1
|
Tadesse AW, Ayano G, Dachew BA, Betts K, Alati R. Exposure to maternal cannabis use disorder and risk of autism spectrum disorder in offspring: A data linkage cohort study. Psychiatry Res 2024; 337:115971. [PMID: 38788554 DOI: 10.1016/j.psychres.2024.115971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
This study aimed to investigate the association between pre-pregnancy, prenatal and perinatal exposures to cannabis use disorder (CUD) and the risk of autism spectrum disoder (ASD) in offspring. Data were drawn from the New South Wales (NSW) Perinatal Data Collection (PDC), population-based, linked administrative health data encompassing all-live birth cohort from January 2003 to December 2005. This study involved 222 534 mother-offspring pairs. . The exposure variable (CUD) and the outcome of interest (ASD) were identified using the 10th international disease classification criteria, Australian Modified (ICD-10-AM). We found a three-fold increased risk of ASD in the offspring of mothers with maternal CUD compared to non-exposed offspring. In our sensitivity analyses, male offspring have a higher risk of ASD associated with maternal CUD than their female counterparts. In conclusion, exposure to maternal CUD is linked to a higher risk of ASD in offspring, with a stronger risk in male offspring. Further research is needed to understand these gender-specific effects and the relationship between maternal CUD and ASD risk in children.
Collapse
Affiliation(s)
- Abay Woday Tadesse
- School of Population Health, Curtin University, Kent Street, Bentley, WA, 6102, Australia; Dream Science and Technology College, Dessie 1466, Amhara region, Ethiopia; Department of Public Health, College of Medicine and Health Sciences, Samara University 132, Semera, Ethiopia.
| | - Getinet Ayano
- School of Population Health, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Berihun Assefa Dachew
- School of Population Health, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Kim Betts
- School of Population Health, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Rosa Alati
- School of Population Health, Curtin University, Kent Street, Bentley, WA, 6102, Australia; Institute for Social Sciences Research, The University of Queensland, 80 Meier's Rd, Indooroopilly, QLD, 4068, Australia
| |
Collapse
|
2
|
Uthayakumaran K, Sunil M, Ratcliffe EM. Evaluating the Role of the Endocannabinoid System in Axon Guidance: A Literature Review. Cannabis Cannabinoid Res 2024; 9:12-20. [PMID: 38174983 DOI: 10.1089/can.2023.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Introduction: The endocannabinoid system (ECS) mediates the actions of cannabis and has been implicated in playing critical roles in key developmental events, including axon guidance. Although several recent studies have demonstrated ECS involvement in neurodevelopment, an emphasis on its putative role in axon guidance has not been reviewed comprehensively. Objective: The purpose of this literature review is to evaluate the interrelationships between the ECS and axon guidance. Methodology: This literature review analyzes existing literature demonstrating the normal role of endocannabinoid (eCB) signaling in axon guidance, with evidence from diverse animal models. Studies were obtained from a search strategy involving terms related to the ECS and axon guidance, and cross-checking cited literature to ensure a complete evaluation. Discussion: Cannabinoid receptors, as well as eCB synthesis and degradation machinery, appear necessary for normal axon guidance during neurodevelopment. Genetic and/or pharmacological disruption of eCB signaling results in axon growth and guidance errors, implying high sensitivity to exogenous cannabinoids. Conclusion: Overall, this review highlights the intricate connections between the ECS and axon guidance in normal neurodevelopment. The mechanistic evidence discussed suggests that alterations of the ECS through genetic and pharmacological interference disrupt its normal functioning and by extension its normal role in regulating neural circuitry formation. A comprehensive understanding of this topic will be valuable in potentially uncovering the mechanisms responsible for the neurodevelopmental defects associated with pre-natal cannabis use.
Collapse
Affiliation(s)
- Kavina Uthayakumaran
- Department of Pediatrics, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Maria Sunil
- Department of Pediatrics, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Elyanne M Ratcliffe
- Farncombe Family Digestive Health Research Institute, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Frau R, Melis M. Sex-specific susceptibility to psychotic-like states provoked by prenatal THC exposure: Reversal by pregnenolone. J Neuroendocrinol 2023; 35:e13240. [PMID: 36810840 DOI: 10.1111/jne.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Sociocultural attitudes towards cannabis legalization contribute to the common misconception that it is a relatively safe drug and its use during pregnancy poses no risk to the fetus. However, longitudinal studies demonstrate that maternal cannabis exposure results in adverse outcomes in the offspring, with a heightened risk for developing psychopathology. One of the most reported psychiatric outcomes is the proneness to psychotic-like experiences during childhood. How exposure to cannabis during gestation increases psychosis susceptibility in children and adolescents remains elusive. Preclinical research has indicated that in utero exposure to the major psychoactive component of cannabis, delta-9-tetrahydrocannabinol (THC), deranges brain developmental trajectories towards vulnerable psychotic-like endophenotypes later in life. Here, we present how prenatal THC exposure (PCE) deregulates mesolimbic dopamine development predisposing the offspring to schizophrenia-relevant phenotypes, exclusively when exposed to environmental challenges, such as stress or THC. Detrimental effects of PCE are sex-specific because female offspring do not display psychotic-like outcomes upon exposure to these challenges. Moreover, we present how pregnenolone, a neurosteroid that showed beneficial properties on the effects elicited by cannabis intoxication, normalizes mesolimbic dopamine function and rescues psychotic-like phenotypes. We, therefore, suggest this neurosteroid as a safe "disease-modifying" aid to prevent the onset of psychoses in vulnerable individuals. Our findings corroborate clinical evidence and highlight the relevance of early diagnostic screening and preventative strategies for young individuals at risk for mental diseases, such as male PCE offspring.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
- The Guy Everett Laboratory for Neuroscience, University of Cagliari, Cagliari, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
| |
Collapse
|
4
|
Murnan AW, Keim SA, Yeates KO, Boone KM, Sheppard KW, Klebanoff MA. Behavioral and Cognitive Differences in Early Childhood related to Prenatal Marijuana Exposure. JOURNAL OF APPLIED DEVELOPMENTAL PSYCHOLOGY 2021; 77:101348. [PMID: 34840377 PMCID: PMC8622818 DOI: 10.1016/j.appdev.2021.101348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prenatal marijuana exposure (PME) negatively impacts child development and behavior; however, few studies have examined these associations at early ages among children exposed to today's highly potent marijuana. Using a prospective prenatal cohort (Columbus, Ohio, USA), PME was determined from maternal self-report, medical chart abstraction, and urine toxicology from prenatal visits and delivery. At age 3.5 years, 63 offspring children completed tasks assessing executive function (EF), visual spatial ability, emotion regulation, and aggressive behavior. Caregivers reported on children's EF and problem behaviors. Logistic regressions and analyses of covariance controlling for key variables were used to examine associations between PME and child outcomes. Compared to non-exposed children, children with PME had more sleep-related problems, withdrawal symptoms, and externalizing problems, including aggressive behaviors and oppositional defiant behaviors. Children with and without PME did not differ in terms of executive functioning. Findings suggest behavioral problems associated with PME may manifest by age 3.5.
Collapse
Affiliation(s)
- Aaron W. Murnan
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 700 Childrens Drive, Columbus, Ohio, USA, 43215
| | - Sarah A. Keim
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 700 Childrens Drive, Columbus, Ohio, USA, 43215
- Department of Pediatrics, The Ohio State University College of Medicine, 370 W. 9 Avenue, Columbus, Ohio, USA, 43210
- Division of Epidemiology, The Ohio State University College of Public Health, 1841 Neil Avenue, Columbus, Ohio, USA, 43210
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Kelly M. Boone
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 700 Childrens Drive, Columbus, Ohio, USA, 43215
| | - Kelly W. Sheppard
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 700 Childrens Drive, Columbus, Ohio, USA, 43215
| | - Mark A. Klebanoff
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 700 Childrens Drive, Columbus, Ohio, USA, 43215
- Department of Pediatrics, The Ohio State University College of Medicine, 370 W. 9 Avenue, Columbus, Ohio, USA, 43210
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, 700 Childrens Drive, Columbus, Ohio, USA, 43215
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, 370 W. 9 Avenue, Columbus, Ohio, USA, 43210
| |
Collapse
|
5
|
Medium-throughput zebrafish optogenetic platform identifies deficits in subsequent neural activity following brief early exposure to cannabidiol and Δ 9-tetrahydrocannabinol. Sci Rep 2021; 11:11515. [PMID: 34075141 PMCID: PMC8169761 DOI: 10.1038/s41598-021-90902-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 01/20/2023] Open
Abstract
In light of legislative changes and the widespread use of cannabis as a recreational and medicinal drug, delayed effects of cannabis upon brief exposure during embryonic development are of high interest as early pregnancies often go undetected. Here, zebrafish embryos were exposed to cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) until the end of gastrulation (1-10 h post-fertilization) and analyzed later in development (4-5 days post-fertilization). In order to measure neural activity, we implemented Calcium-Modulated Photoactivatable Ratiometric Integrator (CaMPARI) and optimized the protocol for a 96-well format complemented by locomotor analysis. Our results revealed that neural activity was decreased by CBD more than THC. At higher doses, both cannabinoids could dramatically reduce neural activity and locomotor activity. Interestingly, the decrease was more pronounced when CBD and THC were combined. At the receptor level, CBD-mediated reduction of locomotor activity was partially prevented using cannabinoid type 1 and 2 receptor inhibitors. Overall, we report that CBD toxicity occurs via two cannabinoid receptors and is synergistically enhanced by THC exposure to negatively impact neural activity late in larval development. Future studies are warranted to reveal other cannabinoids and their receptors to understand the implications of cannabis consumption on fetal development.
Collapse
|
6
|
Traccis F, Serra V, Sagheddu C, Congiu M, Saba P, Giua G, Devoto P, Frau R, Cheer JF, Melis M. Prenatal THC Does Not Affect Female Mesolimbic Dopaminergic System in Preadolescent Rats. Int J Mol Sci 2021; 22:ijms22041666. [PMID: 33562259 PMCID: PMC7914408 DOI: 10.3390/ijms22041666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
Cannabis use among pregnant women is increasing worldwide along with permissive sociocultural attitudes toward it. Prenatal cannabis exposure (PCE), however, is associated with adverse outcome among offspring, ranging from reduced birth weight to child psychopathology. We have previously shown that male rat offspring prenatally exposed to Δ9-tetrahydrocannabinol (THC), a rat model of PCE, exhibit extensive molecular, cellular, and synaptic changes in dopamine neurons of the ventral tegmental area (VTA), resulting in a susceptible mesolimbic dopamine system associated with a psychotic-like endophenotype. This phenotype only reveals itself upon a single exposure to THC in males but not females. Here, we characterized the impact of PCE on female behaviors and mesolimbic dopamine system function by combining in vivo single-unit extracellular recordings in anesthetized animals and ex vivo patch clamp recordings, along with neurochemical and behavioral analyses. We find that PCE female offspring do not show any spontaneous or THC-induced behavioral disease-relevant phenotypes. The THC-induced increase in dopamine levels in nucleus accumbens was reduced in PCE female offspring, even when VTA dopamine activity in vivo and ex vivo did not differ compared to control. These findings indicate that PCE impacts mesolimbic dopamine function and its related behavioral domains in a sex-dependent manner and warrant further investigations to decipher the mechanisms determining this sex-related protective effect from intrauterine THC exposure.
Collapse
Affiliation(s)
- Francesco Traccis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.T.); (V.S.); (C.S.); (M.C.); (P.S.); (G.G.); (P.D.); (R.F.)
| | - Valeria Serra
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.T.); (V.S.); (C.S.); (M.C.); (P.S.); (G.G.); (P.D.); (R.F.)
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.T.); (V.S.); (C.S.); (M.C.); (P.S.); (G.G.); (P.D.); (R.F.)
| | - Mauro Congiu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.T.); (V.S.); (C.S.); (M.C.); (P.S.); (G.G.); (P.D.); (R.F.)
| | - Pierluigi Saba
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.T.); (V.S.); (C.S.); (M.C.); (P.S.); (G.G.); (P.D.); (R.F.)
| | - Gabriele Giua
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.T.); (V.S.); (C.S.); (M.C.); (P.S.); (G.G.); (P.D.); (R.F.)
| | - Paola Devoto
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.T.); (V.S.); (C.S.); (M.C.); (P.S.); (G.G.); (P.D.); (R.F.)
| | - Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.T.); (V.S.); (C.S.); (M.C.); (P.S.); (G.G.); (P.D.); (R.F.)
| | - Joseph Francois Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.T.); (V.S.); (C.S.); (M.C.); (P.S.); (G.G.); (P.D.); (R.F.)
- Correspondence: ; Tel.: +39-070-675-4322
| |
Collapse
|
7
|
Breijyeh Z, Jubeh B, Bufo SA, Karaman R, Scrano L. Cannabis: A Toxin-Producing Plant with Potential Therapeutic Uses. Toxins (Basel) 2021; 13:117. [PMID: 33562446 PMCID: PMC7915118 DOI: 10.3390/toxins13020117] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
For thousands of years, Cannabis sativa has been utilized as a medicine and for recreational and spiritual purposes. Phytocannabinoids are a family of compounds that are found in the cannabis plant, which is known for its psychotogenic and euphoric effects; the main psychotropic constituent of cannabis is Δ9-tetrahydrocannabinol (Δ9-THC). The pharmacological effects of cannabinoids are a result of interactions between those compounds and cannabinoid receptors, CB1 and CB2, located in many parts of the human body. Cannabis is used as a therapeutic agent for treating pain and emesis. Some cannabinoids are clinically applied for treating chronic pain, particularly cancer and multiple sclerosis-associated pain, for appetite stimulation and anti-emesis in HIV/AIDS and cancer patients, and for spasticity treatment in multiple sclerosis and epilepsy patients. Medical cannabis varies from recreational cannabis in the chemical content of THC and cannabidiol (CBD), modes of administration, and safety. Despite the therapeutic effects of cannabis, exposure to high concentrations of THC, the main compound that is responsible for most of the intoxicating effects experienced by users, could lead to psychological events and adverse effects that affect almost all body systems, such as neurological (dizziness, drowsiness, seizures, coma, and others), ophthalmological (mydriasis and conjunctival hyperemia), cardiovascular (tachycardia and arterial hypertension), and gastrointestinal (nausea, vomiting, and thirst), mainly associated with recreational use. Cannabis toxicity in children is more concerning and can cause serious adverse effects such as acute neurological symptoms (stupor), lethargy, seizures, and even coma. More countries are legalizing the commercial production and sale of cannabis for medicinal use, and some for recreational use as well. Liberalization of cannabis laws has led to increased incidence of toxicity, hyperemesis syndrome, lung disease cardiovascular disease, reduced fertility, tolerance, and dependence with chronic prolonged use. This review focuses on the potential therapeutic effects of cannabis and cannabinoids, as well as the acute and chronic toxic effects of cannabis use on various body systems.
Collapse
Affiliation(s)
- Zeinab Breijyeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem Abu Dis P144, Palestine; (Z.B.); (B.J.)
| | - Buthaina Jubeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem Abu Dis P144, Palestine; (Z.B.); (B.J.)
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg 2092, South Africa
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem Abu Dis P144, Palestine; (Z.B.); (B.J.)
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Laura Scrano
- Department of European Cultures (DICEM), University of Basilicata, 75100 Matera, Italy;
| |
Collapse
|
8
|
Breit KR, Zamudio B, Thomas JD. Altered motor development following late gestational alcohol and cannabinoid exposure in rats. Neurotoxicol Teratol 2019; 73:31-41. [PMID: 30943441 DOI: 10.1016/j.ntt.2019.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/31/2019] [Accepted: 03/27/2019] [Indexed: 11/28/2022]
Abstract
Cannabis is the most commonly used illicit drug among pregnant women, and rates are likely to increase given recent legalization. In addition, half of pregnant women who report consuming cannabis also report drinking alcohol. However, little is known about the consequences of prenatal cannabis alone or in combination with alcohol, particularly with cannabis products that are continually increasing in potency of the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (THC). The current study investigated the effects of early exposure to cannabinoids during the brain growth spurt on early physical and motor development alone (Experiment 1) or in combination with alcohol (Experiment 2). In Experiment 1, Sprague-Dawley rat pups were exposed to a cannabinoid receptor agonist (CP-55,940 [CP]; 0.1, 0.25, 0.4 mg/kg/day), the drug vehicle, or a saline control from postnatal days (PD) 4-9. In Experiment 2, rat pups were exposed to CP (0.4 mg/kg/day) or the vehicle, and were additionally intubated with alcohol (11.9% v/v; 5.25 g/kg/day) or received a sham intubation. Subjects in both experiments were tested on a motor development task (PD 12-20) and a motor coordination task during adolescence (PD 30-32). Both developmental cannabinoid and alcohol exposure separately decreased body growth throughout development, and combined exposure exacerbated these effects, although only alcohol exposure induced long-term body weight reductions. Developmental cannabinoid exposure advanced early motor development, whereas alcohol exposure delayed development, and subjects given combined exposure did not differ from controls on some measures. Alcohol exposure impaired motor coordination later in life. In contrast, cannabinoid exposure, by itself, did not significantly affect long-term motor coordination, but did exacerbate alcohol-related impairments in motor coordination among females. These results suggest that cannabinoid exposure may not only alter development by itself, but may exacerbate alcohol's teratogenic effects in specific behavioral domains. These findings have important implications not only for individuals affected by prenatal exposure, but also for establishing public policy for women regarding cannabis use during pregnancy.
Collapse
Affiliation(s)
- Kristen R Breit
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA.
| | - Brandonn Zamudio
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Jennifer D Thomas
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| |
Collapse
|
9
|
Breit KR, Zamudio B, Thomas JD. The effects of alcohol and cannabinoid exposure during the brain growth spurt on behavioral development in rats. Birth Defects Res 2019; 111:760-774. [PMID: 30854806 DOI: 10.1002/bdr2.1487] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022]
Abstract
Cannabis is the most commonly used illicit drug among pregnant women. Moreover, over half of pregnant women who are consuming cannabis are also consuming alcohol; however, the consequences of combined prenatal alcohol and cannabis exposure on fetal development are not well understood. The current study examined behavioral development following exposure to ethanol (EtOH) and/or CP-55,940 (CP), a cannabinoid receptor agonist. From postnatal days (PD) 4-9, a period of brain development equivalent to the third trimester, Sprague-Dawley rats received EtOH (5.25 g/kg/day) or sham intubation, as well as CP (0.4 mg/kg/day) or vehicle. All subjects were tested on open field activity (PD 18-21), elevated plus maze (PD 25), and spatial learning (PD 40-46) tasks. Both EtOH and CP increased locomotor activity in the open field, and the combination produced more severe overactivity than either exposure alone. Similarly, increases in thigmotaxis in the Morris water maze were caused by either EtOH or CP alone, and were more severe with combined exposure, although only EtOH impaired spatial learning. Finally, developmental CP significantly increased time spent in the open arms on the elevated plus maze. Overall, these data indicate that EtOH and CP produce some independent effects on behavior, and that the combination produces more severe overactivity in the open field. Importantly, these data suggest that prenatal cannabis disrupts development and combined prenatal exposure to alcohol and cannabis may be particularly damaging to the developing fetus, which has implications for the lives of affected individuals and families and also for establishing public health policy.
Collapse
Affiliation(s)
- Kristen R Breit
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, California
| | - Brandonn Zamudio
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, California
| | - Jennifer D Thomas
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, California
| |
Collapse
|
10
|
Motor neuron development in zebrafish is altered by brief (5-hr) exposures to THC (∆ 9-tetrahydrocannabinol) or CBD (cannabidiol) during gastrulation. Sci Rep 2018; 8:10518. [PMID: 30002406 PMCID: PMC6043604 DOI: 10.1038/s41598-018-28689-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Marijuana is one of the most commonly used illicit recreational drugs and is widely used for medicinal purposes. The psychoactive ingredient in marijuana is ∆9-tetrahydrocannabinol (∆9-THC), whereas the major non-psychoactive ingredient is cannabidiol (CBD). Here, we exposed zebrafish embryos to ∆9-THC or CBD for 5 hours during the critical stage of development known as gastrulation. Embryos were allowed to develop normally and were examined at 2 and 5 days post fertilization. THC and CBD treated embryos exhibited reduced heart rates, axial malformations and shorter trunks. Cannabinoid treatment altered synaptic activity at neuromuscular junctions (NMJs), and fluorescent labelling of primary and secondary motor neurons indicated a change in branching patterns and a reduction in the number of axonal branches in the trunk musculature. Furthermore, there were alterations in the α-bungarotoxin labelling of nicotinic acetylcholine receptors at NMJs. Locomotion studies show that larvae exposed to THC or CBD during gastrulation exhibited drastic reductions in the number of C-start escape responses to sound stimuli, but not to touch stimuli. Together these findings indicate that zebrafish embryos exposed to ∆9-THC or CBD during the brief but critical period of gastrulation exhibited alterations in heart rate, motor neuronal morphology, synaptic activity at the NMJ and locomotor responses to sound.
Collapse
|
11
|
Melis M, Frau R, Kalivas PW, Spencer S, Chioma V, Zamberletti E, Rubino T, Parolaro D. New vistas on cannabis use disorder. Neuropharmacology 2017; 124:62-72. [PMID: 28373077 DOI: 10.1016/j.neuropharm.2017.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023]
Abstract
Cannabis sativa preparations are the most consumed illicit drugs for recreational purposes worldwide, and the number of people seeking treatment for cannabis use disorder has dramatically increased in the last decades. Due to the recent decriminalization or legalization of cannabis use in the Western Countries, we may predict that the number of people suffering from cannabis use disorder will increase. Despite the increasing number of cannabis studies over the past two decades, we have gaps of scientific knowledge pertaining to the neurobiological consequences of long-term cannabis use. Moreover, no specific treatments for cannabis use disorders are currently available. In this review, we explore new research that may help fill these gaps. We discuss and provide a solution to the experimental limitation of a lack of rodent models of THC self-administration, and the importance this model can play in understanding the neurobiology of relapse and in providing a biological rationale for potential therapeutic targets. We also focus our attention on glial cells, commenting on recent preclinical evidence suggesting that alterations in microglia and astrocytes might contribute to the detrimental effects associated with cannabis abuse. Finally, due to the worrisome prevalence rates of cannabis use during pregnancy, we highlight the associations between cannabis use disorders during pregnancy and congenital disorders, describing the possible neuronal basis of vulnerability at molecular and circuit level. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Miriam Melis
- Dept. of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Roberto Frau
- Dept. of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, SC, USA
| | - Sade Spencer
- Department of Neuroscience, Medical University of South Carolina, SC, USA
| | - Vivian Chioma
- Department of Neuroscience, Medical University of South Carolina, SC, USA
| | - Erica Zamberletti
- Dept. of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio (VA), Italy
| | - Tiziana Rubino
- Dept. of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio (VA), Italy
| | - Daniela Parolaro
- Dept. of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio (VA), Italy; Zardi Gori Foundation, Milan, Italy.
| |
Collapse
|
12
|
Hodgson K, Almasy L, Knowles EEM, Kent JW, Curran JE, Dyer TD, Göring HHH, Olvera RL, Woolsey MD, Duggirala R, Fox PT, Blangero J, Glahn DC. The genetic basis of the comorbidity between cannabis use and major depression. Addiction 2017; 112:113-123. [PMID: 27517884 PMCID: PMC5148647 DOI: 10.1111/add.13558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/06/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS While the prevalence of major depression is elevated among cannabis users, the role of genetics in this pattern of comorbidity is not clear. This study aimed to estimate the heritability of cannabis use and major depression, quantify the genetic overlap between these two traits and localize regions of the genome that segregate in families with cannabis use and major depression. DESIGN Family-based univariate and bivariate genetic analysis. SETTING San Antonio, Texas, USA. PARTICIPANTS Genetics of Brain Structure and Function study (GOBS) participants: 1284 Mexican Americans from 75 large multi-generation families and an additional 57 genetically unrelated spouses. MEASUREMENTS Phenotypes of life-time history of cannabis use and major depression, measured using the semistructured MINI-Plus interview. Genotypes measured using ~1 M single nucleotide polymorphisms (SNPs) on Illumina BeadChips. A subselection of these SNPs were used to build multi-point identity-by-descent matrices for linkage analysis. FINDINGS Both cannabis use [h2 = 0.614, P = 1.00 × 10-6 , standard error (SE) = 0.151] and major depression (h2 = 0.349, P = 1.06 × 10-5 , SE = 0.100) are heritable traits, and there is significant genetic correlation between the two (ρg = 0.424, P = 0.0364, SE = 0.195). Genome-wide linkage scans identify a significant univariate linkage peak for major depression on chromosome 22 [logarithm of the odds (LOD) = 3.144 at 2 centimorgans (cM)], with a suggestive peak for cannabis use on chromosome 21 (LOD = 2.123 at 37 cM). A significant pleiotropic linkage peak influencing both cannabis use and major depression was identified on chromosome 11 using a bivariate model (LOD = 3.229 at 112 cM). Follow-up of this pleiotropic signal identified a SNP 20 kb upstream of NCAM1 (rs7932341) that shows significant bivariate association (P = 3.10 × 10-5 ). However, this SNP is rare (seven minor allele carriers) and does not drive the linkage signal observed. CONCLUSIONS There appears to be a significant genetic overlap between cannabis use and major depression among Mexican Americans, a pleiotropy that appears to be localized to a region on chromosome 11q23 that has been linked previously to these phenotypes.
Collapse
Affiliation(s)
- Karen Hodgson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Correspondence to Karen Hodgson Ph.D., Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Laura Almasy
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio & University of Texas of the Rio Grande Valley, Brownsville, TX
| | - Emma E. M. Knowles
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Jack W. Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio & University of Texas of the Rio Grande Valley, Brownsville, TX
| | - Thomas D. Dyer
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio & University of Texas of the Rio Grande Valley, Brownsville, TX
| | - Harald H. H. Göring
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio & University of Texas of the Rio Grande Valley, Brownsville, TX
| | - Rene L. Olvera
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Mary D. Woolsey
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Ravi Duggirala
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio & University of Texas of the Rio Grande Valley, Brownsville, TX
| | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, South Texas Veterans Health System, 7400 Merton Minter, San Antonio, TX
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio & University of Texas of the Rio Grande Valley, Brownsville, TX
| | - David C. Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT
| |
Collapse
|
13
|
Smith AM, Mioduszewski O, Hatchard T, Byron-Alhassan A, Fall C, Fried PA. Prenatal marijuana exposure impacts executive functioning into young adulthood: An fMRI study. Neurotoxicol Teratol 2016; 58:53-59. [PMID: 27263090 DOI: 10.1016/j.ntt.2016.05.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 05/04/2016] [Accepted: 05/31/2016] [Indexed: 12/12/2022]
Abstract
Understanding the potentially harmful long term consequences of prenatal marijuana exposure is important given the increase in number of pregnant women smoking marijuana to relieve morning sickness. Altered executive functioning is one area of research that has suggested negative consequences of prenatal marijuana exposure into adolescence. Investigating if these findings continue into young adulthood and exploring the neural basis of these effects was the purpose of this research. Thirty one young adults (ages 18-22years) from the longitudinal Ottawa Prenatal Prospective Study (OPPS) underwent functional magnetic resonance imaging (fMRI) during four tasks; 1) Visuospatial 2-Back, 2) Go/NoGo, 3) Letter 2-Back and 4) Counting Stroop task. Sixteen participants were prenatally exposed to marijuana while 15 had no prenatal marijuana exposure. Task performance was similar for both groups but blood flow was significantly different between the groups. This paper presents the results for all 4 tasks, highlighting the consistently increased left posterior brain activity in the prenatally exposed group compared with the control group. These alterations in neurophysiological functioning of young adults prenatally exposed to marijuana emphasizes the importance of education for women in child bearing years, as well as for policy makers and physicians interested in the welfare of both the pregnant women and their offspring's future success.
Collapse
Affiliation(s)
- Andra M Smith
- University of Ottawa, School of Psychology, Ottawa, ON K1N 6N5, Canada.
| | - Ola Mioduszewski
- University of Ottawa, School of Psychology, Ottawa, ON K1N 6N5, Canada
| | - Taylor Hatchard
- University of Ottawa, School of Psychology, Ottawa, ON K1N 6N5, Canada
| | | | - Carley Fall
- University of Ottawa, School of Psychology, Ottawa, ON K1N 6N5, Canada
| | - Peter A Fried
- Carleton University, Department of Psychology, Ottawa, ON, Canada
| |
Collapse
|
14
|
Abstract
Evidence from both human and preclinical studies seems to indicate that maternal smoking, alcohol drinking, or other drug use during pregnancy can affect offspring outcomes. It also suggests that maternal substance use during pregnancy is a major preventable cause of adverse infant outcomes. Nonetheless, more recent studies applying genetically sensitive designs cast some doubt on the causality of the relationship between prenatal maternal substance use and infant and child behavioral outcomes. In this review, recent findings in this field of research are provided, with attention to correlated risk factors of maternal substance use during pregnancy and preclinical studies focusing on plausible biological pathways. Next, evidence-based interventions targeting maternal substance use during pregnancy are discussed. Finally, possible interventions targeting the correlated risk factors and recommendations for clinical work are presented.
Collapse
Affiliation(s)
- Anja C. Huizink
- Department of Developmental Psychology and Department of Clinical Child and Family Studies, VU University Amsterdam, The Netherlands
- EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Sido JM, Yang X, Nagarkatti PS, Nagarkatti M. Δ9-Tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8. J Leukoc Biol 2015; 97:677-88. [PMID: 25713087 PMCID: PMC4370051 DOI: 10.1189/jlb.1a1014-479r] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/12/2023] Open
Abstract
MDSCs are potent immunosuppressive cells that are induced during inflammatory responses, as well as by cancers, to evade the anti-tumor immunity. We recently demonstrated that marijuana cannabinoids are potent inducers of MDSCs. In the current study, we investigated the epigenetic mechanisms through which THC, an exogenous cannabinoid, induces MDSCs and compared such MDSCs with the naïve MDSCs found in BM of BL6 (WT) mice. Administration of THC into WT mice caused increased methylation at the promoter region of DNMT3a and DNMT3b in THC-induced MDSCs, which correlated with reduced expression of DNMT3a and DNMT3b. Furthermore, promoter region methylation was decreased at Arg1 and STAT3 in THC-induced MDSCs, and consequently, such MDSCs expressed higher levels of Arg1 and STAT3. In addition, THC-induced MDSCs secreted elevated levels of S100A8, a calcium-binding protein associated with accumulation of MDSCs in cancer models. Neutralization of S100A8 by use of anti-S100A8 (8H150) in vivo reduced the ability of THC to trigger MDSCs. Interestingly, the elevated S100A8 expression also promoted the suppressive function of MDSCs. Together, the current study demonstrates that THC mediates epigenetic changes to promote MDSC differentiation and function and that S100A8 plays a critical role in this process.
Collapse
Affiliation(s)
- Jessica Margaret Sido
- *Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA; and WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| | - Xiaoming Yang
- *Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA; and WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| | - Prakash S Nagarkatti
- *Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA; and WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- *Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA; and WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| |
Collapse
|
16
|
Huizink AC. Prenatal cannabis exposure and infant outcomes: overview of studies. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:45-52. [PMID: 24075896 DOI: 10.1016/j.pnpbp.2013.09.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/07/2013] [Accepted: 09/19/2013] [Indexed: 12/20/2022]
Abstract
Accumulating evidence from both human and preclinical studies indicates maternal substance use during pregnancy can affect fetal development, birth weight and infant outcomes. Thus, the prenatal period can be regarded as an important and potentially sensitive period of development. In this manuscript, an updated overview of studies on prenatal cannabis exposure in humans is presented, including recent studies conducted within the Generation R study. Findings on fetal growth, birth outcomes, early neonatal behavior and infant behavior and cognitive development are discussed in detail. Preclinical evidence and potential mechanisms are described as well, and recommendations for future studies are provided. It is concluded that evidence seems to suggest that fetal development is affected by prenatal maternal cannabis use, while findings on effects on infant behavior or cognition are inconsistent. Beyond infancy, subtle differences may be found in specific cognitive or behavioral outcomes, although replication studies in which pregnant women and their fetuses are exposed to current and probably higher levels of Δ9-tetrahydrocannabinol and novel designs are needed to come to firm conclusions.
Collapse
Affiliation(s)
- A C Huizink
- Department of Developmental Psychology, VU University Amsterdam, Amsterdam, The Netherlands; Department of Clinical Child and Family Studies, VU University Amsterdam, Amsterdam, The Netherlands; EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Zabouri N, Bouchard JF, Casanova C. Cannabinoid receptor type 1 expression during postnatal development of the rat retina. J Comp Neurol 2011; 519:1258-80. [DOI: 10.1002/cne.22534] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Huizink AC. Moderate use of alcohol, tobacco and cannabis during pregnancy: new approaches and update on research findings. Reprod Toxicol 2009; 28:143-51. [PMID: 19394419 DOI: 10.1016/j.reprotox.2009.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 11/25/2022]
Abstract
Interest in fetal origins of adverse offspring outcomes has grown extensively in the last decade. This has resulted in many published studies focusing on exposure in utero to substances and human offspring outcomes. Exposure to maternal substance use in pregnancy is believed to be a preventable hazard, and is therefore a main issue for public health concern and policy. However, an important question in human studies remains whether prenatal substance use exposure has an aetiological role in pathways to adverse developmental and behavioural outcomes via teratological effects. Recent insights and developments in research methodology will aid the adequate and more refined testing of associations between prenatal substance use and offspring outcomes. In particular, novel approaches could assist in disentangling the exposure to substance effects from correlated risk factors. The purpose of this manuscript is therefore to provide an overview of methodological issues involved in studies that focus on the association between maternal substance use during pregnancy and offspring's outcomes, to describe novel approaches to test these associations, and present some examples of new and well-designed studies and discuss their findings.
Collapse
Affiliation(s)
- Anja C Huizink
- Department of Education, University of Amsterdam, Room G3.13, Nieuwe Prinsengracht 130, Amsterdam 1018 VZ, The Netherlands.
| |
Collapse
|
19
|
Gómez M, Hernández M, Fernández-Ruiz J. Cannabinoid signaling system: does it play a function in cell proliferation and migration, neuritic elongation and guidance and synaptogenesis during brain ontogenesis? Cell Adh Migr 2008; 2:246-8. [PMID: 19262157 DOI: 10.4161/cam.2.4.6749] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cannabinoid signaling system is located during brain development in a position concordant with playing a modulatory function in the regulation of neuronal and glial cell proliferation and migration, survival of neural progenitors, axonal elongation and synaptogenesis and differentiation of oligodendrocytes and formation of myelin. This assumption is based on the fact that CB(1) receptors and their ligands emerge early in brain development and are transiently expressed in certain brain regions that play key roles in these processes. We have recently proposed that this modulatory action might be exerted through regulating L1 and other cell adhesion molecules, that are also key elements for those processes. The present commentary will address these two questions trying to summarize all the available evidence and to suggest the future directions for research.
Collapse
Affiliation(s)
- María Gómez
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | |
Collapse
|
20
|
Gómez M, Hernández ML, Pazos MR, Tolón RM, Romero J, Fernández-Ruiz J. Colocalization of CB1 receptors with L1 and GAP-43 in forebrain white matter regions during fetal rat brain development: evidence for a role of these receptors in axonal growth and guidance. Neuroscience 2008; 153:687-99. [PMID: 18400407 DOI: 10.1016/j.neuroscience.2008.02.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/19/2008] [Accepted: 02/05/2008] [Indexed: 12/13/2022]
Abstract
There is recent evidence supporting the notion that the cannabinoid signaling system plays a modulatory role in the regulation of cell proliferation and migration, survival of neural progenitors, neuritic elongation and guidance, and synaptogenesis. This assumption is based on the fact that cannabinoid 1-type receptors (CB(1) receptors) and their ligands emerge early in brain development and are abundantly expressed in certain brain regions that play key roles in these processes. We have recently presented in vivo evidence showing that this modulatory action might be exerted through regulating the synthesis of the cell adhesion molecule L1 that is also a key element for those processes. To further explore this issue, we conducted here immunohistochemical studies aimed at determining the cellular substrates of CB(1) receptor-L1 interactions in the rat brain during late fetal development. In this period, we previously found that the activation of CB(1) receptors increased L1 synthesis in several forebrain white matter regions but not in gray matter areas. Using double labeling studies, we observed here colocalization of both proteins in fiber tracts including the corpus callosum, the adjacent subcortical white matter, the internal capsule and the anterior commissure. Experiments conducted with cultures of fetal rat cortical nerve cells revealed that L1 is present mainly in neurons but not in glial cells. This fact, together with the results obtained in the double labeling studies, would indicate that L1 and CB(1) receptors should possibly be present in axons elongating through these white matter tracts, or, alternatively, in migrating neurons. Further experiments confirmed the presence of CB(1) receptors in elongating axons, since these receptors colocalized with growth-associated protein 43 (GAP-43), a marker of growth cones, but not with synaptophysin, a marker of active synaptic terminals, in the same forebrain white matter regions. Lastly, using cultured fetal rat cortical neurons, we also observed that the activation of cannabinoid receptors increased the levels of the full-length L1 and altered those of some active proteolytic fragments of this protein whose generation has been associated with specific steps in the process of neuritic elongation in cultured neurons. In summary, we have demonstrated that the effects caused by cannabinoid agonists on L1 are facilitated by the colocalization of this cell adhesion molecule with CB(1) receptors in several forebrain white matter regions during fetal brain development. We have provided strong evidence that this phenomenon occurs in axons elongating through these white matter tracts, and we have explored in vitro how cannabinoid receptors influence L1 levels. Considering the role played by L1 in different events related to neural development, our observations support the occurrence of a physiological mechanism by which the cannabinoid system might regulate the process of axonal growth and guidance through regulating the synthesis and function of L1.
Collapse
Affiliation(s)
- M Gómez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Gómez M, Hernández M, Fernández-Ruiz J. The activation of cannabinoid receptors during early postnatal development reduces the expression of cell adhesion molecule L1 in the rat brain. Brain Res 2007; 1145:48-55. [PMID: 17320842 DOI: 10.1016/j.brainres.2007.01.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 01/16/2007] [Accepted: 01/29/2007] [Indexed: 11/16/2022]
Abstract
Cannabinoid CB(1) receptors and their ligands emerge early in brain development and are abundantly expressed in certain brain regions that play key roles in processes related to cell proliferation and migration, neuritic elongation and guidance, and synaptogenesis. This would support the notion that the cannabinoid system might play a modulatory role in the regulation of these processes. We have recently presented preliminary in vivo evidence showing that this modulatory action might be exerted, among others, through regulating the levels of several key elements in these processes, such as the L1 protein. This was observed in various white matter areas of the rat forebrain. Because these preliminary in vivo experiments focused only in fetal ages, we concentrated now in the period of early postnatal development. To this end, we analyzed the effects of the cannabinoid agonist Delta(9)-tetrahydrocannabinol (Delta(9)-THC) daily administered since the 5th day of gestation on mRNA levels for L1 in different brain structures of rat neonates at different postnatal ages (PND1, PND5 and PND12). Our results revealed that Delta(9)-THC exposure affected the levels of L1 transcripts in specific brain structures only in PND1, these effects disappearing during further days. Thus, we found reduced L1-mRNA levels in grey matter regions, such as the cerebral cortex, septum nuclei, striatum, dentate gyrus and CA3 subfield of the Ammon horn. White matter areas and subventricular zones were, however, more resistant to Delta(9)-THC exposure at this postnatal age in contrast with the previous data obtained in the fetal brain. Importantly, the effects were influenced by gender of animals, since the reductions were always more marked in females than males, also in contrast with the data reported for the fetal brain. In summary, the cannabinoid system seems to modulate the levels of L1 in several brain structures during specific periods of development [late gestation (previous data) and very early postnatal days (present data)], which correlates with the periods in which we had previously found an atypical distribution of CB(1) receptors in the developing brain. However, the magnitude of the effects of cannabinoids on L1 was influenced by two factors: gender and age of development. Considering the role played by L1 in different events related to neural development, our observations might support the occurrence of a physiological mechanism by which the cannabinoid system might regulate processes such as cell proliferation and migration, neuritic elongation and guidance, and synaptogenesis.
Collapse
MESH Headings
- Age Factors
- Aging/physiology
- Animals
- Animals, Newborn
- Brain/drug effects
- Brain/growth & development
- Brain/metabolism
- Brain Chemistry/physiology
- Cannabinoid Receptor Modulators/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Proliferation/drug effects
- Down-Regulation/physiology
- Dronabinol/pharmacology
- Female
- Male
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/metabolism
- Neural Cell Adhesion Molecule L1/genetics
- Neurites/drug effects
- Neurites/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Sex Characteristics
- Sex Factors
- Telencephalon/drug effects
- Telencephalon/growth & development
- Telencephalon/metabolism
Collapse
Affiliation(s)
- María Gómez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | | | | |
Collapse
|
22
|
Deshmukh S, Onozuka K, Bender KJ, Bender VA, Lutz B, Mackie K, Feldman DE. Postnatal development of cannabinoid receptor type 1 expression in rodent somatosensory cortex. Neuroscience 2007; 145:279-87. [PMID: 17210229 PMCID: PMC1850104 DOI: 10.1016/j.neuroscience.2006.11.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/17/2006] [Accepted: 11/20/2006] [Indexed: 11/19/2022]
Abstract
Endocannabinoids are powerful modulators of synaptic transmission that act on presynaptic cannabinoid receptors. Cannabinoid receptor type 1 (CB1) is the dominant receptor in the CNS, and is present in many brain regions, including sensory cortex. To investigate the potential role of CB1 receptors in cortical development, we examined the developmental expression of CB1 in rodent primary somatosensory (barrel) cortex, using immunohistochemistry with a CB1-specific antibody. We found that before postnatal day (P) 6, CB1 receptor staining was present exclusively in the cortical white matter, and that CB1 staining appeared in the gray matter between P6 and P20 in a specific laminar pattern. CB1 staining was confined to axons, and was most prominent in cortical layers 2/3, 5a, and 6. CB1 null (-/-) mice showed altered anatomical barrel maps in layer 4, with enlarged inter-barrel septa, but normal barrel size. These results indicate that CB1 receptors are present in early postnatal development and influence development of sensory maps.
Collapse
Affiliation(s)
- Suvarna Deshmukh
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357
| | - Kaori Onozuka
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357
| | - Kevin J. Bender
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357
| | - Vanessa A. Bender
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357
| | - Beat Lutz
- Department of Physiological Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Ken Mackie
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA 98195-6540
| | - Daniel E. Feldman
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357
- Corresponding author: phone 858-822-4271, fax 858-534-7309,
| |
Collapse
|
23
|
O'Shea M, McGregor IS, Mallet PE. Repeated cannabinoid exposure during perinatal, adolescent or early adult ages produces similar longlasting deficits in object recognition and reduced social interaction in rats. J Psychopharmacol 2006; 20:611-21. [PMID: 16714325 DOI: 10.1177/0269881106065188] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is mounting evidence that chronic cannabis use might result in lasting neurobehavioural changes, although it remains unclear whether vulnerability diminishes with age. The current study compared the effects of cannabinoid exposure at three developmental periods on subsequent measures of memory and anxiety. Male rats aged 4 days (perinatal), 30 days (adolescent) and 56 days (young adult) were injected with vehicle or incremental doses of the cannabinoid receptor agonist CP 55940, daily for 21 consecutive days (0.15, 0.20 or 0.30 mg/kg for 7 days per dose, respectively). Following a 28-day drug-free period, working memory was assessed in an object recognition task. One week later, social anxiety was assessed in a social interaction test. Two days later, generalized anxiety was assessed in an emergence test. Results revealed that CP 55940 impaired working memory and social interaction similarly at all three ages. CP 55940 had no effects in five of six emergence test measures, but a modest but significant reduction in anxiety was noted in one measure following adolescent exposure. We conclude that chronic cannabinoid exposure leads to long-term memory impairments and increased anxiety, irrespective of the age at which drug exposure occurrs.
Collapse
Affiliation(s)
- Melanie O'Shea
- School of Psychology, University of New England, Armidale, NSW, Australia
| | | | | |
Collapse
|
24
|
Abstract
This chapter will review the effects produced on neural development by maternal consumption of cannabinoids during gestation and lactation, with emphasis in the maturation of several neurotransmitter systems (dopamine, serotonin, opioids, cannabinoids, etc.) and possible modifications in their functional expression at the behavioral or neuroendocrine levels. In addition, we have analyzed the possible existence of a sexual dimorphism in these ontogenic effects of cannabinoids, as well as the possible molecular mechanism underlying such effects. In general, the results discussed support the view that exposure to cannabinoids during critical periods of development produces marked modifications in the functional expression of diverse neuronal systems in adulthood. Furthermore, the functions of endocannabinoids in the brain are large not only in adulthood, but also in the period of prenatal and postnatal development. Thus, endocannabinoids have been reported to be present in early ages and to play a role in the process of brain development: neural proliferation and migration, axonal elongation, synaptogenesis and/or myelogenesis.
Collapse
Affiliation(s)
- J A Ramos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | | | | |
Collapse
|
25
|
Abstract
Cannabis is one of the most commonly used illicit drugs during pregnancy, but little is known about the lasting effects of early-life exposure to this drug. In this study, male Wistar rat pups were treated daily with (-)-delta9-tetrahydrocannabinol (THC; 5 mg/kg, s.c.) or its vehicle between postnatal days (PND) 4 and 14. Drug administration during this early postnatal period in rats is analogous to the third trimester of gestation in humans, which is a major period of synaptogenesis. Rats were subsequently tested drug-free during young adulthood (PND 56) using a two-component food-motivated double Y-maze test. Each trial included distinct spatial discrimination and delayed alternation components, which permitted the simultaneous assessment of reference memory and working memory. Rats were tested for 30 trials/day, 5 days/week for 5 weeks. Results revealed no significant differences between THC- and vehicle-treated rats in the spatial discrimination task. However, compared to vehicle-treated rats, THC-treated rats committed significantly more errors, and required significantly longer to obtain 80% correct over two consecutive days in the delayed alternation task. Results suggest that neonatal THC exposure leads to a specific and lasting deficit in learning in adulthood, which is likely due to impaired working memory function.
Collapse
Affiliation(s)
- M O'Shea
- School of Psychology, University of New England, Armidale, New South Wales, Australia
| | | |
Collapse
|
26
|
Huizink AC, Mulder EJH. Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neurosci Biobehav Rev 2005; 30:24-41. [PMID: 16095697 DOI: 10.1016/j.neubiorev.2005.04.005] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 02/16/2005] [Accepted: 04/18/2005] [Indexed: 11/28/2022]
Abstract
Teratological investigations have demonstrated that agents that are relatively harmless to the mother may have significant negative consequences to the fetus. Among these agents, prenatal alcohol, nicotine or cannabis exposure have been related to adverse offspring outcomes. Although there is a relatively extensive body of literature that has focused upon birth and behavioral outcomes in newborns and infants after prenatal exposure to maternal smoking, drinking and, to a lesser extent, cannabis use, information on neurobehavioral and cognitive teratogenic findings beyond these early ages is still quite limited. Furthermore, most studies have focused on prenatal exposure to heavy levels of smoking, drinking or cannabis use. Few recent studies have paid attention to low or moderate levels of exposure to these substances. This review endeavors to provide an overview of such studies, and includes animal findings and potential mechanisms that may explain the mostly subtle effects found on neurobehavioral and cognitive outcomes. It is concluded that prenatal exposure to either maternal smoking, alcohol or cannabis use is related to some common neurobehavioral and cognitive outcomes, including symptoms of ADHD (inattention, impulsivity), increased externalizing behavior, decreased general cognitive functioning, and deficits in learning and memory tasks.
Collapse
Affiliation(s)
- Anja C Huizink
- Erasmus Medical Center, Department of Child and Adolescent Psychiatry, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands.
| | | |
Collapse
|
27
|
Leonelli M, Britto LRG, Chaves GP, Torrão AS. Developmental expression of cannabinoid receptors in the chick retinotectal system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 156:176-82. [PMID: 16099304 DOI: 10.1016/j.devbrainres.2005.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/16/2005] [Accepted: 02/16/2005] [Indexed: 11/22/2022]
Abstract
The cannabinoid system has been suggested to participate in processes such as antinociception, cognition, motor control, and, more recently, development of the nervous system. This study describes the expression of the CB1 cannabinoid receptor in the developing chick retina and optic tectum by means of conventional immunoperoxidase protocols. CB1 immunoreactivity was initially detected around the embryonic day 4 (E4) in both the retina and tectum. In the retina, CB1 immunoreactivity was first observed in presumptive ganglion cells and, subsequently, in the inner plexiform layer and two populations of neurons of the inner nuclear layer. The post-hatched chick exhibited a pattern of staining that included four sublayers of the inner plexiform layer, a few stained cells in the ganglion cell layer, and labeled neurons both in the inner and central parts of the inner nuclear layer. The latter two types of neurons appear to be amacrine and bipolar cells, respectively. In the tectum, CB1 first appeared in its most superficial zone and later in several tectal laminae, including a white matter layer (stratum album centrale; Cajal's layer 14). There was a remarkable and transient increase of labeling at E10, followed by a continuous reduction of staining until E18. In the post-hatched chick, tectal staining was mostly confined to layers 2-3 and 5-6. Stained perikarya were seldom observed in the tectum at any stage. These data are in agreement with a possible developmental function of CB1, as it is expressed several days before synaptogenesis ensues and exhibits transient expression in the optic tectum.
Collapse
Affiliation(s)
- Mauro Leonelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-900 São Paulo, S.P., Brazil
| | | | | | | |
Collapse
|
28
|
Abstract
The evidence for the therapeutic efficacy of cannabinoids in the treatment of multiple sclerosis (MS) is increasing but is not as yet convincing. Although several trials have reported no significant effect, the majority of the evidence which supports a beneficial effect on spasticity and pain is based on subjective measurements in trials where unblinding was likely to be a problem. The available clinical trial data suggest that the adverse side effects associated with using cannabis-based medicinal extracts (CBMEs) are generally mild, such as dry mouth, dizziness, somnolence, nausea and intoxication, and in no case did toxicity develop. However, most of these trials were run over a period of months and it is possible that other adverse side effects, not seen in these short-term studies, could develop with long-term use. Despite the evidence that cannabinoids can disrupt cognitive function and promote depression, on the basis of current data, such adverse effects seem unlikely to be associated with the use of CBMEs. Likewise, there is no evidence to suggest that their effects on balance and motor control, or immune function, may be clinically significant. There is, however, reason to be concerned about the use of therapeutic cannabinoids by people predisposed to psychosis and by pregnant women, given the increasing evidence of their adverse effects on the fetus. In conclusion, given the modest therapeutic effects of cannabinoids demonstrated so far, and the risk of long-term adverse side effects, there is reason to be cautious about their use in the treatment of MS.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
29
|
Zhu X, Zeisel SH. Gene expression profiling in phosphatidylethanolamine N-methyltransferase knockout mice. ACTA ACUST UNITED AC 2005; 134:239-55. [PMID: 15836921 DOI: 10.1016/j.molbrainres.2004.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 10/08/2004] [Accepted: 10/24/2004] [Indexed: 01/06/2023]
Abstract
Choline is derived from the diet as well as from de novo methylation of phosphatidylethanolamine catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). Pemt knockout mice have no endogenous synthesis of choline molecules. We previously reported that these mice have excess S-adenosylmethionine and hypermethylated DNA in brain, as well as increased mitosis in neural progenitor cells of the hippocampus in embryonic day 17 (E17) brain. In the present study, E17 fetal brains and adult brains were harvested and total RNA was extracted. In fetal brain, using gene expression profiling and Significance Analysis of Microarrays, we identified 107 significant genes with increased expression and 379 significant genes with decreased expression. In adult brain, we identified 381 significant genes with increased expression and 1037 significant genes with decreased expression. We observed significant changes in expression of genes regulating cell cycle (such as TP53, Fgf4, and Ing1), differentiation and neurogenesis (such as S100A4 and D14Ws), and phospholipid metabolism (such as Pip5k1a, Pitpn, and Pla2g6) as well as in a number of methyltransferase genes (including Gnmt). Some genes with expression known to be regulated by promoter methylation were suppressed in Pemt knockout brain (such as S100a4 and TP53). These findings are consistent with the biochemical changes that we previous reported in fetal brains from Pemt knockout mice. This is the first report of gene profiling in Pemt(-/-) mouse brain.
Collapse
Affiliation(s)
- Xiaonan Zhu
- Department of Nutrition, CB #7461, School of Public Health, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
30
|
Pistis M, Perra S, Pillolla G, Melis M, Muntoni AL, Gessa GL. Adolescent exposure to cannabinoids induces long-lasting changes in the response to drugs of abuse of rat midbrain dopamine neurons. Biol Psychiatry 2004; 56:86-94. [PMID: 15231440 DOI: 10.1016/j.biopsych.2004.05.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 04/27/2004] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Recent studies have raised concerns about subtle long-lasting neurobiological changes that might be triggered by exposure to Cannabis derivatives, especially in a critical phase of brain maturation, such as puberty. The mesolimbic dopamine (DA) system, involved in the processing of drug-induced reward, is a locus of action of cannabinoids and endocannabinoids. Thus, we compared the effects of repeated cannabinoid administration in adolescent and adult rats on DA neuronal functions and responses to drugs of abuse. METHODS Single-unit extracellular recordings from antidromically identified mesoaccumbens DA neurons and from their target cells in the nucleus accumbens were carried out in urethane-anesthetized rats. Animals were pretreated during adolescence or adulthood, for 3 days, with the cannabinoid agonist WIN55212.2 (WIN) or vehicle and allowed a 2-week interval. RESULTS In cannabinoid-administered rats, DA neurons were significantly less responsive to the stimulating action of WIN, regardless of the age of pretreatment; however, in the adolescent group, but not in the adult, long-lasting cross-tolerance developed to morphine, cocaine, and amphetamine. CONCLUSIONS Our study suggests that an enduring form of neuronal adaptation occurs in DA neurons after subchronic cannabinoid intake at a young age, affecting subsequent responses to drugs of abuse.
Collapse
Affiliation(s)
- Marco Pistis
- Bernard Beryl Brodie Department of Neuroscience, University of Cagliari, Monserrato, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Palomo T, Kostrzewa RM, Beninger RJ, Archer T. Gene-environment interplay in alcoholism and other substance abuse disorders: expressions of heritability and factors influencing vulnerability. Neurotox Res 2004; 6:343-61. [PMID: 15545018 DOI: 10.1007/bf03033309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Factors that confer predisposition and vulnerability for alcoholism and other substance abuse disorders may be described usefully within the gene-environment interplay framework. Thus, it is postulated that heritability provides a major contribution not only to alcohol but also to other substances of abuse. Studies of evoked potential amplitude reduction have provided a highly suitable and testable method for the assessment of both environmentally-determined and heritable characteristics pertaining to substance use and dependence. The different personal attributes that may co-exist with parental influence or exist in a shared, monozygotic relationship contribute to the final expression of addiction. In this connection, it appears that personality disorders are highly prevalent co-morbid conditions among addicted individuals, and, this co-morbidity is likely to be accounted for by multiple complex etiological relationships, not least in adolescent individuals. Co-morbidity associated with deficient executive functioning may be observed too in alcohol-related aggressiveness and crimes of violence. The successful intervention into alcohol dependence and craving brought about by baclofen in both human and animal studies elucidates glutamatergic mechanisms in alcoholism whereas the role of the dopamine transporter, in conjunction with both the noradrenergic and serotonergic transporters, are implicated in cocaine dependence and craving. The role of the cannabinoids in ontogeny through an influence upon the expression of key genes for the development of neurotransmitter systems must be considered. Finally, the particular form of behaviour/characteristic outcome due to childhood circumstance may lie with biological, gene-based determinants, for example individual characteristics of monoamine oxidase (MAO) activity levels, thereby rendering simple predictive measures both redundant and misguiding.
Collapse
Affiliation(s)
- Tomas Palomo
- Servicio Psiquiátrico, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Fernández-Ruiz J, Gómez M, Hernández M, de Miguel R, Ramos JA. Cannabinoids and gene expression during brain development. Neurotox Res 2004; 6:389-401. [PMID: 15545023 DOI: 10.1007/bf03033314] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cannabis is the most commonly used illicit drug in western societies, in particular among young people. It is consumed even by women during pregnancy and lactation, which result in a variety of disturbances in the development of their offspring, because, like other habit-forming drugs, cannabinoids, the psychoactive ingredients of marijuana, can cross the placental barrier and be secreted in the maternal milk. Through this way, cannabinoids affect the ontogeny of various neurotransmitter systems leading to changes in different behavioral patterns. Dopamine and endogenous opioids are among the neurotransmitters that result more affected by perinatal cannabinoid exposure, which, when animals mature, produce changes in motor activity, drug-seeking behavior, nociception and other processes. These disturbances are likely originated by the capability of cannabinoids to influence the expression of key genes for both neurotransmitters, in particular, the enzyme tyrosine hydroxylase and the opioid precursor proenkephalin. In addition, cannabinoids seem to be also able to influence the expression of genes encoding for neuron-glia cell adhesion molecules, which supports a potential influence of cannabinoids on the processes of cell proliferation, neuronal migration or axonal elongation in which these proteins are involved. In support of this possibility, CB1 receptors, which represent the major targets for the action of cannabinoids, are abundantly expressed in certain brain regions, such as the subventricular areas, which have been involved in these processes during brain development. Finally, cannabinoids might also be involved in the apoptotic death that occurs during brain development, possibly by influencing the expression of Bcl-2/Bax system. Also in support of this option, CB1 receptors are transiently expressed during brain development in different group of neurons which do not contain these receptors in the adult brain. This paper will review all evidence relating cannabinoids to the expression of key genes for neural development, trying to establish the future research addressed to elucidate the mechanisms involved in the epigenetic action of cannabinoids during brain development.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | | | | | | | | |
Collapse
|