1
|
Ghezzi B, Matera B, Meglioli M, Rossi F, Duraccio D, Faga MG, Zappettini A, Macaluso GM, Lumetti S. Composite PCL Scaffold With 70% β-TCP as Suitable Structure for Bone Replacement. Int Dent J 2024; 74:1220-1232. [PMID: 38614878 DOI: 10.1016/j.identj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 04/15/2024] Open
Abstract
OBJECTIVES The purpose of this work was to optimise printable polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) biomaterials with high percentages of β-TCP endowed with balanced mechanical characteristics to resemble human cancellous bone, presumably improving osteogenesis. METHODS PCL/β-TCP scaffolds were obtained from customised filaments for fused deposition modelling (FDM) 3D printing with increasing amounts of β-TCP. Samples mechanical features, surface topography and wettability were evaluated as well as cytocompatibility assays, cell adhesion and differentiation. RESULTS The parameters of the newly fabricated materila were optimal for PCL/β-TCP scaffold fabrication. Composite surfaces showed higher hydrophilicity compared with the controls, and their surface roughness sharply was higher, possibly due to the presence of β-TCP. The Young's modulus of the composites was significantly higher than that of pristine PCL, indicating that the intrinsic strength of β-TCP is beneficial for enhancing the elastic modulus of the composite biomaterials. All novel composite biomaterials supported greater cellular growth and stronger osteoblastic differentiation compared with the PCL control. CONCLUSIONS This project highlights the possibility to fabricat, through an FDM solvent-free approach, PCL/β-TCP scaffolds of up to 70 % concentrations of β-TCP. overcoming the current lmit of 60 % stated in the literature. The combination of 3D printing and customised biomaterials allowed production of highly personalised scaffolds with optimal mechanical and biological features resembling the natural structure and the composition of bone. This underlines the promise of such structures for innovative approaches for bone and periodontal regeneration.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Biagio Matera
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Matteo Meglioli
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.
| | - Francesca Rossi
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Donatella Duraccio
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Torino, Italy
| | - Maria Giulia Faga
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Torino, Italy
| | - Andrea Zappettini
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Guido Maria Macaluso
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| |
Collapse
|
2
|
Chen X, Yu B, Wang Z, Zhou Q, Wu Q, He J, Dai C, Li Q, Wei J. Dynamic Transcriptome Analysis of SFRP Family in Guided Bone Regeneration With Occlusive Periosteum in Swine Model. J Craniofac Surg 2024; 35:1432-1437. [PMID: 39042069 DOI: 10.1097/scs.0000000000010365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND A variety of congenital or acquired conditions can cause craniomaxillofacial bone defects, resulting in a heavy financial burden and psychological stress. Guided bone self-generation with periosteum-preserved has great potential for reconstructing large bone defects. METHODS A swine model of guided bone regeneration with occlusive periosteum was established, the rib segment was removed, and the periosteum was sutured to form a closed regeneration chamber. Hematoxylin and eosin staining, Masson's staining, and Safranine O-Fast Green staining were done. Nine-time points were chosen for collecting the periosteum and regenerated bone tissue for gene sequencing. The expression level of each secreted frizzled-related protein (SFRP) member and the correlations among them were analyzed. RESULTS The process of bone regeneration is almost complete 1 month after surgery, and up to 1 week after surgery is an important interval for initiating the process. The expression of each SFRP family member fluctuated greatly. The highest expression level of all members ranged from 3 days to 3 months after surgery. The expression level of SFRP2 was the highest, and the difference between 2 groups was the largest. Secreted frizzled-related protein 2 and SFRP4 showed a notable positive correlation between the control and model groups. Secreted frizzled-related protein 1, SFRP2, and SFRP4 had a significant spike in fold change at 1 month postoperatively. Secreted frizzled-related protein 1 and SFRP2 had the strongest correlation. CONCLUSIONS This study revealed the dynamic expression of the SFRP family in guided bone regeneration with occlusive periosteum in a swine model, providing a possibility to advance the clinical application of bone defect repair.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Hassan MN, Eltawila AM, Mohamed-Ahmed S, Amin WM, Suliman S, Kandil S, Yassin MA, Mustafa K. Correlation between Ca Release and Osteoconduction by 3D-Printed Hydroxyapatite-Based Templates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28056-28069. [PMID: 38795033 PMCID: PMC11163400 DOI: 10.1021/acsami.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/27/2024]
Abstract
The application of hydroxyapatite (HA)-based templates is quite often seen in bone tissue engineering since that HA is an osteoconductive bioceramic material, which mimics the inorganic component of mineralized tissues. However, the reported osteoconductivity varies in vitro and in vivo, and the levels of calcium (Ca) release most favorable to osteoconduction have yet to be determined. In this study, HA-based templates were fabricated by melt-extrusion 3D-printing and characterized in order to determine a possible correlation between Ca release and osteoconduction. The HA-based templates were blended with poly(lactide-co-trimethylene carbonate) (PLATMC) at three different HA ratios: 10, 30, and 50%. The printability and physical properties of the HA templates were compared with those of pristine PLATMC. In vitro, osteoconductivity was assessed using seeded human bone marrow-derived mesenchymal stem cells. A mild rate of Ca release was observed for HA10 templates, which exhibited higher mineralized extracellular matrix (ECM) secretion than PLATMC at 14 and 21 days. In contrast, the high rate of Ca release exhibited by HA30 and HA50 templates was associated with reduced osteoconduction and impeded mineralized ECM secretion in vitro. Similar results were observed in vivo. In the calvarial defect model in rabbit, PLATMC and HA10 templates exhibited the highest amount of new bone formation, with obvious contact osteogenesis on their surfaces. In contrast, HA30 and HA50 exhibited distant osteogenesis and reduced amounts of new bone ingrowth. It is concluded that HA-based templates are osteoconductive only at low rates of Ca release.
Collapse
Affiliation(s)
- Mohamad N. Hassan
- Centre
for Translational Oral Research (TOR), Department of Clinical Dentistry,
Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
- Orthopedic
Clinic, Haukeland University Hospital, Helse Bergen, Haukelandsveien 28, Bergen 5021, Norway
| | - Ahmed M. Eltawila
- Department
of Materials Science, Institute of Graduate
Studies and Research (IGSR), Alexandria University, El-Shatby, Alexandria 21526, Egypt
- Department
of Dental Biomaterials, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Coastal International Road, Gamasa 11152, Egypt
| | - Samih Mohamed-Ahmed
- Centre
for Translational Oral Research (TOR), Department of Clinical Dentistry,
Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Wessam M. Amin
- Department
of Materials Science, Institute of Graduate
Studies and Research (IGSR), Alexandria University, El-Shatby, Alexandria 21526, Egypt
| | - Salwa Suliman
- Centre
for Translational Oral Research (TOR), Department of Clinical Dentistry,
Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Sherif Kandil
- Department
of Materials Science, Institute of Graduate
Studies and Research (IGSR), Alexandria University, El-Shatby, Alexandria 21526, Egypt
| | - Mohammed A. Yassin
- Centre
for Translational Oral Research (TOR), Department of Clinical Dentistry,
Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
- Biomaterials
Section, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Kamal Mustafa
- Centre
for Translational Oral Research (TOR), Department of Clinical Dentistry,
Faculty of Medicine, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| |
Collapse
|
4
|
Sikkema R, Keohan B, Zhitomirsky I. Alginic Acid Polymer-Hydroxyapatite Composites for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13183070. [PMID: 34577971 PMCID: PMC8471633 DOI: 10.3390/polym13183070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Natural bone is a composite organic-inorganic material, containing hydroxyapatite (HAP) as an inorganic phase. In this review, applications of natural alginic acid (ALGH) polymer for the fabrication of composites containing HAP are described. ALGH is used as a biocompatible structure directing, capping and dispersing agent for the synthesis of HAP. Many advanced techniques for the fabrication of ALGH-HAP composites are attributed to the ability of ALGH to promote biomineralization. Gel-forming and film-forming properties of ALGH are key factors for the development of colloidal manufacturing techniques. Electrochemical fabrication techniques are based on strong ALGH adsorption on HAP, pH-dependent charge and solubility of ALGH. Functional properties of advanced composite ALGH-HAP films and coatings, scaffolds, biocements, gels and beads are described. The composites are loaded with other functional materials, such as antimicrobial agents, drugs, proteins and enzymes. Moreover, the composites provided a platform for their loading with cells for the fabrication of composites with enhanced properties for various biomedical applications. This review summarizes manufacturing strategies, mechanisms and outlines future trends in the development of functional biocomposites.
Collapse
|
5
|
Medvecky L, Giretova M, Stulajterova R, Luptakova L, Sopcak T. Tetracalcium Phosphate/Monetite/Calcium Sulfate Hemihdrate Biocement Powder Mixtures Prepared by the One-Step Synthesis for Preparation of Nanocrystalline Hydroxyapatite Biocement-Properties and In Vitro Evaluation. MATERIALS 2021; 14:ma14092137. [PMID: 33922310 PMCID: PMC8122770 DOI: 10.3390/ma14092137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
A modified one-step process was used to prepare tetracalcium phosphate/monetite/calcium sulfate hemihydrate powder cement mixtures (CAS). The procedure allowed the formation of monetite and calcium sulfate hemihydrate (CSH) in the form of nanoparticles. It was hypothesized that the presence of nanoCSH in small amounts enhances the in vitro bioactivity of CAS cement in relation to osteogenic gene markers in mesenchymal stem cells (MSCs). The CAS powder mixtures with 15 and 5 wt.% CSH were prepared by milling powder tetracalcium phosphate in an ethanolic solution of both orthophosphoric and sulfuric acids. The CAS cements had short setting times (around 5 min). The fast setting of the cement samples after the addition of the liquid component (water solution of NaH2PO4) was due to the partial formation of calcium sulfate dihydrate and hydroxyapatite before soaking in SBF with a small change in the original phase composition in cement powder samples after milling. Nanocrystalline hydroxyapatite biocement was produced by soaking of cement samples after setting in simulated body fluid (SBF). The fast release of calcium ions from CAS5 cement, as well as a small rise in the pH of SBF during soaking, were demonstrated. After soaking in SBF for 7 days, the final product of the cement transformation was nanocrystalline hydroxyapatite. The compressive strength of the cement samples (up to 30 MPa) after soaking in simulated body fluid (SBF) was comparable to that of bone. Real time polymerase chain reaction (RT-PCR) analysis revealed statistically significant higher gene expressions of alkaline phosphatase (ALP), osteonectin (ON) and osteopontin (OP) in cells cultured for 14 days in CAS5 extract compared to CSH-free cement. The addition of a small amount of nanoCSH (5 wt.%) to the tetracalcium phosphate (TTCP)/monetite cement mixture significantly promoted the over expression of osteogenic markers in MSCs. The prepared CAS powder mixture with its enhanced bioactivity can be used for bone defect treatment and has good potential for bone healing.
Collapse
Affiliation(s)
- Lubomir Medvecky
- Department of Functional and Hybrid Materials, Institute of Materials Research of SAS, Watsonova 47, 04 001 Kosice, Slovakia; (M.G.); (R.S.); (T.S.)
- Correspondence:
| | - Maria Giretova
- Department of Functional and Hybrid Materials, Institute of Materials Research of SAS, Watsonova 47, 04 001 Kosice, Slovakia; (M.G.); (R.S.); (T.S.)
| | - Radoslava Stulajterova
- Department of Functional and Hybrid Materials, Institute of Materials Research of SAS, Watsonova 47, 04 001 Kosice, Slovakia; (M.G.); (R.S.); (T.S.)
| | - Lenka Luptakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Tibor Sopcak
- Department of Functional and Hybrid Materials, Institute of Materials Research of SAS, Watsonova 47, 04 001 Kosice, Slovakia; (M.G.); (R.S.); (T.S.)
| |
Collapse
|
6
|
Feasibility of Application of the Newly Developed Nano-Biomaterial, β-TCP/PDLLA, in Maxillofacial Reconstructive Surgery: A Pilot Rat Study. NANOMATERIALS 2021; 11:nano11020303. [PMID: 33503931 PMCID: PMC7912080 DOI: 10.3390/nano11020303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/30/2022]
Abstract
This study was performed to examine the applicability of the newly developed nano-biocomposite, β-tricalcium phosphate (β-TCP)/u-HA/poly-d/l-lactide (PDLLA), to bone defects in the oral and maxillofacial area. This novel nano-biocomposite showed several advantages, including biocompatibility, biodegradability, and osteoconductivity. In addition, its optimal plasticity also allowed its utilization in irregular critical bone defect reconstructive surgery. Here, three different nano-biomaterials, i.e., β-TCP/PDLLA, β-TCP, and PDLLA, were implanted into critical bone defects in the right lateral mandible of 10-week-old Sprague–Dawley (SD) rats as bone graft substitutes. Micro-computed tomography (Micro-CT) and immunohistochemical staining for the osteogenesis biomarkers, Runx2, osteocalcin, and the leptin receptor, were performed to investigate and compare bone regeneration between the groups. Although the micro-CT results showed the highest bone mineral density (BMD) and bone volume to total volume (BV/TV) with β-TCP, immunohistochemical analysis indicated better osteogenesis-promoting ability of β-TCP/PDLLA, especially at an early stage of the bone healing process. These results confirmed that the novel nano-biocomposite, β-TCP/PDLLA, which has excellent biocompatibility, bioresorbability and bioactive/osteoconductivity, has the potential to become a next-generation biomaterial for use as a bone graft substitute in maxillofacial reconstructive surgery.
Collapse
|
7
|
Iftikhar S, Jahanzeb N, Saleem M, Ur Rehman S, Matinlinna JP, Khan AS. The trends of dental biomaterials research and future directions: A mapping review. Saudi Dent J 2021; 33:229-238. [PMID: 34194185 PMCID: PMC8236547 DOI: 10.1016/j.sdentj.2021.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 12/24/2022] Open
Abstract
Objective This literature research aimed to compare, contrast and quantify the innovations in the most commonly used dental biomaterials. Methodology Original research articles based on experimental dental biomaterials published between 2007 and 2019 were retrieved and reviewed. A search of electronic databases, PubMed, Scopus, and Web of Science indexed dental/biomaterials journals, has been conducted. The inclusion criteria in this research were: synthesis of experimental dental materials, whereas commercial dental materials, review articles, and clinical trials (case reports) were excluded. Results It was found that the amount of publications related to dental subgingival implants, computer-aided modeling ceramics, aesthetic restorative materials, adhesives cements, ceramics, bioceramics, endodontic materials, bioactive scaffolds, stem cells, and guided-tissue membranes had increased significantly from 2007. At the same time, the number of publications related to dental cements, silver amalgam, and dental alloys has decreased. For characterization of dental materials it was noted that mechanical properties were tested mostly for restorative materials. On the other hand, biological properties were most assessed for dental subgingival implants and endodontic materials, however, physical properties predominantly for bioceramics. Conclusion It is concluded that to meet clinical demands there was more focus on restorative materials that provided better aesthetics, including resin composites, adhesive resin composites (luting cements), zirconia, and other ceramics. The boost in laboratory and animal research related to bioceramics was attributed to their regenerative potential. This current literature study will help growing researchers to consider and judge the direction to which research might be guided in order to plan prospective research projects.
Collapse
Affiliation(s)
- Sundus Iftikhar
- Department of Medical Education, Shalamar Medical and Dental College, Lahore 54000, Pakistan
| | - Noureen Jahanzeb
- Department of Dental Materials, University of Health Sciences, Lahore 54000, Pakistan
| | - Mehvish Saleem
- Department of Dental Biomaterials, Bakhtawar Amin Medical and Dental College, Multan 66000, Pakistan
| | - Shafiq Ur Rehman
- Deanship of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
8
|
Lodoso-Torrecilla I, van den Beucken J, Jansen J. Calcium phosphate cements: Optimization toward biodegradability. Acta Biomater 2021; 119:1-12. [PMID: 33065287 DOI: 10.1016/j.actbio.2020.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Synthetic calcium phosphate (CaP) ceramics represent the most widely used biomaterials for bone regenerative treatments due to their biological performance that is characterized by bioactivity and osteoconductive properties. From a clinical perspective, injectable CaP cements (CPCs) are highly appealing, as CPCs can be applied using minimally invasive surgery and can be molded to optimally fill irregular bone defects. Such CPCs are prepared from a powder and a liquid component, which upon mixing form a paste that can be injected into a bone defect and hardens in situ within an appropriate clinical time window. However, a major drawback of CPCs is their poor degradability. Ideally, CPCs should degrade at a suitable pace to allow for concomitant new bone to form. To overcome this shortcoming, control over CPC degradation has been explored using multiple approaches that introduce macroporosity within CPCs. This strategy enables faster degradation of CPC by increasing the surface area available to interact with the biological surroundings, leading to accelerated new bone formation. For a comprehensive overview of the path to degradable CPCs, this review presents the experimental procedures followed for their development with specific emphasis on (bio)material properties and biological performance in pre-clinical bone defect models.
Collapse
|
9
|
Chen H, Yang H, Weir MD, Schneider A, Ren K, Homayounfar N, Oates TW, Zhang K, Liu J, Hu T, Xu HHK. An antibacterial and injectable calcium phosphate scaffold delivering human periodontal ligament stem cells for bone tissue engineering. RSC Adv 2020; 10:40157-40170. [PMID: 35520873 PMCID: PMC9057516 DOI: 10.1039/d0ra06873j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Osteomyelitis and post-operative infections are major problems in orthopedic, dental and craniofacial surgeries. It is highly desirable for a tissue engineering construct to kill bacteria, while simultaneously delivering stem cells and enhancing cell function and tissue regeneration. The objectives of this study were to: (1) develop a novel injectable calcium phosphate cement (CPC) scaffold containing antibiotic ornidazole (ORZ) while encapsulating human periodontal ligament stem cells (hPDLSCs), and (2) investigate the inhibition efficacy against Staphylococcus aureus (S. aureus) and the promotion of hPDLSC function for osteogenesis for the first time. ORZ was incorporated into a CPC-chitosan scaffold. hPDLSCs were encapsulated in alginate microbeads (denoted hPDLSCbeads). The ORZ-loaded CPCC+hPDLSCbeads scaffold was fully injectable, and had a flexural strength of 3.50 ± 0.92 MPa and an elastic modulus of 1.30 ± 0.45 GPa, matching those of natural cancellous bone. With 6 days of sustained ORZ release, the CPCC+10ORZ (10% ORZ) scaffold had strong antibacterial effects on S. aureus, with an inhibition zone of 12.47 ± 1.01 mm. No colonies were observed in the CPCC+10ORZ group from 3 to 7 days. ORZ-containing scaffolds were biocompatible with hPDLSCs. CPCC+10ORZ+hPDLSCbeads scaffold with osteogenic medium had 2.4-fold increase in alkaline phosphatase (ALP) activity and bone mineral synthesis by hPDLSCs, as compared to the control group (p < 0.05). In conclusion, the novel antibacterial construct with stem cell delivery had injectability, good strength, strong antibacterial effects and biocompatibility, supporting osteogenic differentiation and bone mineral synthesis of hPDLSCs. The injectable and mechanically-strong CPCC+10ORZ+hPDLSCbeads construct has great potential for treating bone infections and promoting bone regeneration.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endodontics, College of Stomatological, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Hui Yang
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry Baltimore USA
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine Baltimore MD 21201 USA
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, University of Maryland Baltimore MD 21201 USA
| | - Negar Homayounfar
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University Beijing China
| | - Jin Liu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University Xi'an Shannxi China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine Baltimore MD 21201 USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine Baltimore MD 21201 USA
| |
Collapse
|
10
|
Shen C, Witek L, Flores RL, Tovar N, Torroni A, Coelho PG, Kasper FK, Wong M, Young S. Three-Dimensional Printing for Craniofacial Bone Tissue Engineering. Tissue Eng Part A 2020; 26:1303-1311. [PMID: 32842918 DOI: 10.1089/ten.tea.2020.0186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The basic concepts from the fields of biology and engineering are integrated into tissue engineering to develop constructs for the repair of damaged and/or absent tissues, respectively. The field has grown substantially over the past two decades, with particular interest in bone tissue engineering (BTE). Clinically, there are circumstances in which the quantity of bone that is necessary to restore form and function either exceeds the patient's healing capacity or bone's intrinsic regenerative capabilities. Vascularized osseous or osteocutaneous free flaps are the standard of care with autologous bone remaining the gold standard, but is commonly associated with donor site morbidity, graft resorption, increased operating time, and cost. Regardless of the size of a craniofacial defect, from trauma, pathology, and osteonecrosis, surgeons and engineers involved with reconstruction need to consider the complex three-dimensional (3D) geometry of the defect and its relationship to local structures. Three-dimensional printing has garnered significant attention and presents opportunities to use craniofacial BTE as a technology that offers a personalized approach to bony reconstruction. Clinicians and engineers are able to work together to produce patient-specific space-maintaining scaffolds tailored to site-specific defects, which are osteogenic, osseoconductive, osseoinductive, encourage angiogenesis/vasculogenesis, and mechanically stable upon implantation to prevent immediate failure. In this work, we review biological and engineering principles important in applying 3D printing technology to BTE for craniofacial reconstruction as well as present recent translational advancements in 3D printed bioactive ceramic scaffold technology.
Collapse
Affiliation(s)
- Chen Shen
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA.,Department of Biomedical Engineering and New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Nick Tovar
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Paulo G Coelho
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA.,Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - F Kurtis Kasper
- Department of Orthodontics and School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mark Wong
- Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Silicon-calcium phosphate ceramics and silicon-calcium phosphate cements: Substrates to customize the release of antibiotics according to the idiosyncrasies of the patient. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110173. [PMID: 31753390 DOI: 10.1016/j.msec.2019.110173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022]
Abstract
Bone substitutes based on calcium phosphates can be classified in two major groups: ceramics and cements. Both are biomaterials with excellent biocompatibility that have been studied as local delivery systems for drugs. This study aims to evaluate drug-release kinetics in silicon beta-tricalcium phosphate ceramics (Si-β-TCP) and in silicon calcium phosphate cements (Si-CPCs). We want to investigate if the differences in composition and in structure of the Si-β-TCP and the Si-CPC may influence for drug loading and in its release kinetics from the biomaterial. The results obtained indicate that all drug-loaded materials were efficient to tailor drug release kinetics and inhibited the growth of Staphylococcus aureus. The cements prepared with high concentrations of silicon (80% Si-CPC) present zero-order release kinetics, independent of the drug concentration loaded. Si-β-TCP and Si-CPC offer a simple technology that could serve to personalize the delivery of bioactive molecules according to each patient's needs in the treatment of bone conditions, not only limited to prophylaxis, but also for the treatment of bone infection.
Collapse
|
12
|
Xu J, Feng Y, Wu Y, Li Y, Ouyang M, Zhang X, Wang Y, Wang Y, Xu L. Noninvasive monitoring of bone regeneration using NaYF4: Yb3+, Er3+ upconversion hollow microtubes supporting PLGA-PEG-PLGA hydrogel. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Hassan MN, Yassin MA, Suliman S, Lie SA, Gjengedal H, Mustafa K. The bone regeneration capacity of 3D-printed templates in calvarial defect models: A systematic review and meta-analysis. Acta Biomater 2019; 91:1-23. [PMID: 30980937 DOI: 10.1016/j.actbio.2019.04.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022]
Abstract
3D-printed templates are being used for bone tissue regeneration (BTR) as temporary guides. In the current review, we analyze the factors considered in producing potentially bioresorbable/degradable 3D-printed templates and their influence on BTR in calvarial bone defect (CBD) animal models. In addition, a meta-analysis was done to compare the achieved BTR for each type of template material (polymer, ceramic or composites). Database collection was completed by January 2018, and the inclusion criteria were all titles and keywords combining 3D printing and BTR in CBD models. Clinical trials and poorly-documented in vivo studies were excluded from this study. A total of 45 relevant studies were finally included and reviewed, and an additional check list was followed before inclusion in the meta-analysis, where material type, porosity %, and the regenerated bone area were collected and analyzed statistically. Overall, the capacity of the printed templates to support BTR was found to depend in large part on the amount of available space (porosity %) provided by the printed templates. Printed ceramic and composite templates showed the best BTR capacity, and the optimum printed template structure was found to have total porosity >50% with a pore diameter between 300 and 400 µm. Additional features and engineered macro-channels within the printed templates increased BTR capacity at long time points (12 weeks). Although the size of bone defects in rabbits was larger than in rats, BTR was greater in rabbits (almost double) at all time points and for all materials used. STATEMENT OF SIGNIFICANCE: In the present study, we reviewed the factors considered in producing degradable 3D-printed templates and their influence on bone tissue regeneration (BTR) in calvarial bone defects through the last 15 years. A meta-analysis was applied on the collected data to quantify and analyze BTR related to each type of template material. The concluded data states the importance of 3D-printed templates for BTR and indicates the ideal design required for an effective clinical translation. The evidence-based guidelines for the best BTR capacity endorse the use of printed composite and ceramic templates with total porosity >50%, pore diameter between 300 and 400 µm, and added engineered macro-channels within the printed templates.
Collapse
|
14
|
Rogowska-Tylman J, Locs J, Salma I, Woźniak B, Pilmane M, Zalite V, Wojnarowicz J, Kędzierska-Sar A, Chudoba T, Szlązak K, Chlanda A, Święszkowski W, Gedanken A, Łojkowski W. In vivo and in vitro study of a novel nanohydroxyapatite sonocoated scaffolds for enhanced bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:669-684. [DOI: 10.1016/j.msec.2019.01.084] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/11/2022]
|
15
|
Wang S, Zhao Z, Yang Y, Mikos AG, Qiu Z, Song T, Cui F, Wang X, Zhang C. A high-strength mineralized collagen bone scaffold for large-sized cranial bone defect repair in sheep. Regen Biomater 2018; 5:283-292. [PMID: 30338126 PMCID: PMC6184757 DOI: 10.1093/rb/rby020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
Large-sized cranial bone defect repair presents a great challenge in the clinic. The ideal cranioplasty materials to realize the functional and cosmetic recovery of the defect must have sufficient mechanical support, excellent biocompatibility, good osseointegration and biodegradability as well. In this study, a high-strength mineralized collagen (MC) bone scaffold was developed with biomimetic composition, microstructure and mechanical properties for the repair of sheep large-sized cranial bone defects in comparison with two traditional cranioplasty materials, polymethyl methacrylate and titanium mesh. The compact MC scaffold showed no distinct pore structure and therefore possessed good mechanical properties. The strength and elastic modulus of the scaffold were much higher than those of natural cancellous bone and slightly lower than those of natural compact bone. In vitro cytocompatibility evaluation revealed that the human bone marrow mesenchymal stem cells (hBMSC) had good viability, attachment and proliferation on the compact MC scaffold indicating its excellent biocompatibility. An adult sheep cranial bone defect model was constructed to evaluate the performances of these cranioplasty materials in repairing the cranial bone defects. The results were investigated by gross observation, computed tomography scanning as well as histological assessments. The in vivo evaluations indicated that compact MC scaffold showed notable osteoconductivity and osseointegration with surrounding cranial bone tissues by promoting bone regeneration. Our results suggested that the compact MC scaffold has a promising potential for large-sized cranial bone defect repair.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Zhijun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical School, Baotou, China
| | - Yongdong Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Dongzhimen Hospital Affiliated Beijing University of Chinese Medicine, Beijing, China
| | | | - Zhiye Qiu
- Beijing Allgens Medical Science and Technology Co., Ltd., Beijing, China
| | - Tianxi Song
- Beijing Allgens Medical Science and Technology Co., Ltd., Beijing, China
| | - Fuzhai Cui
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical School, Baotou, China
| |
Collapse
|
16
|
Sigusch BW, Dietsch S, Berg A, Voelpel A, Guellmar A, Rabe U, Schnabelrauch M, Steen D, Gitter B, Albrecht V, Watts DC, Kranz S. Antimicrobial photodynamic active biomaterials for periodontal regeneration. Dent Mater 2018; 34:1542-1554. [PMID: 29970234 DOI: 10.1016/j.dental.2018.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Biomaterials for periodontal regeneration may have insufficient mechanical and antimicrobial properties or are difficult to apply under clinical conditions. The aim of the present study was to develop a polymeric bone grafting material of suitable physical appearance and antimicrobial photodynamic activity. METHODS Two light curable biomaterials based on urethane dimethacrylate (BioM1) and a tri-armed oligoester-urethane methacrylate (BioM2) that additionally contained a mixture of β-tricalcium phosphate microparticles and 20wt% photosensitizer mTHPC (PS) were fabricated and analyzed by their compressive strength, flexural strength and modulus of elasticity. Cytotoxicity was observed by incubating eluates and in direct-contact to MC3T3-E1 cells. Antimicrobial activity was ascertained on Porphyromonas gingivalis and Enterococcus faecalis upon illumination with laser light (652nm, 1×100J/cm2, 2×100J/cm2). RESULTS The compressive strength, flexural strength and elastic modulus were, respectively, 311.73MPa, 22.81MPa and 318.85MPa for BioM1+PS and 742.37MPa, 7.58MPa and 406.23MPa for BioM2+PS. Both materials did not show any cytotoxic behavior. Single laser-illumination (652nm) caused total suppression of P. gingivalis (BioM2+PS), while repeated irradiation reduced E. faecalis by 3.7 (BioM1+PS) and 3.1 (BioM2+PS) log-counts. SIGNIFICANCE Both materials show excellent mechanical and cytocompatible properties. In addition, irradiation with 652nm induced significant bacterial suppression. The manufactured biomaterials might enable a more efficient cure of periodontal bone lesions. Due to the mechanical properties functional stability might be increased. Further, the materials are antimicrobial upon illumination with light that enables a trans-mucosal eradication of residual pathogens.
Collapse
Affiliation(s)
- B W Sigusch
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany
| | - S Dietsch
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany
| | - A Berg
- Biomaterials Department, INNOVENT e.V. Pruessingstrasse 27 B, 07745 Jena, Germany
| | - A Voelpel
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany
| | - A Guellmar
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany
| | - U Rabe
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany
| | - M Schnabelrauch
- Biomaterials Department, INNOVENT e.V. Pruessingstrasse 27 B, 07745 Jena, Germany
| | - D Steen
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - B Gitter
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - V Albrecht
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - D C Watts
- University of Manchester, School of Medical Sciences,Oxford Road, M13 9PL Manchester, UK
| | - S Kranz
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany.
| |
Collapse
|
17
|
Winkler T, Sass FA, Duda GN, Schmidt-Bleek K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018; 7:232-243. [PMID: 29922441 PMCID: PMC5987690 DOI: 10.1302/2046-3758.73.bjr-2017-0270.r1] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.
Collapse
Affiliation(s)
- T Winkler
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - F A Sass
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - G N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - K Schmidt-Bleek
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
18
|
Kennedy S, Roco C, Déléris A, Spoerri P, Cezar C, Weaver J, Vandenburgh H, Mooney D. Improved magnetic regulation of delivery profiles from ferrogels. Biomaterials 2018; 161:179-189. [PMID: 29421554 PMCID: PMC5849080 DOI: 10.1016/j.biomaterials.2018.01.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/16/2018] [Accepted: 01/27/2018] [Indexed: 01/01/2023]
Abstract
While providing the ability to magnetically enhance delivery rates, ferrogels have not been able to produce the various types of regulated delivery profiles likely needed to direct complex biological processes. For example, magnetically triggered release after prolonged periods of payload retention have not been demonstrated and little has been accomplished towards remotely controlling release rate through alterations in the magnetic signal. Also, strategies do not exist for magnetically coordinating multi-drug sequences. The purpose of this study was to develop these capabilities through improved ferrogel design and investigating how alterations in the magnetic signal impact release characteristics. Results show that delivery rate can be remotely regulated using the frequency of magnetic stimulation. When using an optimized biphasic ferrogel design, stimulation at optimized frequencies enabled magnetically triggered deliveries after a delay of 5 days that were 690- to 1950-fold higher than unstimulated baseline values. Also, a sequence of two payloads was produced by allowing one payload to initially diffuse out of the ferrogel, followed by magnetically triggered release of a different payload on day 5. Finally, it was demonstrated that two payloads could be sequentially triggered for release by first stimulating at a frequency tuned to preferentially release one payload (after 24 h), followed by stimulation at a different frequency tuned to preferentially release the other payload (After 4 days). The strategies developed here may expand the utility of ferrogels in clinical scenarios where the timing and sequence of biological events can be tuned to optimize therapeutic outcome.
Collapse
Affiliation(s)
- Stephen Kennedy
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA; Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Charles Roco
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alizée Déléris
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Patrizia Spoerri
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Christine Cezar
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - James Weaver
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Herman Vandenburgh
- Department of Molecular Pharmacology, Physiology and Biotechnology, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - David Mooney
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
19
|
Kang MS, Lee NH, Singh RK, Mandakhbayar N, Perez RA, Lee JH, Kim HW. Nanocements produced from mesoporous bioactive glass nanoparticles. Biomaterials 2018; 162:183-199. [PMID: 29448144 DOI: 10.1016/j.biomaterials.2018.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022]
Abstract
Biomedical cements are considered promising injectable materials for bone repair and regeneration. Calcium phosphate composition sized with tens of micrometers is currently one of the major powder forms. Here we report a unique cement form made from mesoporous bioactive glass nanoparticles (BGn). The nanopowder could harden in reaction with aqueous solution at powder-to-liquid ratios as low as 0.4-0.5 (vs. 2.0-3.0 for conventional calcium phosphate cement CPC). The cementation mechanism investigated from TEM, XRD, FT-IR, XPS, and NMR analyses was demonstrated to be the ionic (Si and Ca) dissolution and then reprecipitation to form Si-Ca-(P) based amorphous nano-islands that could network the particles. The nanopowder-derived nanocement exhibited high surface area (78.7 m2/g); approximately 9 times higher than conventional CPC. The immersion of nanocement in simulated body fluid produced apatite nanocrystallites with ultrafine size of 10 nm (vs. 55 nm in CPC). The ultrafine nanocement adsorbed protein molecules (particularly positive charged proteins) at substantial levels; approximately 160 times higher than CPC. The nanocement released Si and Ca ions continuously over the test period of 2 weeks; the Si release was unique in nanocement whereas the Ca release was in a similar range to that observed in CPC. The release of ions significantly stimulated the responses of cells studied (rMSCs and HUVECs). The viability and osteogenesis of rMSCs were significantly enhanced by the nanocement ionic extracts. Furthermore, the in vitro tubular networking of HUVECs was improved by the nanocement ionic extracts. The in vivo neo-blood vessel formation in CAM model was significantly higher by the nanocement implant when compared with the CPC counterpart, implying the Si ion release might play a significant role in pro-angiogenesis. Furthermore, the early bone forming response of the nanocement, based on the implantation in a rat calvarial bone defect, demonstrated a sign of osteoinductivity along with excellent osteocondution and bone matrix formation. Although more studies remain to confirm the potential of nanocement, some of the intriguing physico-chemical properties and the biological responses reported herein support the promise of the new 'nanopowder-based nanocement' for hard tissue repair and regeneration.
Collapse
Affiliation(s)
- Min Sil Kang
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Roman A Perez
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Regenerative Medicine Research Institute, Universitat Internacional de Catalunya Barcelona 08017, Spain
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 330-714, Republic of Korea.
| |
Collapse
|
20
|
|
21
|
Wu G, Feng C, Quan J, Wang Z, Wei W, Zang S, Kang S, Hui G, Chen X, Wang Q. In situ controlled release of stromal cell-derived factor-1α and antimiR-138 for on-demand cranial bone regeneration. Carbohydr Polym 2017; 182:215-224. [PMID: 29279118 DOI: 10.1016/j.carbpol.2017.10.090] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022]
Abstract
Bone regeneration involves complex physiological processes, which is generally regulated and controlled by multiple bioactive molecules. In situ controlled release of combined bioactive factors in a spatiotemporal sequence for adapting the demand of bone regeneration is a desired strategy. In this study, nanoparticle/hydrogel composite system was constructed by incorporating stromal cell derived factor-1α (SDF-1α) and chitosan/tripolyphosphate/hyaluronic acid/antimiRNA-138 nanoparticles (CTH/antimiR-138 NPs) in chitosan/β-sodium glycerol phosphate (CS/GP) hydrogel for rat critical-size calvarial bone regeneration. The fast release of SDF-1α promoted the migration of mesenchymal stem cells (MSCs) for 6 d, while the sustained release of antimiR-138 from the nanoparticle/hydrogel compound enhanced the osteogenic differentiation of MSCs over 21 d. 8 weeks after surgery, calvarial specimens were evaluated by microcomputed tomography (μ-CT), histological analysis and immunohistochemistry. Comparing with blank group and hydrogel group, hydrogels incorporated with SDF-1α and/or CTH/antimiR-138 NPs significantly enhanced bone regeneration (p<0.05). In addition, the expression of collagen type-1 (COL-1), osteopontin (OPN) and osteocalcin (OCN) proteins were enhanced in the combined drug group (incorporated both SDF-1α and CTH/antimiR-138 NPs) in comparison to the hydrogel group. Our research indicated the in situ formation of NPs/hydrogel composite could provide temporal sequence-release of SDF-1α and CTH/antimiR-138 NPs for on-demand MSCs homing and cranial bone regeneration.
Collapse
Affiliation(s)
- Guangsheng Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China; Navy Qingdao First Sanatorium of PLA, No. 27 West Hong Kong Road, Qingdao, 266071, Shandong Province, China; College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, Shandong Province, China
| | - Jingjing Quan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Zhongshan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Wei Wei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Shengqi Zang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Shuai Kang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Guangyan Hui
- Navy Qingdao First Sanatorium of PLA, No. 27 West Hong Kong Road, Qingdao, 266071, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, Shandong Province, China.
| | - Qintao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China.
| |
Collapse
|
22
|
Three-dimensional macroporous materials for tissue engineering of craniofacial bone. Br J Oral Maxillofac Surg 2017; 55:875-891. [PMID: 29056355 DOI: 10.1016/j.bjoms.2017.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022]
Abstract
Repair of critical-size defects caused by trauma, removal of a tumour, or congenital abnormalities is a challenge in the craniomaxillofacial region because of the limitations associated with treatment. We have reviewed research papers and updated information relevant to the various types of macroporous scaffolds. We have included papers on several biomaterials and their use in various craniofacial defects such as mandibular, calvarial, and others, as well as the latest technological developments such as 3-dimensional printed scaffolds. We selected all papers about scaffolds, stem cells, and growth factors for review. Initial selection was by review of titles and abstracts, and the full texts of potentially suitable articles were then assessed. Methods of tissue engineering for repair of critical-size defects in the craniofacial bones seem to be viable options for surgical treatment in the future. Macroporous scaffolds with interconnected pores are of great value in regeneration of bone in the craniofacial region. In recent years, various natural or synthetic materials, or both, have been developed, on which macroporous scaffolds can be based. In this review we present a review on the various types of three-dimensional macroporous scaffolds that have been developed in recent years, and evaluate their potential for regeneration of craniofacial bone.
Collapse
|
23
|
Evaluation of Osteogenesis and Angiogenesis of Icariin in Local Controlled Release and Systemic Delivery for Calvarial Defect in Ovariectomized Rats. Sci Rep 2017; 7:5077. [PMID: 28698566 PMCID: PMC5505963 DOI: 10.1038/s41598-017-05392-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 05/30/2017] [Indexed: 12/11/2022] Open
Abstract
Typically, bone regenerative medicine is applied to repair bone defects in patients with osteoporosis. Meanwhile, there is an urgent need to develop safe and cheap drugs that induce bone formation. Icariin, which is reported to promote the osteogenesis of stem cells in vitro, is the main active component of Herba Epimedii. However, whether icariin could repair bone defects caused by osteoporosis remains unknown. In this study, an osteoporosis model in rats was established by an ovariectomy first, and then, the osteogenic and angiogenic differentiation of bone mesenchymal stem cells (BMSCs) treated with icariin was evaluated. Furthermore, calcium phosphate cement (CPC) scaffolds loaded with icariin were constructed and then implanted into nude mice to determine the optimal construction. To evaluate its osteogenic and angiogenic ability in vivo, this construction was applied to calvarial defect of the ovariectomized (OVX) rats accompanied with an icariin gavage. This demonstrated that icariin could up-regulate the expression of osteogenic and angiogenic genes in BMSCs. Meanwhile, osteoclast formation was inhibited. Moreover, CPC could act as a suitable icariin delivery system for repairing bone defects by enhancing osteogenesis and angiogenesis, while the systemic administration of icariin has an antiosteoporotic effect that promotes bone defect repair.
Collapse
|
24
|
Wang S, Yang Y, Zhao Z, Wang X, Mikos AG, Qiu Z, Song T, Sun X, Zhao L, Zhang C, Cui F. Mineralized Collagen-Based Composite Bone Materials for Cranial Bone Regeneration in Developing Sheep. ACS Biomater Sci Eng 2017; 3:1092-1099. [DOI: 10.1021/acsbiomaterials.7b00159] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuo Wang
- State
Key Laboratory of New Ceramics and Fine Processing, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yongdong Yang
- State
Key Laboratory of New Ceramics and Fine Processing, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhijun Zhao
- Department
of Neurosurgery, The First Affiliated Hospital of Baotou Medical School, Baotou 014010, China
| | - Xiumei Wang
- State
Key Laboratory of New Ceramics and Fine Processing, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Antonios G. Mikos
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Zhiye Qiu
- Beijing Allgens Medical Science and Technology Co., Ltd., Beijing 100176, China
| | - Tianxi Song
- Beijing Allgens Medical Science and Technology Co., Ltd., Beijing 100176, China
| | - Xiaodan Sun
- State
Key Laboratory of New Ceramics and Fine Processing, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State
Key Laboratory of New Ceramics and Fine Processing, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chunyang Zhang
- Department
of Neurosurgery, The First Affiliated Hospital of Baotou Medical School, Baotou 014010, China
| | - Fuzhai Cui
- State
Key Laboratory of New Ceramics and Fine Processing, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Bhattarai G, Kook SH, Kim JH, Poudel SB, Lim SS, Seo YK, Lee JC. COMP-Ang1 prevents periodontitic damages and enhances mandible bone growth in an experimental animal model. Bone 2016; 92:168-179. [PMID: 27612438 DOI: 10.1016/j.bone.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/23/2022]
Abstract
COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent enhancing tissue regeneration with increased angiogenesis. However, the effect of COMP-Ang1 on periodontitic tissue damages and the related mechanisms are not yet investigated. We initially explored whether a local delivery of COMP-Ang1 protects lipopolysaccharide (LPS)/ligature-induced periodontal destruction in rats. As the results, μCT and histological analyses revealed that COMP-Ang1 inhibits LPS-mediated degradation of periodontium. COMP-Ang1 also suppressed osteoclast number and the expression of osteoclast-specific and inflammation-related molecules in the inflamed region of periodontitis rats. Implanting a COMP-Ang1-impregnated scaffold into critical-sized mandible bone defects enhanced the amount of bone in the defects with increased expression of bone-specific markers. The addition of COMP-Ang1 prevented significantly osteoclast differentiation and activation in LPS-stimulated RAW264.7 macrophages and inhibited the phosphorylation of c-Jun, mitogen-activated protein kinases, and cAMP response element-binding protein in the cells. On contrary, COMP-Ang1 increased the level of phosphatidylinositol 3-kinase (PI3K) in LPS-exposed macrophages and a pharmacological PI3K inhibitor diminished the anti-osteoclastogenic effect of COMP-Ang1. Similarly, COMP-Ang1 blocked the expression of inflammation-related molecules in LPS-stimulated human periodontal ligament fibroblasts (hPLFs). Further, the COMP-Ang1 enhanced differentiation of hPLFs into osteoblasts by stimulating the expression of bone-specific markers, Tie2, and activator protein-1 subfamily. Collectively, our findings may support the therapeutic potentials of COMP-Ang1 in preventing inflammatory periodontal damages and in stimulating new bone growth.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Sung-Ho Kook
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, South Korea
| | - Jae-Hwan Kim
- Chonnam National University Dental Hospital, Kwangju 61186, South Korea
| | - Sher Bahadur Poudel
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Shin-Saeng Lim
- School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, South Korea
| | - Young-Kwon Seo
- Research Institute of Biotechnology, Dongguk University, Seoul 04620, South Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences (BK21 program) and School of Dentistry, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
26
|
Aparicio JL, Rueda C, Manchón Á, Ewald A, Gbureck U, Alkhraisat MH, Jerez LB, Cabarcos EL. Effect of physicochemical properties of a cement based on silicocarnotite/calcium silicate on in vitro cell adhesion and in vivo cement degradation. ACTA ACUST UNITED AC 2016; 11:045005. [PMID: 27481549 DOI: 10.1088/1748-6041/11/4/045005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A silicon calcium phosphate cement (Si-CPC) was developed to produce a composite of calcium phosphate and calcium silicate. The silicon cements prepared with low silicon (Si) content were composed of crystalline phases of brushite and silicocarnotite. However, the cements prepared with high Si content were mainly composed of amorphous phases of silicocarnotite, hydroxyapatite and calcium silicate. The cement porosity was about 40% with a shift of the average pore diameter to the nanometric range with increasing Si content. Interestingly, this new cement system provides a matrix with a high specific surface area of up to 29 m(2) g(-1). The cytocompatibility of the new Si-doped cements was tested with a human osteoblast-like cell line (MG-63) showing an enhancement of cell proliferation (up to threefold) when compared with unsubstituted material. Cements with a high silica content also improved the cell attachment. The in vivo results indicated that Si-CPCs induce the formation of new bone tissue, and modify cement resorption. We conclude that this cement provides an optimal environment to enhance osteoblast growth and proliferation that could be of interest in bone engineering.
Collapse
Affiliation(s)
- Julia Lucas Aparicio
- Faculty of Pharmacy, Department of Physical-Chemistry II, Complutense University of Madrid, Madrid 28040, Spain. Faculty of Odontology, Department of Stomatology III, UCM, Madrid 28040, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model. MATERIALS 2016; 9:ma9020097. [PMID: 28787903 PMCID: PMC5456508 DOI: 10.3390/ma9020097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/03/2016] [Indexed: 12/18/2022]
Abstract
The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA); silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP) in the ratios 100:0 (S100T0), 70:30 (S70T30), 60:40 (S60T40), and 50:50 (S50T50). The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm). The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France) was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05). In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05). In conclusion, Si-HA/TCP showed potential as a bone graft material.
Collapse
|
28
|
Yang B, Zuo Y, Zou Q, Li L, Li J, Man Y, Li Y. Effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration. Int J Nanomedicine 2016; 11:163-77. [PMID: 26792992 PMCID: PMC4708242 DOI: 10.2147/ijn.s91596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We incorporated ultrafine polymer fibers into calcium phosphate cement (CPC) to improve the resorption rate of CPC with fiber degradation. Different weight percentages of electrospun poly(ε-caprolactone) fibers (0%, 3%, and 7%, named as ultrafine fiber-incorporated CPC0 [UFICPC0], UFICPC3, and UFICPC7) were included into preset CPC specimens for in vitro immersion in lipase phosphate-buffered solution and long-term in vivo implantation in the femoral condyle of rabbits. The effect of the ultrafine poly(ε-caprolactone) fibers with a diameter ranging from nanometer to micrometer on CPC degradation was evaluated by measuring the pH of the medium, mass loss, porosity, and physiochemical properties. For the in vivo evaluation, histomorphometrical analysis as well as three-dimensional (3D) reconstruction was applied to assess the osteogenic properties of the CPC composite. After in vitro immersion and in vivo implantation, the total porosity and macroporosity as well as the bone formation and ingrowth increased significantly during time in the fiber-incorporated CPC specimens. After 24 weeks of implantation, the degraded space was occupied by newly formed bone, and the UFICPC3 and UFICPC7 composites showed ~3.5 times higher fraction of bone volume than that of the pristine CPC (UFICPC0). In vitro and in vivo results proved that the introduction of ultrafine degradable fibers within a CPC matrix can be used to improve macroporosity efficiently and enhance CPC degradation and bone ingrowth largely.
Collapse
Affiliation(s)
- Boyuan Yang
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| | - Qin Zou
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| | - Limei Li
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| | - Jidong Li
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| | - Yi Man
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Yubao Li
- Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
29
|
Wang P, Song Y, Weir MD, Sun J, Zhao L, Simon CG, Xu HHK. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering. Dent Mater 2015; 32:252-63. [PMID: 26743965 DOI: 10.1016/j.dental.2015.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/07/2015] [Accepted: 11/30/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Calcium phosphate cements (CPCs) are promising for dental and craniofacial repairs. The objectives of this study were to: (1) develop an injectable cell delivery system based on encapsulation of induced pluripotent stem cell-derived mesenchymal stem cells (iPSMSCs) in microbeads; (2) develop a novel tissue engineered construct by dispersing iPSMSC-microbeads in CPC to investigate bone regeneration in an animal model for the first time. METHODS iPSMSCs were pre-osteoinduced for 2 weeks (OS-iPSMSCs), or transduced with bone morphogenetic protein-2 (BMP2-iPSMSCs). Cells were encapsulated in fast-degradable alginate microbeads. Microbeads were mixed with CPC paste and filled into cranial defects in nude rats. Four groups were tested: (1) CPC-microbeads without cells (CPC control); (2) CPC-microbeads-iPSMSCs (CPC-iPSMSCs); (3) CPC-microbeads-OS-iPSMSCs (CPC-OS-iPSMSCs); (4) CPC-microbeads-BMP2-iPSMSCs (CPC-BMP2-iPSMSCs). RESULTS Cells maintained good viability inside microbeads after injection. The microbeads were able to release the cells which had more than 10-fold increase in live cell density from 1 to 14 days. The cells exhibited up-regulation of osteogenic markers and deposition of minerals. In vivo, new bone area fraction (mean±SD; n=5) for CPC-iPSMSCs group was (22.5±7.6)%. New bone area fractions were (38.9±18.4)% and (44.7±22.8)% for CPC-OS-iPSMSCs group and CPC-BMP2-iPSMSCs group, respectively, 2-3 times the (15.6±11.2)% in CPC control at 12 weeks (p<0.05). Cell-CPC constructs accelerated scaffold resorption, with CPC-BMP2-iPSMSCs having remaining scaffold material that was 7-fold less than CPC control. SIGNIFICANCE Novel injectable CPC-microbead-cell constructs promoted bone regeneration, with OS-iPSMSCs and BMP2-iPSMSCs having 2-3 fold the new bone of CPC control. Cell delivery accelerated scaffold resorption, with CPC-BMP2-iPSMSC having remaining scaffold material that was 7-fold less than CPC control. Therefore, CPC-microbead-iPSMSC is a promising injectable material for orthopedic, dental and craniofacial bone regenerations.
Collapse
Affiliation(s)
- Ping Wang
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Song
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Jinyu Sun
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Liang Zhao
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Carl G Simon
- Biosystems and Biomaterials Division, National Institute of Standards & Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore County, MD 21250, USA.
| |
Collapse
|
30
|
Akkineni AR, Luo Y, Schumacher M, Nies B, Lode A, Gelinsky M. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater 2015; 27:264-274. [PMID: 26318366 DOI: 10.1016/j.actbio.2015.08.036] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023]
Abstract
Additive manufacturing allows to widely control the geometrical features of implants. Recently, we described the fabrication of calcium phosphate cement (CPC) scaffolds by 3D plotting of a storable CPC paste based on water-immiscible carrier liquid. Plotting and hardening is conducted under mild conditions allowing the (precise and local) integration of biological components. In this study, we have developed a procedure for efficient loading of growth factors in the CPC scaffolds during plotting and demonstrated the feasibility of this approach. Bovine serum albumin (BSA) or vascular endothelial growth factor (VEGF), used as model proteins, were encapsulated in chitosan/dextran sulphate microparticles which could be easily mixed into the CPC paste in freeze-dried state. In order to prevent leaching of the proteins during cement setting, usually carried out by immersion in aqueous solutions, the plotted scaffolds were aged in water-saturated atmosphere (humidity). Setting in humidity avoided early loss of loaded proteins but provided sufficient amount of water to allow cement setting, as indicated by XRD analysis and mechanical testing in comparison to scaffolds set in water. Moreover, humidity-set scaffolds were characterised by altered, even improved properties: no swelling or crack formation was observed and accordingly, surface topography, total porosity and compressive modulus of the humidity-set scaffolds differed from those of the water-set counterparts. Direct cultivation of mesenchymal stem cells on the humidity-set scaffolds over 21days revealed their cytocompatibility. Maintenance of the bioactivity of VEGF during the fabrication procedure was proven in indirect and direct culture experiments with endothelial cells. STATEMENT OF SIGNIFICANCE Additive manufacturing techniques allow the fabrication of implants with defined architecture (inner pore structure and outer shape). Especially printing technologies conducted under mild conditions allow additionally the (spatially controlled) integration of biological components such as drugs or growth factors. That enables the generation of individualized implants which can better meet the requirements of a patient and of tissue engineering constructs. To our knowledge, simultaneous printing of biological components was up to now only described for hydrogel/biopolymer-based materials which suffer from poor mechanical properties. In contrast, we have developed a procedure (based on 3D plotting of a calcium phosphate cement paste) for the fabrication of designed and growth factor loaded calcium-phosphate-based scaffolds applicable for bone regeneration.
Collapse
|
31
|
Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 2015; 94:53-62. [PMID: 25861724 DOI: 10.1016/j.addr.2015.03.013] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/08/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Abstract
Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair.
Collapse
|
32
|
Sanz M, Vignoletti F. Key aspects on the use of bone substitutes for bone regeneration of edentulous ridges. Dent Mater 2015; 31:640-7. [PMID: 25882277 DOI: 10.1016/j.dental.2015.03.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To review the histological and clinical outcomes of the use of bone substitues in different oral bone regenerative procedures: socket preservation, immediate implant placement, lateral and vertical bone augmentation. METHODS Histological animal studies and clinical trials regarding the performances of bone substitutes, either allogenic, xenogeneic or alloplastic, have been evaluated. Different procedures examined separately and evidence-based results were provided. RESULTS The use of deproteinized bovine bone mineral (DBBM) seems to be effective most clinical indications, due to their osteoconductivity, space maintenance characteristics and slow resorption. The combination of Hydroxyapatite and Beta Tricalcium Phospate (HA/TCP) has also reported similar histological evidence and clinical outcomes. The use of autogenous block grafts is still the method of choice in clinical situations in need of vertical bone augmentation. CONCLUSIONS The use of bone substitutes is the standard of therapy in current modalities of lateral bone augmentation, mainly when used in conjunction with implant placement.
Collapse
Affiliation(s)
- Mariano Sanz
- Faculty of Odontology, University Complutense of Madrid, Plaza Ramon y Cajal, 28040 Madrid, Spain.
| | - Fabio Vignoletti
- Faculty of Odontology, University Complutense of Madrid, Plaza Ramon y Cajal, 28040 Madrid, Spain.
| |
Collapse
|
33
|
Lim SS, Kook SH, Bhattarai G, Cho ES, Seo YK, Lee JC. Local delivery of COMP-angiopoietin 1 accelerates new bone formation in rat calvarial defects. J Biomed Mater Res A 2015; 103:2942-51. [DOI: 10.1002/jbm.a.35439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/19/2015] [Accepted: 02/04/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Shin-Saeng Lim
- Department of Oral and Maxillofacial Surgery; School of Dentistry and Dental Research Institute, Seoul National University; Seoul South Korea
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences; Institute for Molecular Biology and Genetics, Chonbuk National University; Jeonju South Korea
- Cluster for Craniofacial Development & Regeneration Research; Institute of Oral Biosciences and School of Dentistry, Chonbuk National University; Jeonju South Korea
| | - Govinda Bhattarai
- Cluster for Craniofacial Development & Regeneration Research; Institute of Oral Biosciences and School of Dentistry, Chonbuk National University; Jeonju South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development & Regeneration Research; Institute of Oral Biosciences and School of Dentistry, Chonbuk National University; Jeonju South Korea
| | - Young-Kwon Seo
- Research Institute of Biotechnology, Dongguk University; Seoul South Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences; Institute for Molecular Biology and Genetics, Chonbuk National University; Jeonju South Korea
- Cluster for Craniofacial Development & Regeneration Research; Institute of Oral Biosciences and School of Dentistry, Chonbuk National University; Jeonju South Korea
| |
Collapse
|
34
|
Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 2015; 31:317-38. [PMID: 25701146 DOI: 10.1016/j.dental.2015.01.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/19/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The focus of this review is to summarize recent advances on regenerative technologies (scaffolding matrices, cell/gene therapy and biologic drug delivery) to promote reconstruction of tooth and dental implant-associated bone defects. METHODS An overview of scaffolds developed for application in bone regeneration is presented with an emphasis on identifying the primary criteria required for optimized scaffold design for the purpose of regenerating physiologically functional osseous tissues. Growth factors and other biologics with clinical potential for osteogenesis are examined, with a comprehensive assessment of pre-clinical and clinical studies. Potential novel improvements to current matrix-based delivery platforms for increased control of growth factor spatiotemporal release kinetics are highlighting including recent advancements in stem cell and gene therapy. RESULTS An analysis of existing scaffold materials, their strategic design for tissue regeneration, and use of growth factors for improved bone formation in oral regenerative therapies results in the identification of current limitations and required improvements to continue moving the field of bone tissue engineering forward into the clinical arena. SIGNIFICANCE Development of optimized scaffolding matrices for the predictable regeneration of structurally and physiologically functional osseous tissues is still an elusive goal. The introduction of growth factor biologics and cells has the potential to improve the biomimetic properties and regenerative potential of scaffold-based delivery platforms for next-generation patient-specific treatments with greater clinical outcome predictability.
Collapse
Affiliation(s)
- Sophia P Pilipchuk
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| | - Alexandra B Plonka
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alberto Monje
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Andrei D Taut
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alejandro Lanis
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Benjamin Kang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Smith BT, Shum J, Wong M, Mikos AG, Young S. Bone Tissue Engineering Challenges in Oral & Maxillofacial Surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 881:57-78. [PMID: 26545744 DOI: 10.1007/978-3-319-22345-2_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decades, there has been a substantial amount of innovation and research into tissue engineering and regenerative approaches for the craniofacial region. This highly complex area presents many unique challenges for tissue engineers. Recent research indicates that various forms of implantable biodegradable scaffolds may play a beneficial role in the clinical treatment of craniofacial pathological conditions. Additionally, the direct delivery of bioactive molecules may further increase de novo bone formation. While these strategies offer an exciting glimpse into potential future treatments, there are several challenges that still must be overcome. In this chapter, we will highlight both current surgical approaches for craniofacial reconstruction and recent advances within the field of bone tissue engineering. The clinical challenges and limitations of these strategies will help contextualize and inform future craniofacial tissue engineering strategies.
Collapse
Affiliation(s)
- Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jonathan Shum
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mark Wong
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
36
|
Biscaia SI, Viana TF, Almeida HA, Bártolo PJ. Production and Characterisation of PCL/ES Scaffolds for Bone Tissue Engineering. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.matpr.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Affiliation(s)
- Tie Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; Department of Oral implantology, Hospital/School of Stomatology, Zhejiang University, Yan'an Road 395, 310006, Hangzhou, Zhejiang, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Zhiyuan Gu
- School of Stomatology/Dental Clinic, Zhejiang Chinese Medical University, Mailbox 97, Binwen Road 548, Binjiang District, 310053, Hangzhou, Zhejiang, China
| | - Daniel Wismeijer
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| |
Collapse
|