light Curing Units Using High Performance Liquid Chromatography. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Feridun Hürmüzlü
- Department of Restorative Dentistry, Faculty of Dentistry, Lokman Hekim University
| | - Vahti Kılıç
- Department of Restorative Dentistry, Faculty of Dentistry, Fırat University
| |
Collapse
|
30
|
Durner J, Schrickel K, Watts DC, Becker M, Hickel R, Draenert ME. An alternate methodology for studying diffusion and elution kinetics of dimethacrylate monomers through dentinal tubules. Dent Mater 2020; 36:479-490. [PMID: 32093972 DOI: 10.1016/j.dental.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Ethoxylated bisphenol A dimethacrylate (bisEMA) is a base monomer in several dental resin composites. It was the main aim of the present study to determine if bisEMA can reach the dental pulp by generally passive diffusion through the coronal dentinal tubules stimulated via eluent liquids surrounding the root structures only. METHODS In 20 human third molar teeth, standard Class-I occlusal cavities were prepared and provided either with an adhesive system alone or additionally with a composite restoration, according to the instructions of the manufacturer. The teeth were placed in an elution chamber such that the elution media only came into contact with the tooth root/tooth base where they were incubated at 37 °C for up to 7 d. Samples were taken after 1, 2, 4 and 7 d. Gas chromatography/mass spectrometry was used to identify bisEMA and other monomers in ethanol/water (3:1) and aqueous eluates. RESULTS bisEMA was only found in ethanol/water eluates, where the teeth had received a composite restoration. Traces of bisEMA with up to three ethylene oxide units could be detected in these eluates. Depending on the dentin thickness, different elution kinetics of bisEMA were determined. Regardless of the treatment of teeth, triethylene glycol dimethacrylate (TEGDMA) and tetraethylene glycol dimethacrylate (TEEGDMA) were found in ethanolic/aqueous eluates in equal amounts. Most TEGDMA and TEEGDMA diffused through the dentin within the first 24 h. SIGNIFICANCE Depending on the dentin layer thickness, bisEMA was released for varied time periods, resulting in varied concentrations and exposure times for the different cells of the dental pulp. The concentrations of TEGDMA and TEEGDMA were greatest for cells of the dental pulp within the first 24 h.
Collapse
Affiliation(s)
- Jürgen Durner
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Laboratory Becker and Colleagues, Führichstr. 70, 81671 München, Germany.
| | - Klaus Schrickel
- Thermo Fisher Scientific, Im Steingrund 4-6, 63303 Dreieich, Germany
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Marc Becker
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany; Laboratory Becker and Colleagues, Führichstr. 70, 81671 München, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany
| | - Miriam E Draenert
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany
| |
Collapse
|
31
|
Liu X, Jiang X, Xu T, Zhao Q, Zhu S. Investigating the shear bond strength of five resin-based luting agents to zirconia ceramics. J Oral Sci 2020; 62:84-88. [PMID: 31996530 DOI: 10.2334/josnusd.18-0480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present study investigated the bond strength and aging resistance performance of five resin-based luting agents to zirconia. A total of 100 large blocks (10.0 mm × 10.0 mm × 2.5 mm) and 100 small blocks (4.0 mm × 4.0 mm × 2.5 mm) of zirconia were airborne-particle abraded and randomly divided into five groups: (RelyX Ultimate [RUl]; Panavia F [PF]; Clearfil SA Luting [SAC]; Multilink Speed [MS]; and RelyX Unicem [RUn]). The small blocks were bonded to the large blocks using the resin-based luting agents. Shear bond strengths (SBS) and failure mode were determined before and after 5,000 thermocycles. After being stored in water for 24 h, the SBS were MS > PF > RUl > SAC > RUn (P < 0.05). After 5,000 thermocycles, the SBS were MS > SAC ≈ RUl > PF ≈ RUn (P < 0.05); the SBS of the PF, MS, and RUn groups were lower than that before 5,000 thermocycles (P < 0.01). Adhesive failure, cohesive failure, or mixed failure occurred in the specimens. In general, Clearfil SA Luting, a self-adhesive resin-based luting agent containing 10-methacryloxy decyl diphosphate, had good initial and durable SBS to zirconia and was a better adhesive.
Collapse
Affiliation(s)
- Xiuju Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Xue Jiang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Tong Xu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Qi Zhao
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| |
Collapse
|
32
|
Nandarani RE, Widjiastuti I, Mooduto L. Pulp Fibroblast Cell Apoptosis After Application of Hema Dentine Bonding Material with Ethanol and Water Solvent. Braz Dent J 2019; 30:208-212. [PMID: 31166391 DOI: 10.1590/0103-6440201902524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 11/22/2022] Open
Abstract
The most common main materials for dentin bonding for composite resin restoration is 2-hydroxyethyl methacrylate (HEMA). HEMA has beneficial physical and chemical properties, and stable, yet toxic. The addition of ethanol or water, may reduce the toxic effect of HEMA. Ethanol solvent has lower H-bonding capacity compared to water solvent, so it can bind less free radicals from the residual monomer. This study aimed to analyze apoptosis due to dentine bonding application with ethanol and water solvent. Fibroblast culture cells were obtained from extracted third molar, by means of tripsinasion method. The cells were divided into 4 groups as reached confluent: cell culture without treatment as control, cell culture with scaffold chitosan, cell culture with scaffold and polymerized dentin bonding with ethanol or water solvent. Apoptosis observation was conducted using immunohistochemistry method with ethidium bromide acridin orange staining, under fluorescent microscope with 40´ magnification. There was a significant difference among groups (p=0.0001), yet no differences found between different solvent. Apoptosis rate in fibroblast cells culture exposed to HEMA bonding with ethanol solvent was 67%, while the cells exposed to HEMA bonding with water solvent was 44%. The effect of dentin bonding with ethanol solvent and water solvent towards apoptosis rate of pulp fibroblast cells is not different.
Collapse
Affiliation(s)
- Ratih Elisa Nandarani
- Residence of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ira Widjiastuti
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Latief Mooduto
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
33
|
Celik N, Binnetoglu D, Ozakar Ilday N, Hacimuftuoglu A, Seven N. The cytotoxic and oxidative effects of restorative materials in cultured human gingival fibroblasts. Drug Chem Toxicol 2019; 44:502-507. [PMID: 31146597 DOI: 10.1080/01480545.2019.1620265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this study was to evaluate the cytotoxic and oxidative effects of the most commonly used dental restorative materials on human gingival fibroblast cells (HGFCs). HGFCs were obtained from healthy individuals. The tested restorative materials were a microhybrid resin based composite, a compomer resin, a glass ionomer cement, and an amalgam alloy. One hundred eight cylindirical samples, 10 mm in diameter and 2 mm in height, were prepared according to ISO 10993-12:2002 specifications (n = 9 in the tested subgroups). Freshly prepared and aged samples in artificial saliva at 37 °C (7 and 21 d) were placed into well plates and incubated. Wells without dental materials were constituted as the control group. After 72 h incubation period, cytotoxicity was determined using the neutral red (NR) assay. Oxidative alterations were assessed using total antioxidant capacity (TAC) and total oxidant status (TOS) assay kits. Data were analyzed using the ANOVA and LSD post hoc tests. All tested materials led to significant decreases in the cell viability rates (33-73%) compared to the control group. Glass ionomer and resin composite were found to be more cytotoxic than amalgam alloy and compomer. The highest TAC level was observed in glass ionomer after seven-day aging and these changes prevented an increase in TOS levels. Increases in TAC levels after seven-day aging in all groups exhibited significant differences with freshly prepared samples (p < 0.05). In all material groups, TOS levels of freshly prepared samples differed statistically and significantly from samples aged for 7 and 21 d (p < 0.05). The data obtained suggested that all the tested materials exhibited cytotoxic and pro-oxidant features. Freshly prepared samples caused higher TOS levels. However, oxidant status induced by materials decreased over time.
Collapse
Affiliation(s)
- Neslihan Celik
- Department of Restorative Dentistry, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Damla Binnetoglu
- Department of Medical Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Nurcan Ozakar Ilday
- Department of Restorative Dentistry, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Nilgun Seven
- Department of Restorative Dentistry, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| |
Collapse
|
34
|
Zajdowicz S, Song HB, Baranek A, Bowman CN. Evaluation of biofilm formation on novel copper-catalyzed azide-alkyne cycloaddition (CuAAC)-based resins for dental restoratives. Dent Mater 2019; 34:657-666. [PMID: 29422327 DOI: 10.1016/j.dental.2018.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/25/2017] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE For the past several decades, the resins used in dental restorations have been plagued with numerous problems, including their implication in biofilm formation and secondary caries. The need for alternative resins is critical, and evaluation of biofilm formation on these resins is essential. The aim of this study was to evaluate in vitro biofilm formation on the surface of novel copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC)-based resins and composites. METHODS CuAAC-based resins/composites made from varying azide monomers and different copper concentrations were compared with BisGMA-TEGDMA resins/composites that served as the control. Biofilms were formed using a mono-species model containing a luciferase-expressing strain of Streptococcus mutans. Luciferase activity was measured and the number of viable bacteria was enumerated on biofilms associated with each resin and composite. RESULTS A significant reduction (p<0.05) in luciferase activity, and the number of viable bacteria recovered from biofilms on CuAAC-based resins and composites was observed in comparison to biofilms associated with the BisGMA-TEGDMA controls. SIGNIFICANCE CuAAC-based resins do still allow for the formation of biofilms; however, the statistically significant reduction of growth that was associated with the CuAAC resin may enhance the longevity of restorations that incorporate CuAAC-based materials.
Collapse
Affiliation(s)
- Sheryl Zajdowicz
- Department of Biology, Metropolitan State University of Denver, PO Box 173362, Campus Box #53, Denver, CO, 80217, United States.
| | - Han Byul Song
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States.
| | - Austin Baranek
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States.
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States.
| |
Collapse
|
35
|
Cytotoxic and genotoxic potential of the type I photoinitiators BAPO and TPO on human oral keratinocytes and V79 fibroblasts. Dent Mater 2018; 34:1783-1796. [PMID: 30340767 DOI: 10.1016/j.dental.2018.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Phenylbis(acyl) phosphine oxide (BAPO) and diphenyl(acyl) phosphine oxide (TPO) are alternative photoinitiators to camphorquinone (CQ) in dental resinous materials. Aim of this study was to investigate their cytotoxic/genotoxic potential in human oral keratinocytes (OKF6/Tert2) and Chinese hamster lung fibroblasts (V79) in comparison to CQ. METHODS Cells were exposed to different concentrations of BAPO and TPO (1-50μM). Cytotoxicity was evaluated using H33342 and MTT assay, cell proliferation by BrdU proliferation assay and microscopy. Effects on cellular redox homeostasis were assessed by detecting intracellular levels of reactive oxygen/nitrogen species (ROS/RNS) using the DCFH2 assay and by quantification of mRNA expression of oxidatively regulated, cyto-protective enzymes. Genotoxic potential was determined by use of micronucleus (MN) assay. RESULTS BAPO and TPO induced a concentration-dependent decrease of cell number. BAPO and TPO showed 50- to 250-fold higher cytotoxicity than CQ. In contrast to CQ, both photoinitiators revealed no increase of intracellular ROS/RNS. However, BAPO (10μM) at least significantly induced mRNA-expression of redox-regulated proteins after 24h similar to 2.5mM CQ. Additionally, BAPO significantly raised the number of micronuclei, but only in V79 cells (10μM: 12±1, 2.5mM CQ: 15±1, medium control: 6±3). However, it also significantly decreased proliferation of these cells (10μM BAPO: 19.8%±7.3% compared to controls). SIGNIFICANCE BAPO and TPO revealed concentration-dependent cytotoxic effects in human oral keratinocytes and V79 cells. However, in contrast to CQ, no generation of intracellular ROS/RNS was found. Only BAPO induced genotoxicity in V79 cells.
Collapse
|
36
|
Graunaite I, Lodiene G, Arandarcikaite O, Pukalskas A, Machiulskiene V. Leachables and cytotoxicity of root canal sealers. J Oral Sci 2018; 60:381-387. [PMID: 30101818 DOI: 10.2334/josnusd.17-0173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This in vitro study aimed to detect leaching components from an epoxy resin- and a methacrylate-based endodontic sealer and correlate them to cytotoxicity induced by material extracts for up to 36 weeks. We qualitatively determined the substances released by aged AH Plus and RealSeal SE specimens at seven intervals between 0 and 36 weeks. Quantification was performed by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS). We determined the viability of murine macrophage J774 cells after 24 h exposure to material extracts, at each interval, using a fluorescence staining/microscopy method. The leachables detected were 1-adamantylamine and bisphenol A diglycidyl ether from AH Plus and N-(p-tolyl) diethanolamine and caprolactone-2-(methacryloyloxy) ethyl ester from RealSeal SE. The largest UPLC/MS chromatogram peak areas of the leachables were detected within 72 h. Induction of cytotoxicity after exposure to AH Plus and RealSeal SE extracts coincided with leachant detected within the first 72 and 24 h, respectively. The clinical impact of the cytotoxicity due to resin-based endodontic sealers is unknown.
Collapse
Affiliation(s)
- Indre Graunaite
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences
| | - Greta Lodiene
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences
| | - Odeta Arandarcikaite
- Institute of Neurosciences, Laboratory of Biochemistry, Lithuanian University of Health Sciences
| | - Audrius Pukalskas
- Department of Food Science and Technology, Kaunas University of Technologies
| | - Vita Machiulskiene
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences
| |
Collapse
|
37
|
Łagocka R, Mazurek-Mochol M, Jakubowska K, Bendyk-Szeffer M, Chlubek D, Buczkowska-Radlińska J. Analysis of Base Monomer Elution from 3 Flowable Bulk-Fill Composite Resins Using High Performance Liquid Chromatography (HPLC). Med Sci Monit 2018; 24:4679-4690. [PMID: 29980660 PMCID: PMC6069413 DOI: 10.12659/msm.907390] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this study was to evaluate the elution of BisGMA, UDMA, TEGDMA, and HEMA monomers from flowable bulk fill composite resins with different resin matrix compositions, polymerized in 4-mm-thick layers, into 3 elution media. Material/Methods Three bulk-fill (SDR® (SDR), X-tra base (XB) and BEAUTIFIL-Bulk Flowable (BF)) resin-composites were tested. Cylindrical samples were immersed in 100% ethanol, 75% ethanol, and distilled water. The concentrations of the monomers were measured using the HLPC method (Agilent Technologies 1200 Series) after 1 and 24 h, as well as after 3, 7, 14, and 21 days. Results After polymerization of the tested resins, there was elution of the BisGMA, UDMA, TEGDMA, and HEMA monomers from the SDR and BF composites, but none of the tested monomers could be detected eluting from XB. The highest penetrations of the polymerized SDR and BF composites were observed in the 100% ethanol solution. This extraction medium eluted the highest amounts of free monomers. Some eluted monomers were not described in the composites Material Safety Data Sheets. Conclusions The elution of the residual monomers depended on the resin composition and the materials filler/resin matrix ratio. In composite materials, toxicity assessment should be carried out, and should consider both the material composition as given by the manufacturer, and also the residual monomers that elute from the polymerized material. The elution concentration and time of monomers from composites depended on the solvent used. The highest penetrations of the polymerized SDR and BF composites were observed in the 100% ethanol solution, and this extraction medium eluted the highest amounts of free monomers. The 75% ethanol was a more aggressive medium than water in terms of monomer elution from bulk fill composites.
Collapse
Affiliation(s)
- Ryta Łagocka
- Department of Conservative Dentistry, Pomeranian Medical University, Szczecin, Poland
| | | | - Katarzyna Jakubowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Maja Bendyk-Szeffer
- Department of Conservative Dentistry, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | | |
Collapse
|
38
|
Abstract
OBJECTIVE Resin-based composites are known to elute leachables that include unincorporated starting materials. The objective of this work was to determine the effect of common dental monomers and initiators on Streptococcus mutans biofilm metabolic activity and biomass. METHODS S. mutans biofilms were inoculated in the presence of bisphenol A glycerolate dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), camphorquinone (CQ), and ethyl 4-(dimethylamino)benzoate (4E) at 0.01μg/mL up to 500μg/mL, depending on the aqueous solubility of each chemical. Biofilms were evaluated at 4h and 24h for pH (n=3-8), biomass via crystal violet (n=12), metabolic activity via tetrazolium salt (n=12), and membrane permeability for selected concentrations via confocal microscopy (n=6). Parametric and non-parametric statistics were applied. RESULTS 500μg/mL TEGDMA reduced 24h metabolic activity but not biomass, similar to prior results with leachables from undercured BisGMA-TEGDMA polymers. 50μg/mL BisGMA reduced biofilm biomass and activity, slightly delayed the pH drop, and decreased the number of cells with intact membranes. 100μg/mL CQ delayed the pH drop and metabolic activity at 4h but then significantly increased the 24h metabolic activity. 4E had no effect up to 10μg/mL. SIGNIFICANCE Monomers and initiators that leach from resin composites affect oral bacterial biofilm growth in opposite ways. Leachables, which can be released for extended periods of time, have the potential to alter oral biofilm biomass and activity and should be considered in developing and evaluating new dental materials.
Collapse
|
39
|
Mourouzis P, Samanidou V, Palaghias G. HPLC study of the inhibiting effect of phosphate and bicarbonate buffers on the leaching pattern of dental resin composites. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1431277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Petros Mourouzis
- Division of Dental Tissues Pathology and Therapeutics, Department of Operative Dentistry and Basic Dental Sciences, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Victoria Samanidou
- Department of Chemistry, Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Palaghias
- Division of Dental Tissues Pathology and Therapeutics, Department of Operative Dentistry and Basic Dental Sciences, Faculty of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
40
|
Yang Y, Reichl FX, Shi J, He X, Hickel R, Högg C. Cytotoxicity and DNA double-strand breaks in human gingival fibroblasts exposed to eluates of dental composites. Dent Mater 2017; 34:201-208. [PMID: 29042079 DOI: 10.1016/j.dental.2017.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/07/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Previously, single composite components were used to study cytotoxicity and induction of DNA double-strand breaks (DNA-DSBs) of dental composite resins. In the present study, cytotoxicity and induction of DNA-DSBs in human gingival fibroblasts (HGFs) were investigated with dental composite eluates consisting of multiple components. The eluates were qualified and quantified. METHODS The composites Esthet.X® HD, Venus®, X-tra fil®, CLEARFIL™ AP-X, Admira® Fusion and QuiXfil® were polymerized and immersed into Dulbecco's modified Eagle's medium (DMEM) for 72h. Subsequently, HGFs were incubated with the corresponding composite eluates. The cell viability of HGFs was obtained from an XTT assay. DNA-DSBs were determined using a γ-H2AX assay. The qualification and quantification of eluates were performed by gas chromatography/mass spectrometry (GC/MS). RESULTS HGFs exposed to the eluates of all investigated composites showed no significant loss of cell viability, compared to negative control. Significant DNA-DSBs induction could be found in HGFs exposed to the eluates of Esthet.X® HD (0.43±0.05 foci/cell) and Venus® (0.39±0.04 foci/cell), compared to control (0.22±0.03 foci/cell). A total of 12 substances were detected from the investigated composite eluates. Five of them were methacrylates: tetraethyleneglycol dimethacrylate (TEGDMA), 2-hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), ethyleneglycol dimethacrylate (EGDMA) and trimethylolpropane trimethacrylate (TMPTMA). The highest concentration of HEMA (110.5μM), HPMA (86.08μM) and TMPTMA (4.50μM) was detected in the eluates of QuiXfil®. The highest concentration of TEGDMA was 1080μM in Venus® eluates and the highest concentration of EGDMA was 3.18μM in Esthet.X® HD eluates. SIGNIFICANCE Significant DNA-DSBs induction can be found in HGFs exposed to the eluates of Esthet.X® HD and Venus®. The interactive effects among released (co)monomers and additives may influence the cytotoxicity and induction of DNA-DSBs, compared to exposure with single composite component.
Collapse
Affiliation(s)
- Yang Yang
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany
| | - Franz-Xaver Reichl
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany
| | - Jianwei Shi
- Department of Orthodontics, Ludwig-Maximilians-University of Munich, Goethestr. 70, 80336 Munich, Germany
| | - Xiuli He
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany
| | - Christof Högg
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich, Nußbaumstr. 26, 80336 Munich, Germany.
| |
Collapse
|
41
|
Kraus D, Wolfgarten M, Enkling N, Helfgen EH, Frentzen M, Probstmeier R, Winter J, Stark H. In-vitro cytocompatibility of dental resin monomers on osteoblast-like cells. J Dent 2017; 65:76-82. [PMID: 28711338 DOI: 10.1016/j.jdent.2017.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Dental resin-based materials are widely used in modern dentistry. Especially, resin cements enjoy great popularity and are utilized in many applications. Nevertheless, monomers could be released from the resinous matrix, thus interact with surrounding tissues, cause adverse biological reactions and may lead in cases of implant retained restorations to peri-implant bone destruction. Hence, we performed an in-vitro study to determine cytotoxicity of resin monomers on osteoblast-like cells. METHODS Three permanent osteoblast-like cell lines from tumor origin (MG-63 and Saos-2) as well as immortalized human fetal osteoblasts (hFOB 1.19) were used and treated with different concentrations of the main monomers: BisGMA, UDMA, TEGDMA and HEMA. The impact on cell viability was monitored using three different cytotoxicity tests: alamarBlue, XTT, and LDH assay. Mean±SEM were calculated and statistical analysis was performed with GraphPad Prism software. RESULTS All monomers tested caused concentration dependent cytotoxic effects on the three investigated osteoblast-like cell lines. Although all three cell viability assays showed comparable results in cytotoxic ranking of the monomers (BisGMA > UDMA > TEGDMA > HEMA), higher differences in the absolute values were detected by the various test methods In addition, also a cell line dependent influence on cell viability could be identified with higher impact on the immortalized hFOB 1.19 cells compared to both osteosarcoma cell lines (MG-63, Saos-2). CONCLUSIONS Monomer concentrations detected in elution studies caused toxic effects in osteoblast-like cells. Although the results from in-vitro studies cannot be directly transferred to a clinical situation our results indicate that released monomers from composite resin cements may cause adverse biological effects and thereby possibly lead to conditions favoring peri-implantitis and bone destruction. CLINICAL SIGNIFICANCE The wide use of composite resin cements especially in implant-prosthetic treatments should be scrutinized to avoid possible clinical implications between eluted resin monomers and bone cells leading to conditions favoring peri-implantitis and bone destruction.
Collapse
Affiliation(s)
- Dominik Kraus
- Department of Prosthodontics, Preclinical Education and Dental Materials Science, University of Bonn, Bonn, Germany.
| | - Markus Wolfgarten
- Department of Prosthodontics, Preclinical Education and Dental Materials Science, University of Bonn, Bonn, Germany
| | - Norbert Enkling
- Department of Prosthodontics, Preclinical Education and Dental Materials Science, University of Bonn, Bonn, Germany; Department of Reconstructive Dentistry and Gerodontology, University of Bern, Bern, Switzerland
| | - Ernst-Heinrich Helfgen
- Department of Prosthodontics, Preclinical Education and Dental Materials Science, University of Bonn, Bonn, Germany
| | - Matthias Frentzen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Rainer Probstmeier
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Jochen Winter
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Helmut Stark
- Department of Prosthodontics, Preclinical Education and Dental Materials Science, University of Bonn, Bonn, Germany
| |
Collapse
|
42
|
Cell responses to cariogenic microorganisms and dental resin materials—Crosstalk at the dentin-pulp interface? Dent Mater 2017; 33:514-524. [DOI: 10.1016/j.dental.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
|
43
|
Meng J, Yang H, Cao M, Li L, Cai Q. Correlating cytotoxicity to elution behaviors of composite resins in term of curing kinetic. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:413-419. [PMID: 28576003 DOI: 10.1016/j.msec.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/20/2022]
Abstract
Cytotoxicity of photocurable composite resins is a key issue for their safe use in dental restoration. Curing kinetic and elution behaviors of the composite resin would have decisive effects on its cytotoxicity. In this study, composite resins composed of bisphenol-glycidyl dimethacrylate (Bis-GMA), triethyleneglycol dimethacrylate (TEGDMA), camphorquinone (CQ), N,N-dimethylaminoethyl methacrylate (DMAEMA) and barium glass powders were prepared by setting the photoinitiators CQ/DMAEMA at 0.5wt%, 1wt% or 3wt% of the total weight of Bis-GMA/TEGDMA. The ratio of Bis-GMA/TEGDMA was 6:4, the ratio of CQ/DMAEMA was 1:1, and the incorporated inorganic powder was 75wt%. Then, curing kinetics were studied by using real-time Fourier transform infrared spectroscopy (FTIR) and photo-DSC (differential scanning calorimeter). Elution behaviors in both ethanol solution and deionized water were monitored by using liquid chromatogram/mass spectrometry (LC/MS). Cytotoxicity was evaluated by in vitro culture of L929 fibroblasts. Finally, they were all analyzed and correlated in terms of initiator contents. It was found that the commonly used 0.5wt% of photoinitiators was somewhat insufficient in obtaining composite resin with low cytotoxicity.
Collapse
Affiliation(s)
- Junquan Meng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huichuan Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Man Cao
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
44
|
Cebe MA, Cebe F, Cengiz MF, Cetin AR, Arpag OF, Ozturk B. Elution of monomer from different bulk fill dental composite resins. Dent Mater 2017; 31:e141-9. [PMID: 25979794 DOI: 10.1016/j.dental.2015.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 01/13/2015] [Accepted: 04/17/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the elution of Bis-GMA, TEGDMA, HEMA, and Bis-EMA monomers from six bulk fill composite resins over four different time periods, using HPLC. METHODS Six different composite resin materials were used in the present study: Tetric Evo Ceram Bulk Fill (Ivoclar Vivadent, Amherst, NY), X-tra Fill (VOCO, Cuxhaven, Germany), Sonic Fill (Kerr, Orange, CA, USA), Filtek Bulk Fill (3M ESPE Dental Product, St. Paul, MN), SDR (Dentsply, Konstanz, Germany), EQUIA (GC America INC, Alsip, IL). The samples (4mm thickness, 5mm diameter) were prepared and polymerized for 20s with a light emitted diode unit. After fabrication, each sample was immediately immersed in 75wt% ethanol/water solution used as extraction fluid and stored in the amber colored bottles at room temperature. Ethanol/water samples were taken (0.5mL) at predefined time intervals:10m (T1), 1h (T2), 24h (T3) and 30 days (T4). These samples were analyzed by HPLC. The obtained data were analyzed with one-way ANOVA and Tukey HSD at significance level of p<0.05. RESULTS Amount of eluted Bis-EMA and Bis-GMA from Tetric Evo Ceram Bulk Fill and amount of eluted TEGDMA and HEMA from X-tra Fill higher than others composites (p<0.05). SIGNIFICANCE Residual monomers were eluted from bulk fill composite resins in all time periods and the amount of eluted monomers was increased with time.
Collapse
Affiliation(s)
- Mehmet Ata Cebe
- Abant Izzet Baysal University, Faculty of Dentistry, Department of Restorative Dentistry, Bolu, Turkey.
| | - Fatma Cebe
- Abant Izzet Baysal University, Faculty of Dentistry, Department of Restorative Dentistry, Bolu, Turkey.
| | - Mehmet Fatih Cengiz
- Akdeniz University, Food Safety and Agricultural Research Center, Antalya, Turkey.
| | - Ali Rıza Cetin
- Selcuk University, Faculty of Dentistry, Department of Restorative Dentistry, Konya, Turkey.
| | - Osman Fatih Arpag
- Mustafa Kemal University, Faculty of Dentistry, Department of Periodontology, Hatay, Turkey.
| | - Bora Ozturk
- Selcuk University, Faculty of Dentistry, Department of Restorative Dentistry, Konya, Turkey.
| |
Collapse
|
45
|
Abstract
AIM AND OBJECTIVES To evaluate the elution of bisphenol A-glycidyl methacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) from two bulk-fill composites at different polymerization times, for different storage periods when cured with quartz-tungsten-halogen (QTH) curing unit. MATERIALS AND METHODS Tetric N-Ceram bulk fill and EverX Posterior were analyzed using high-performance liquid chromatography unit. Totally, 68 samples were prepared, two groups (n = 17) from both the composites, one for each tested polymerization time. Each sample was cured with a QTH curing unit, using soft-start curing technique and stored in 2 ml of ethanol for 24 h. Storage medium was renewed and then stored again for 1 week. Data acquired were statistically analyzed. RESULTS The elution of BisGMA was significantly higher from Tetric N-Ceram bulk fill and BisGMA and TEGDMA from EverX Posterior composite at the end of 24 h, irrespective of the curing time. In EverX Posterior, a higher amount of TEGDMA was eluted at the end of 24 h, while at the end of 1 week, significantly higher amount of BisGMA was released. CONCLUSION A significant amount of the release of BisGMA as well as TEGDMA was seen from both the composites when stored for different time intervals.
Collapse
Affiliation(s)
- Ankit Rajesh Sajnani
- Department of Conservative Dentistry and Endodontics, A B Shetty Memorial Institute of Dental Sciences, Nitte University, Deralakatte, Karanataka, India
| | - Mithra Nidharsh Hegde
- Department of Conservative Dentistry and Endodontics, A B Shetty Memorial Institute of Dental Sciences, Nitte University, Deralakatte, Karanataka, India
| |
Collapse
|
46
|
The Influence of Irradiation Time and Layer Thickness on Elution of Triethylene Glycol Dimethacrylate from SDR® Bulk-Fill Composite. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3481723. [PMID: 27366742 PMCID: PMC4913063 DOI: 10.1155/2016/3481723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/12/2016] [Indexed: 12/03/2022]
Abstract
Objective. This study aimed to evaluate triethylene glycol dimethacrylate (TEGDMA) elution from SDR bulk-fill composite. Methods. Three groups of samples were prepared, including samples polymerized in a 4 mm layer for 20 s, in a 4 mm layer for 40 s, and in a 2 mm layer for 20 s. Elution of TEGDMA into 100% ethanol, a 75% ethanol/water solution, and distilled water was studied. The TEGDMA concentration was measured using HPLC. Results. The TEGDMA concentration decreased in the following order: 100% ethanol > 75% ethanol > distilled water. Doubling the energy delivered to the 4 mm thick sample caused decrease (p < 0.05) in TEGDMA elution to distilled water. In ethanol solutions, the energy increase had no influence on TEGDMA elution. Decreasing the sample thickness resulted in decrease (p < 0.05) in TEGDMA elution for all the solutions. Conclusions. The concentration of eluted TEGDMA and the elution time were both strongly affected by the hydrophobicity of the solvent. Doubling the energy delivered to the 4 mm thick sample did not decrease the elution of TEGDMA but did decrease the amount of the monomer available to less aggressive solvents. Elution of TEGDMA was also correlated with the exposed sample surface area. Clinical Relevance. Decreasing the SDR layer thickness decreases TEGDMA elution.
Collapse
|
47
|
Oral biofilm and caries-infiltrant interactions on enamel. J Dent 2016; 48:40-5. [DOI: 10.1016/j.jdent.2016.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
|
48
|
Photopolymerization of highly filled dimethacrylate-based composites using Type I or Type II photoinitiators and varying co-monomer ratios. Dent Mater 2016; 32:136-48. [DOI: 10.1016/j.dental.2015.11.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022]
|
49
|
Kramer MR, Edelhoff D, Stawarczyk B. Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin. MATERIALS 2016; 9:ma9020083. [PMID: 28787884 PMCID: PMC5456469 DOI: 10.3390/ma9020083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 11/28/2022]
Abstract
To test the impact of preheating (25, 37, 54, or 68 °C) of TetricEvoCeram (TEC), FiltekSupremeXT (FSXT), and Venus (V) on flexural strength (FS), shear bond strength (SBS) and interfacial tension (IFT). FS was tested with TEC and FSXT. For SBS, glass-ceramic and human dentin substrate were fabricated and luted with the preheated resin composite (RC). SBSs of 1500 thermal cycled specimens were measured. For IFT, glass slides covered with the non-polymerized RC were prepared and contact angles were measured. Data were analyzed using 2/1-way ANOVA with Scheffé-test, and t-test (p < 0.05). Preheated TEC (37–68 °C) showed higher FS compared to the control-group (25 °C) (p < 0.001). FSXT presented higher FS than TEC (p < 0.001). For SBS to dentin higher values for FSXT than TEC were found. The preheating temperature showed no impact on SBS to dentin. SBS to glass-ceramic revealed a positive influence of temperature for TEC 25–68 °C (p = 0.015). TEC showed higher values than V and FSXT (p < 0.001). IFT values increased with the preheating temperature. A significant difference could be observed in every RC group between 25 and 68 °C (p < 0.001).
Collapse
Affiliation(s)
- Matthias Richard Kramer
- Department of Prosthodontics, Dental School, Ludwig-Maximilians-University Munich, Goethestrasse 70, 80336 Munich, Germany.
| | - Daniel Edelhoff
- Department of Prosthodontics, Dental School, Ludwig-Maximilians-University Munich, Goethestrasse 70, 80336 Munich, Germany.
| | - Bogna Stawarczyk
- Department of Prosthodontics, Dental School, Ludwig-Maximilians-University Munich, Goethestrasse 70, 80336 Munich, Germany.
| |
Collapse
|
50
|
Jiao Y, Ma S, Wang Y, Li J, Shan L, Chen J. Epigallocatechin-3-Gallate Reduces Cytotoxic Effects Caused by Dental Monomers: A Hypothesis. Med Sci Monit 2015; 21:3197-202. [PMID: 26489899 PMCID: PMC4622224 DOI: 10.12659/msm.895628] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Resin monomers from dental composite materials leached due to incomplete polymerization or biodegradation may cause contact allergies and damage dental pulp. The cytotoxicity of dental resin monomers is due to a disturbance of intracellular redox equilibrium, characterized by an overproduction of reactive oxygen species (ROS) and depletion of reduced glutathione (GSH). Oxidative stress caused by dental resin monomers leads to the disturbance of vital cell functions and induction of cell apoptosis in affected cells. The nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway plays a key role in the cellular defense system against oxidative and electrophilic stress. Epigallocatechin-3-gallate (EGCG) can activate the Nrf2 pathway and induce expression of a multitude of antioxidants and phase II enzymes that can restore redox homeostasis. Therefore, here, we tested the hypothesis that EGCG-mediated protection against resin monomer cytotoxicity is mediated by activation of the Nrf2 pathway. This study will help to elucidate the mechanism of resin monomer cytotoxicity and provide information that will be helpful in improving the biocompatibility of dental resin materials.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Sai Ma
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Yirong Wang
- Shaanxi Key Laboratory of Military Stomatology, Xi'an, Shaanxi, China (mainland)
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Lequn Shan
- Department of Orthopaedic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Jihua Chen
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|