1
|
Chi KY, Kim G, Kim H, Kim H, Jo S, Lee J, Lee Y, Yoon H, Cho S, Kim J, Lee JS, Yeon GB, Kim DS, Park HJ, Kim JH. Optimization of culture conditions to generate vascularized multi-lineage liver organoids with structural complexity and functionality. Biomaterials 2025; 314:122898. [PMID: 39447308 DOI: 10.1016/j.biomaterials.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Hepatic organoids (HOs), primarily composed of hepatobiliary cells, do not represent the pathogenesis of liver diseases due to the lack of non-parenchymal cells. Multi-lineage liver organoids (mLOs) containing various cell types found in the liver offer a promising in vitro disease model. However, their structural complexity remains challenging to achieve due to the difficulty in optimizing culture conditions that meet the growth need of all component cell types. Here, we demonstrate that cystic HOs generated from hPSCs can be expanded long-term and serve as a continuous source for generating complex mLOs. Assembling cystic HOs with hPSC-derived endothelial and hepatic stellate cell-like cells under conventional HO culture conditions failed to support the development of multiple cell types within mLOs, resulting in biased differentiation towards specific cell types. In contrast, modulating the cAMP/Wnt/Hippo signaling pathways with small molecules during assembly and differentiation phases efficiently generate mLOs containing both hepatic parenchymal and non-parenchymal cells. These mLOs exhibited structural complexity and functional maturity, including vascular network formation between parenchymal lobular structures, cell polarity for bile secretion, and the capacity to respond to fibrotic stimuli. Our study underscores the importance of modulating signaling pathways to enhance mLO structural complexity for applications in modeling liver pathologies.
Collapse
Affiliation(s)
- Kyun Yoo Chi
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyojin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Heeseok Yoon
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seunghyun Cho
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jeongjun Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jin-Seok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyu-Bum Yeon
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea; Laboratory of Reprogramming and Differentiation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Dae-Sung Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea; Laboratory of Reprogramming and Differentiation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Hrncir HR, Goodloe B, Bombin S, Hogan CB, Jadi O, Gracz AD. Sox9 inhibits Activin A to promote biliary maturation and branching morphogenesis. Nat Commun 2025; 16:1667. [PMID: 39955269 PMCID: PMC11830073 DOI: 10.1038/s41467-025-56813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
Intrahepatic bile duct (IHBD) development produces a morphologically heterogeneous network of large "ducts" and small "ductules" by adulthood. IHBD formation is closely linked to developmental specification of biliary epithelial cells (BECs) starting as early as E13.5, but mechanisms regulating differential IHBD morphology remain poorly understood. Here, we show that duct and ductule development has distinct genetic requirements, with Sox9 required to form the developmental precursors to peripheral ductules in adult livers. By optimizing large-volume IHBD imaging, we find that IHBDs emerge as a homogeneous webbed structure by E15.5 and undergo morphological maturation through 2 weeks of age. Developmental knockout of Sox9 leads to decreased postnatal branching morphogenesis, resulting in adult IHBDs with normal ducts but significantly fewer ductules. In the absence of Sox9, BECs fail to mature and exhibit elevated TGF-β signaling and Activin A. Exogenous Activin A is sufficient to induce developmental gene expression and morphological defects in wild-type BEC organoids, while early postnatal inhibition of Activin A in vivo rescues IHBD morphogenesis in the absence of Sox9. Our data demonstrate that proper IHBD architecture relies on inhibition of Activin A by Sox9 to promote ductule morphogenesis, defining regulatory mechanisms underlying morphological heterogeneity.
Collapse
Affiliation(s)
- Hannah R Hrncir
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA, USA
| | - Brianna Goodloe
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA, USA
| | - Sergei Bombin
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA, USA
| | - Connor B Hogan
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA, USA
| | - Othmane Jadi
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam D Gracz
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA, USA.
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
5
|
Li X, Cho YS, Han Y, Zhou M, Liu Y, Yang Y, Zhuo S, Jiang J. The Hippo pathway effector YAP inhibits NF-κB signaling and ccRCC growth by opposing ZHX2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.21.600079. [PMID: 38979373 PMCID: PMC11230290 DOI: 10.1101/2024.06.21.600079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The prevailing view in the cancer field is that Hippo signaling pathway functions as a tumor suppressor pathway by blocking the oncogenic potential of the pathway effectors Yes1 associated transcriptional regulator (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ). However, YAP can also function as a context-dependent tumor suppressor in several types of cancer including clear cell renal cell carcinomas (ccRCC). We find that, in additional to inhibiting hypoxia-inducible factor 2α (HIF2α), a major oncogenic driver in Von Hippel-Lindau (VHL)-/- ccRCC, YAP also blocks nuclear factor κB (NF-κB ) signaling in ccRCC to inhibit cancer cell growth under conditions where HIF2α is dispensable. Mechanistically, YAP inhibits the expression of Zinc fingers and homeoboxes 2 (ZHX2), a VHL substrate and critical co-factor of NF-κB in ccRCC. Furthermore, YAP competes with ZHX2 for binding to the NF-κB subunit p65. Consequently, elevated nuclear YAP blocks the cooperativity between ZHX2 and the NF-κB subunit p65, leading to diminished NF-κB target gene expression. Pharmacological inhibition of Hippo kinase blocked NF-κB transcriptional program and suppressed ccRCC cancer cell growth, which can be rescued by overexpression of ZHX2 or p65. Our study uncovers a crosstalk between the Hippo and NF-κB/ZHX2 pathways and its involvement in ccRCC growth inhibition, suggesting that targeting the Hippo pathway may provide a therapeutical opportunity for ccRCC treatment.
Collapse
Affiliation(s)
- Xu Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Math and Sciences, Tarrant County College-NE Campus, 828 W Harwood Rd, Hurst, TX 76054, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA
- Harvard Stem Cell Institute, 188 Longwood Ave. Boston, MA 02215, USA
- Dana-Farber/Harvard Cancer Center, 188 Longwood Ave. Boston, MA 02215, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA
- Harvard Stem Cell Institute, 188 Longwood Ave. Boston, MA 02215, USA
- Dana-Farber/Harvard Cancer Center, 188 Longwood Ave. Boston, MA 02215, USA
| | - Shu Zhuo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Tsuchiya T, Miyawaki S, Teranishi Y, Ohara K, Hirano Y, Ogawa S, Torazawa S, Sakai Y, Hongo H, Ono H, Saito N. Current molecular understanding of central nervous system schwannomas. Acta Neuropathol Commun 2025; 13:24. [PMID: 39910685 DOI: 10.1186/s40478-025-01937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/25/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Schwannomas are tumors that originate from myelinating Schwann cells and can occur in cranial, spinal, and peripheral nerves. Although our understanding of the molecular biology underlying schwannomas remains incomplete, numerous studies have identified various molecular findings and biomarkers associated with schwannomas of the central nervous system (CNS). The development of these tumors is primarily linked to mutations in the NF2 gene. Merlin, the protein encoded by NF2, is integral to several signaling pathways, including Ras/Raf/MEK/ERK, PI3K/Akt/mTORC1, Wnt/β-catenin, and the Hippo pathway. MAIN BODY Recent research has also uncovered novel genetic alterations, such as the SH3PXD2A::HTRA1 fusion gene, VGLL-fusions in intraparenchymal CNS schwannomas, and the SOX10 mutation particularly in non-vestibular cranial nerve schwannomas. In addition to genetic alterations, research is also being conducted on gene expression and epigenetic regulation, with a focus on NF2 methylation and post-transcriptional silencing by micro RNA. Furthermore, the advent of advanced techniques like single-cell sequencing and multi-omics analysis has facilitated rapid discoveries related to the tumor microenvironment and tumor heterogeneity in schwannomas. CONCLUSION A deeper exploration of these molecular findings could clarify the mechanisms of schwannoma tumorigenesis and progression, ultimately guiding the development of new therapeutic targets. This review offers a comprehensive overview of the current molecular understanding of CNS schwannomas, emphasizing the insights gained from previous research, while addressing existing controversies and outlining future research and treatment perspectives.
Collapse
Affiliation(s)
- Takahiro Tsuchiya
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yudai Hirano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shotaro Ogawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Seiei Torazawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yu Sakai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hideaki Ono
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
7
|
Wang J, Shen D, Jiang J, Hu L, Fang K, Xie C, Shen N, Zhou Y, Wang Y, Du S, Meng S. Dietary Palmitic Acid Drives a Palmitoyltransferase ZDHHC15-YAP Feedback Loop Promoting Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409883. [PMID: 39686664 PMCID: PMC11809420 DOI: 10.1002/advs.202409883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 12/18/2024]
Abstract
Elevated uptake of saturated fatty acid palmitic acid (PA) is associated with tumor metastasis; however, the precise mechanisms remain partially understood, hindering the development of therapy for PA-driven tumor metastasis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is implicated in cancer progression. Here it is shown that a high-palm oil diet potentiates tumor metastasis in murine xenografts in part through YAP. It is found that the palmitoyltransferase ZDHHC15 is a YAP-regulated gene that forms a feedback loop with YAP. Notably, PA drives the ZDHHC15-YAP feedback loop, thus enforces YAP signaling, and hence promotes tumor metastasis in murine xenografts. In addition, it is shown that ZDHHC15 associates with Kidney and brain protein (KIBRA, also known as WW- and C2 domain-containing protein 1, WWC1), an upstream component of Hippo signaling, and mediates its palmitoylation. KIBRA palmitoylation leads to its degradation and regulates its subcellular localization and activity toward the Hippo/YAP pathway. Moreover, PA enhances KIBRA palmitoylation and degradation. It is further shown that combinatorial targeting of YAP and fatty acid synthesis exhibits augmented effects against metastasis formation in mice fed with a Palm diet. Collectively, these findings uncover a ZDHHC15-YAP feedback loop as a previously unrecognized mechanism underlying PA-promoted tumor metastasis and support targeting YAP and fatty acid synthesis as potential therapeutic targets in PA-driven tumor metastasis.
Collapse
Affiliation(s)
- Jianxin Wang
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Dachuan Shen
- Department of OncologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Jian Jiang
- Central Hospital of Dalian University of TechnologyDepartment of Spine SurgeryDalian116033China
| | - Lulu Hu
- Department of Laboratory MedicineQingdao Central HospitalUniversity of Health and Rehabilitation Sciences NO.369Dengyun Road, Qingdao National High‐tech Industrial Development ZoneQingdaoChina
| | - Kun Fang
- Central LaboratoryCancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyLiaoning Cancer Hospital & InstituteShenyang110042China
| | - Chunrui Xie
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Ning Shen
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yuzhao Zhou
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yifei Wang
- Department of Obstetrics and GynecologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Sha Du
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Songshu Meng
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| |
Collapse
|
8
|
Ren L, Deng J, Wakimoto H, Xie Q, Gong Y, Hua L. Clinical and molecular characteristics and long-term outcomes of pediatric intracranial meningiomas: a comprehensive analysis from a single neurosurgical center. Acta Neuropathol Commun 2025; 13:15. [PMID: 39856730 PMCID: PMC11760721 DOI: 10.1186/s40478-025-01925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Meningioma represents the most common intracranial tumor in adults. However, it is rare in pediatric patients. We aimed to demonstrate the clinicopathological characteristics and long-term outcome of pediatric meningiomas (PMs). METHOD We enrolled 74 patients with intracranial PMs and analyzed their clinicopathological characteristics. Targeted next generation sequencing was used to detect alterations in meningioma relevant genes. Progression-free survival (PFS) was compared between PMs and adult meningiomas (AMs). Univariate and multivariate Cox analyses were employed to evaluate the predictive values of clinicopathological characteristics. A nomogram was constructed and its predictive accuracy evaluated. RESULT 40 females (54.1%) and 34 males (45.9%) patients, with the gender ratio of 1.18:1, were identified. 9 (12.2%) cases were clinically diagnosed as NF2-related Schwannomatosis (NF2-SWN), while 65 (87.8%) were sporadic. Ventricular location was found in 16 patients (21.6%). 19 patients (25.7%) experienced recurrence during a median follow-up period of 33 months (range 2 -145.25 months). The 3-, 5-, and 8-year PFS rates was 74.74%, 74.74%, and 59.38%, respectively. The PFS of the PM and AM cohorts were not significantly different, with or without propensity score matching. NF2 mutation was observed in 33 sporadic PMs (52.4%), whereas alterations in other genes (AKT1, TRAF7, SMO, PIK3CA, KLF4) frequently mutated in AMs, were not identified. The proportion of NF2 mutation in PMs was significantly lower in the skull base than other locations (p = 0.02). One anaplastic PM harbored TERT promoter mutation. Of note, in sporadic PMs, NF2 mutations were not significantly associated with PFS (p = 0.434) or overall survival (OS) (p = 0.60). The multivariate Cox analysis showed NF2-SWN (p < 0.001) and extent of resection (p = 0.013) to be independently associated with the PFS of PMs. Our prognostic model showed predictive accuracy for long-term PFS in PMs as the 3-, 5- and 8-year Area Under the Curve (AUC) was 0.927, 0.930, and 0.870, respectively. CONCLUSION PM was characterized by its relative male predominance, ventricular location, NF2-SWN, and NF2 mutation. Of note, PMs had similar prognosis to AMs and NF2 alteration was not significantly associated with PFS in PMs.
Collapse
Affiliation(s)
- Leihao Ren
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Neurosurgery, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Department of Critical Care Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Neurosurgery, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
9
|
Wang X, Zhu R, Yu P, Qi S, Zhong Z, Jin R, Wang Y, Gu Y, Ye D, Chen K, Shu Y, Wang Y, Yu FX. WWC proteins-mediated compensatory mechanism restricts schwannomatosis driven by NF2 loss of function. SCIENCE ADVANCES 2025; 11:eadp4765. [PMID: 39841844 PMCID: PMC11753430 DOI: 10.1126/sciadv.adp4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
NF2-related schwannomatosis, previously known as neurofibromatosis type 2, is a genetic disorder characterized by nerve tumors due to NF2 gene mutations. Mice with Nf2 deletion develop schwannomas slowly with low penetrance, hence inconvenient for preclinical studies. Here, we show that NF2, by recruiting E3 ubiquitin ligases β-TrCP1/2, promotes WWC1-3 ubiquitination and degradation. In NF2 mutated cells, WWC1-3 accumulation is a compensatory mechanism to prevent YAP/TAZ hyperactivation and rapid tumorigenesis. Accordingly, we generate a synthetic mouse model with complete penetrance and short latency by concurrently deleting Nf2 and Wwc1/2 in Schwann cells. This model closely resembles NF2-related schwannomatosis in patients, as confirmed by histological and single-cell transcriptome analysis. Moreover, a cell line from mouse schwannomas and a syngeneic tumor model in immune-competent mice are established. Furthermore, a screen using established models has identified candidate drugs that effectively suppress schwannoma progression. Hence, this work has developed rapid and transplantable models that will facilitate both basic and translational research on NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Xueying Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengcheng Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sixian Qi
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruxin Jin
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Gu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Ye
- Huashan Hospital and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children’s Hospital of Fudan University, National Children’s Medical Center, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Mao T, Xu X, Liu L, Wu Y, Wu X, Niu W, You D, Cai X, Lu L, Zhou H. ABL1‒YAP1 axis in intestinal stem cell activated by deoxycholic acid contributes to hepatic steatosis. J Transl Med 2024; 22:1119. [PMID: 39707364 DOI: 10.1186/s12967-024-05865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Yes-associated protein 1 (YAP1) regulates the survival, proliferation, and stemness of cells, and contributes to the development of metabolic dysfunction associated fatty liver disease (MAFLD). However, the regulatory role of intestinal YAP1 in MAFLD still remains unclear. METHODS Terminal ileal specimens were used to compare intestinal YAP1 activation in patients with and without MAFLD. Mice targeted for knocking out YAP1 in the intestinal epithelium were fed a high-fat diet (HFD) for 8 consecutive weeks. In a separate group, the mice were fed an HFD supplemented with the bile acid binder cholestyramine (CHO) or a low-fat diet with deoxycholic acid (DCA). Immunofluorescence, Immunohistochemistry, Western blot, RT-qPCR, ELISA, 16S rDNA sequencing, tissue and enteroid culture techniques were used to evaluate the effects of an HFD or DCA on the gut‒liver axis in mice or humans. RESULTS Intestinal YAP1 was activated in both humans with MAFLD and mice fed an HFD. In in vivo studies, YAP1 knockout in intestinal epithelial cells of mice alleviated the hepatic steatosis induced by an HFD, and mitigated the adverse effects of HFD on the gut‒liver axis, including the upregulation of lipopolysaccharide (LPS) and inflammation levels, enrichment of intestinal Gram-negative bacteria, and inhibition of intestinal stem cell (ISC) differentiation into the goblet and Paneth cells. High-fat feeding (HFF) produced high concentrations of DCA. The consumption of DCA mimics these HFF-induced changes, and is accompanied by the activation of Abelson tyrosine-protein kinase 1 (ABL1) and its direct substrate, YAP1, in the terminal ileum. In vitro studies further confirmed that DCA upregulated the tyrosine phosphorylation of YAP1Y357 in ISC by activating ABL1, which inhibited the differentiation of ISCs into secretory cells. CONCLUSIONS Our findings reveal that the activation of the ABL1‒YAP1 axis in ISCs by DCA contributes to hepatic steatosis through the gut‒liver axis, which may provide a potential intestinal therapeutic target for MAFLD.
Collapse
Affiliation(s)
- Tiancheng Mao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xianjun Xu
- Division of Life Sciences and Medicine, Department of Gastroenterology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Leheng Liu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yulun Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xiaowan Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenlu Niu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Dandan You
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Hui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
11
|
Abedimanesh S, Safaralizadeh R, Jahanafrooz Z, Najafi S, Amini M, Nazarloo SS, Bahojb Mahdavi SZ, Baradaran B, Jebelli A, Mokhtarzadeh AA. Interaction of noncoding RNAs with hippo signaling pathway in cancer cells and cancer stem cells. Noncoding RNA Res 2024; 9:1292-1307. [PMID: 39045083 PMCID: PMC11263728 DOI: 10.1016/j.ncrna.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
The Hippo signaling pathway has a regulatory function in the organogenesis process and cellular homeostasis, switching the cascade reactions of crucial kinases acts to turn off/on the Hippo pathway, altering the downstream gene expression and thereby regulating proliferation, apoptosis, or stemness. Disruption of this pathway can lead to the occurrence of various disorders and different types of cancer. Recent findings highlight the importance of ncRNAs, such as microRNA, circular RNA, and lncRNAs, in modulating the Hippo pathway. Defects in ncRNAs can disrupt Hippo pathway balance, increasing tumor cells, tumorigenesis, and chemotherapeutic resistance. This review summarizes ncRNAs' inhibitory or stimulatory role in - Hippo pathway regulation in cancer and stem cells. Identifying the relation between ncRNAs and the components of this pathway could pave the way for developing new biomarkers in the treatment and diagnosis of cancers.
Collapse
Affiliation(s)
- Saba Abedimanesh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Soltani Nazarloo
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Desingu Rajan AR, Huang Y, Stundl J, Chu K, Irodi A, Yang Z, Applegate BE, Bronner ME. Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2a/b. Dis Model Mech 2024; 17:dmm050862. [PMID: 39415595 PMCID: PMC11646113 DOI: 10.1242/dmm.050862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF-2) is a dominantly inherited genetic disorder that results from variants in the tumor suppressor gene, neurofibromin 2 (NF2). Here, we report the generation of a conditional zebrafish model of neurofibromatosis established by inducible genetic knockout of nf2a/b, the zebrafish homologs of human NF2. Analysis of nf2a and nf2b expression revealed ubiquitous expression of nf2b in the early embryo, with overlapping expression in the neural crest and its derivatives and in the cranial mesenchyme. In contrast, nf2a displayed lower expression levels. Induction of nf2a/b knockout at early stages increased the proliferation of larval Schwann cells and meningeal fibroblasts. Subsequently, in adult zebrafish, nf2a/b knockout triggered the development of a spectrum of tumors, including vestibular Schwannomas, spinal Schwannomas, meningiomas and retinal hamartomas, mirroring the tumor manifestations observed in patients with NF-2. Collectively, these findings highlight the generation of a novel zebrafish model that mimics the complexities of the human NF-2 disorder. Consequently, this model holds significant potential for facilitating therapeutic screening and elucidating key driver genes implicated in NF-2 onset.
Collapse
Affiliation(s)
- Ayyappa Raja Desingu Rajan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuanyun Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925 Vodnany, Czech Republic
| | - Katelyn Chu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anushka Irodi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Zihan Yang
- University of Southern California, Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA 90033, USA
| | - Brian E. Applegate
- University of Southern California, Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA 90033, USA
- University of Southern California, Alfred Mann Department of Biomedical Engineering, Los Angeles, CA 90089, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
13
|
Amanda B, Pragasta R, Cakrasana H, Mustika A, Faizah Z, Oceandy D. The Hippo Signaling Pathway, Reactive Oxygen Species Production, and Oxidative Stress: A Two-Way Traffic Regulation. Cells 2024; 13:1868. [PMID: 39594616 PMCID: PMC11592687 DOI: 10.3390/cells13221868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The Hippo signaling pathway is recognized for its significant role in cell differentiation, proliferation, survival, and tissue regeneration. Recently, the Hippo signaling pathway was also found to be associated with oxidative stress and reactive oxygen species (ROS) regulation, which are important in the regulation of cell survival. Studies indicate a correlation between components of the Hippo signaling pathway, including MST1, YAP, and TAZ, and the generation of ROS. On the other hand, ROS and oxidative stress can activate key components of the Hippo signaling pathway. For example, ROS production activates MST1, which subsequently phosphorylates FOXO3, leading to apoptotic cell death. ROS was also found to regulate YAP, in addition to MST1/2. Oxidative stress and ROS formation can impair lipids, proteins, and DNA, leading to many disorders, including aging, neurodegeneration, atherosclerosis, and diabetes. Consequently, understanding the interplay between the Hippo signaling pathway, ROS, and oxidative stress is crucial for developing future disease management strategies. This paper aimed to review the association between the Hippo signaling pathway, regulation of ROS production, and oxidative stress to provide beneficial information in understanding cell function and pathological processes.
Collapse
Affiliation(s)
- Bella Amanda
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
- Airlangga University Teaching Hospital, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Rangga Pragasta
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
- Faculty of Medicine, Universitas Islam Malang, Malang 65144, Indonesia
| | - Haris Cakrasana
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
| | - Arifa Mustika
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia;
| | - Zakiyatul Faizah
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| |
Collapse
|
14
|
Ferrick KR, Fan Y, Ratnayeke N, Teruel MN, Meyer T. Transient proliferation by reversible YAP and mitogen-control of the cyclin D1/p27 ratio. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617852. [PMID: 39416132 PMCID: PMC11482934 DOI: 10.1101/2024.10.11.617852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hippo-YAP signaling orchestrates epithelial tissue repair and is therefore an attractive target in regenerative medicine. Yet it is unresolved how YAP integrates with mitogen signaling and contact inhibition to control the underlying transient proliferative response. Here we show that reduced contact inhibition, increased mitogen signaling, and YAP-TEAD activation converge on increasing the nuclear cyclin D1/p27 protein ratio during G1 phase, towards a threshold ratio that dictates whether individual cells enter or exit the cell cycle. YAP increases this ratio indirectly, in concert with mitogen signaling, by increasing EGFR and other receptors that signal primarily through ERK. After a delay, contact inhibition suppresses YAP activity which gradually downregulates mitogen signaling and the cyclin D1/p27 ratio. Increasing YAP activity by ablating the suppressor Merlin/NF2 reveals a balancing mechanism in which YAP suppression and contact inhibition of proliferation can be recovered but only at higher local cell density. Thus, critical for tissue repair, robust proliferation responses result from the YAP-induced and receptor-mediated prolonged increase in the cyclin D1/p27 ratio, which is only reversed by delayed suppression of receptor signaling after contact inhibition of YAP.
Collapse
Affiliation(s)
- Katherine R. Ferrick
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, USA
| | - Yilin Fan
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, USA
- Current: Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nalin Ratnayeke
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, USA
- Current: Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary N. Teruel
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Tobias Meyer
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA, USA
- Lead contact
| |
Collapse
|
15
|
Liu J, Luo D, Huang H, Mu R, Yuan J, Jiang M, Lin C, Xiang H, Lin X, Song H, Zhang Y. Hippo cooperates with p53 to regulate lung airway mucous cell metaplasia. Dis Model Mech 2024; 17:dmm052074. [PMID: 39428818 PMCID: PMC11603118 DOI: 10.1242/dmm.052074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024] Open
Abstract
Airway mucous cell metaplasia is a significant feature of many chronic airway diseases, such as chronic obstructive pulmonary disease, cystic fibrosis and asthma. However, the mechanisms underlying this process remain poorly understood. Here, we employed in vivo mouse genetic models to demonstrate that Hippo and p53 (encoded by Trp53) cooperate to modulate the differentiation of club cells into goblet cells. We revealed that ablation of Mst1 (Stk4) and Mst2 (Stk3), encoding the core components of Hippo signaling, significantly reduces mucous metaplasia in the lung airways in a lipopolysaccharide (LPS)-induced lung inflammation murine model while promoting club cell proliferation in a Yap (Yap1)-dependent manner. Additionally, we showed that deleting Mst1/2 is sufficient to suppress p53 deficiency-mediated goblet cell metaplasia. Finally, single-cell RNA-sequencing analysis revealed downregulation of YAP and p53 signaling in goblet cells in human airways. These findings underscore the important role of Hippo and p53 signaling in regulating airway mucous metaplasia.
Collapse
Affiliation(s)
- Jiangying Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haidi Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rongzi Mu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianghong Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Jiang
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, Zhejiang, China
| | - Chuwen Lin
- Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Honggang Xiang
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai 201299, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University Shanghai, Shanghai 200438, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China
- Department of Immunology, DICAT National Biomedical Computation Centre, Vancouver, BC V6B 5A6, Canada
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai 201299, China
| |
Collapse
|
16
|
Han J, Zhang J, Zhang X, Luo W, Liu L, Zhu Y, Liu Q, Zhang XA. Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders. Stem Cell Res Ther 2024; 15:386. [PMID: 39468616 PMCID: PMC11520482 DOI: 10.1186/s13287-024-04011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Hippo pathway is an evolutionarily conservative key pathway that regulates organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. Yes-associated protein 1 (YAP)/ WW domain-containing transcription regulator 1 (TAZ) serves as a pivotal transcription factor within the Hippo signaling pathway, which undergoes negative regulation by the Hippo pathway. The expression of YAP/TAZ affects various biological processes, including differentiation of osteoblasts (OB) and osteoclasts (OC), cartilage homeostasis, skeletal muscle development, regeneration and quality maintenance. At the same time, the dysregulation of the Hippo pathway can concurrently contribute to the development of various musculoskeletal disorders, including bone tumors, osteoporosis (OP), osteoarthritis (OA), intervertebral disc degeneration (IDD), muscular dystrophy, and rhabdomyosarcoma (RMS). Therefore, targeting the Hippo pathway has emerged as a promising therapeutic strategy for the treatment of musculoskeletal disorders. The focus of this review is to elucidate the mechanisms by which the Hippo pathway maintains homeostasis in bone, cartilage, and skeletal muscle, while also providing a comprehensive summary of the pivotal role played by core components of this pathway in musculoskeletal diseases. The efficacy and feasibility of Hippo pathway-related drugs for targeted therapy of musculoskeletal diseases are also discussed in our study. These endeavors offer novel insights into the application of Hippo signaling in musculoskeletal disorders, providing effective therapeutic targets and potential drug candidates for treating such conditions.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang, 110122, China
| | - Wenxin Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Lifei Liu
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Qingfeng Liu
- Department of General Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China.
| |
Collapse
|
17
|
Wang P, Xiang M, Zhu L, Zhang R, Zheng X, Zheng Z, Li K. ALKBH5 Protects Against Hepatic Ischemia-Reperfusion Injury by Regulating YTHDF1-Mediated YAP Expression. Int J Mol Sci 2024; 25:11537. [PMID: 39519091 PMCID: PMC11546256 DOI: 10.3390/ijms252111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Ischemia/reperfusion (I/R) injury with severe cell death is a major complication involved in liver transplantation and resection. The identification of key regulators improving hepatocyte activity may provide potential strategies to clinically resolve I/R-induced injury. N6-methyladenosine (m6A) RNA modification is essential for tissue homeostasis and pathogenesis. However, the potential involvement of m6A in the regulation of hepatocyte activity and liver injury has not been fully explored. In the present study, we found that hepatocyte AlkB homolog H5 (ALKBH5) levels were decreased both in vivo and in vitro I/R models. Hepatocyte-specific ALKBH5 overexpression effectively attenuated I/R-induced liver necrosis and improved cell proliferation in mice. Mechanistically, ALKBH5-mediated m6A demethylation improved the mRNA stability of YTH N6-methyladenosine RNA-binding protein 1 (YTHDF1), thereby increasing its expression, which consequently promoted the translation of Yes-associated protein (YAP). In conclusion, ALKBH5 is a regulator of hepatic I/R injury that improves hepatocyte repair and proliferation by maintaining YTHDF1 stability and YAP content. The ALKBH5-m6A-YTHDF1-YAP axis represents promising therapeutic targets for hepatic I/R injury to improve the prognosis of liver surgery.
Collapse
Affiliation(s)
- Pixiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Mei Xiang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China;
| | - Ling Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Rixin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xiaolin Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Zhi Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Kai Li
- Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| |
Collapse
|
18
|
Zhu R, Liu X, Zhang X, Zhong Z, Qi S, Jin R, Gu Y, Wang Y, Ling C, Chen K, Ye D, Yu FX. Gene therapy for diffuse pleural mesotheliomas in preclinical models by concurrent expression of NF2 and SuperHippo. Cell Rep Med 2024; 5:101763. [PMID: 39368484 PMCID: PMC11513813 DOI: 10.1016/j.xcrm.2024.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Diffuse pleural mesothelioma (DPM) is a lethal cancer with a poor prognosis and limited treatment options. The Hippo signaling pathway genes, such as NF2 and LATS1/2, are frequently mutated in DPM, indicating a tumor suppressor role in the development of DPM. Here, we show that in DPM cell lines lacking NF2 and in mice with a conditional Nf2 knockout, downregulation of WWC proteins, another family of Hippo pathway regulators, accelerates DPM progression. Conversely, the expression of SuperHippo, a WWC-derived minigene, effectively enhances Hippo signaling and suppresses DPM development. Moreover, the adeno-associated virus serotype 6 (AAV6) has been engineered to deliver both NF2 and SuperHippo genes into mesothelial cells, which substantially impedes tumor growth in xenograft and genetic DPM models and prolongs the median survival of mice. These findings serve as a proof of concept for the potential use of gene therapy targeting the Hippo pathway to treat DPM.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xincheng Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xu Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ruxin Jin
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dan Ye
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Hwang D, Baek S, Chang J, Seol T, Ku B, Ha H, Lee H, Cho S, Roh TY, Kim YK, Lim DS. YAP promotes global mRNA translation to fuel oncogenic growth despite starvation. Exp Mol Med 2024; 56:2202-2215. [PMID: 39349825 PMCID: PMC11542038 DOI: 10.1038/s12276-024-01316-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 11/08/2024] Open
Abstract
Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play fundamental roles in stem/progenitor cell expansion during homeostasis, and their dysregulation often leads to tissue overgrowth. Here, we show that YAP activation is sufficient to overcome the restriction of global protein synthesis induced by serum starvation, enabling cells to sustain proliferation and survival despite an unfavorable environment. Mechanistically, YAP/TAZ selectively promoted the mTORC1-dependent translation of mRNAs containing 5' terminal oligopyrimidine (5'TOP) motifs, ultimately increasing the cellular polysome content. Interestingly, DNA damage-inducible transcript 4 (DDIT4), a negative regulator of mTORC1, was upregulated by serum starvation but repressed by YAP/TAZ. DDIT4 was sufficient to suppress the translation and transformative potential of uveal melanoma cells, which are often serum unresponsive due to G protein mutations. Our findings reveal a vital role for protein synthesis as a key modality of YAP/TAZ-induced oncogenic transformation and indicate the potential for targeting mTORC1 or translation to treat YAP/TAZ-driven malignancies.
Collapse
Affiliation(s)
- Daehee Hwang
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonguk Baek
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeeyoon Chang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taejun Seol
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bomin Ku
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hongseok Ha
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyeonji Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Suhyeon Cho
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
20
|
Li Y, Wang X, Yu H, Cao J, Xie J, Zhou J, Feng Z, Chen W. YAP-LAMB3 axis dictates cellular resistance of pancreatic ductal adenocarcinoma cells to gemcitabine. Mol Carcinog 2024; 63:1953-1966. [PMID: 39016677 DOI: 10.1002/mc.23785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with poor prognosis and inadequate response to treatment, such as gemcitabine (Gem), the first-line chemotherapeutic drug. Understanding the molecular determinants that control drug resistance to Gem is critical to predict potentially responsive patients and improve the benefits of Gem therapy. Emerging evidence suggests that certain developmental pathways, such as Hippo signaling, are aberrated and play important roles in Gem resistance in cancers. Although Hippo signaling has been reported to play a role in chemoresistance in cancers, it has not been clarified which specific target gene(s) functionally mediates the effect. In the present study, we found that YAP serves as a potent barrier for the cellular sensitivity of PDAC cells to Gem. We then identified and characterized laminin subunit beta 3 (LAMB3) as a bona fide target of YAP-TEAD4 to amplify YAP signaling via a feedback loop. Such a YAP-LAMB3 axis is critical to induce epithelial-mesenchymal transition and mediate Gem resistance. Taken together, we uncovered that YAP-LAMB3 axis is an important regulator of Gem, thus providing potential therapeutic targets for overcoming Gem resistance in PDAC.
Collapse
Affiliation(s)
- Yecheng Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolong Wang
- Department of General Surgery, Haian People's Hospital, Haian, China
| | - Hongpei Yu
- General Surgery Department, Taizhou Second People's Hospital, Taizhou, China
| | - Jinming Cao
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaming Xie
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhong Zhou
- General Surgery Department, Taizhou Second People's Hospital, Taizhou, China
| | - Zhenyu Feng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Chen
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Awuah WA, Ben-Jaafar A, Karkhanis S, Nkrumah-Boateng PA, Kong JSH, Mannan KM, Shet V, Imran S, Bone M, Boye ANA, Ranganathan S, Shah MH, Abdul-Rahman T, Atallah O. Cancer stem cells in meningiomas: novel insights and therapeutic implications. Clin Transl Oncol 2024:10.1007/s12094-024-03728-6. [PMID: 39316249 DOI: 10.1007/s12094-024-03728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Meningiomas (MGs), which arise from meningothelial cells of the dura mater, represent a significant proportion of primary tumours of the central nervous system (CNS). Despite advances in treatment, the management of malignant meningioma (MMG) remains challenging due to diagnostic, surgical, and resection limitations. Cancer stem cells (CSCs), a subpopulation within tumours capable of self-renewal and differentiation, are highlighted as key markers of tumour growth, metastasis, and treatment resistance. Identifying additional CSC-related markers enhances the precision of malignancy evaluations, enabling advancements in personalised medicine. The review discusses key CSC biomarkers that are associated with high levels of expression, aggressive tumour behaviour, and poor outcomes. Recent molecular research has identified CSC-related biomarkers, including Oct-4, Sox2, NANOG, and CD133, which help maintain cellular renewal, proliferation, and drug resistance in MGs. This study highlights new therapeutic strategies that could improve patient prognosis with more durable tumour regression. The use of combination therapies, such as hydroxyurea alongside diltiazem, suggests more efficient and effective MG management compared to monotherapy. Signalling pathways such as NOTCH and hedgehog also offer additional avenues for therapeutic development. CRISPR/Cas9 technology has also been employed to create meningioma models, uncovering pathways related to cell growth and proliferation. Since the efficacy of traditional therapies is limited in most cases due to resistance mechanisms in CSCs, further studies on the biology of CSCs are warranted to develop therapeutic interventions that are likely to be effective in MG. Consequently, improved diagnostic approaches may lead to personalised treatment plans tailored to the specific needs of each patient.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Vallabh Shet
- University of Connecticut New Britain Program, New Britain, Connecticut, USA
| | - Shahzeb Imran
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Matan Bone
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | | | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
22
|
Shu Y, Jin X, Ji M, Zhang Z, Wang X, Liang H, Lu S, Dong S, Lin Y, Guo Y, Zhuang Q, Wang Y, Lei Z, Guo L, Meng X, Zhou G, Zhang W, Chang L. Ku70 Binding to YAP Alters PARP1 Ubiquitination to Regulate Genome Stability and Tumorigenesis. Cancer Res 2024; 84:2836-2855. [PMID: 38862269 DOI: 10.1158/0008-5472.can-23-4034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/16/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Yes-associated protein (YAP) is a central player in cancer development, with functions extending beyond its recognized role in cell growth regulation. Recent work has identified a link between YAP/transcriptional coactivator with PDZ-binding motif (TAZ) and the DNA damage response. Here, we investigated the mechanistic underpinnings of the cross-talk between DNA damage repair and YAP activity. Ku70, a key component of the nonhomologous end joining pathway to repair DNA damage, engaged in a dynamic competition with TEAD4 for binding to YAP, limiting the transcriptional activity of YAP. Depletion of Ku70 enhanced interaction between YAP and TEAD4 and boosted YAP transcriptional capacity. Consequently, Ku70 loss enhanced tumorigenesis in colon cancer and hepatocellular carcinoma (HCC) in vivo. YAP impeded DNA damage repair and elevated genome instability by inducing PARP1 degradation through the SMURF2-mediated ubiquitin-proteasome pathway. Analysis of samples from patients with HCC substantiated the link between Ku70 expression, YAP activity, PARP1 levels, and genome instability. In conclusion, this research provides insight into the mechanistic interactions between YAP and key regulators of DNA damage repair, highlighting the role of a Ku70-YAP-PARP1 axis in preserving genome stability. Significance: Increased yes-associated protein transcriptional activity stimulated by loss of Ku70 induces PARP1 degradation by upregulating SMURF2 to inhibit DNA damage, driving genome instability and tumorigenesis.
Collapse
Affiliation(s)
- Yinyin Shu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoni Jin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mintao Ji
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhisen Zhang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiuxiu Wang
- Department of Anatomy, Wannan Medical College, Wuhu, China
| | - Haisheng Liang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shuangshuang Lu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shuai Dong
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yiping Lin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuhan Guo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhe Lei
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuanyu Meng
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wensheng Zhang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Davenport A, Kessinger CW, Pfeiffer RD, Shah N, Xu R, Abel ED, Tucker NR, Lin Z. Comparative analysis of two independent Myh6-Cre transgenic mouse lines. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100081. [PMID: 39323506 PMCID: PMC11423776 DOI: 10.1016/j.jmccpl.2024.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 09/27/2024]
Abstract
We have previously shown that the Myh6 promoter drives Cre expression in a subset of male germ line cells in three independent Myh6-Cre mouse lines, including two transgenic lines and one knock-in allele. In this study, we further compared the tissue-specificity of the two Myh6-Cre transgenic mouse lines, MDS Myh6-Cre and AUTR Myh6-Cre, through examining the expression of tdTomato (tdTom) red fluorescence protein in multiple internal organs, including the heart, brain, liver, lung, pancreas and brown adipose tissue. Our results show that MDS Myh6-Cre mainly activates tdTom reporter in the heart, whereas AUTR Myh6-Cre activates tdTom expression significantly in the heart, and in the cells of liver, pancreas and brain. In the heart, similar to MDS Myh6-Cre, AUTR Myh6-Cre activates tdTom in most cardiomyocytes. In the other organs, AUTR Myh6-Cre not only mosaically activates tdTom in some parenchymal cells, such as hepatocytes in the liver and neurons in the brain, but also turns on tdTom in some interstitial cells of unknown identity.
Collapse
Affiliation(s)
- Amanda Davenport
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Chase W. Kessinger
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Ryan D. Pfeiffer
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Nikita Shah
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
- College of Arts and Sciences, SUNY Polytechnic Institute, Utica, NY 13502, United States of America
| | - Richard Xu
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - E. Dale Abel
- Department of Medicine David Geffen School of Medicine and UCLA Health, United States of America
| | - Nathan R. Tucker
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| | - Zhiqiang Lin
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY 13501, United States of America
| |
Collapse
|
24
|
Jeong W, Kwon H, Park SK, Lee IS, Jho EH. Retinoic acid-induced protein 14 links mechanical forces to Hippo signaling. EMBO Rep 2024; 25:4033-4061. [PMID: 39160347 PMCID: PMC11387738 DOI: 10.1038/s44319-024-00228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
Cells sense and respond to various mechanical forces from the extracellular matrix primarily by modulating the actin cytoskeleton. Mechanical forces can be translated into biochemical signals in a process called mechanotransduction. Yes-associated protein (YAP) is an effector of Hippo signaling and a mediator of mechanotransduction, but how mechanical forces regulate Hippo signaling is still an open question. We propose that retinoic acid-induced protein 14 (RAI14) responds to mechanical forces and regulates Hippo signaling. RAI14 positively regulates the activity of YAP. RAI14 interacts with NF2, a key component of the Hippo pathway, and the interaction occurs on filamentous actin. When mechanical forces are kept low in cells, NF2 dissociates from RAI14 and filamentous actin, resulting in increased interactions with LATS1 and activation of the Hippo pathway. Clinical data show that tissue stiffness and expression of RAI14 and YAP are upregulated in tumor tissues and that RAI14 is strongly associated with adverse outcome in patients with gastric cancer. Our data suggest that RAI14 links mechanotransduction with Hippo signaling and mediates Hippo-related biological functions such as cancer progression.
Collapse
Affiliation(s)
- Wonyoung Jeong
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyeryun Kwon
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - In-Seob Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
25
|
Guo P, Li B, Dong W, Zhou H, Wang L, Su T, Carl C, Zheng Y, Hong Y, Deng H, Pan D. PI4P-mediated solid-like Merlin condensates orchestrate Hippo pathway regulation. Science 2024; 385:eadf4478. [PMID: 39116228 DOI: 10.1126/science.adf4478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/11/2023] [Accepted: 06/10/2024] [Indexed: 08/10/2024]
Abstract
Despite recent studies implicating liquid-like biomolecular condensates in diverse cellular processes, many biomolecular condensates exist in a solid-like state, and their function and regulation are less understood. We show that the tumor suppressor Merlin, an upstream regulator of the Hippo pathway, localizes to both cell junctions and medial apical cortex in Drosophila epithelia, with the latter forming solid-like condensates that activate Hippo signaling. Merlin condensation required phosphatidylinositol-4-phosphate (PI4P)-mediated plasma membrane targeting and was antagonistically controlled by Pez and cytoskeletal tension through plasma membrane PI4P regulation. The solid-like material properties of Merlin condensates are essential for physiological function and protect the condensates against external perturbations. Collectively, these findings uncover an essential role for solid-like condensates in normal physiology and reveal regulatory mechanisms for their formation and disassembly.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bing Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Dong
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Huabin Zhou
- Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Wang
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting Su
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christopher Carl
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hua Deng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
26
|
Mondal V, Higgins PJ, Samarakoon R. Emerging Role of Hippo-YAP (Yes-Associated Protein)/TAZ (Transcriptional Coactivator with PDZ-Binding Motif) Pathway Dysregulation in Renal Cell Carcinoma Progression. Cancers (Basel) 2024; 16:2758. [PMID: 39123485 PMCID: PMC11312123 DOI: 10.3390/cancers16152758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Although Hippo-YAP/TAZ pathway involvement has been extensively studied in the development of certain cancers, the involvement of this cascade in kidney cancer progression is not well-established and, therefore, will be the focus of this review. Renal cell carcinoma (RCC), the most prevalent kidney tumor subtype, has a poor prognosis and a high mortality rate. Core Hippo signaling inactivation (e.g., LATS kinases) leads to the nuclear translocation of YAP/TAZ where they bind to co-transcriptional factors such as TEAD promoting transcription of genes which initiates various fibrotic and neoplastic diseases. Loss of expression of LATS1/2 kinase and activation of YAP/TAZ correlates with poor survival in RCC patients. Renal-specific ablation of LATS1 in mice leads to the spontaneous development of several subtypes of RCC in a YAP/TAZ-dependent manner. Genetic and pharmacological inactivation of YAP/TAZ reverses the oncogenic potential in LATS1-deficient mice, highlighting the therapeutic benefit of network targeting in RCC. Here, we explore the unique upstream controls and downstream consequences of the Hippo-YAP/TAZ pathway deregulation in renal cancer. This review critically evaluates the current literature on the role of the Hippo pathway in RCC progression and highlights the recent scientific evidence designating YAP/TAZ as novel therapeutic targets against kidney cancer.
Collapse
Affiliation(s)
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA;
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA;
| |
Collapse
|
27
|
Singh S, Bernal Astrain G, Hincapie AM, Goudreault M, Smith MJ. Complex interplay between RAS GTPases and RASSF effectors regulates subcellular localization of YAP. EMBO Rep 2024; 25:3574-3600. [PMID: 39009833 PMCID: PMC11316025 DOI: 10.1038/s44319-024-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
RAS GTPases bind effectors to convert upstream cues to changes in cellular function. Effectors of classical H/K/NRAS are defined by RBD/RA domains which recognize the GTP-bound conformation of these GTPases, yet the specificity of RBD/RAs for over 160 RAS superfamily proteins remains poorly explored. We have systematically mapped interactions between BRAF and four RASSF effectors, the largest family of RA-containing proteins, with all RAS, RHO and ARF small GTPases. 39 validated complexes reveal plasticity in RASSF binding, while BRAF demonstrates tight specificity for classical H/K/NRAS. Complex between RASSF5 and diverse RAS GTPases at the plasma membrane can activate Hippo signalling and sequester YAP in the cytosol. RASSF8 undergoes liquid-liquid phase separation and resides in YAP-associated membraneless condensates, which also engage several RAS and RHO GTPases. The poorly studied RASSF3 has been identified as a first potential effector of mitochondrial MIRO proteins, and its co-expression with these GTPases impacts mitochondria and peroxisome distribution. These data reveal the complex nature of GTPase-effector interactions and show their systematic elucidation can reveal completely novel and biologically relevant cellular processes.
Collapse
Affiliation(s)
- Swati Singh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Gabriela Bernal Astrain
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Ana Maria Hincapie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Marilyn Goudreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
28
|
Phillips JE, Zheng Y, Pan D. Assembling a Hippo: the evolutionary emergence of an animal developmental signaling pathway. Trends Biochem Sci 2024; 49:681-692. [PMID: 38729842 PMCID: PMC11316659 DOI: 10.1016/j.tibs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Decades of work in developmental genetics has given us a deep mechanistic understanding of the fundamental signaling pathways underlying animal development. However, little is known about how these pathways emerged and changed over evolutionary time. Here, we review our current understanding of the evolutionary emergence of the Hippo pathway, a conserved signaling pathway that regulates tissue size in animals. This pathway has deep evolutionary roots, emerging piece by piece in the unicellular ancestors of animals, with a complete core pathway predating the origin of animals. Recent functional studies in close unicellular relatives of animals and early-branching animals suggest an ancestral function of the Hippo pathway in cytoskeletal regulation, which was subsequently co-opted to regulate proliferation and animal tissue size.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
29
|
Kum Özşengezer S, Altun ZS, Sanlav G, Baran B, Kızmazoğlu D, Aktaş S, Keskinoğlu P, Olgun N. Investigation of YAP-1, OTX-2, and nestin protein expressions in neuroblastoma: a preliminary study. Ann Clin Transl Neurol 2024; 11:2153-2165. [PMID: 38925618 PMCID: PMC11330229 DOI: 10.1002/acn3.52136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVES Neuroblastoma is the most common extracranial solid tumor in childhood. YAP (Yes-associated protein) is a highly expressed protein in NB. Nestin is an important marker of neuronal differentiation in NB. Orthodenticle homeobox (OTX) is a transcription factor and is overexpressed in blastoma-derived tumors. The aim of this study was to examine the potential roles of YAP-1, Nestin, and OTX-2 proteins in prognosis and risk stratification in neuroblastoma METHODS: Tumor sections of 56 patients with different NB risk groups were analyzed. YAP-1, Nestin, and OTX-2 protein expression levels were evaluated by immunohistochemical staining in NB patient tissue samples. RESULTS YAP-1, Nestin, and OTX-2 protein expression levels were evaluated together with the clinical findings of NB patients. YAP-1 was expressed in 18% of all tissues, while Nestin was expressed in 20.4%. OTX-2 protein expression was found in 41.1% of the NB patients. YAP-1 was expressed in 26.9% of high-risk and 11.5% of low-risk patients. Nestin was expressed in 24.4% high-risk and 33.3% low-risk patients. OTX-2 was expressed in 68.2% high-risk and 60% low-risk patients.YAP-1 was shown to provide survival advantages among risk groups. INTERPRETATION The findings of this study support that YAP-1 may be a potential prognostic biomarker for staging and risk-group assignment of NB patients. YAP-1 expression in neuroblastoma is associated with significantly poorer survival probabilities and should be considered as a potential therapeutic target. OTX-2 is a promising predictive biomarker candidate, but its mechanisms need further investigation in neuroblastoma, as nestin expression is not significantly linked to patient survival.
Collapse
Affiliation(s)
- Selen Kum Özşengezer
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Zekiye Sultan Altun
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Gamze Sanlav
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Burçin Baran
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Deniz Kızmazoğlu
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| | - Safiye Aktaş
- Department of Basic OncologyOncology Institute, Dokuz Eylül UniversityIzmirTurkey
| | - Pembe Keskinoğlu
- Department of Basic Medical Sciences, Department of Biostatistics and Medical InformaticsFaculty of Medicine, Dokuz Eylül UniversityIzmirTurkey
| | - Nur Olgun
- Department of Clinical OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
- Department of Pediatric OncologyInstitute of Oncology, Dokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
30
|
Graham K, Lienau P, Bader B, Prechtl S, Naujoks J, Lesche R, Weiske J, Kuehnlenz J, Brzezinka K, Potze L, Zanconato F, Nicke B, Montebaur A, Bone W, Golfier S, Kaulfuss S, Kopitz C, Pilari S, Steuber H, Hayat S, Kamburov A, Steffen A, Schlicker A, Buchgraber P, Braeuer N, Font NA, Heinrich T, Kuhnke L, Nowak-Reppel K, Stresemann C, Steigemann P, Walter AO, Blotta S, Ocker M, Lakner A, von Nussbaum F, Mumberg D, Eis K, Piccolo S, Lange M. Discovery of YAP1/TAZ pathway inhibitors through phenotypic screening with potent anti-tumor activity via blockade of Rho-GTPase signaling. Cell Chem Biol 2024; 31:1247-1263.e16. [PMID: 38537632 DOI: 10.1016/j.chembiol.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 07/21/2024]
Abstract
This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay. Target deconvolution studies identified the geranylgeranyltransferase-I (GGTase-I) complex as the direct target of YAP1/TAZ pathway inhibitors. The small molecule inhibitors block the activation of Rho-GTPases, leading to subsequent inactivation of YAP1/TAZ and inhibition of cancer cell proliferation in vitro. Multi-parameter optimization resulted in BAY-593, an in vivo probe with favorable PK properties, which demonstrated anti-tumor activity and blockade of YAP1/TAZ signaling in vivo.
Collapse
Affiliation(s)
- Keith Graham
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Philip Lienau
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Benjamin Bader
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefan Prechtl
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Jan Naujoks
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Joerg Weiske
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Julia Kuehnlenz
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Krzysztof Brzezinka
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Lisette Potze
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Francesca Zanconato
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Barbara Nicke
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Anna Montebaur
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Wilhelm Bone
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sven Golfier
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefan Kaulfuss
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Charlotte Kopitz
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sabine Pilari
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Holger Steuber
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sikander Hayat
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Atanas Kamburov
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Andreas Schlicker
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Philipp Buchgraber
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Nico Braeuer
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Nuria Aiguabella Font
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Tobias Heinrich
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Lara Kuhnke
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Katrin Nowak-Reppel
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Carlo Stresemann
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Patrick Steigemann
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Annette O Walter
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Simona Blotta
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Matthias Ocker
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Ashley Lakner
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Knut Eis
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy; IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Martin Lange
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
31
|
Vlashi R, Sun F, Zheng C, Zhang X, Liu J, Chen G. The molecular biology of NF2/Merlin on tumorigenesis and development. FASEB J 2024; 38:e23809. [PMID: 38967126 DOI: 10.1096/fj.202400019rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The neurofibromatosis type 2 (NF2) gene, known for encoding the tumor suppressor protein Merlin, is central to the study of tumorigenesis and associated cellular processes. This review comprehensively examines the multifaceted role of NF2/Merlin, detailing its structural characteristics, functional diversity, and involvement in various signaling pathways such as Wnt/β-catenin, Hippo, TGF-β, RTKs, mTOR, Notch, and Hedgehog. These pathways are crucial for cellular growth, proliferation, and differentiation. NF2 mutations are specifically linked to the development of schwannomas, meningiomas, and ependymomas, although the precise mechanisms of tumor formation in these specific cell types remain unclear. Additionally, the review explores Merlin's role in embryogenesis, highlighting the severe developmental defects and embryonic lethality caused by NF2 deficiency. The potential therapeutic strategies targeting these genetic aberrations are also discussed, emphasizing inhibitors of mTOR, HDAC, and VEGF as promising avenues for treatment. This synthesis of current knowledge underscores the necessity for ongoing research to elucidate the detailed mechanisms of NF2/Merlin and develop effective therapeutic strategies, ultimately aiming to improve the prognosis and quality of life for individuals with NF2 mutations.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenggong Zheng
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jie Liu
- Department of Cancer Center, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
32
|
Li RG, Martin JF. Legend of MERLIN and the Quest for Cardiac Lineage Commitment. Circulation 2024; 149:1980-1981. [PMID: 38885302 PMCID: PMC11185273 DOI: 10.1161/circulationaha.123.065901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Affiliation(s)
- Rich Gang Li
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, 77030
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, 77030
| | - James F. Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, 77030
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, 77030
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Center for Organ Repair and Renewal, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| |
Collapse
|
33
|
Zhang Y, Yang J, Fan S, Gao Y, Cai C, Li H, Li X, Yang X, Xing Y, Huang M, Bi H. The reversal of PXR or PPARα activation-induced hepatomegaly. Toxicol Lett 2024; 397:79-88. [PMID: 38734220 DOI: 10.1016/j.toxlet.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.
Collapse
Affiliation(s)
- Yifei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yue Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chenghui Cai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huilin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518005, China
| | - Yunhui Xing
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518005, China.
| |
Collapse
|
34
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
35
|
Parrish AG, Arora S, Thirimanne HN, Rudoy D, Schmid S, Sievers P, Sahm F, Holland EC, Szulzewsky F. Aggressive high-grade NF2 mutant meningiomas downregulate oncogenic YAP signaling via the upregulation of VGLL4 and FAT3/4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596719. [PMID: 38854109 PMCID: PMC11160807 DOI: 10.1101/2024.05.30.596719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Meningiomas are the most common primary brain tumors in adults. Although generally benign, a subset of meningiomas is of higher grade, shows aggressive growth behavior and recurs even after multiple surgeries. Around half of all meningiomas harbor inactivating mutations in NF2. While benign low-grade NF2 mutant meningiomas exhibit few genetic events in addition to NF2 inactivation, aggressive high-grade NF2 mutant meningiomas frequently harbor a highly aberrant genome. We and others have previously shown that NF2 inactivation leads to YAP1 activation and that YAP1 acts as the pivotal oncogenic driver in benign NF2 mutant meningiomas. Using bulk and single-cell RNA-Seq data from a large cohort of human meningiomas, we show that aggressive NF2 mutant meningiomas harbor decreased levels YAP1 activity compared to their benign counterparts. Decreased expression levels of YAP target genes are significantly associated with an increased risk of recurrence. We then identify the increased expression of the YAP1 competitor VGLL4 as well as the YAP1 upstream regulators FAT3/4 as a potential mechanism for the downregulation of YAP activity in aggressive NF2 mutant meningiomas. High expression of these genes is significantly associated with an increased risk of recurrence. In vitro, overexpression of VGLL4 resulted in the downregulation of YAP activity in benign NF2 mutant meningioma cells, confirming the direct link between VGLL4 expression and decreased levels of YAP activity observed in aggressive NF2 mutant meningiomas. Our results shed new insight on the biology of benign and aggressive NF2 mutant meningiomas and may have important implications for the efficacy of therapies targeting oncogenic YAP1 activity in NF2 mutant meningiomas.
Collapse
Affiliation(s)
- Abigail G Parrish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Dmytro Rudoy
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sebastian Schmid
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
36
|
Fan Q, Hadla M, Peterson Z, Nelson G, Ye H, Wang X, Mardirossian JM, Harris PC, Alper SL, Prakash YS, Beyder A, Torres VE, Chebib FT. Activation of Piezo1 Inhibits Kidney Cystogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593717. [PMID: 38766249 PMCID: PMC11101129 DOI: 10.1101/2024.05.11.593717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The disruption of calcium signaling associated with polycystin deficiency has been proposed as the primary event underlying the increased abnormally patterned epithelial cell growth characteristic of Polycystic Kidney Disease. Calcium can be regulated through mechanotransduction, and the mechanosensitive cation channel Piezo1 has been implicated in sensing of intrarenal pressure and in urinary osmoregulation. However, a possible role for PIEZO1 in kidney cystogenesis remains undefined. We hypothesized that cystogenesis in ADPKD reflects altered mechanotransduction, suggesting activation of mechanosensitive cation channels as a therapeutic strategy for ADPKD. Here, we show that Yoda-1 activation of PIEZO1 increases intracellular Ca 2+ and reduces forskolin-induced cAMP levels in mIMCD3 cells. Yoda-1 reduced forskolin-induced IMCD cyst surface area in vitro and in mouse metanephros ex vivo in a dose-dependent manner. Knockout of polycystin-2 dampened the efficacy of PIEZO1 activation in reducing both cAMP levels and cyst surface area in IMCD3 cells. However, collecting duct-specific Piezo1 knockout neither induced cystogenesis in wild-type mice nor affected cystogenesis in the Pkd1 RC/RC model of ADPKD. Our study suggests that polycystin-2 and PIEZO1 play a role in mechanotransduction during cystogenesis in vitro , and ex vivo , but that in vivo cyst expansion may require inactivation or repression of additional suppressors of cystogenesis and/or growth. Our study provides a preliminary proof of concept for PIEZO1 activation as a possible component of combination chemotherapy to retard or halt cystogenesis and/or cyst growth.
Collapse
|
37
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
38
|
Rajan ARD, Huang Y, Stundl J, Chu K, Irodi A, Yang Z, Applegate BE, Bronner ME. Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590787. [PMID: 38712289 PMCID: PMC11071375 DOI: 10.1101/2024.04.23.590787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Neurofibromatosis Type 2 (NF-2) is a dominantly inherited genetic disorder that results from mutations in the tumor suppressor gene, neurofibromin 2 (NF2) gene. Here, we report the generation of a conditional zebrafish model of neurofibromatosis established by an inducible genetic knockout of nf2a/b, the zebrafish homolog of human NF2. Analysis of nf2a and nf2b expression reveals ubiquitous expression of nf2b in the early embryo, with overlapping expression in the neural crest and its derivatives and in the cranial mesenchyme. In contrast, nf2a displays lower expression levels. Induction of nf2a/b knockout at early stages increases the proliferation of larval Schwann cells and meningeal fibroblasts. Subsequently, in adult zebrafish, nf2a/b knockout triggers the development of a spectrum of tumors, including vestibular schwannomas, spinal schwannomas, meningiomas, and retinal hamartomas, mirroring the tumor manifestations observed in patients with NF-2. Collectively, these findings highlight the generation of a novel zebrafish model that mimics the complexities of the human NF-2 disorder. Consequently, this model holds significant potential for facilitating therapeutic screening and elucidating key driver genes implicated in NF-2 onset.
Collapse
Affiliation(s)
| | - Yuanyun Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Katelyn Chu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anushka Irodi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital NHS Foundation Trust, Cambridge, UK
| | - Zihan Yang
- University of Southern California, Caruso Department of Otolaryngology-Head & Neck Surgery, Los Angeles, CA, USA
| | - Brian E. Applegate
- University of Southern California, Caruso Department of Otolaryngology-Head & Neck Surgery, Los Angeles, CA, USA
- University of Southern California, Alfred Mann Department of Biomedical Engineering, Los Angeles, CA, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
39
|
Ma W, Zhang J, Chen W, Liu N, Wu T. The histone lysine acetyltransferase KAT2B inhibits cholangiocarcinoma growth: evidence for interaction with SP1 to regulate NF2-YAP signaling. J Exp Clin Cancer Res 2024; 43:117. [PMID: 38641672 PMCID: PMC11027350 DOI: 10.1186/s13046-024-03036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with poor prognosis. Further mechanistic insights into the molecular mechanisms of CCA are needed to develop more effective target therapy. METHODS The expression of the histone lysine acetyltransferase KAT2B in human CCA was analyzed in human CCA tissues. CCA xenograft was developed by inoculation of human CCA cells with or without KAT2B overexpression into SCID mice. Western blotting, ChIP-qPCR, qRT-PCR, protein immunoprecipitation, GST pull-down and RNA-seq were performed to delineate KAT2B mechanisms of action in CCA. RESULTS We identified KAT2B as a frequently downregulated histone acetyltransferase in human CCA. Downregulation of KAT2B was significantly associated with CCA disease progression and poor prognosis of CCA patients. The reduction of KAT2B expression in human CCA was attributed to gene copy number loss. In experimental systems, we demonstrated that overexpression of KAT2B suppressed CCA cell proliferation and colony formation in vitro and inhibits CCA growth in mice. Mechanistically, forced overexpression of KAT2B enhanced the expression of the tumor suppressor gene NF2, which is independent of its histone acetyltransferase activity. We showed that KAT2B was recruited to the promoter region of the NF2 gene via interaction with the transcription factor SP1, which led to enhanced transcription of the NF2 gene. KAT2B-induced NF2 resulted in subsequent inhibition of YAP activity, as reflected by reduced nuclear accumulation of oncogenic YAP and inhibition of YAP downstream genes. Depletion of NF2 was able to reverse KAT2B-induced reduction of nuclear YAP and subvert KAT2B-induced inhibition of CCA cell growth. CONCLUSIONS This study provides the first evidence for an important tumor inhibitory effect of KAT2B in CCA through regulation of NF2-YAP signaling and suggests that this signaling cascade may be therapeutically targeted for CCA treatment.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Nianli Liu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-79, New Orleans, LA, 70112, USA.
| |
Collapse
|
40
|
Nita A, Moroishi T. Hippo pathway in cell-cell communication: emerging roles in development and regeneration. Inflamm Regen 2024; 44:18. [PMID: 38566194 PMCID: PMC10986044 DOI: 10.1186/s41232-024-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway is a central regulator of tissue growth that has been widely studied in mammalian organ development, regeneration, and cancer biology. Although previous studies have convincingly revealed its cell-autonomous functions in controlling cell fate, such as cell proliferation, survival, and differentiation, accumulating evidence in recent years has revealed its non-cell-autonomous functions. This pathway regulates cell-cell communication through direct interactions, soluble factors, extracellular vesicles, and the extracellular matrix, providing a range of options for controlling diverse biological processes. Consequently, the Hippo pathway not only dictates the fate of individual cells but also triggers multicellular responses involving both tissue-resident cells and infiltrating immune cells. Here, we have highlighted the recent understanding of the molecular mechanisms by which the Hippo pathway controls cell-cell communication and discuss its importance in tissue homeostasis, especially in development and regeneration.
Collapse
Affiliation(s)
- Akihiro Nita
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
41
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
42
|
Jin R, Forbes CM, Miller NL, Lafin J, Strand DW, Case T, Cates JM, Liu Q, Ramirez-Solano M, Mohler JL, Matusik RJ. Transcriptomic analysis of benign prostatic hyperplasia identifies critical pathways in prostatic overgrowth and 5-alpha reductase inhibitor resistance. Prostate 2024; 84:441-459. [PMID: 38168866 DOI: 10.1002/pros.24661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The medical therapy of prostatic symptoms (MTOPS) trial randomized men with symptoms of benign prostatic hyperplasia (BPH) and followed response of treatment with a 5α-reductase inhibitor (5ARI), an alpha-adrenergic receptor antagonist (α-blocker), the combination of 5ARI and α-blocker or no medical therapy (none). Medical therapy reduced risk of clinical progression by 66% but the reasons for nonresponse or loss of therapeutic response in some patients remains unresolved. Our previous work showed that prostatic glucocorticoid levels are increased in 5ARI-treated patients and that glucocorticoids can increased branching of prostate epithelia in vitro. To understand the transcriptomic changes associated with 5ARI treatment, we performed bulk RNA sequencing of BPH and control samples from patients who received 5ARI versus those that did not. Deconvolution analysis was performed to estimate cellular composition. Bulk RNA sequencing was also performed on control versus glucocorticoid-treated prostate epithelia in 3D culture to determine underlying transcriptomic changes associated with branching morphogenesis. METHOD Surgical BPH (S-BPH) tissue was defined as benign prostatic tissue collected from the transition zone (TZ) of patients who failed medical therapy while control tissue termed Incidental BPH (I-BPH) was obtained from the TZ of men undergoing radical prostatectomy for low-volume/grade prostatic adenocarcinoma confined to the peripheral zone. S-BPH patients were divided into four subgroups: men on no medical therapy (none: n = 7), α-blocker alone (n = 10), 5ARI alone (n = 6) or combination therapy (α-blocker and 5ARI: n = 7). Control I-BPH tissue was from men on no medical therapy (none: n = 8) or on α-blocker (n = 6). A human prostatic cell line in 3D culture that buds and branches was used to identify genes involved in early prostatic growth. Snap-frozen prostatic tissue taken at the time of surgery and 3D organoids were used for RNA-seq analysis. Bulk RNAseq data were deconvoluted using CIBERSORTx. Differentially expressed genes (DEG) that were statistically significant among S-BPH, I-BPH, and during budding and branching of organoids were used for pathway analysis. RESULTS Transcriptomic analysis between S-BPH (n = 30) and I-BPH (n = 14) using a twofold cutoff (p < 0.05) identified 377 DEG (termed BPH377) and a cutoff < 0.05 identified 3377 DEG (termed BPH3377). Within the S-BPH, the subgroups none and α-blocker were compared to patients on 5ARI to reveal 361 DEG (termed 5ARI361) that were significantly changed. Deconvolution analysis of bulk RNA seq data with a human prostate single cell data set demonstrated increased levels of mast cells, NK cells, interstitial fibroblasts, and prostate luminal cells in S-BPH versus I-BPH. Glucocorticoid (GC)-induced budding and branching of benign prostatic cells in 3D culture was compared to control organoids to identify early events in prostatic morphogenesis. GC induced 369 DEG (termed GC359) in 3D culture. STRING analysis divided the large datasets into 20-80 genes centered around a hub. In general, biological processes induced in BPH supported growth and differentiation such as chromatin modification and DNA repair, transcription, cytoskeleton, mitochondrial electron transport, ubiquitination, protein folding, and cholesterol synthesis. Identified signaling pathways were pooled to create a list of DEG that fell into seven hubs/clusters. The hub gene centrality was used to name the network including AP-1, interleukin (IL)-6, NOTCH1 and NOTCH3, NEO1, IL-13, and HDAC/KDM. All hubs showed connections to inflammation, chromatin structure, and development. The same approach was applied to 5ARI361 giving multiple networks, but the EGF and sonic hedgehog (SHH) hub was of particular interest as a developmental pathway. The BPH3377, 5ARI363, and GC359 lists were compared and 67 significantly changed DEG were identified. Common genes to the 3D culture included an IL-6 hub that connected to genes identified in BPH hubs that defined AP1, IL-6, NOTCH, NEO1, IL-13, and HDAC/KDM. CONCLUSIONS Reduction analysis of BPH and 3D organoid culture uncovered networks previously identified in prostatic development as being reinitiated in BPH. Identification of these pathways provides insight into the failure of medical therapy for BPH and new therapeutic targets for BPH/LUTS.
Collapse
Affiliation(s)
- Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor M Forbes
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Urology Department, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicole L Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John Lafin
- Department of Urology, University of Texas, Southwestern, Dallas, Texas, USA
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Douglas W Strand
- Department of Urology, University of Texas, Southwestern, Dallas, Texas, USA
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin M Cates
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marisol Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
43
|
Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep 2024; 43:113926. [PMID: 38457338 DOI: 10.1016/j.celrep.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.
Collapse
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
44
|
Szulzewsky F, Thirimanne HN, Holland EC. Meningioma: current updates on genetics, classification, and mouse modeling. Ups J Med Sci 2024; 129:10579. [PMID: 38571886 PMCID: PMC10989216 DOI: 10.48101/ujms.v129.10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 04/05/2024] Open
Abstract
Meningiomas, the most common primary brain tumors in adults, are often benign and curable by surgical resection. However, a subset is of higher grade, shows aggressive growth behavior as well as brain invasion, and often recurs even after several rounds of surgery. Increasing evidence suggests that tumor classification and grading primarily based on histopathology do not always accurately predict tumor aggressiveness and recurrence behavior. The underlying biology of aggressive treatment-resistant meningiomas and the impact of specific genetic aberrations present in these high-grade tumors is still only insufficiently understood. Therefore, an in-depth research into the biology of this tumor type is warranted. More recent studies based on large-scale molecular data such as whole exome/genome sequencing, DNA methylation sequencing, and RNA sequencing have provided new insights into the biology of meningiomas and have revealed new risk factors and prognostic subtypes. The most common genetic aberration in meningiomas is functional loss of NF2 and occurs in both low- and high-grade meningiomas, whereas NF2-wildtype meningiomas are enriched for recurrent mutations in TRAF7, KLF4, AKT1, PI3KCA, and SMO and are more frequently benign. Most meningioma mouse models are based on patient-derived xenografts and only recently have new genetically engineered mouse models of meningioma been developed that will aid in the systematic evaluation of specific mutations found in meningioma and their impact on tumor behavior. In this article, we review recent advances in the understanding of meningioma biology and classification and highlight the most common genetic mutations, as well as discuss new genetically engineered mouse models of meningioma.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
45
|
Ghomlaghi M, Theocharous M, Hoang N, Shin SY, von Kriegsheim A, O’ Neill E, Zhang T, Nguyen LK. Integrative modeling and analysis of signaling crosstalk reveal molecular switches coordinating Yes-associated protein transcriptional activities. iScience 2024; 27:109031. [PMID: 38380257 PMCID: PMC10877689 DOI: 10.1016/j.isci.2024.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
The transcriptional co-activator YAP forms complexes with distinct transcription factors, controlling cell fate decisions, such as proliferation and apoptosis. However, the mechanisms underlying its context-dependent function are poorly defined. This study explores the interplay between the TGF-β and Hippo pathways and their influence on YAP's association with specific transcription factors. By integrating iterative mathematical modeling with experimental validation, we uncover molecular switches, predominantly controlled by RASSF1A and ITCH, which dictate the formation of YAP-SMAD (proliferative) and YAP-p73 (apoptotic) complexes. Our results show that RASSF1A enhances the formation of apoptotic complexes, whereas ITCH promotes the formation of proliferative complexes. Notably, higher levels of ITCH transform YAP-SMAD activity from a transient to a sustained state, impacting cellular behaviors. Extending these findings to various breast cancer cell lines highlights the role of cellular context in YAP regulation. Our study provides new insights into the mechanisms of YAP transcriptional activities and their therapeutic implications.
Collapse
Affiliation(s)
- Milad Ghomlaghi
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Mandy Theocharous
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Nhan Hoang
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Eric O’ Neill
- CRUK/MRC Institute for Radiation Oncology and Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lan K. Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
46
|
Li MY, Yang XL, Chung CC, Lai YJ, Tsai JC, Kuo YL, Yu JY, Wang TW. TRIP6 promotes neural stem cell maintenance through YAP-mediated Sonic Hedgehog activation. FASEB J 2024; 38:e23501. [PMID: 38411462 DOI: 10.1096/fj.202301805rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
In the adult mammalian brain, new neurons are continuously generated from neural stem cells (NSCs) in the subventricular zone (SVZ)-olfactory bulb (OB) pathway. YAP, a transcriptional co-activator of the Hippo pathway, promotes cell proliferation and inhibits differentiation in embryonic neural progenitors. However, the role of YAP in postnatal NSCs remains unclear. Here, we showed that YAP was present in NSCs of the postnatal mouse SVZ. Forced expression of Yap promoted NSC maintenance and inhibited differentiation, whereas depletion of Yap by RNA interference or conditional knockout led to the decline of NSC maintenance, premature neuronal differentiation, and collapse of neurogenesis. For the molecular mechanism, thyroid hormone receptor-interacting protein 6 (TRIP6) recruited protein phosphatase PP1A to dephosphorylate LATS1/2, therefore inducing YAP nuclear localization and activation. Moreover, TRIP6 promoted NSC maintenance, cell proliferation, and inhibited differentiation through YAP. In addition, YAP regulated the expression of the Sonic Hedgehog (SHH) pathway effector Gli2 and Gli1/2 mediated the effect of YAP on NSC maintenance. Together, our findings demonstrate a novel TRIP6-YAP-SHH axis, which is critical for regulating postnatal neurogenesis in the SVZ-OB pathway.
Collapse
Affiliation(s)
- Ming-Yang Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Xiu-Li Yang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Chi Chung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yun-Ju Lai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jui-Cheng Tsai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Lin Kuo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jenn-Yah Yu
- Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsu-Wei Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
47
|
Jiang Y, Huang H, Liu J, Luo D, Mu R, Yuan J, Lin J, Chen Q, Tao W, Yang L, Zhang M, Zhang P, Fang F, Xu J, Gong Q, Xie Z, Zhang Y. Hippo cooperates with p53 to maintain foregut homeostasis and suppress the malignant transformation of foregut basal progenitor cells. Proc Natl Acad Sci U S A 2024; 121:e2320559121. [PMID: 38408237 PMCID: PMC10927585 DOI: 10.1073/pnas.2320559121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Basal progenitor cells serve as a stem cell pool to maintain the homeostasis of the epithelium of the foregut, including the esophagus and the forestomach. Aberrant genetic regulation in these cells can lead to carcinogenesis, such as squamous cell carcinoma (SCC). However, the underlying molecular mechanisms regulating the function of basal progenitor cells remain largely unknown. Here, we use mouse models to reveal that Hippo signaling is required for maintaining the homeostasis of the foregut epithelium and cooperates with p53 to repress the initiation of foregut SCC. Deletion of Mst1/2 in mice leads to epithelial overgrowth in both the esophagus and forestomach. Further molecular studies find that Mst1/2-deficiency promotes epithelial growth by enhancing basal cell proliferation in a Yes-associated protein (Yap)-dependent manner. Moreover, Mst1/2 deficiency accelerates the onset of foregut SCC in a carcinogen-induced foregut SCC mouse model, depending on Yap. Significantly, a combined deletion of Mst1/2 and p53 in basal progenitor cells sufficiently drives the initiation of foregut SCC. Therefore, our studies shed light on the collaborative role of Hippo signaling and p53 in maintaining squamous epithelial homeostasis while suppressing malignant transformation of basal stem cells within the foregut.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Haidi Huang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiangying Liu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Dan Luo
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Rongzi Mu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jianghong Yuan
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
| | - Qiyue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou350001, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai200433, China
| | - Ling Yang
- Clinical Medical Research Center of The Affiliated Hospital and Inner Mongolia Key Laboratory of Medical Cellular Biology, Inner Mongolia Medical University, Hohhot010050, China
| | - Man Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou510120, China
| | - Pingping Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Fengqin Fang
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200336, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
48
|
Liu K, Wehling L, Wan S, Weiler SME, Tóth M, Ibberson D, Marhenke S, Ali A, Lam M, Guo T, Pinna F, Pedrini F, Damle-Vartak A, Dropmann A, Rose F, Colucci S, Cheng W, Bissinger M, Schmitt J, Birner P, Poth T, Angel P, Dooley S, Muckenthaler MU, Longerich T, Vogel A, Heikenwälder M, Schirmacher P, Breuhahn K. Dynamic YAP expression in the non-parenchymal liver cell compartment controls heterologous cell communication. Cell Mol Life Sci 2024; 81:115. [PMID: 38436764 PMCID: PMC10912141 DOI: 10.1007/s00018-024-05126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
INTRODUCTION The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.
Collapse
Affiliation(s)
- Kaijing Liu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangdong, China
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Lilija Wehling
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Department of Modeling of Biological Processes, COS Heidelberg/BioQuant, Heidelberg University, Heidelberg, Germany
| | - Shan Wan
- Department of Pathology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Macrina Lam
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Te Guo
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Pinna
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Fabiola Pedrini
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Amruta Damle-Vartak
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Anne Dropmann
- Department of Medicine II, Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Silvia Colucci
- Department of Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wenxiang Cheng
- Translational Medicine R&D Center, Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Jennifer Schmitt
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Patrizia Birner
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Tanja Poth
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.
| |
Collapse
|
49
|
Li M, Zhang FJ, Bai RJ. The Hippo-YAP Signaling Pathway in Osteoarthritis and Rheumatoid Arthritis. J Inflamm Res 2024; 17:1105-1120. [PMID: 38406325 PMCID: PMC10891274 DOI: 10.2147/jir.s444758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Arthritis is the most prevalent joint disease and is characterized by articular cartilage degradation, synovial inflammation, and changes in periarticular and subchondral bone. Recent studies have reported that Yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) have significant effects on the proliferation, migration, and survival of chondrocytes and fibroblast-like synovial cells (FLSs). YAP/TAZ signaling pathway, as well as the related Hippo-YAP signaling pathway, are responsible for the condition of cells and articular cartilage in joints. They are tightly regulated to maintain metabolism in chondrocytes and FLSs because abnormal expression may result in cartilage damage. However, the roles and mechanisms of the Hippo-YAP pathway in arthritis remain largely unknown. This review summarizes the roles and key functions of YAP/TAZ and the Hippo-YAP signaling pathway in FLSs and chondrocytes for the induction of proliferation, migration, survival, and differentiation in rheumatoid arthritis (RA) and osteoarthritis (OA) research. We also discuss the therapeutic strategies involving YAP/TAZ and the related Hippo-YAP signaling pathway involved in OA.
Collapse
Affiliation(s)
- Min Li
- Department of Orthopaedics, Wuxi Ninth People’s Hospital, Soochow University, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Fang-Jie Zhang
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, People’s Republic of China
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Rui-Jun Bai
- Department of Orthopaedics, Wuxi Ninth People’s Hospital, Soochow University, Wuxi, Jiangsu, 214000, People’s Republic of China
| |
Collapse
|
50
|
Ortega-Prieto P, Parlati L, Benhamed F, Regnier M, Cavalcante I, Montabord M, Onifarasoaniaina R, Favier M, Pavlovic N, Magusto J, Cauzac M, Pagesy P, Gautheron J, Desdouets C, Guilmeau S, Issad T, Postic C. O-GlcNAc transferase acts as a critical nutritional node for the control of liver homeostasis. JHEP Rep 2024; 6:100878. [PMID: 38298740 PMCID: PMC10827605 DOI: 10.1016/j.jhepr.2023.100878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 02/02/2024] Open
Abstract
Background & Aims O-GlcNAcylation is a reversible post-translational modification controlled by the activity of two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). In the liver, O-GlcNAcylation has emerged as an important regulatory mechanism underlying normal liver physiology and metabolic disease. Methods To address whether OGT acts as a critical hepatic nutritional node, mice with a constitutive hepatocyte-specific deletion of OGT (OGTLKO) were generated and challenged with different carbohydrate- and lipid-containing diets. Results Analyses of 4-week-old OGTLKO mice revealed significant oxidative and endoplasmic reticulum stress, and DNA damage, together with inflammation and fibrosis, in the liver. Susceptibility to oxidative and endoplasmic reticulum stress-induced apoptosis was also elevated in OGTLKO hepatocytes. Although OGT expression was partially recovered in the liver of 8-week-old OGTLKO mice, hepatic injury and fibrosis were not rescued but rather worsened with time. Interestingly, weaning of OGTLKO mice on a ketogenic diet (low carbohydrate, high fat) fully prevented the hepatic alterations induced by OGT deletion, indicating that reduced carbohydrate intake protects an OGT-deficient liver. Conclusions These findings pinpoint OGT as a key mediator of hepatocyte homeostasis and survival upon carbohydrate intake and validate OGTLKO mice as a valuable model for assessing therapeutical approaches of advanced liver fibrosis. Impact and Implications Our study shows that hepatocyte-specific deletion of O-GlcNAc transferase (OGT) leads to severe liver injury, reinforcing the importance of O-GlcNAcylation and OGT for hepatocyte homeostasis and survival. Our study also validates the Ogt liver-deficient mouse as a valuable model for the study of advanced liver fibrosis. Importantly, as the severe hepatic fibrosis of Ogt liver-deficient mice could be fully prevented upon feeding on a ketogenic diet (i.e. very-low-carbohydrate, high-fat diet) this work underlines the potential interest of nutritional intervention as antifibrogenic strategies.
Collapse
Affiliation(s)
| | - Lucia Parlati
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Fadila Benhamed
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Marion Regnier
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Isadora Cavalcante
- Team Genomics and Signaling of Endocrine Tumors, Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | | | | | - Maryline Favier
- HistIM Platform, Institut Cochin, CNRS, INSERM, Université de Paris Cité, Paris, France
| | - Natasa Pavlovic
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Julie Magusto
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Michèle Cauzac
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Patrick Pagesy
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jérémie Gautheron
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Chantal Desdouets
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sandra Guilmeau
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Tarik Issad
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|