1
|
Tignard P, Pottin K, Geeverding A, Doulazmi M, Cabrera M, Fouquet C, Liffran M, Fouchard J, Rosello M, Albadri S, Del Bene F, Trembleau A, Breau MA. Basement membranes are crucial for proper olfactory placode shape, position and boundary with the brain, and for olfactory axon development. eLife 2024; 12:RP92004. [PMID: 39713923 DOI: 10.7554/elife.92004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo.
Collapse
Affiliation(s)
- Pénélope Tignard
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Karen Pottin
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Audrey Geeverding
- Imaging Facility, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Mohamed Doulazmi
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8256), Institut de Biologie Paris-Seine (IBPS), Adaptation Biologique et Vieillissement, Paris, France
| | - Mélody Cabrera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Coralie Fouquet
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Mathilde Liffran
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Jonathan Fouchard
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alain Trembleau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Marie Anne Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| |
Collapse
|
2
|
Tignard P, Pottin K, Geeverding A, Doulazmi M, Cabrera M, Fouquet C, Liffran M, Fouchard J, Rosello M, Albadri S, Del Bene F, Trembleau A, Breau MA. Laminin γ1-dependent basement membranes are instrumental to ensure proper olfactory placode shape, position and boundary with the brain, as well as olfactory axon development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547040. [PMID: 39253416 PMCID: PMC11383033 DOI: 10.1101/2023.06.29.547040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo .
Collapse
|
3
|
Casas Gimeno G, Dvorianinova E, Lembke CS, Dijkstra ESC, Abbas H, Liu Y, Paridaen JTML. A quantitative characterization of early neuron generation in the developing zebrafish telencephalon. Dev Neurobiol 2023; 83:237-254. [PMID: 37679904 DOI: 10.1002/dneu.22926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
The adult brain is made up of anatomically and functionally distinct regions with specific neuronal compositions. At the root of this neuronal diversity are neural stem and progenitor cells (NPCs) that produce many neurons throughout embryonic development. During development, NPCs switch from initial expanding divisions to neurogenic divisions, which marks the onset of neurogenesis. Here, we aimed to understand when NPCs switch division modes to generate the first neurons in the anterior-most part of the zebrafish brain, the telencephalon. To this end, we used the deep learning-based segmentation method Cellpose and clonal analysis of individual NPCs to assess the production of neurons by NPCs in the first 24 h of zebrafish telencephalon development. Our results provide a quantitative atlas detailing the production of telencephalic neurons and NPC division modes between 14 and 24 h postfertilization. We find that within this timeframe, the switch to neurogenesis is gradual, with considerable heterogeneity in individual NPC neurogenic potential and division rates. This quantitative characterization of initial neurogenesis in the zebrafish telencephalon establishes a basis for future studies aimed at illuminating the molecular mechanisms and regulators of early neurogenesis.
Collapse
Affiliation(s)
- Glòria Casas Gimeno
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Ekaterina Dvorianinova
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Carla-Sophie Lembke
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Emma S C Dijkstra
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Hussam Abbas
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Yuanyuan Liu
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Judith T M L Paridaen
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Casey MA, Lusk S, Kwan KM. Eye Morphogenesis in Vertebrates. Annu Rev Vis Sci 2023; 9:221-243. [PMID: 37040791 DOI: 10.1146/annurev-vision-100720-111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Proper eye structure is essential for visual function: Multiple essential eye tissues must take shape and assemble into a precise three-dimensional configuration. Accordingly, alterations to eye structure can lead to pathological conditions of visual impairment. Changes in eye shape can also be adaptive over evolutionary time. Eye structure is first established during development with the formation of the optic cup, which contains the neural retina, retinal pigment epithelium, and lens. This crucial yet deceptively simple hemispherical structure lays the foundation for all later elaborations of the eye. Building on descriptions of the embryonic eye that started with hand drawings and micrographs, the field is beginning to identify mechanisms driving dynamic changes in three-dimensional cell and tissue shape. A combination of molecular genetics, imaging, and pharmacological approaches is defining connections among transcription factors, signaling pathways, and the intracellular machinery governing the emergence of this crucial structure.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA; , ,
| |
Collapse
|
5
|
Paşcalău R, Badea TC. Signaling - transcription interactions in mouse retinal ganglion cells early axon pathfinding -a literature review. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1180142. [PMID: 38983012 PMCID: PMC11182120 DOI: 10.3389/fopht.2023.1180142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/21/2023] [Indexed: 07/11/2024]
Abstract
Sending an axon out of the eye and into the target brain nuclei is the defining feature of retinal ganglion cells (RGCs). The literature on RGC axon pathfinding is vast, but it focuses mostly on decision making events such as midline crossing at the optic chiasm or retinotopic mapping at the target nuclei. In comparison, the exit of RGC axons out of the eye is much less explored. The first checkpoint on the RGC axons' path is the optic cup - optic stalk junction (OC-OS). OC-OS development and the exit of the RGC pioneer axons out of the eye are coordinated spatially and temporally. By the time the optic nerve head domain is specified, the optic fissure margins are in contact and the fusion process is ongoing, the first RGCs are born in its proximity and send pioneer axons in the optic stalk. RGC differentiation continues in centrifugal waves. Later born RGC axons fasciculate with the more mature axons. Growth cones at the end of the axons respond to guidance cues to adopt a centripetal direction, maintain nerve fiber layer restriction and to leave the optic cup. Although there is extensive information on OC-OS development, we still have important unanswered questions regarding its contribution to the exit of the RGC axons out of the eye. We are still to distinguish the morphogens of the OC-OS from the axon guidance molecules which are expressed in the same place at the same time. The early RGC transcription programs responsible for axon emergence and pathfinding are also unknown. This review summarizes the molecular mechanisms for early RGC axon guidance by contextualizing mouse knock-out studies on OC-OS development with the recent transcriptomic studies on developing RGCs in an attempt to contribute to the understanding of human optic nerve developmental anomalies. The published data summarized here suggests that the developing optic nerve head provides a physical channel (the closing optic fissure) as well as molecular guidance cues for the pioneer RGC axons to exit the eye.
Collapse
Affiliation(s)
- Raluca Paşcalău
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- Ophthalmology Clinic, Cluj County Emergency Hospital, Cluj-Napoca, Romania
| | - Tudor Constantin Badea
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- National Center for Brain Research, Institutul de Cercetări pentru Inteligență Artificială, Romanian Academy, Bucharest, Romania
| |
Collapse
|
6
|
Collective cell migration during optic cup formation features changing cell-matrix interactions linked to matrix topology. Curr Biol 2022; 32:4817-4831.e9. [PMID: 36208624 DOI: 10.1016/j.cub.2022.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
Cell migration is crucial for organismal development and shapes organisms in health and disease. Although a lot of research has revealed the role of intracellular components and extracellular signaling in driving single and collective cell migration, the influence of physical properties of the tissue and the environment on migration phenomena in vivo remains less explored. In particular, the role of the extracellular matrix (ECM), which many cells move upon, is currently unclear. To overcome this gap, we use zebrafish optic cup formation, and by combining novel transgenic lines and image analysis pipelines, we study how ECM properties influence cell migration in vivo. We show that collectively migrating rim cells actively move over an immobile extracellular matrix. These cell movements require cryptic lamellipodia that are extended in the direction of migration. Quantitative analysis of matrix properties revealed that the topology of the matrix changes along the migration path. These changes in matrix topologies are accompanied by changes in the dynamics of cell-matrix interactions. Experiments and theoretical modeling suggest that matrix porosity could be linked to efficient migration. Indeed, interfering with matrix topology by increasing its porosity results in a loss of cryptic lamellipodia, less-directed cell-matrix interactions, and overall inefficient migration. Thus, matrix topology is linked to the dynamics of cell-matrix interactions and the efficiency of directed collective rim cell migration during vertebrate optic cup morphogenesis.
Collapse
|
7
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
8
|
Agnès F, Torres-Paz J, Michel P, Rétaux S. A 3D molecular map of the cavefish neural plate illuminates eye-field organization and its borders in vertebrates. Development 2022; 149:274971. [DOI: 10.1242/dev.199966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/18/2022] [Indexed: 01/21/2023]
Abstract
ABSTRACT
The vertebrate retinas originate from a specific anlage in the anterior neural plate called the eye field. Its identity is conferred by a set of ‘eye transcription factors’, whose combinatorial expression has been overlooked. Here, we use the dimorphic teleost Astyanax mexicanus, which develops proper eyes in the wild type and smaller colobomatous eyes in the blind cavefish embryos, to unravel the molecular anatomy of the eye field and its variations within a species. Using a series of markers (rx3, pax6a, cxcr4b, zic1, lhx2, emx3 and nkx2.1a), we draw a comparative 3D expression map at the end of gastrulation/onset of neurulation, which highlights hyper-regionalization of the eye field into sub-territories of distinct sizes, shapes, cell identities and combinatorial gene expression levels along the three body axes. All these features show significant variations in the cavefish natural mutant. We also discover sub-domains within the prospective telencephalon and characterize cell identities at the frontiers of the eye field. We propose putative fates for some of the characterized eye-field subdivisions, and suggest the existence of a trade-off between some subdivisions in the two Astyanax morphs on a micro-evolutionary scale.
Collapse
Affiliation(s)
- François Agnès
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| | - Jorge Torres-Paz
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| | - Pauline Michel
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Monnot P, Gangatharan G, Baraban M, Pottin K, Cabrera M, Bonnet I, Breau MA. Intertissue mechanical interactions shape the olfactory circuit in zebrafish. EMBO Rep 2022; 23:e52963. [PMID: 34889034 PMCID: PMC8811657 DOI: 10.15252/embr.202152963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023] Open
Abstract
While the chemical signals guiding neuronal migration and axon elongation have been extensively studied, the influence of mechanical cues on these processes remains poorly studied in vivo. Here, we investigate how mechanical forces exerted by surrounding tissues steer neuronal movements and axon extension during the morphogenesis of the olfactory placode in zebrafish. We mainly focus on the mechanical contribution of the adjacent eye tissue, which develops underneath the placode through extensive evagination and invagination movements. Using quantitative analysis of cell movements and biomechanical manipulations, we show that the developing eye exerts lateral traction forces on the olfactory placode through extracellular matrix, mediating proper morphogenetic movements and axon extension within the placode. Our data shed new light on the key participation of intertissue mechanical interactions in the sculpting of neuronal circuits.
Collapse
Affiliation(s)
- Pauline Monnot
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
- Institut CurieUniversité PSLSorbonne UniversitéCNRS UMR168Laboratoire Physico Chimie CurieParisFrance
- Laboratoire Jean PerrinParisFrance
| | - Girisaran Gangatharan
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
| | - Marion Baraban
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
- Laboratoire Jean PerrinParisFrance
| | - Karen Pottin
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
| | - Melody Cabrera
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
| | - Isabelle Bonnet
- Institut CurieUniversité PSLSorbonne UniversitéCNRS UMR168Laboratoire Physico Chimie CurieParisFrance
| | - Marie Anne Breau
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
- Laboratoire Jean PerrinParisFrance
- Institut National de la Santé et de la Recherche Médicale (INSERM)ParisFrance
| |
Collapse
|
10
|
Devos L, Agnès F, Edouard J, Simon V, Legendre L, El Khallouki N, Barbachou S, Sohm F, Rétaux S. Eye morphogenesis in the blind Mexican cavefish. Biol Open 2021; 10:bio059031. [PMID: 34590124 PMCID: PMC8565469 DOI: 10.1242/bio.059031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/13/2023] Open
Abstract
The morphogenesis of the vertebrate eye consists of a complex choreography of cell movements, tightly coupled to axial regionalization and cell type specification processes. Disturbances in these events can lead to developmental defects and blindness. Here, we have deciphered the sequence of defective events leading to coloboma in the embryonic eye of the blind cavefish of the species Astyanax mexicanus. Using comparative live imaging on targeted enhancer-trap Zic1:hsp70:GFP reporter lines of both the normal, river-dwelling morph and the cave morph of the species, we identified defects in migratory cell behaviours during evagination that participate in the reduced optic vesicle size in cavefish, without proliferation defect. Further, impaired optic cup invagination shifts the relative position of the lens and contributes to coloboma in cavefish. Based on these results, we propose a developmental scenario to explain the cavefish phenotype and discuss developmental constraints to morphological evolution. The cavefish eye appears as an outstanding natural mutant model to study molecular and cellular processes involved in optic region morphogenesis.
Collapse
Affiliation(s)
- Lucie Devos
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - François Agnès
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Joanne Edouard
- AMAGEN, CNRS, INRA, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Victor Simon
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette, France
- AMAGEN, CNRS, INRA, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Laurent Legendre
- AMAGEN, CNRS, INRA, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Naima El Khallouki
- AMAGEN, CNRS, INRA, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Sosthène Barbachou
- AMAGEN, CNRS, INRA, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Frédéric Sohm
- AMAGEN, CNRS, INRA, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette, France
| |
Collapse
|
11
|
Casey MA, Lusk S, Kwan KM. Build me up optic cup: Intrinsic and extrinsic mechanisms of vertebrate eye morphogenesis. Dev Biol 2021; 476:128-136. [PMID: 33811855 PMCID: PMC8848517 DOI: 10.1016/j.ydbio.2021.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
The basic structure of the eye, which is crucial for visual function, is established during the embryonic process of optic cup morphogenesis. Molecular pathways of specification and patterning are integrated with spatially distinct cell and tissue shape changes to generate the eye, with discrete domains and structural features: retina and retinal pigment epithelium enwrap the lens, and the optic fissure occupies the ventral surface of the eye and optic stalk. Interest in the underlying cell biology of eye morphogenesis has led to a growing body of work, combining molecular genetics and imaging to quantify cellular processes such as adhesion and actomyosin activity. These studies reveal that intrinsic machinery and spatiotemporally specific extrinsic inputs collaborate to control dynamics of cell movements and morphologies. Here we consider recent advances in our understanding of eye morphogenesis, with a focus on the mechanics of eye formation throughout vertebrate systems, including insights and potential opportunities using organoids, which may provide a tractable system to test hypotheses from embryonic models.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
12
|
Zilova L, Weinhardt V, Tavhelidse T, Schlagheck C, Thumberger T, Wittbrodt J. Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. eLife 2021; 10:e66998. [PMID: 34252023 PMCID: PMC8275126 DOI: 10.7554/elife.66998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Organoids derived from pluripotent stem cells promise the solution to current challenges in basic and biomedical research. Mammalian organoids are however limited by long developmental time, variable success, and lack of direct comparison to an in vivo reference. To overcome these limitations and address species-specific cellular organization, we derived organoids from rapidly developing teleosts. We demonstrate how primary embryonic pluripotent cells from medaka and zebrafish efficiently assemble into anterior neural structures, particularly retina. Within 4 days, blastula-stage cell aggregates reproducibly execute key steps of eye development: retinal specification, morphogenesis, and differentiation. The number of aggregated cells and genetic factors crucially impacted upon the concomitant morphological changes that were intriguingly reflecting the in vivo situation. High efficiency and rapid development of fish-derived organoids in combination with advanced genome editing techniques immediately allow addressing aspects of development and disease, and systematic probing of impact of the physical environment on morphogenesis and differentiation.
Collapse
Affiliation(s)
- Lucie Zilova
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Venera Weinhardt
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Tinatini Tavhelidse
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Christina Schlagheck
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Heidelberg International Biosciences Graduate School HBIGS and HeiKa Graduate School on “Functional Materials”HeidelbergGermany
| | - Thomas Thumberger
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Joachim Wittbrodt
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
13
|
Buono L, Corbacho J, Naranjo S, Almuedo-Castillo M, Moreno-Marmol T, de la Cerda B, Sanabria-Reinoso E, Polvillo R, Díaz-Corrales FJ, Bogdanovic O, Bovolenta P, Martínez-Morales JR. Analysis of gene network bifurcation during optic cup morphogenesis in zebrafish. Nat Commun 2021; 12:3866. [PMID: 34162866 PMCID: PMC8222258 DOI: 10.1038/s41467-021-24169-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
Sight depends on the tight cooperation between photoreceptors and pigmented cells, which derive from common progenitors through the bifurcation of a single gene regulatory network into the neural retina (NR) and retinal-pigmented epithelium (RPE) programs. Although genetic studies have identified upstream nodes controlling these networks, their regulatory logic remains poorly investigated. Here, we characterize transcriptome dynamics and chromatin accessibility in segregating NR/RPE populations in zebrafish. We analyze cis-regulatory modules and enriched transcription factor motives to show extensive network redundancy and context-dependent activity. We identify downstream targets, highlighting an early recruitment of desmosomal genes in the flattening RPE and revealing Tead factors as upstream regulators. We investigate the RPE specification network dynamics to uncover an unexpected sequence of transcription factors recruitment, which is conserved in humans. This systematic interrogation of the NR/RPE bifurcation should improve both genetic counseling for eye disorders and hiPSCs-to-RPE differentiation protocols for cell-replacement therapies in degenerative diseases.
Collapse
Affiliation(s)
- Lorena Buono
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Seville, Spain
| | - Jorge Corbacho
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
| | | | | | - Berta de la Cerda
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER (CSIC/US/UPO/JA), Seville, Spain
| | | | - Rocío Polvillo
- Centro Andaluz de Biología del Desarrollo-CABD (CSIC/UPO/JA), Seville, Spain
| | | | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Seville, Spain.
- CIBERER, ISCIII, Madrid, Spain.
| | | |
Collapse
|
14
|
Lusk S, Casey MA, Kwan KM. 4-Dimensional Imaging of Zebrafish Optic Cup Morphogenesis. J Vis Exp 2021:10.3791/62155. [PMID: 34125104 PMCID: PMC8848516 DOI: 10.3791/62155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Visual system function requires the establishment of precise tissue and organ structures. In the vertebrate eye, structural defects are a common cause of visual impairment, yet mechanisms of eye morphogenesis are still poorly understood. The basic organization of the embryonic eye is conserved throughout vertebrates, thus live imaging of zebrafish embryos has become a powerful approach to directly observe eye development at real time under normal and pathological conditions. Dynamic cell processes including movements, morphologies, interactions, division, and death can be visualized in the embryo. We have developed methods for uniform labeling of subcellular structures and timelapse confocal microscopy of early eye development in zebrafish. This protocol outlines the method of generating capped mRNA for injection into the 1-cell zebrafish embryo, mounting embryos at optic vesicle stage (~12 hours post fertilization, hpf), and performing multi-dimensional timelapse imaging of optic cup morphogenesis on a laser scanning confocal microscope, such that multiple datasets are acquired sequentially in the same imaging session. Such an approach yields data that can be used for a variety of purposes, including cell tracking, volume measurements, three-dimensional (3D) rendering, and visualization. Our approaches allow us to pinpoint the cellular and molecular mechanisms driving optic cup development, in both wild type and genetic mutant conditions. These methods can be employed directly by other groups or adapted to visualize many additional aspects of zebrafish eye development.
Collapse
Affiliation(s)
- Sarah Lusk
- Department of Human Genetics, University of Utah
| | | | | |
Collapse
|
15
|
Retinal Pigment Epithelium and Neural Retinal Progenitors Interact via Semaphorin 6D to Facilitate Optic Cup Morphogenesis. eNeuro 2021; 8:ENEURO.0053-21.2021. [PMID: 33811086 PMCID: PMC8116109 DOI: 10.1523/eneuro.0053-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
Cell movement propels embryonic tissues to acquire shapes required for mature function. The movements are driven both by acto-myosin signaling and by cells interacting with the extracellular matrix (ECM). Unknown is whether cell-cell interactions within a tissue are also required, and the molecular mechanisms by which such communication might occur. Here, we use the developing visual system of zebrafish as a model to understand the role cell-cell communication plays in tissue morphogenesis in the embryonic nervous system. We identify that cell-cell-mediated contact between two distinct cell populations, progenitors of the neural retina and retinal pigment epithelium (RPE), facilitates epithelial flow to produce the mature cupped retina. We identify for the first time the need in eye morphogenesis for distinct populations of progenitors to interact, and suggest a novel role for a member of a key developmental signaling family, the transmembrane Semaphorin6d, as mediating communication between distinct cell types to control tissue morphogenesis.
Collapse
|
16
|
Torres-Paz J, Rétaux S. Pescoids and Chimeras to Probe Early Evo-Devo in the Fish Astyanax mexicanus. Front Cell Dev Biol 2021; 9:667296. [PMID: 33928092 PMCID: PMC8078105 DOI: 10.3389/fcell.2021.667296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022] Open
Abstract
The fish species Astyanax mexicanus with its sighted and blind eco-morphotypes has become an original model to challenge vertebrate developmental evolution. Recently, we demonstrated that phenotypic evolution can be impacted by early developmental events starting from the production of oocytes in the fish ovaries. A. mexicanus offers an amenable model to test the influence of maternal determinants on cell fate decisions during early development, yet the mechanisms by which the information contained in the eggs is translated into specific developmental programs remain obscure due to the lack of specific tools in this emergent model. Here we describe methods for the generation of pescoids from yolkless-blastoderm explants to test the influence of embryonic and extraembryonic tissues on cell fate decisions, as well as the production of chimeric embryos obtained by intermorph cell transplantations to probe cell autonomous or non-autonomous processes. We show that Astyanax pescoids have the potential to recapitulate the main ontogenetic events observed in intact embryos, including the internalization of mesodermal progenitors and eye development, as followed with zic:GFP reporter lines. In addition, intermorph cell grafts resulted in proper integration of exogenous cells into the embryonic tissues, with lineages becoming more restricted from mid-blastula to gastrula. The implementation of these approaches in A. mexicanus will bring new light on the cascades of events, from the maternal pre-patterning of the early embryo to the evolution of brain regionalization.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Petersen RA, Morris AC. Visualizing Ocular Morphogenesis by Lightsheet Microscopy using rx3:GFP Transgenic Zebrafish. J Vis Exp 2021. [PMID: 33871454 DOI: 10.3791/62296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Vertebrate eye development is a complex process that begins near the end of embryo gastrulation and requires the precise coordination of cell migration, proliferation, and differentiation. Time-lapse imagining offers unique insight to the behavior of cells during eye development because it allows us to visualize oculogenesis in vivo. Zebrafish are an excellent model to visualize this process due to their highly conserved vertebrate eye and their ability to develop rapidly and externally while remaining optically transparent. Time-lapse imaging studies of zebrafish eye development are greatly facilitated by use of the transgenic zebrafish line Tg(rx3:GFP). In the developing forebrain, rx3:GFP expression marks the cells of the single eye field, and GFP continues to be expressed as the eye field evaginates to form an optic vesicle, which then invaginates to form an optic cup. High resolution time lapse imaging of rx3:GFP expression, therefore, allows us to track the eye primordium through time as it develops into the retina. Lightsheet microscopy is an ideal method to image ocular morphogenesis over time due to its ability to penetrate thicker samples for fluorescent imaging, minimize photobleaching and phototoxicity, and image at a high speed. Here, a protocol is provided for time-lapse imaging of ocular morphogenesis using a commercially available lightsheet microscope and an image processing workstation to analyze the resulting data. This protocol details the procedures for embryo anesthesia, embedding in low melting temperature agarose, suspension in the imaging chamber, setting up the imaging parameters, and finally analyzing the imaging data using image analysis software. The resulting dataset can provide valuable insights into the process of ocular morphogenesis, as well as perturbations to this process as a result of genetic mutation, exposure to pharmacological agents, or other experimental manipulations.
Collapse
|
18
|
Werner JM, Negesse MY, Brooks DL, Caldwell AR, Johnson JM, Brewster RM. Hallmarks of primary neurulation are conserved in the zebrafish forebrain. Commun Biol 2021; 4:147. [PMID: 33514864 PMCID: PMC7846805 DOI: 10.1038/s42003-021-01655-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
Primary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation. Jonathan Werner, Maraki Negesse et al. visualize zebrafish neurulation during development to determine whether hallmarks of neural tube formation in other vertebrates also apply to zebrafish. They find that neural tube formation in the forebrain shares features such as hingepoints and neural folds with other vertebrates, demonstrating the strength of the zebrafish model for understanding human neurulation.
Collapse
Affiliation(s)
- Jonathan M Werner
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Maraki Y Negesse
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Dominique L Brooks
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Allyson R Caldwell
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Jafira M Johnson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Rachel M Brewster
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
19
|
Loosemore RG, Matthaei SD, Stanger TC. An enigmatic translocation of the vertebrate primordial eye field. BMC Evol Biol 2020; 20:129. [PMID: 33008334 PMCID: PMC7531155 DOI: 10.1186/s12862-020-01693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
The primordial eye field of the vertebrate embryo is a single entity of retinal progenitor cells spanning the anterior neural plate before bifurcating to form bilateral optic vesicles. Here we review fate mapping data from zebrafish suggesting that prior to evagination of the optic vesicles the eye field may undergo a Maypole-plait migration of progenitor cells through the midline influenced by the anteriorly subducting diencephalon. Such an enigmatic translocation of scaffolding progenitors could have evolutionary significance if pointing, by way of homology, to an ancient mechanism for transition of the single eye field in chordates to contralateral eye fields in vertebrates.
Collapse
Affiliation(s)
- R G Loosemore
- Maclean District Hospital, Union St, Maclean, NSW, 2463, Australia.
| | | | - T C Stanger
- Maclean District Hospital, Maclean, Australia
| |
Collapse
|
20
|
Eckert P, Knickmeyer MD, Schütz L, Wittbrodt J, Heermann S. Morphogenesis and axis specification occur in parallel during optic cup and optic fissure formation, differentially modulated by BMP and Wnt. Open Biol 2020; 9:180179. [PMID: 30958096 PMCID: PMC6395882 DOI: 10.1098/rsob.180179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Optic cup morphogenesis is an intricate process. Especially, the formation of the optic fissure is not well understood. Persisting optic fissures, termed coloboma, are frequent causes for congenital blindness. Even though the defective fusion of the fissure margins is the most acknowledged reason for coloboma, highly variable morphologies of coloboma phenotypes argue for a diverse set of underlying pathomechanisms. Here, we investigate optic fissure morphogenesis in zebrafish to identify potential morphogenetic defects resulting in coloboma. We show that the formation of the optic fissure depends on tissue flow movements, integrated into the bilateral distal epithelial flow forming the optic cup. On the temporal side, the distal flow translates into a ventral perpendicular flow, shaping the temporal fissure margin. On the nasal side, however, the distal flow is complemented by tissue derived from the optic stalk, shaping the nasal fissure margin. Notably, a distinct population of TGFβ-signalling positive cells is translocated from the optic stalk into both fissure margins. Furthermore, we show that induced BMP signalling as well as Wnt-signalling inhibition result in morphogenetic defects of the optic fissure. Our data also indicate that morphogenesis is crucial for a proper positioning of pre-specified dorsal–ventral optic cup domains.
Collapse
Affiliation(s)
- Priska Eckert
- 1 Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg , 79104 Freiburg , Germany.,2 Faculty of Biology, University of Freiburg , Schaenzlestrasse 1, 79104 Freiburg , Germany
| | - Max D Knickmeyer
- 1 Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg , 79104 Freiburg , Germany.,2 Faculty of Biology, University of Freiburg , Schaenzlestrasse 1, 79104 Freiburg , Germany
| | - Lucas Schütz
- 3 Centre for Organismal Studies, Heidelberg University , 69120 Heidelberg , Germany
| | - Joachim Wittbrodt
- 3 Centre for Organismal Studies, Heidelberg University , 69120 Heidelberg , Germany
| | - Stephan Heermann
- 1 Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg , 79104 Freiburg , Germany
| |
Collapse
|
21
|
Bryan CD, Casey MA, Pfeiffer RL, Jones BW, Kwan KM. Optic cup morphogenesis requires neural crest-mediated basement membrane assembly. Development 2020; 147:dev181420. [PMID: 31988185 PMCID: PMC7044464 DOI: 10.1242/dev.181420] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
Organogenesis requires precise interactions between a developing tissue and its environment. In vertebrates, the developing eye is surrounded by a complex extracellular matrix as well as multiple mesenchymal cell populations. Disruptions to either the matrix or periocular mesenchyme can cause defects in early eye development, yet in many cases the underlying mechanism is unknown. Here, using multidimensional imaging and computational analyses in zebrafish, we establish that cell movements in the developing optic cup require neural crest. Ultrastructural analysis reveals that basement membrane formation around the developing eye is also dependent on neural crest, but only specifically around the retinal pigment epithelium. Neural crest cells produce the extracellular matrix protein nidogen: impairing nidogen function disrupts eye development, and, strikingly, expression of nidogen in the absence of neural crest partially restores optic cup morphogenesis. These results demonstrate that eye formation is regulated in part by extrinsic control of extracellular matrix assembly.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Chase D Bryan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Rebecca L Pfeiffer
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Bryan W Jones
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
22
|
Carney KR, Bryan CD, Gordon HB, Kwan KM. LongAxis: A MATLAB-based program for 3D quantitative analysis of epithelial cell shape and orientation. Dev Biol 2019; 458:1-11. [PMID: 31589834 DOI: 10.1016/j.ydbio.2019.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Epithelial morphogenesis, a fundamental aspect of development, generates 3-dimensional tissue structures crucial for organ function. Underlying morphogenetic mechanisms are, in many cases, poorly understood, but mutations that perturb organ development can affect epithelial cell shape and orientation - difficult features to quantify in three dimensions. The basic structure of the eye is established via epithelial morphogenesis: in the embryonic optic cup, the retinal progenitor epithelium enwraps the lens. We previously found that loss of the extracellular matrix protein laminin-alpha1 (lama1) led to mislocalization of apical polarity markers and apparent misorientation of retinal progenitors. We sought to visualize and quantify this phenotype, and determine whether loss of the apical polarity determinant pard3 might rescue the phenotype. To this end, we developed LongAxis, a MATLAB-based program optimized for the retinal progenitor neuroepithelium. LongAxis facilitates 3-dimensional cell segmentation, visualization, and quantification of cell orientation and morphology. Using LongAxis, we find that retinal progenitors in the lama1-/- optic cup are misoriented and slightly less elongated. In the lama1;MZpard3 double mutant, cells are still misoriented, but larger. Therefore, loss of pard3 does not rescue loss of lama1, and in fact uncovers a novel cell size phenotype. LongAxis enables population-level visualization and quantification of retinal progenitor cell orientation and morphology. These results underscore the importance of visualizing and quantifying cell orientation and shape in three dimensions within the retina.
Collapse
Affiliation(s)
- Keith R Carney
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chase D Bryan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hannah B Gordon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
23
|
Cavodeassi F, Wilson SW. Looking to the future of zebrafish as a model to understand the genetic basis of eye disease. Hum Genet 2019; 138:993-1000. [PMID: 31422478 PMCID: PMC6710215 DOI: 10.1007/s00439-019-02055-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
In this brief commentary, we provide some of our thoughts and opinions on the current and future use of zebrafish to model human eye disease, dissect pathological progression and advance in our understanding of the genetic bases of microphthalmia, andophthalmia and coloboma (MAC) in humans. We provide some background on eye formation in fish and conservation and divergence across vertebrates in this process, discuss different approaches for manipulating gene function and speculate on future research areas where we think research using fish may prove to be particularly effective.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute of Medical and Biomedical Education, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK.
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, Biosciences, UCL, Gower St, London, WC1E 6BT, UK
| |
Collapse
|
24
|
Guo Y, Wang P, Ma JH, Cui Z, Yu Q, Liu S, Xue Y, Zhu D, Cao J, Li Z, Tang S, Chen J. Modeling Retinitis Pigmentosa: Retinal Organoids Generated From the iPSCs of a Patient With the USH2A Mutation Show Early Developmental Abnormalities. Front Cell Neurosci 2019; 13:361. [PMID: 31481876 PMCID: PMC6709881 DOI: 10.3389/fncel.2019.00361] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/23/2019] [Indexed: 11/21/2022] Open
Abstract
Retinitis pigmentosa (RP) represents a group of inherited retinopathies with early-onset nyctalopia followed by progressive photoreceptor degeneration causing irreversible vision loss. Mutations in USH2A are the most common cause of non-syndromic RP. Here, we reprogrammed induced pluripotent stem cells (iPSCs) from a RP patient with a mutation in USH2A (c.8559-2A > G/c.9127_9129delTCC). Then, multilayer retinal organoids including neural retina (NR) and retinal pigment epithelium (RPE) were generated by three-step “induction-reversal culture.” The early retinal organoids derived from the RP patient with the USH2A mutation exhibited significant defects in terms of morphology, immunofluorescence staining and transcriptional profiling. To the best of our knowledge, the pathogenic mutation (c.9127_9129delTCC) in USH2A has not been reported previously among RP patients. Notably, the expression of laminin in the USH2A mutation organoids was significantly lower than in the iPSCs derived from healthy, age- and sex-matched controls during the retinal organogenesis. We also observed that abnormal retinal neuroepithelium differentiation and polarization caused defective retinal progenitor cell development and retinal layer formation, disordered organization of NRs in the presence of the USH2A mutation. Furthermore, the USH2A mutation bearing RPE cells presented abnormal morphology, lacking pigmented foci and showing an apoptotic trend and reduced expression of specific makers, such as MITF, PEDF, and RPE65. In addition, the USH2A mutation organoids had lower expression of cilium-associated (especially CFAP43, PIFO) and dopaminergic synapse-related genes (including DLGAP1, GRIK1, SLC17A7, and SLC17A8), while there was higher expression of neuron apoptotic process-related genes (especially HIF1A, ADARB1, and CASP3). This study may provide essential assistance in the molecular diagnosis and screening of RP. This work recapitulates the pathogenesis of USH2A using patient-specific organoids and demonstrated that alterations in USH2A function due to mutations may lead to cellular and molecular abnormalities.
Collapse
Affiliation(s)
- Yonglong Guo
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Peiyuan Wang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jacey Hongjie Ma
- Aier School of Ophthalmology, Central South University, Changsha, China.,Shenzhen Aier Eye Hospital, Shenzhen, China
| | - Zekai Cui
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou, China
| | - Shiwei Liu
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Deliang Zhu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jixing Cao
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijie Li
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.,Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Hu Y, Wang X, Hu B, Mao Y, Chen Y, Yan L, Yong J, Dong J, Wei Y, Wang W, Wen L, Qiao J, Tang F. Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis. PLoS Biol 2019; 17:e3000365. [PMID: 31269016 PMCID: PMC6634428 DOI: 10.1371/journal.pbio.3000365] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/16/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
The developmental pathway of the neural retina (NR) and retinal pigment epithelium (RPE) has been revealed by extensive research in mice. However, the molecular mechanisms underlying the development of the human NR and RPE, as well as the interactions between these two tissues, have not been well defined. Here, we analyzed 2,421 individual cells from human fetal NR and RPE using single-cell RNA sequencing (RNA-seq) technique and revealed the tightly regulated spatiotemporal gene expression network of human retinal cells. We identified major cell classes of human fetal retina and potential crucial transcription factors for each cell class. We dissected the dynamic expression patterns of visual cycle- and ligand-receptor interaction-related genes in the RPE and NR. Moreover, we provided a map of disease-related genes for human fetal retinal cells and highlighted the importance of retinal progenitor cells as potential targets of inherited retinal diseases. Our findings captured the key in vivo features of the development of the human NR and RPE and offered insightful clues for further functional studies.
Collapse
Affiliation(s)
- Yuqiong Hu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Xiaoye Wang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Boqiang Hu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yunuo Mao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yidong Chen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liying Yan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Jun Yong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yuan Wei
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Wei Wang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
26
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
27
|
Moreno-Marmol T, Cavodeassi F, Bovolenta P. Setting Eyes on the Retinal Pigment Epithelium. Front Cell Dev Biol 2018; 6:145. [PMID: 30406103 PMCID: PMC6207792 DOI: 10.3389/fcell.2018.00145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023] Open
Abstract
The neural component of the zebrafish eye derives from a small group of cells known as the eye/retinal field. These cells, positioned in the anterior neural plate, rearrange extensively and generate the optic vesicles (OVs). Each vesicle subsequently folds over itself to form the double-layered optic cup, from which the mature eye derives. During this transition, cells of the OV are progressively specified toward three different fates: the retinal pigment epithelium (RPE), the neural retina, and the optic stalk. Recent studies have shown that folding of the zebrafish OV into a cup is in part driven by basal constriction of the cells of the future neural retina. During folding, however, RPE cells undergo an even more dramatic shape conversion that seems to entail the acquisition of unique properties. How these changes occur and whether they contribute to optic cup formation is still poorly understood. Here we will review present knowledge on RPE morphogenesis and discuss potential mechanisms that may explain such transformation using examples taken from embryonic Drosophila tissues that undergo similar shape changes. We will also put forward a hypothesis for optic cup folding that considers an active contribution from the RPE.
Collapse
Affiliation(s)
- Tania Moreno-Marmol
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Florencia Cavodeassi
- Institute of Medical and Biomedical Education, University of London, London, United Kingdom
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Cavodeassi F, Creuzet S, Etchevers HC. The hedgehog pathway and ocular developmental anomalies. Hum Genet 2018; 138:917-936. [PMID: 30073412 PMCID: PMC6710239 DOI: 10.1007/s00439-018-1918-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute for Medical and Biomedical Education, St. George´s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sophie Creuzet
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Heather C Etchevers
- Aix-Marseille Univ, Marseille Medical Genetics (MMG), INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
29
|
Hehr CL, Halabi R, McFarlane S. Polarity and morphogenesis of the eye epithelium requires the adhesion junction associated adaptor protein Traf4. Cell Adh Migr 2018; 12:489-502. [PMID: 29961393 DOI: 10.1080/19336918.2018.1477900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
During development, neuroepithelial progenitors acquire apico-basal polarity and adhere to one another via apically located tight and adherens junction complexes. This polarized neuroepithelium must continue to integrate cells arising through cell divisions and intercalation, and allow for cell movements, at the same time as undergoing morphogenesis. Cell proliferation, migration and intercalation all occur in the morphing embryonic eye. To understand how eye development might depend on dynamic epithelial adhesion, we investigated the function of a known regulator of junctional plasticity, Tumour necrosis factor receptor-associated factor 4 (Traf4). traf4a mRNA is expressed in the developing eye vesicle over the period of optic cup morphogenesis, and Traf4a loss leads to disrupted evagination and elongation of the eye vesicles, and aberrant organization and apico-basal polarity of the eye epithelium. We propose a model whereby Traf4a regulates apical junction plasticity in nascent eye epithelium, allowing for its polarization and morphogenesis. Symbols and Abbreviations: AB: apico-basal; aPKC: atypical protein kinase-C; CRISPR: clustered regularly-interspaced short palindromic repeats; GFP: green fluorescent protein; hpf: hours post-fertilization; MO: antisense morpholino oligonucleotide; pHH3: phospho histone H3; ss: somite stage; Traf4: Tumour necrosis factor receptor-associated factor 4; ZO-1: zona occludens-1.
Collapse
Affiliation(s)
- Carrie Lynn Hehr
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| | - Rami Halabi
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| | - Sarah McFarlane
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| |
Collapse
|
30
|
Ren X, Hamilton N, Müller F, Yamamoto Y. Cellular rearrangement of the prechordal plate contributes to eye degeneration in the cavefish. Dev Biol 2018; 441:221-234. [PMID: 30031755 DOI: 10.1016/j.ydbio.2018.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/23/2022]
Abstract
Astyanax mexicanus consists of two different populations: a sighted surface-dwelling form (surface fish) and a blind cave-dwelling form (cavefish). In the cavefish, embryonic expression of sonic hedgehog a (shha) in the prechordal plate is expanded towards the anterior midline, which has been shown to contribute to cavefish specific traits such as eye degeneration, enhanced feeding apparatus, and specialized brain anatomy. However, it is not clear how this expanded expression is achieved and which signaling pathways are involved. Nodal signaling has a crucial role for expression of shh and formation of the prechordal plate. In this study, we report increased expression of prechordal plate marker genes, nodal-related 2 (ndr2) and goosecoid (gsc) in cavefish embryos at the tailbud stage. To investigate whether Nodal signaling is responsible for the anterior expansion of the prechordal plate, we used an inhibitor of Nodal signaling and showed a decreased anterior expansion of the prechordal plate and increased pax6 expression in the anterior midline in treated cavefish embryos. Later in development, the lens and optic cup of treated embryos were significantly larger than untreated embryos. Conversely, increasing Nodal signaling in the surface fish embryo resulted in the expansion of anterior prechordal plate and reduction of pax6 expression in the anterior neural plate together with the formation of small lenses and optic cups later in development. These results confirmed that Nodal signaling has a crucial role for the anterior expansion of the prechordal plate and plays a significant role in cavefish eye development. We showed that the anterior expansion of the prechordal plate was not due to increased total cell number, suggesting the expansion is achieved by changes in cellular distribution in the prechordal plate. In addition, the distribution of presumptive prechordal plate cells in Spemann's organiser was also altered in the cavefish. These results suggested that changes in the cellular arrangement of Spemann's organiser in early gastrulae could have an essential role in the anterior expansion of the prechordal plate contributing to eye degeneration in the cavefish.
Collapse
Affiliation(s)
- Xiaoyun Ren
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Noémie Hamilton
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yoshiyuki Yamamoto
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
31
|
Sijilmassi O, López Alonso JM, Barrio Asensio MC, Del Río Sevilla A. Collagen IV and laminin-1 expression in embryonic mouse lens using principal components analysis technique. J Microsc 2018; 271:207-221. [PMID: 29702728 DOI: 10.1111/jmi.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Abstract
Immunohistochemistry section staining is not always easy to interpret. Manual quantification of immunohistochemical staining is limited by the observer visual ability to detect changes in level staining. Hence, the quantification of immunostaining by means of digital image analysis allows us to measure accurately protein expression percentages in immunobiological stained tissues and ensures to overcome the visual limitations. We perform an experimental study to analyse the impact of folic acid (FA) deficiency into collagen IV and laminin-1 expression in the embryonic mouse lens. The study starts with microscope images of embryos mouse lens whose mothers fed a diet deficient in FA during 2 and 8 weeks. A principal component analysis (PCA) image processing is used to analyse these images coming from control and FA deficit groups. The method permits to define an index of over- or infraexpression of collagen IV and laminin-1 associated to different spatial organisation structures (PC processes). Additionally, it permits to determine in precise percentage the exact quantity of the overexpression or infraexpression and finally to comprehend molecular regionalisation and expression in both control and deficient groups. The results suggest that even with 2 weeks of deficit of FA the expression and distribution of both molecules is affected.
Collapse
Affiliation(s)
- O Sijilmassi
- Faculty of Optics and Optometry, Anatomy and Human Embryology Department, Universidad Complutense De Madrid, Madrid, Spain
- Faculty of Optics and Optometry, Optics Department, Universidad Complutense De Madrid, Madrid, Spain
| | - J M López Alonso
- Faculty of Optics and Optometry, Optics Department, Universidad Complutense De Madrid, Madrid, Spain
| | - M C Barrio Asensio
- Faculty of Optics and Optometry, Anatomy and Human Embryology Department, Universidad Complutense De Madrid, Madrid, Spain
| | - A Del Río Sevilla
- Faculty of Optics and Optometry, Anatomy and Human Embryology Department, Universidad Complutense De Madrid, Madrid, Spain
| |
Collapse
|
32
|
Dynamic Tissue Rearrangements during Vertebrate Eye Morphogenesis: Insights from Fish Models. J Dev Biol 2018; 6:jdb6010004. [PMID: 29615553 PMCID: PMC5875564 DOI: 10.3390/jdb6010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
Over the last thirty years, fish models, such as the zebrafish and medaka, have become essential to pursue developmental studies and model human disease. Community efforts have led to the generation of wide collections of mutants, a complete sequence of their genomes, and the development of sophisticated genetic tools, enabling the manipulation of gene activity and labelling and tracking of specific groups of cells during embryonic development. When combined with the accessibility and optical clarity of fish embryos, these approaches have made of them an unbeatable model to monitor developmental processes in vivo and in real time. Over the last few years, live-imaging studies in fish have provided fascinating insights into tissue morphogenesis and organogenesis. This review will illustrate the advantages of fish models to pursue morphogenetic studies by highlighting the findings that, in the last decade, have transformed our understanding of eye morphogenesis.
Collapse
|
33
|
Abstract
As the embryonic ectoderm is induced to form the neural plate, cells inside this epithelium acquire restricted identities that will dictate their behavior and progressive differentiation. The first behavior adopted by most neural plate cells is called neurulation, a morphogenetic movement shaping the neuroepithelium into a tube. One cell population is not adopting this movement: the eye field. Giving eye identity to a defined population inside the neural plate is therefore a key neural fate decision. While all other neural population undergo neurulation similarly, converging toward the midline, the eye field moves outwards, away from the rest of the forming neural tube, to form vesicles. Thus, while delay in acquisition of most other fates would not have significant morphogenetic consequences, defect in the establishment of the eye field would dramatically impact the formation of the eye. Yet, very little is understood of the molecular and cellular mechanisms driving them. Here, we summarize what is known across vertebrate species and propose a model highlighting what is required to form the essential vesicles that initiate the vertebrate eyes.
Collapse
Affiliation(s)
- Florence A Giger
- Department of Developmental Neurobiology, Centre for Developmental Neurobiology and MRC Centre for Developmental Disorders, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Corinne Houart
- Department of Developmental Neurobiology, Centre for Developmental Neurobiology and MRC Centre for Developmental Disorders, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| |
Collapse
|
34
|
Gestri G, Bazin-Lopez N, Scholes C, Wilson SW. Cell Behaviors during Closure of the Choroid Fissure in the Developing Eye. Front Cell Neurosci 2018. [PMID: 29515375 PMCID: PMC5826230 DOI: 10.3389/fncel.2018.00042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coloboma is a defect in the morphogenesis of the eye that is a consequence of failure of choroid fissure fusion. It is among the most common congenital defects in humans and can significantly impact vision. However, very little is known about the cellular mechanisms that regulate choroid fissure closure. Using high-resolution confocal imaging of the zebrafish optic cup, we find that apico-basal polarity is re-modeled in cells lining the fissure in proximal to distal and inner to outer gradients during fusion. This process is accompanied by cell proliferation, displacement of vasculature, and contact between cells lining the choroid fissure and periocular mesenchyme (POM). To investigate the role of POM cells in closure of the fissure, we transplanted optic vesicles onto the yolk, allowing them to develop in a situation where they are depleted of POM. The choroid fissure forms normally in ectopic eyes but fusion fails in this condition, despite timely apposition of the nasal and temporal lips of the retina. This study resolves some of the cell behaviors underlying choroid fissure fusion and supports a role for POM in choroid fissure fusion.
Collapse
Affiliation(s)
- Gaia Gestri
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Naiara Bazin-Lopez
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Clarissa Scholes
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephen W Wilson
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
35
|
Martinez-Morales JR, Cavodeassi F, Bovolenta P. Coordinated Morphogenetic Mechanisms Shape the Vertebrate Eye. Front Neurosci 2017; 11:721. [PMID: 29326547 PMCID: PMC5742352 DOI: 10.3389/fnins.2017.00721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/11/2017] [Indexed: 11/22/2022] Open
Abstract
The molecular bases of vertebrate eye formation have been extensively investigated during the past 20 years. This has resulted in the definition of the backbone of the gene regulatory networks controlling the different steps of eye development and has further highlighted a substantial conservation of these networks among vertebrates. Yet, the precise morphogenetic events allowing the formation of the optic cup from a small group of cells within the anterior neural plate are still poorly understood. It is also unclear if the morphogenetic events leading to eyes of very similar shape are indeed comparable among all vertebrates or if there are any species-specific peculiarities. Improved imaging techniques have enabled to follow how the eye forms in living embryos of a few vertebrate models, whereas the development of organoid cultures has provided fascinating tools to recapitulate tissue morphogenesis of other less accessible species. Here, we will discuss what these advances have taught us about eye morphogenesis, underscoring possible similarities and differences among vertebrates. We will also discuss the contribution of cell shape changes to this process and how morphogenetic and patterning mechanisms integrate to assemble the final architecture of the eye.
Collapse
Affiliation(s)
| | - Florencia Cavodeassi
- Centro de Biología Molecular Severo Ochoa, (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
36
|
Liu W, Cvekl A. Six3 in a small population of progenitors at E8.5 is required for neuroretinal specification via regulating cell signaling and survival in mice. Dev Biol 2017; 428:164-175. [PMID: 28579317 PMCID: PMC5533277 DOI: 10.1016/j.ydbio.2017.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 01/04/2023]
Abstract
Neuroretina and retinal pigment epithelium (RPE) are differentiated from the progenitors in optic vesicles, but it is unclear when and how the two lineages are segregated. Manipulation of chick embryos reveals that the early anteroventral optic vesicle is crucial for neuroretinal development, but the molecular mechanism is unclear. Homeodomain transcription factor Six3 is required for neuroretinal specification and is dispensable for RPE formation, but the cell fates of Six3-deficient progenitors and the origins of remnant RPE are unknown. Here, we performed lineage tracing of Six3-Cre positive cells in wild-type and Six3-deficient mouse embryos. Six3-Cre positive progenies were found in a population of progenitors in the anteroventral optic pits/vesicles starting at E8.5, and were found in neuroretina, optic stalk, ventral forebrain, but not RPE, at E10.5. Six3-deletion in the small population of progenitors at E8.5 was sufficient to cause rostral expansion of Wnt8b and drastic reduction of Fgf8/MAPK signaling, ablating neuroretinal specification without affecting RPE. Lineage tracing revealed Six3-deficient progenitors at E8.5 were eventually lost and the remnant RPE was derived from Six3-Cre negative cells. Thus, Six3 in a small population of progenitors expressing Six3-Cre at E8.5 is required for neuroretinal specification via regulating cell signaling and survival in mice.
Collapse
Affiliation(s)
- Wei Liu
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| |
Collapse
|
37
|
Cechmanek PB, McFarlane S. Retinal pigment epithelium expansion around the neural retina occurs in two separate phases with distinct mechanisms. Dev Dyn 2017; 246:598-609. [PMID: 28556369 DOI: 10.1002/dvdy.24525] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/17/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The retinal pigment epithelium (RPE) is a specialized monolayer of epithelial cells that forms a tight barrier surrounding the neural retina. RPE cells are indispensable for mature photoreceptor renewal and survival, yet how the initial RPE cell population expands around the neural retina during eye development is poorly understood. RESULTS Here we characterize the differentiation, proliferation, and movements of RPE progenitors in the Zebrafish embryo over the period of optic cup morphogenesis. RPE progenitors are present in the dorsomedial eye vesicle shortly after eye vesicle evagination. We define two separate phases that allow for full RPE expansion. The first phase involves a previously uncharacterized antero-wards expansion of the RPE progenitor domain in the inner eye vesicle leaflet, driven largely by an increase in cell number. During this phase, RPE progenitors start to express differentiation markers. In the second phase, the progenitor domain stretches in the dorsoventral and posterior axes, involving cell movements and shape changes, and coinciding with optic cup morphogenesis. Significantly, cell division is not required for RPE expansion. CONCLUSIONS RPE development to produce the monolayer epithelium that covers the back of the neural retina occurs in two distinct phases driven by distinct mechanisms. Developmental Dynamics 246:598-609, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paula Bernice Cechmanek
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Morishita Y, Hironaka KI, Lee SW, Jin T, Ohtsuka D. Reconstructing 3D deformation dynamics for curved epithelial sheet morphogenesis from positional data of sparsely-labeled cells. Nat Commun 2017; 8:15. [PMID: 28465614 PMCID: PMC5432036 DOI: 10.1038/s41467-017-00023-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 02/17/2017] [Indexed: 11/09/2022] Open
Abstract
Quantifying global tissue deformation patterns is essential for understanding how organ-specific morphology is generated during development and regeneration. However, due to imaging difficulties and complex morphology, little is known about deformation dynamics for most vertebrate organs such as the brain and heart. To better understand these dynamics, we propose a method to precisely reconstruct global deformation patterns for three-dimensional morphogenesis of curved epithelial sheets using positional data from labeled cells representing only 1–10% of the entire tissue with limited resolution. By combining differential-geometrical and Bayesian frameworks, the method is applicable to any morphology described with arbitrary coordinates, and ensures the feasibility of analyzing many vertebrate organs. Application to data from chick forebrain morphogenesis demonstrates that our method provides not only a quantitative description of tissue deformation dynamics but also predictions of the mechanisms that determine organ-specific morphology, which could form the basis for the multi-scale understanding of organ morphogenesis. Quantifying deformation patterns of curved epithelial sheets is challenging owing to imaging difficulties. Here the authors develop a method to obtain a quantitative description of 3D tissue deformation dynamics from a small set of cell positional data and applied it to chick forebrain morphogenesis.
Collapse
Affiliation(s)
- Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Quantitative Biology Center, Kobe, 650-0047, Japan.
| | - Ken-Ichi Hironaka
- Laboratory for Developmental Morphogeometry, RIKEN Quantitative Biology Center, Kobe, 650-0047, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Sang-Woo Lee
- Laboratory for Developmental Morphogeometry, RIKEN Quantitative Biology Center, Kobe, 650-0047, Japan
| | - Takashi Jin
- Laboratory for Nano-Bio Probes, RIKEN Quantitative Biology Center, Osaka, 565-0874, Japan
| | - Daisuke Ohtsuka
- Laboratory for Developmental Morphogeometry, RIKEN Quantitative Biology Center, Kobe, 650-0047, Japan
| |
Collapse
|
39
|
Yamamoto K, Bloch S, Vernier P. New perspective on the regionalization of the anterior forebrain in Osteichthyes. Dev Growth Differ 2017; 59:175-187. [PMID: 28470718 PMCID: PMC11520958 DOI: 10.1111/dgd.12348] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/26/2017] [Accepted: 03/13/2017] [Indexed: 01/19/2023]
Abstract
In the current model, the most anterior part of the forebrain (secondary prosencephalon) is subdivided into the telencephalon dorsally and the hypothalamus ventrally. Our recent study identified a new morphogenetic unit named the optic recess region (ORR) between the telencephalon and the hypothalamus. This modification of the forebrain regionalization based on the ventricular organization resolved some previously unexplained inconsistency about regional identification in different vertebrate groups. The ventricular-based comparison also revealed a large diversity within the subregions (notably in the hypothalamus and telencephalon) among different vertebrate groups. In tetrapods there is only one hypothalamic recess, while in teleosts there are two recesses. Most notably, the mammalian and teleost hypothalami are two extreme cases: the former has lost the cerebrospinal fluid-contacting (CSF-c) neurons, while the latter has increased them. Thus, one to one homology of hypothalamic subregions in mammals and teleosts requires careful verification. In the telencephalon, different developmental processes between Sarcopterygii (lobe-finned fish) and Actinopterygii (ray-finned fish) have already been described: the evagination and the eversion. Although pallial homology has been long discussed based on the assumption that the medial-lateral organization of the pallium in Actinopterygii is inverted from that in Sarcopterygii, recent developmental data contradict this assumption. Current models of the brain organization are largely based on a mammalian-centric point of view, but our comparative analyses shed new light on the brain organization of Osteichthyes.
Collapse
Affiliation(s)
- Kei Yamamoto
- Paris‐Saclay Institute of Neuroscience (UMR 9197)CNRSUniversité Paris‐SudUniversité Paris‐SaclayGif‐sur‐Yvette91190France
| | - Solal Bloch
- Paris‐Saclay Institute of Neuroscience (UMR 9197)CNRSUniversité Paris‐SudUniversité Paris‐SaclayGif‐sur‐Yvette91190France
| | - Philippe Vernier
- Paris‐Saclay Institute of Neuroscience (UMR 9197)CNRSUniversité Paris‐SudUniversité Paris‐SaclayGif‐sur‐Yvette91190France
| |
Collapse
|
40
|
Sidhaye J, Norden C. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. eLife 2017; 6:22689. [PMID: 28372636 PMCID: PMC5380436 DOI: 10.7554/elife.22689] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/14/2017] [Indexed: 12/27/2022] Open
Abstract
Organ formation is a multi-scale event that involves changes at the intracellular, cellular and tissue level. Organogenesis often starts with the formation of characteristically shaped organ precursors. However, the cellular mechanisms driving organ precursor formation are often not clear. Here, using zebrafish, we investigate the epithelial rearrangements responsible for the development of the hemispherical retinal neuroepithelium (RNE), a part of the optic cup. We show that in addition to basal shrinkage of RNE cells, active migration of connected epithelial cells into the RNE is a crucial player in its formation. This cellular movement is driven by progressive cell-matrix contacts and actively translocates prospective RNE cells to their correct location before they adopt neuroepithelial fate. Failure of this migration during neuroepithelium formation leads to ectopic determination of RNE cells and consequently impairs optic cup formation. Overall, this study illustrates how spatiotemporal coordination between morphogenic movements and fate determination critically influences organogenesis.
Collapse
Affiliation(s)
- Jaydeep Sidhaye
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Dresden International Graduate School for Biomedicine and Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
41
|
Nicolás-Pérez M, Kuchling F, Letelier J, Polvillo R, Wittbrodt J, Martínez-Morales JR. Analysis of cellular behavior and cytoskeletal dynamics reveal a constriction mechanism driving optic cup morphogenesis. eLife 2016; 5. [PMID: 27797321 PMCID: PMC5110244 DOI: 10.7554/elife.15797] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Contractile actomyosin networks have been shown to power tissue morphogenesis. Although the basic cellular machinery generating mechanical tension appears largely conserved, tensions propagate in unique ways within each tissue. Here we use the vertebrate eye as a paradigm to investigate how tensions are generated and transmitted during the folding of a neuroepithelial layer. We record membrane pulsatile behavior and actomyosin dynamics during zebrafish optic cup morphogenesis by live imaging. We show that retinal neuroblasts undergo fast oscillations and that myosin condensation correlates with episodic contractions that progressively reduce basal feet area. Interference with lamc1 function impairs basal contractility and optic cup folding. Mapping of tensile forces by laser cutting uncover a developmental window in which local ablations trigger the displacement of the entire tissue. Our work shows that optic cup morphogenesis is driven by a constriction mechanism and indicates that supra-cellular transmission of mechanical tension depends on ECM attachment. DOI:http://dx.doi.org/10.7554/eLife.15797.001 Tissues and organs form into their final shapes because the cells in a developing embryo generate forces that alter their shape and position. Networks of fibres made from actin and myosin proteins generate these forces, and because the fibres can assemble in many different ways inside cells, they allow the cells to move and change shape in many different ways. Forces in some tissues can cause flat sheets of cells to bend. These sheets of cells are attached on one side (their “basal” surface) to a collection of membranes and molecules that are known as the extracellular matrix. When the cells in the sheet progressively shrink at their basal surface, causing the sheet to bend towards the extracellular matrix, this is known as basal constriction. Nicolás-Pérez et al. have used high-resolution imaging to record how basal constriction helps the optic cup – the main chamber of the eye – to form in zebrafish embryos. This imaging confirmed that a sheet of precursor cells progressively bends towards its basal surface to form the curved shape of the eyeball. Further analysis revealed that this basal constriction happens when myosin fibres accumulate in clusters along the basal surface of some of the precursor cells. The resulting contraction of the basal surface of the cells relies both on the tension generated by myosin inside the cell and on the cells being attached properly to the extracellular matrix. Using a laser beam, Nicolás-Pérez et al. also destroyed small parts of the basal surface of the retina. This procedure allows the mechanical tension distribution throughout the developing eye to be mapped. Laser ablations revealed a narrow time window during development when destroying small parts of the basal surface can cause the entire sheet of cells to relax, preventing it from curving to form the shape of the eye. Sheets of precursor cells are important building blocks of the nervous system, yet researchers only have limited knowledge of the processes that enable them to fold or bend into a final shape. As such, the findings of Nicolás-Pérez et al. will contribute to a wider understanding of how cells and tissues behave while the brain is forming. DOI:http://dx.doi.org/10.7554/eLife.15797.002
Collapse
Affiliation(s)
| | - Franz Kuchling
- Centro Andaluz de Biología del Desarrollo, Seville, Spain.,Centre for Organismal Studies, COS, University of Heidelberg, Heidelberg, Germany
| | | | - Rocío Polvillo
- Centro Andaluz de Biología del Desarrollo, Seville, Spain
| | - Jochen Wittbrodt
- Centre for Organismal Studies, COS, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
42
|
Bryan CD, Chien CB, Kwan KM. Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis. Dev Biol 2016; 416:324-37. [PMID: 27339294 DOI: 10.1016/j.ydbio.2016.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 01/02/2023]
Abstract
The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1(UW1)) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1(UW1) mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis.
Collapse
Affiliation(s)
- Chase D Bryan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
43
|
Lowe A, Harris R, Bhansali P, Cvekl A, Liu W. Intercellular Adhesion-Dependent Cell Survival and ROCK-Regulated Actomyosin-Driven Forces Mediate Self-Formation of a Retinal Organoid. Stem Cell Reports 2016; 6:743-756. [PMID: 27132890 PMCID: PMC4939656 DOI: 10.1016/j.stemcr.2016.03.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 02/06/2023] Open
Abstract
In this study we dissected retinal organoid morphogenesis in human embryonic stem cell (hESC)-derived cultures and established a convenient method for isolating large quantities of retinal organoids for modeling human retinal development and disease. Epithelialized cysts were generated via floating culture of clumps of Matrigel/hESCs. Upon spontaneous attachment and spreading of the cysts, patterned retinal monolayers with tight junctions formed. Dispase-mediated detachment of the monolayers and subsequent floating culture led to self-formation of retinal organoids comprising patterned neuroretina, ciliary margin, and retinal pigment epithelium. Intercellular adhesion-dependent cell survival and ROCK-regulated actomyosin-driven forces are required for the self-organization. Our data supports a hypothesis that newly specified neuroretina progenitors form characteristic structures in equilibrium through minimization of cell surface tension. In long-term culture, the retinal organoids autonomously generated stratified retinal tissues, including photoreceptors with ultrastructure of outer segments. Our system requires minimal manual manipulation, has been validated in two lines of human pluripotent stem cells, and provides insight into optic cup invagination in vivo. Established a method for isolating large amounts of retinal organoids from hESCs Dispase-mediated cell detachment led to self-formation of the retinal organoids Intercellular adhesions in the floating cultures are required for cell survival ROCK-regulated actomyosin-driven forces are required for the self-organization
Collapse
Affiliation(s)
- Albert Lowe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Raven Harris
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Punita Bhansali
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
44
|
Araya C, Carmona-Fontaine C, Clarke JDW. Extracellular matrix couples the convergence movements of mesoderm and neural plate during the early stages of neurulation. Dev Dyn 2016; 245:580-9. [PMID: 26933766 DOI: 10.1002/dvdy.24401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/01/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND During the initial stages zebrafish neurulation, neural plate cells undergo highly coordinated movements before they assemble into a multicellular solid neural rod. We have previously identified that the underlying mesoderm is critical to ensure such coordination and generate correct neural tube organization. However, how intertissue coordination is achieved in vivo during zebrafish neural tube morphogenesis is unknown. RESULTS In this work, we use quantitative live imaging to study the coordinated movements of neural ectoderm and mesoderm during dorsal tissue convergence. We show the extracellular matrix components laminin and fibronectin that lie between mesoderm and neural plate act to couple the movements of neural plate and mesoderm during early stages of neurulation and to maintain the close apposition of these two tissues. CONCLUSIONS Our study highlights the importance of the extracellular matrix proteins laminin and libronectin in coupling the movements and spatial proximity of mesoderm and neuroectoderm during the morphogenetic movements of neurulation. Developmental Dynamics 245:580-589, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile.,MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London, United Kingdom
| | - Carlos Carmona-Fontaine
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Jonathan D W Clarke
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London, United Kingdom
| |
Collapse
|
45
|
Hernández-Bejarano M, Gestri G, Spawls L, Nieto-López F, Picker A, Tada M, Brand M, Bovolenta P, Wilson SW, Cavodeassi F. Opposing Shh and Fgf signals initiate nasotemporal patterning of the zebrafish retina. Development 2015; 142:3933-42. [PMID: 26428010 PMCID: PMC4712879 DOI: 10.1242/dev.125120] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023]
Abstract
The earliest known determinants of retinal nasotemporal identity are the transcriptional regulators Foxg1, which is expressed in the prospective nasal optic vesicle, and Foxd1, which is expressed in the prospective temporal optic vesicle. Previous work has shown that, in zebrafish, Fgf signals from the dorsal forebrain and olfactory primordia are required to specify nasal identity in the dorsal, prospective nasal, optic vesicle. Here, we show that Hh signalling from the ventral forebrain is required for specification of temporal identity in the ventral optic vesicle and is sufficient to induce temporal character when activated in the prospective nasal retina. Consequently, the evaginating optic vesicles become partitioned into prospective nasal and temporal domains by the opposing actions of Fgfs and Shh emanating from dorsal and ventral domains of the forebrain primordium. In absence of Fgf activity, foxd1 expression is established irrespective of levels of Hh signalling, indicating that the role of Shh in promoting foxd1 expression is only required in the presence of Fgf activity. Once the spatially complementary expression of foxd1 and foxg1 is established, the boundary between expression domains is maintained by mutual repression between Foxd1 and Foxg1. Summary: In the fish eye, Hh signalling from the ventral forebrain regulates spatial identity in the retina by promoting foxd1 expression. This role is required only in the presence of Fgf activity.
Collapse
Affiliation(s)
| | - Gaia Gestri
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, UK
| | - Lana Spawls
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, UK
| | - Francisco Nieto-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Alexander Picker
- Center of Regenerative Therapies Dresden (CRTD), Biotechnology Center, Dresden University of Technology, 01062 Dresden, Germany
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, UK
| | - Michael Brand
- Center of Regenerative Therapies Dresden (CRTD), Biotechnology Center, Dresden University of Technology, 01062 Dresden, Germany
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain CIBER de Enfermedades Raras (CIBERER), C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, UK
| | - Florencia Cavodeassi
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, 28049, Madrid, Spain CIBER de Enfermedades Raras (CIBERER), C/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
46
|
Singh S, Solecki DJ. Polarity transitions during neurogenesis and germinal zone exit in the developing central nervous system. Front Cell Neurosci 2015; 9:62. [PMID: 25852469 PMCID: PMC4349153 DOI: 10.3389/fncel.2015.00062] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/10/2015] [Indexed: 11/14/2022] Open
Abstract
During neural development, billions of neurons differentiate, polarize, migrate and form synapses in a precisely choreographed sequence. These precise developmental events are accompanied by discreet transitions in cellular polarity. While radial glial neural stem cells are highly polarized, transiently amplifying neural progenitors are less polarized after delaminating from their parental stem cell. Moreover, preceding their radial migration to a final laminar position neural progenitors re-adopt a polarized morphology before they embarking on their journey along a glial guide to the destination where they will fully mature. In this review, we will compare and contrast the key polarity transitions of cells derived from a neuroepithelium to the well-characterized polarity transitions that occur in true epithelia. We will highlight recent advances in the field that shows that neuronal progenitor delamination from germinal zone (GZ) niche shares similarities to an epithelial-mesenchymal transition. Moreover, studies in the cerebellum suggest the acquisition of radial migration and polarity in transiently amplifying neural progenitors share similarities to mesenchymal-epithelial transitions. Where applicable, we will compare and contrast the precise molecular mechanisms used by epithelial cells and neuronal progenitors to control plasticity in cell polarity during their distinct developmental programs.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital Memphis, TN, USA
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital Memphis, TN, USA
| |
Collapse
|
47
|
Affaticati P, Yamamoto K, Rizzi B, Bureau C, Peyriéras N, Pasqualini C, Demarque M, Vernier P. Identification of the optic recess region as a morphogenetic entity in the zebrafish forebrain. Sci Rep 2015; 5:8738. [PMID: 25736911 PMCID: PMC5390081 DOI: 10.1038/srep08738] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
Regionalization is a critical, highly conserved step in the development of the vertebrate brain. Discrepancies exist in how regionalization of the anterior vertebrate forebrain is conceived since the “preoptic area” is proposed to be a part of the telencephalon in tetrapods but not in teleost fish. To gain insight into this complex morphogenesis, formation of the anterior forebrain was analyzed in 3D over time in zebrafish embryos, combining visualization of proliferation and differentiation markers, with that of developmental genes. We found that the region containing the preoptic area behaves as a coherent morphogenetic entity, organized around the optic recess and located between telencephalon and hypothalamus. This optic recess region (ORR) makes clear borders with its neighbor areas and expresses a specific set of genes (dlx2a, sim1a and otpb). We thus propose that the anterior forebrain (secondary prosencephalon) in teleosts contains three morphogenetic entities (telencephalon, ORR and hypothalamus), instead of two (telencephalon and hypothalamus). The ORR in teleosts could correspond to “telencephalic stalk area” and “alar hypothalamus” in tetrapods, resolving current inconsistencies in the comparison of basal forebrain among vertebrates.
Collapse
Affiliation(s)
- Pierre Affaticati
- TEFOR Core Facility, Paris-Saclay Institute of Neuroscience (UMR9197), CNRS Université Paris-Sud, 91190 Gif-sur-Yvette, France
| | - Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (UMR9197), CNRS Université Paris-Sud, 91190 Gif-sur-Yvette, France
| | - Barbara Rizzi
- TEFOR Core Facility, Paris-Saclay Institute of Neuroscience (UMR9197), CNRS Université Paris-Sud, 91190 Gif-sur-Yvette, France
| | - Charlotte Bureau
- Paris-Saclay Institute of Neuroscience (UMR9197), CNRS Université Paris-Sud, 91190 Gif-sur-Yvette, France
| | | | - Catherine Pasqualini
- Paris-Saclay Institute of Neuroscience (UMR9197), CNRS Université Paris-Sud, 91190 Gif-sur-Yvette, France
| | - Michaël Demarque
- Paris-Saclay Institute of Neuroscience (UMR9197), CNRS Université Paris-Sud, 91190 Gif-sur-Yvette, France
| | - Philippe Vernier
- Paris-Saclay Institute of Neuroscience (UMR9197), CNRS Université Paris-Sud, 91190 Gif-sur-Yvette, France
| |
Collapse
|
48
|
Bazin-Lopez N, Valdivia LE, Wilson SW, Gestri G. Watching eyes take shape. Curr Opin Genet Dev 2015; 32:73-9. [PMID: 25748250 PMCID: PMC4931046 DOI: 10.1016/j.gde.2015.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/01/2015] [Indexed: 01/12/2023]
Abstract
Vertebrate eye formation is a multistep process requiring coordinated inductive interactions between neural and non-neural ectoderm and underlying mesendoderm. The induction and shaping of the eyes involves an elaborate cellular choreography characterized by precise changes in cell shape coupled with complex cellular and epithelial movements. Consequently, the forming eye is an excellent model to study the cellular mechanisms underlying complex tissue morphogenesis. Using examples largely drawn from recent studies of optic vesicle formation in zebrafish and in cultured embryonic stem cells, in this short review, we highlight some recent advances in our understanding of the events that shape the vertebrate eye.
Collapse
Affiliation(s)
- Naiara Bazin-Lopez
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom
| | - Leonardo E Valdivia
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom.
| | - Gaia Gestri
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
49
|
Pillai-Kastoori L, Wen W, Morris AC. Keeping an eye on SOXC proteins. Dev Dyn 2015; 244:367-376. [PMID: 25476579 PMCID: PMC4344926 DOI: 10.1002/dvdy.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/10/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022] Open
Abstract
The formation of a mature, functional eye requires a complex series of cell proliferation, migration, induction among different germinal layers, and cell differentiation. These processes are regulated by extracellular cues such as the Wnt/BMP/Hh/Fgf signaling pathways, as well as cell intrinsic transcription factors that specify cell fate. In this review article, we provide an overview of stages of embryonic eye morphogenesis, extrinsic and intrinsic factors that are required for each stage, and pediatric ocular diseases that are associated with defective eye development. In addition, we focus on recent findings about the roles of the SOXC proteins in regulating vertebrate ocular development and implicating SOXC mutations in human ocular malformations.
Collapse
Affiliation(s)
| | - Wen Wen
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
50
|
Heermann S, Schütz L, Lemke S, Krieglstein K, Wittbrodt J. Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. eLife 2015; 4. [PMID: 25719386 PMCID: PMC4337729 DOI: 10.7554/elife.05216] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/26/2015] [Indexed: 01/07/2023] Open
Abstract
The hemispheric, bi-layered optic cup forms from an oval optic vesicle during early vertebrate eye development through major morphological transformations. The overall basal surface, facing the developing lens, is increasing, while, at the same time, the space basally occupied by individual cells is decreasing. This cannot be explained by the classical view of eye development. Using zebrafish (Danio rerio) as a model, we show that the lens-averted epithelium functions as a reservoir that contributes to the growing neuroretina through epithelial flow around the distal rims of the optic cup. We propose that this flow couples morphogenesis and retinal determination. Our 4D data indicate that future stem cells flow from their origin in the lens-averted domain of the optic vesicle to their destination in the ciliary marginal zone. BMP-mediated inhibition of the flow results in ectopic neuroretina in the RPE domain. Ultimately the ventral fissure fails to close resulting in coloboma. DOI:http://dx.doi.org/10.7554/eLife.05216.001 The eye is our most important organ for sensing and recognizing our environment. In humans and other vertebrates, the eye forms from an outgrowth of the brain as the embryo develops. This outgrowth is called the optic vesicle and it is rapidly transformed into a cup-shaped structure known as the optic cup. Defects in this process prevent the optic cup from closing completely, which leads to a severe condition called Coloboma—one of the most frequent causes of blindness in children. The optic cup has two distinct layers: the inside layer—known as the neuroretina—contains light sensitive cells and is surrounded by the other layer called the pigmented epithelium. It is thought that the neural retina is made from cells from the side of the optic vesicle that faces the lens, and the pigmented epithelium is formed by cells from the other side of the vesicle. This is a plausible explanation and is well accepted, but it cannot explain how the neuroretina can become five times larger as the cup forms. Heermann et al. addressed this problem by using four-dimensional in vivo microscopy to follow individual cells as the optic cup forms in living zebrafish embryos. The experiments show that the neuroretina is made of cells from both sides of the optic vesicle. Cells from the back of the optic vesicle (furthest away from the lens) join the rest of the cells by moving around the outside rim of the cup. Further experiments found that a signaling molecule called BMP—which is crucial to the normal development of the eye—controls the flow of cells around the developing optic cup. This factor needs to be carefully controlled during the development of the eye; when BMP activity was artificially increased, the flow of cells stopped, resulting in neuroretinal tissue developing in the wrong place (in the outer layer of the optic cup). The experiments also reveal that the stem cells in the retina—which divide to produce new cells throughout the life of the zebrafish—originate from two distinct areas in the optic vesicle. Heermann et al.'s findings challenge the textbook model of eye development by revealing that cells from both sides of the optic vesicle contribute to the neuroretina and that retinal stem cells originate from a specific place in the developing eye. A future challenge will be to understand how the movement of the cells into the neuroretina is coordinated to make a perfectly shaped eye. DOI:http://dx.doi.org/10.7554/eLife.05216.002
Collapse
Affiliation(s)
- Stephan Heermann
- Centre for Organismal Studies Heidelberg, Ruprecht Karls Universität, Heidelberg, Germany
| | - Lucas Schütz
- Centre for Organismal Studies Heidelberg, Ruprecht Karls Universität, Heidelberg, Germany
| | - Steffen Lemke
- Centre for Organismal Studies Heidelberg, Ruprecht Karls Universität, Heidelberg, Germany
| | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University Freiburg, Freiburg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies Heidelberg, Ruprecht Karls Universität, Heidelberg, Germany
| |
Collapse
|