1
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
2
|
Kalyanakrishnan K, Beaudin A, Jetté A, Ghezelbash S, Hotea DI, Chen J, Lefrançois P, Laurin M. ARHGEF3 Regulates Hair Follicle Morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612256. [PMID: 39314354 PMCID: PMC11419159 DOI: 10.1101/2024.09.13.612256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During embryogenesis, cells arrange into precise patterns that enable tissues and organs to develop specialized functions. Despite its critical importance, the molecular choreography behind these collective cellular behaviors remains elusive, posing a major challenge in developmental biology and limiting advances in regenerative medicine. By using the mouse hair follicle as a mini-organ system to study the formation of bud-like structures during embryonic development, our work uncovers a crucial role for the Rho GTPase regulator ARHGEF3 in hair follicle morphogenesis. We demonstrate that Arhgef3 expression is upregulated at the onset of hair follicle placode formation. In Arhgef3 knockout animals, we observed defects in placode compaction, leading to impaired hair follicle downgrowth. Through cell culture models, we show that ARHGEF3 promotes F-actin accumulation at the cell cortex and P-cadherin enrichment at cell-cell junctions. Collectively, our study identifies ARHGEF3 as a new regulator of cell shape rearrangements during hair placode morphogenesis, warranting further exploration of its role in other epithelial appendages that arise from similar developmental processes.
Collapse
Affiliation(s)
- Krithika Kalyanakrishnan
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Amy Beaudin
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Alexandra Jetté
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Sarah Ghezelbash
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Québec, Canada
| | - Diana Ioana Hotea
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801
| | - Philippe Lefrançois
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Québec, Canada
- Division of Dermatology, Department of Medicine, McGill University, Montréal, QC, Canada
| | - Mélanie Laurin
- Centre de recherche du CHU de Québec - Université Laval, axe Oncologie, Québec, Canada
- Programme de biologie moléculaire et cellulaire, Université Laval
- Département de biologie moléculaire, biochimie médicale et pathologie, Université Laval
- Faculté de médecine, Université Laval
- Centre de recherche sur le cancer de l'Université Laval (CRC)
- Centre de recherche en organogénèse expérimentale (LOEX)
| |
Collapse
|
3
|
Du W, Verma A, Ye Q, Du W, Lin S, Yamanaka A, Klein OD, Hu JK. Myosin II mediates Shh signals to shape dental epithelia via control of cell adhesion and movement. PLoS Genet 2024; 20:e1011326. [PMID: 38857279 PMCID: PMC11192418 DOI: 10.1371/journal.pgen.1011326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/21/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Adya Verma
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Wen Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sandy Lin
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jimmy K. Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Satta JP, Lan Q, Taketo MM, Mikkola ML. Stabilization of Epithelial β-Catenin Compromises Mammary Cell Fate Acquisition and Branching Morphogenesis. J Invest Dermatol 2024; 144:1223-1237.e10. [PMID: 38159590 DOI: 10.1016/j.jid.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
The Wnt/β-catenin pathway plays a critical role in cell fate specification, morphogenesis, and stem cell activation across diverse tissues, including the skin. In mammals, the embryonic surface epithelium gives rise to the epidermis as well as the associated appendages including hair follicles and mammary glands, both of which depend on epithelial Wnt/β-catenin activity for initiation of their development. Later on, Wnts are thought to enhance mammary gland growth and branching, whereas in hair follicles, they are essential for hair shaft formation. In this study, we report a strong downregulation of epithelial Wnt/β-catenin activity as the mammary bud progresses to branching. We show that forced activation of epithelial β-catenin severely compromises embryonic mammary gland branching. However, the phenotype of conditional Lef1-deficient embryos implies that a low level of Wnt/β-catenin activity is necessary for mammary cell survival. Transcriptomic profiling suggests that sustained high β-catenin activity leads to maintenance of mammary bud gene signature at the expense of outgrowth/branching gene signature. In addition, it leads to upregulation of epidermal differentiation genes. Strikingly, we find a partial switch to hair follicle fate early on upon stabilization of β-catenin, suggesting that the level of epithelial Wnt/β-catenin signaling activity may contribute to the choice between skin appendage identities.
Collapse
Affiliation(s)
- Jyoti Prabha Satta
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland
| | - Makoto Mark Taketo
- Colon Cancer Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Biggs LC, Miroshnikova YA. Nuclear mechanotransduction on skin stem cell fate regulation. Curr Opin Cell Biol 2024; 87:102328. [PMID: 38340567 DOI: 10.1016/j.ceb.2024.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Mammalian skin is a highly dynamic and regenerative organ that has long been recognized as a mechanically active composite of tissues withstanding daily compressive and tensile forces that arise from body movement. Importantly, cell- and tissue-scale mechanical signals are critical regulators of skin morphogenesis and homeostasis. These signals are sensed at the cellular periphery and transduced by mechanosensitive proteins within the plasma membrane to the cytoskeletal networks, and eventually into the nucleus to regulate chromatin organization and gene expression. The role of each of these nodes in producing a coherent mechanoresponse at both cell- and tissue-scales is emerging. Here we focus on the key cytoplasmic and nuclear mechanosensitive structures that are critical for the mammalian skin development and homeostatic maintenance. We propose that the mechanical state of the skin, in particular of its nuclear compartment, is a critical rheostat that fine-tunes developmental and homeostatic processes essential for the proper function of the organ.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
7
|
Villeneuve C, Hashmi A, Ylivinkka I, Lawson-Keister E, Miroshnikova YA, Pérez-González C, Myllymäki SM, Bertillot F, Yadav B, Zhang T, Matic Vignjevic D, Mikkola ML, Manning ML, Wickström SA. Mechanical forces across compartments coordinate cell shape and fate transitions to generate tissue architecture. Nat Cell Biol 2024; 26:207-218. [PMID: 38302719 PMCID: PMC10866703 DOI: 10.1038/s41556-023-01332-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/08/2023] [Indexed: 02/03/2024]
Abstract
Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. An excellent paradigm to understand the coupling of these processes is mammalian hair follicle development, which is initiated by the formation of an epithelial invagination-termed placode-that coincides with the emergence of a designated hair follicle stem cell population. The mechanisms directing the deformation of the epithelium, cell state transitions and physical compartmentalization of the placode are unknown. Here we identify a key role for coordinated mechanical forces stemming from contractile, proliferative and proteolytic activities across the epithelial and mesenchymal compartments in generating the placode structure. A ring of fibroblast cells gradually wraps around the placode cells to generate centripetal contractile forces, which, in collaboration with polarized epithelial myosin activity, promote elongation and local tissue thickening. These mechanical stresses further enhance compartmentalization of Sox9 expression to promote stem cell positioning. Subsequently, proteolytic remodelling locally softens the basement membrane to facilitate a release of pressure on the placode, enabling localized cell divisions, tissue fluidification and epithelial invagination into the underlying mesenchyme. Together, our experiments and modelling identify dynamic cell shape transformations and tissue-scale mechanical cooperation as key factors for orchestrating organ formation.
Collapse
Affiliation(s)
- Clémentine Villeneuve
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ali Hashmi
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Irene Ylivinkka
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Yekaterina A Miroshnikova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carlos Pérez-González
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Satu-Marja Myllymäki
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Fabien Bertillot
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bhagwan Yadav
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - M Lisa Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY, USA.
| | - Sara A Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Mäkelä OJM, Mikkola ML. Mesenchyme governs hair follicle induction. Development 2023; 150:dev202140. [PMID: 37982496 DOI: 10.1242/dev.202140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Tissue interactions are essential for guiding organ development and regeneration. Hair follicle formation relies on inductive signalling between two tissues, the embryonic surface epithelium and the adjacent mesenchyme. Although previous research has highlighted the hair-inducing potential of the mesenchymal component of the hair follicle - the dermal papilla and its precursor, the dermal condensate - the source and nature of the primary inductive signal before dermal condensate formation have remained elusive. Here, we performed epithelial-mesenchymal tissue recombination experiments using hair-forming back skin and glabrous plantar skin from mouse embryos to unveil that the back skin mesenchyme is inductive even before dermal condensate formation. Moreover, the naïve, unpatterned mesenchyme was sufficient to trigger hair follicle formation even in the oral epithelium. Building on previous knowledge, we explored the hair-inductive ability of the Wnt agonist R-spondin 1 and a Bmp receptor inhibitor in embryonic skin explants. Although R-spondin 1 instigated precocious placode-specific transcriptional responses, it was insufficient for hair follicle induction, either alone or in combination with Bmp receptor inhibition. Our findings pave the way for identifying the hair follicle-inducing cue.
Collapse
Affiliation(s)
- Otto J M Mäkelä
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Jacob T, Annusver K, Czarnewski P, Dalessandri T, Kalk C, Levra Levron C, Campamà Sanz N, Kastriti ME, Mikkola ML, Rendl M, Lichtenberger BM, Donati G, Björklund ÅK, Kasper M. Molecular and spatial landmarks of early mouse skin development. Dev Cell 2023; 58:2140-2162.e5. [PMID: 37591247 PMCID: PMC11088744 DOI: 10.1016/j.devcel.2023.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
A wealth of specialized cell populations within the skin facilitates its hair-producing, protective, sensory, and thermoregulatory functions. How the vast cell-type diversity and tissue architecture develops is largely unexplored. Here, with single-cell transcriptomics, spatial cell-type assignment, and cell-lineage tracing, we deconstruct early embryonic mouse skin during the key transitions from seemingly uniform developmental precursor states to a multilayered, multilineage epithelium, and complex dermal identity. We identify the spatiotemporal emergence of hair-follicle-inducing, muscle-supportive, and fascia-forming fibroblasts. We also demonstrate the formation of the panniculus carnosus muscle (PCM), sprouting blood vessels without pericyte coverage, and the earliest residence of mast and dendritic immune cells in skin. Finally, we identify an unexpected epithelial heterogeneity within the early single-layered epidermis and a signaling-rich periderm layer. Overall, this cellular and molecular blueprint of early skin development-which can be explored at https://kasperlab.org/tools-establishes histological landmarks and highlights unprecedented dynamic interactions among skin cells.
Collapse
Affiliation(s)
- Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17165 Stockholm, Sweden
| | - Tim Dalessandri
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christina Kalk
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chiara Levra Levron
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Michael Rendl
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
10
|
Yao Y, Yang R, Zhu J, Schlessinger D, Sima J. EDA ligand triggers plasma membrane trafficking of its receptor EDAR via PKA activation and SNAP23-containing complexes. Cell Biosci 2023; 13:128. [PMID: 37430358 DOI: 10.1186/s13578-023-01082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Ectodysplasin-A (EDA), a skin-specific TNF ligand, interacts with its membrane receptor EDAR to trigger EDA signaling in skin appendage formation. Gene mutations in EDA signaling cause Anhidrotic/Hypohidrotic Ectodermal Dysplasia (A/HED), which affects the formation of skin appendages including hair, teeth, and several exocrine glands. RESULTS We report that EDA triggers the translocation of its receptor EDAR from a cytosolic compartment into the plasma membrane. We use protein affinity purification to show that upon EDA stimulation EDAR associates with SNAP23-STX6-VAMP1/2/3 vesicle trafficking complexes. We find that EDA-dependent PKA activation is critical for the association. Notably, either of two HED-linked EDAR mutations, T346M and R420W, prevents EDA-induced EDAR translocation; and both EDA-induced PKA activation and SNAP23 are required for Meibomian gland (MG) growth in a skin appendage model. CONCLUSIONS Overall, in a novel regulatory mechanism, EDA increases plasma membrane translocation of its own receptor EDAR, augmenting EDA-EDAR signaling in skin appendage formation. Our findings also provide PKA and SNAP23 as potential targets for the intervention of HED.
Collapse
Affiliation(s)
- Yuyuan Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruihan Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Zhu
- Department of Psychology, Eastern Illinois University, Charleston, IL, 61920, USA
| | - David Schlessinger
- Laboratory of Genetics and Genomics, NIA/NIH-IRP, 251 Bayview Blvd, Room 10B014, Baltimore, MD, 21224, USA
| | - Jian Sima
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Sulic AM, Das Roy R, Papagno V, Lan Q, Saikkonen R, Jernvall J, Thesleff I, Mikkola ML. Transcriptomic landscape of early hair follicle and epidermal development. Cell Rep 2023; 42:112643. [PMID: 37318953 DOI: 10.1016/j.celrep.2023.112643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/04/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Morphogenesis of ectodermal organs, such as hair, tooth, and mammary gland, starts with the formation of local epithelial thickenings, or placodes, but it remains to be determined how distinct cell types and differentiation programs are established during ontogeny. Here, we use bulk and single-cell transcriptomics and pseudotime modeling to address these questions in developing hair follicles and epidermis and produce a comprehensive transcriptomic profile of cellular populations in the hair placode and interplacodal epithelium. We report previously unknown cell populations and marker genes, including early suprabasal and genuine interfollicular basal markers, and propose the identity of suprabasal progenitors. By uncovering four different hair placode cell populations organized in three spatially distinct areas, with fine gene expression gradients between them, we posit early biases in cell fate establishment. This work is accompanied by a readily accessible online tool to stimulate further research on skin appendages and their progenitors.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Rishi Das Roy
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Verdiana Papagno
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Riikka Saikkonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Irma Thesleff
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
12
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
13
|
Zhang H, Gong X, Xu X, Wang X, Sun Y. Tooth number abnormality: from bench to bedside. Int J Oral Sci 2023; 15:5. [PMID: 36604408 PMCID: PMC9816303 DOI: 10.1038/s41368-022-00208-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 11/01/2022] [Indexed: 01/07/2023] Open
Abstract
Tooth number abnormality is one of the most common dental developmental diseases, which includes both tooth agenesis and supernumerary teeth. Tooth development is regulated by numerous developmental signals, such as the well-known Wnt, BMP, FGF, Shh and Eda pathways, which mediate the ongoing complex interactions between epithelium and mesenchyme. Abnormal expression of these crutial signalling during this process may eventually lead to the development of anomalies in tooth number; however, the underlying mechanisms remain elusive. In this review, we summarized the major process of tooth development, the latest progress of mechanism studies and newly reported clinical investigations of tooth number abnormality. In addition, potential treatment approaches for tooth number abnormality based on developmental biology are also discussed. This review not only provides a reference for the diagnosis and treatment of tooth number abnormality in clinical practice but also facilitates the translation of basic research to the clinical application.
Collapse
Affiliation(s)
- Han Zhang
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaoqiao Xu
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaogang Wang
- grid.64939.310000 0000 9999 1211Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
14
|
Jeong S, Na Y, Nam HM, Sung GY. Skin-on-a-chip strategies for human hair follicle regeneration. Exp Dermatol 2023; 32:13-23. [PMID: 36308297 DOI: 10.1111/exd.14699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 01/06/2023]
Abstract
The number of hair loss patients increases every year, and hair loss treatment has several limitations, so research on hair is attracting attention recently. However, most current hair follicle research models are limited by their inability to replicate several key functions of the hair follicle microenvironment. To complement this, an in vitro culture system similar to the in vivo environment must be constructed. It is necessary to develop a hair-on-a-chip that implements a fully functional hair follicle model by reproducing the main characteristics of hair follicle morphogenesis and cycle. In this review, we summarize the gradation of hair follicle morphogenesis and the roles and mechanisms of molecular signals involved in the hair follicle cycle. In addition, we discuss research results of various in vitro organoid products and organ-on-a-chip-based hair follicle tissue chips for the treatment of alopecia and present future research and development directions.
Collapse
Affiliation(s)
- Subin Jeong
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea
| | - Yoojin Na
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea
| | - Hyeon-Min Nam
- Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea.,Major in Materials Science and Engineering, Hallym University, Chuncheon, South Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, South Korea.,Integrative Materials Research Institute, Hallym University, Chuncheon, South Korea.,Major in Materials Science and Engineering, Hallym University, Chuncheon, South Korea
| |
Collapse
|
15
|
Single-cell chromatin landscapes of mouse skin development. Sci Data 2022; 9:741. [PMID: 36460683 PMCID: PMC9718782 DOI: 10.1038/s41597-022-01839-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
The coat of mammals is produced by hair follicles, and hair follicle is an important and complex accessory organ of skin. As a complex physiological regulation process, hair follicle morphogenesis is regulated by a series of signal pathway factors, involves the interaction of multiple cell types and begins in the early embryonic stage. However, its transcriptional regulatory mechanism is unclear. We have therefore utilized single-cell ATAC sequencing to obtain the chromatin accessibility landscapes of 6,928, 6,961 and 7,374 high-quality cells from the dorsal skins of E13.5, E16.5 and P0 mice (Mus musculus), respectively. Based on marker gene activity clustering, we defined 6, 8 and 5 distinct cell types in E13.5, E16.5 and P0 stages, respectively. Furtherly, we integrated the fibroblasts and keratinocytes clusters, performed further analysis and re-clustered. The single cell map of the chromatin open area was drawn from each cell type and the mechanism of cell transcription regulation was explored. Collectively, our data provide a reference for deeply exploring the epigenetic regulation mechanism of mouse hair follicles development.
Collapse
|
16
|
Curantz C, Bailleul R, Castro-Scherianz M, Hidalgo M, Durande M, Graner F, Manceau M. Cell shape anisotropy contributes to self-organized feather pattern fidelity in birds. PLoS Biol 2022; 20:e3001807. [PMID: 36215298 PMCID: PMC9584522 DOI: 10.1371/journal.pbio.3001807] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/20/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022] Open
Abstract
Developing tissues can self-organize into a variety of patterned structures through the stabilization of stochastic fluctuations in their molecular and cellular properties. While molecular factors and cell dynamics contributing to self-organization have been identified in vivo, events channeling self-organized systems such that they achieve stable pattern outcomes remain unknown. Here, we described natural variation in the fidelity of self-organized arrays formed by feather follicle precursors in bird embryos. By surveying skin cells prior to and during tissue self-organization and performing species-specific ex vivo drug treatments and mechanical stress tests, we demonstrated that pattern fidelity depends on the initial amplitude of cell anisotropy in regions of the developing dermis competent to produce a pattern. Using live imaging, we showed that cell shape anisotropy is associated with a limited increase in cell motility for sharp and precisely located primordia formation, and thus, proper pattern geometry. These results evidence a mechanism through which initial tissue properties ensure stability in self-organization and thus, reproducible pattern production. A study of natural variation in feather pattern geometry and a combination of pharmacological and mechanical manipulations ex vivo provides evidence for a mechanism by which initial tissue properties ensure stability in self-organization and species-specific pattern production.
Collapse
Affiliation(s)
- Camille Curantz
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris, France
- Sorbonne University, UPMC Paris VI, Paris, France
- Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Richard Bailleul
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris, France
- Sorbonne University, UPMC Paris VI, Paris, France
- Developmental Biology & Cell Biology and Biophysics Units, European Molecular Biology Laboratory, Heidelberg, Germany
| | - María Castro-Scherianz
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris, France
| | - Magdalena Hidalgo
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris, France
| | - Melina Durande
- Matière et Systèmes Complexes, Université de Paris, CNRS UMR 7057, Paris, France
| | - François Graner
- Matière et Systèmes Complexes, Université de Paris, CNRS UMR 7057, Paris, France
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Shang F, Ma R, Rong Y, Pan J, Wang M, Niu S, Qi Y, Li Y, Wang Z, Lv Q, Wang R, Su R, Liu Z, Zhao Y, Wang Z, Li J, Zhang Y. Construction and functional analysis of ceRNA regulatory network related to the development of secondary hair follicles in Inner Mongolia cashmere goats. Front Vet Sci 2022; 9:959952. [PMID: 36090177 PMCID: PMC9453165 DOI: 10.3389/fvets.2022.959952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cashmere goat hair follicles are divided into primary hair follicles and secondary hair follicles. The primary hair follicles produce coarse hair, and the secondary hair follicles produce cashmere. The development of hair follicles is affected by a variety of signaling molecules and pathways. Studies have shown that non-coding RNAs are widely involved in the development of hair follicles of the goat, including small RNAs (miRNAs), long non-coding RNAs (lncRNA), and circular RNAs (circRNAs). In recent years, circRNAs, as a new type of circular closed non-coding RNAs, have attracted great attention due to their high stability. However, its regulatory effect on cashmere goat hair follicles mainly focuses on the periodic regulation of secondary hair follicles, and there is no report on the development of cashmere goat hair follicles during the fetal period. Therefore, this study was based on the circRNA, miRNA, and mRNA expression profiles obtained by whole-transcriptional sequencing of the skin tissue of the Inner Mongolia cashmere goats in the fetal period (days 45, 55, 65, and 75) and screening out the morphological changes of hair follicles at different periods. A total of 113 circRNAs related to the development of secondary hair follicles were present. According to the principle of the ceRNA regulatory network, a ceRNA regulatory network composed of 13 circRNAs, 21 miRNAs, and 110 mRNAs related to the development of secondary hair follicles was constructed. Then, qRT-PCR and Sanger sequencing identified circRNA2034, circRNA5712, circRNA888, and circRNA9127 were circRNAs. Next, the dual-luciferase reporter gene verified the targeting relationship of circRNA5712-miR-27b-3p-Dll4. In conclusion, this study constructed a ceRNA regulatory network for the development of cashmere goat secondary hair follicles, laying a foundation for the analysis of circRNAs regulating the morphogenesis and development of cashmere goat secondary hair follicles through the ceRNA mechanism.
Collapse
Affiliation(s)
- Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianfeng Pan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuran Niu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yunpeng Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanbo Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinquan Li
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Yanjun Zhang
| |
Collapse
|
18
|
Park S. Hair Follicle Morphogenesis During Embryogenesis, Neogenesis, and Organogenesis. Front Cell Dev Biol 2022; 10:933370. [PMID: 35938157 PMCID: PMC9354988 DOI: 10.3389/fcell.2022.933370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Hair follicles are mini organs that repeat the growth and regression cycle continuously. These dynamic changes are driven by the regulation of stem cells via their multiple niche components. To build the complex structure of hair follicles and surrounding niches, sophisticated morphogenesis is required during embryonic development. This review will explore how hair follicles are formed and maintained through dynamic cellular changes and diverse signaling pathways. In addition, comparison of differences in stem cells and surrounding niche components during embryogenesis, neogenesis, and organogenesis will provide a comprehensive understanding of mechanisms for hair follicle generation and insights into skin regeneration.
Collapse
Affiliation(s)
- Sangbum Park
- Institute for Quantitative Health Science & Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- *Correspondence: Sangbum Park,
| |
Collapse
|
19
|
Thiery AP, Standing AS, Cooper RL, Fraser GJ. An epithelial signalling centre in sharks supports homology of tooth morphogenesis in vertebrates. eLife 2022; 11:73173. [PMID: 35536602 PMCID: PMC9249395 DOI: 10.7554/elife.73173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Development of tooth shape is regulated by the enamel knot signalling centre, at least in mammals. Fgf signalling regulates differential proliferation between the enamel knot and adjacent dental epithelia during tooth development, leading to formation of the dental cusp. The presence of an enamel knot in non-mammalian vertebrates is debated given differences in signalling. Here, we show the conservation and restriction of fgf3, fgf10, and shh to the sites of future dental cusps in the shark (Scyliorhinus canicula), whilst also highlighting striking differences between the shark and mouse. We reveal shifts in tooth size, shape, and cusp number following small molecule perturbations of canonical Wnt signalling. Resulting tooth phenotypes mirror observed effects in mammals, where canonical Wnt has been implicated as an upstream regulator of enamel knot signalling. In silico modelling of shark dental morphogenesis demonstrates how subtle changes in activatory and inhibitory signals can alter tooth shape, resembling developmental phenotypes and cusp shapes observed following experimental Wnt perturbation. Our results support the functional conservation of an enamel knot-like signalling centre throughout vertebrates and suggest that varied tooth types from sharks to mammals follow a similar developmental bauplan. Lineage-specific differences in signalling are not sufficient in refuting homology of this signalling centre, which is likely older than teeth themselves.
Collapse
Affiliation(s)
- Alexandre P Thiery
- Department of Animal and Plant Sciences, King's College London, London, United Kingdom
| | - Ariane S Standing
- Department of Biology, University of Florida, Gainesville, United States
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, United States
| |
Collapse
|
20
|
Abstract
Developing organs are shaped, in part, by physical interaction with their environment in the embryo. In recent years, technical advances in live-cell imaging and material science have greatly expanded our understanding of the mechanical forces driving organ formation. Here, we provide a broad overview of the types of forces generated during embryonic development and then focus on a subset of organs underlying our senses: the eyes, inner ears, nose and skin. The epithelia in these organs emerge from a common origin: the ectoderm germ layer; yet, they arrive at unique and complex forms over developmental time. We discuss exciting recent animal studies that show a crucial role for mechanical forces in, for example, the thickening of sensory placodes, the coiling of the cochlea and the lengthening of hair. Finally, we discuss how microfabricated organoid systems can now provide unprecedented insights into the physical principles of human development.
Collapse
Affiliation(s)
- Anh Phuong Le
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Nagayama K, Hanzawa T. Cell type-specific orientation and migration responses for a microgrooved surface with shallow grooves. Biomed Mater Eng 2022; 33:393-406. [PMID: 35180105 DOI: 10.3233/bme-211356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Directional cell migration due to mechanosensing for in vivo microenvironment, such as microgrooved surfaces, is an essential process in tissue growth and repair in both normal and pathological states. Cell migration responses on the microgrooved surfaces might be reflected by the cell type difference, which is deeply involved in cellular physiological functions. Although the responses are implicated in focal adhesions (FAs) of cells, limited information is available about cell migration behavior on the microgrooved surfaces whose dimensions are comparable with the size of FAs. OBJECTIVE In the present study, we investigated the cell orientation and migration behavior of normal vascular smooth muscle cells (VSMCs) and cervical cancer HeLa cells on the microgrooved surface. METHOD The surface comprises shallow grooves with 2-μm width and approximately 150-nm depth, which indicates the same order of magnitude as that of the horizontal and vertical size of FAs, respectively. Moreover, VSMCs presenting well-aligned actin stress fibers with mature FAs revealed marked cell elongation and directional migration on the grooves; however, HeLa cells with nonoriented F-actin with smaller FAs did not. Furthermore, atomic force microscopy live cell imaging revealed that the internal force of the actin stress fibers was significantly higher in VSMCs than that in HeLa cells, and the increase or decrease in the cytoskeletal forces improved or diminished the sensing ability for shallow grooves, respectively. RESULTS The results strongly indicated that directional cell migration with contact guidance responses should be modulated by cell type-specific cytoskeletal arrangements and intracellular traction forces. The differences in cell type-specific orientation and migration responses can be emphasized on the microgrooves as large as the horizontal and vertical size of FAs. CONCLUSION The microgoove structure in the size range of the FA protein complex is a powerful tool to clarify subtle differences in the intracellular force-dependent substrate mechanosensing.
Collapse
Affiliation(s)
- Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Intelligent Systems Engineering, Ibaraki University, Hitachi, Japan
| | - Tatsuya Hanzawa
- Micro-Nano Biomechanics Laboratory, Department of Intelligent Systems Engineering, Ibaraki University, Hitachi, Japan
| |
Collapse
|
22
|
Pecora A, Laprise J, Dahmene M, Laurin M. Skin Cancers and the Contribution of Rho GTPase Signaling Networks to Their Progression. Cancers (Basel) 2021; 13:4362. [PMID: 34503171 PMCID: PMC8431333 DOI: 10.3390/cancers13174362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Skin cancers are the most common cancers worldwide. Among them, melanoma, basal cell carcinoma of the skin and cutaneous squamous cell carcinoma are the three major subtypes. These cancers are characterized by different genetic perturbations even though they are similarly caused by a lifelong exposure to the sun. The main oncogenic drivers of skin cancer initiation have been known for a while, yet it remains unclear what are the molecular events that mediate their oncogenic functions and that contribute to their progression. Moreover, patients with aggressive skin cancers have been known to develop resistance to currently available treatment, which is urging us to identify new therapeutic opportunities based on a better understanding of skin cancer biology. More recently, the contribution of cytoskeletal dynamics and Rho GTPase signaling networks to the progression of skin cancers has been highlighted by several studies. In this review, we underline the various perturbations in the activity and regulation of Rho GTPase network components that contribute to skin cancer development, and we explore the emerging therapeutic opportunities that are surfacing from these studies.
Collapse
Affiliation(s)
- Alessandra Pecora
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
| | - Justine Laprise
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
| | - Manel Dahmene
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
| | - Mélanie Laurin
- Oncology Division, CHU de Québec–Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (A.P.); (J.L.); (M.D.)
- Université Laval Cancer Research Center, Université Laval, Québec City, QC G1R 3S3, Canada
- Molecular Biology, Medical Biochemistry and Pathology Department, Faculty of Medicine, Université Laval, Québec City, QC G1V OA6, Canada
| |
Collapse
|
23
|
Trela E, Lan Q, Myllymäki SM, Villeneuve C, Lindström R, Kumar V, Wickström SA, Mikkola ML. Cell influx and contractile actomyosin force drive mammary bud growth and invagination. J Cell Biol 2021; 220:e202008062. [PMID: 34042944 PMCID: PMC8164091 DOI: 10.1083/jcb.202008062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/31/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023] Open
Abstract
The mammary gland develops from the surface ectoderm during embryogenesis and proceeds through morphological phases defined as placode, hillock, bud, and bulb stages followed by branching morphogenesis. During this early morphogenesis, the mammary bud undergoes an invagination process where the thickened bud initially protrudes above the surface epithelium and then transforms to a bulb and sinks into the underlying mesenchyme. The signaling pathways regulating the early morphogenetic steps have been identified to some extent, but the underlying cellular mechanisms remain ill defined. Here, we use 3D and 4D confocal microscopy to show that the early growth of the mammary rudiment is accomplished by migration-driven cell influx, with minor contributions of cell hypertrophy and proliferation. We delineate a hitherto undescribed invagination mechanism driven by thin, elongated keratinocytes-ring cells-that form a contractile rim around the mammary bud and likely exert force via the actomyosin network. Furthermore, we show that conditional deletion of nonmuscle myosin IIA (NMIIA) impairs invagination, resulting in abnormal mammary bud shape.
Collapse
MESH Headings
- Actomyosin/metabolism
- Animals
- Cell Movement
- Cell Proliferation
- Epithelial Cells/metabolism
- Epithelial Cells/ultrastructure
- Female
- Gene Expression Regulation, Developmental
- Gestational Age
- Hypertrophy
- Keratinocytes/metabolism
- Keratinocytes/ultrastructure
- Mammary Glands, Animal/embryology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/ultrastructure
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Microscopy, Fluorescence
- Morphogenesis
- Mice
Collapse
Affiliation(s)
- Ewelina Trela
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Satu-Marja Myllymäki
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Clémentine Villeneuve
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta Lindström
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vinod Kumar
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sara A. Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Marja L. Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Abstract
Tissue stem cells are generated from a population of embryonic progenitors through organ-specific morphogenetic events1,2. Although tissue stem cells are central to organ homeostasis and regeneration, it remains unclear how they are induced during development, mainly because of the lack of markers that exclusively label prospective stem cells. Here we combine marker-independent long-term 3D live imaging and single-cell transcriptomics to capture a dynamic lineage progression and transcriptome changes in the entire epithelium of the mouse hair follicle as it develops. We found that the precursors of different epithelial lineages were aligned in a 2D concentric manner in the basal layer of the hair placode. Each concentric ring acquired unique transcriptomes and extended to form longitudinally aligned, 3D cylindrical compartments. Prospective bulge stem cells were derived from the peripheral ring of the placode basal layer, but not from suprabasal cells (as was previously suggested3). The fate of placode cells is determined by the cell position, rather than by the orientation of cell division. We also identified 13 gene clusters: the ensemble expression dynamics of these clusters drew the entire transcriptional landscape of epithelial lineage diversification, consistent with cell lineage data. Combining these findings with previous work on the development of appendages in insects4,5, we describe the 'telescope model', a generalized model for the development of ectodermal organs in which 2D concentric zones in the placode telescope out to form 3D longitudinally aligned cylindrical compartments.
Collapse
|
25
|
Hai E, Han W, Wu Z, Ma R, Shang F, Wang M, Liang L, Rong Y, Pan J, Wang Z, Wang R, Su R, Zhao Y, Liu Z, Wang Z, Li J, Zhang Y. Chi-miR-370-3p regulates hair follicle morphogenesis of Inner Mongolian cashmere goats. G3 (BETHESDA, MD.) 2021; 11:jkab091. [PMID: 33755111 PMCID: PMC8104936 DOI: 10.1093/g3journal/jkab091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs), a class of 22 nucleotide (nt) noncoding RNAs, negatively regulate mRNA posttranscriptional modification in various biological processes. Morphogenesis of skin hair follicles in cashmere goats is a dynamic process involving many key signaling molecules, but the associated cellular biological mechanisms induced by these key signaling molecules have not been reported. In this study, differential expression, bioinformatics, and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on miRNA expression profiles of Inner Mongolian cashmere goats at 45, 55, and 65 days during the fetal period, and chi-miR-370-3p was identified and investigated further. Real-time fluorescence quantification (qRT-PCR), dual luciferase reporting, and Western blotting results showed that transforming growth factor beta receptor 2 (TGF-βR2) and fibroblast growth factor receptor 2 (FGFR2) were the target genes of chi-miR-370-3p. Chi-miR-370-3p also regulated the expression of TGF-βR2 and FGFR2 at mRNA and protein levels in epithelial cells and dermal fibroblasts. DNA staining, Cell Counting Kit-8, and fluorescein-labelled Annexin V results showed that chi-miR-370-3p inhibited the proliferation of epithelial cells and fibroblasts but had no effect on apoptosis. Cell scratch test results showed that chi-miR-370-3p promoted the migration of epithelial cells and fibroblasts. Chi-miR-370-3p inhibits the proliferation of epithelial cells and fibroblasts by targeting TGF-βR2 and FGFR2, thereby improving cell migration ability and ultimately regulating the fate of epithelial cells and dermal fibroblasts to develop the placode and dermal condensate, inducing hair follicle morphogenesis.
Collapse
Affiliation(s)
- Erhan Hai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Wenjing Han
- College of Chemistry and Life Science, Chifeng University, Chifeng 024000, Inner Mongolia, China
| | - Zhihong Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
- Department of Agriculture, College of Hetao, Bayannur 015000, Inner Mongolia, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Lili Liang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Jianfeng Pan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Jinquan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, Inner Mongolia, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot 010018, Inner Mongolia, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot 010018, Inner Mongolia, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| |
Collapse
|
26
|
Mogollón I, Moustakas-Verho JE, Niittykoski M, Ahtiainen L. The initiation knot is a signaling center required for molar tooth development. Development 2021; 148:261701. [PMID: 33914869 PMCID: PMC8126415 DOI: 10.1242/dev.194597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/28/2021] [Indexed: 12/03/2022]
Abstract
Signaling centers, or organizers, regulate many aspects of embryonic morphogenesis. In the mammalian molar tooth, reiterative signaling in specialized centers called enamel knots (EKs) determines tooth patterning. Preceding the primary EK, transient epithelial thickening appears, the significance of which remains debated. Using tissue confocal fluorescence imaging with laser ablation experiments, we show that this transient thickening is an earlier signaling center, the molar initiation knot (IK), that is required for the progression of tooth development. IK cell dynamics demonstrate the hallmarks of a signaling center: cell cycle exit, condensation and eventual silencing through apoptosis. IK initiation and maturation are defined by the juxtaposition of cells with high Wnt activity to Shh-expressing non-proliferating cells, the combination of which drives the growth of the tooth bud, leading to the formation of the primary EK as an independent cell cluster. Overall, the whole development of the tooth, from initiation to patterning, is driven by the iterative use of signaling centers. Summary: During tooth morphogenesis, transient thickening of the epithelium in the diastema anterior to the first developing molar is an early signaling center, the molar initiation knot (IK), which is required for the progression of mammalian molar tooth development.
Collapse
Affiliation(s)
- Isabel Mogollón
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, University of Helsinki, 00014, Finland
| | - Jacqueline E Moustakas-Verho
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, University of Helsinki, 00014, Finland.,Organismal & Evolutionary Biology Research Program, University of Helsinki, 00014, Finland
| | - Minna Niittykoski
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, University of Helsinki, 00014, Finland
| | - Laura Ahtiainen
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, University of Helsinki, 00014, Finland
| |
Collapse
|
27
|
de Groot SC, Ulrich MMW, Gho CG, Huisman MA. Back to the Future: From Appendage Development Toward Future Human Hair Follicle Neogenesis. Front Cell Dev Biol 2021; 9:661787. [PMID: 33912569 PMCID: PMC8075059 DOI: 10.3389/fcell.2021.661787] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Hair disorders such as alopecia and hirsutism often impact the social and psychological well-being of an individual. This also holds true for patients with severe burns who have lost their hair follicles (HFs). HFs stimulate proper wound healing and prevent scar formation; thus, HF research can benefit numerous patients. Although hair development and hair disorders are intensively studied, human HF development has not been fully elucidated. Research on human fetal material is often subject to restrictions, and thus development, disease, and wound healing studies remain largely dependent on time-consuming and costly animal studies. Although animal experiments have yielded considerable and useful information, it is increasingly recognized that significant differences exist between animal and human skin and that it is important to obtain meaningful human models. Human disease specific models could therefore play a key role in future therapy. To this end, hair organoids or hair-bearing skin-on-chip created from the patient’s own cells can be used. To create such a complex 3D structure, knowledge of hair genesis, i.e., the early developmental process, is indispensable. Thus, uncovering the mechanisms underlying how HF progenitor cells within human fetal skin form hair buds and subsequently HFs is of interest. Organoid studies have shown that nearly all organs can be recapitulated as mini-organs by mimicking embryonic conditions and utilizing the relevant morphogens and extracellular matrix (ECM) proteins. Therefore, knowledge of the cellular and ECM proteins in the skin of human fetuses is critical to understand the evolution of epithelial tissues, including skin appendages. This review aims to provide an overview of our current understanding of the cellular changes occurring during human skin and HF development. We further discuss the potential implementation of this knowledge in establishing a human in vitro model of a full skin substitute containing hair follicles and the subsequent translation to clinical use.
Collapse
Affiliation(s)
- Simon C de Groot
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Hair Science Institute, Maastricht, Netherlands
| | | | - Coen G Gho
- Hair Science Institute, Maastricht, Netherlands
| | - Margriet A Huisman
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
28
|
Differentiated Daughter Cells Regulate Stem Cell Proliferation and Fate through Intra-tissue Tension. Cell Stem Cell 2020; 28:436-452.e5. [PMID: 33264636 DOI: 10.1016/j.stem.2020.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/30/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Basal stem cells fuel development, homeostasis, and regeneration of the epidermis. The proliferation and fate decisions of these cells are highly regulated by their microenvironment, including the basement membrane and underlying mesenchymal cells. Basal progenitors give rise to differentiated progeny that generate the epidermal barrier. Here, we present data that differentiated progeny also regulate the proliferation, differentiation, and migration of basal progenitor cells. Using two distinct mouse lines, we found that increasing contractility of differentiated cells resulted in non-cell-autonomous hyperproliferation of stem cells and prevented their commitment to a hair follicle lineage. This increased contractility also impaired movement of basal progenitors during hair placode morphogenesis and diminished migration of melanoblasts. These data suggest that intra-tissue tension regulates stem cell proliferation, fate decisions, and migration and that differentiated epidermal keratinocytes are a component of the stem cell niche that regulates development and homeostasis of the skin.
Collapse
|
29
|
Saxena N, Mok KW, Rendl M. An updated classification of hair follicle morphogenesis. Exp Dermatol 2020; 28:332-344. [PMID: 30887615 DOI: 10.1111/exd.13913] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
Hair follicle (HF) formation in developing embryonic skin requires stepwise signalling between the epithelial epidermis and mesenchymal dermis, and their specialized derivatives, the placode/germ/peg and dermal condensate/papilla, respectively. Classically, distinct stages of HF morphogenesis have been defined, in the mouse model, based on (a) changes in cell morphology and aggregation; (b) expression of few known molecular markers; (c) the extent of follicle downgrowth; and (d) the presence of differentiating cell types. Refined genetic strategies and recent emerging technologies, such as live imaging and transcriptome analyses of isolated cell populations or single cells, have enabled a closer dissection of the signalling requirements at different stages of HF formation, particularly early on. They have also led to the discovery of precursor cells for placode, dermal condensate and future bulge stem cells that, combined with molecular insights into their fate specification and subsequent formation, serve as novel landmarks for early HF morphogenetic events and studies of the signalling networks mediating these processes. In this review, we integrate the emergence of HF precursor cell states and novel molecular markers of fate and formation to update the widely used 20-year-old seminal classification guide of HF morphogenetic stages by Paus et al. We then temporally describe the latest insights into the early cellular and molecular events and signalling requirements for HF morphogenesis in relation to one another in a holistic manner.
Collapse
Affiliation(s)
- Nivedita Saxena
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ka-Wai Mok
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
30
|
Zhang S, Lee JM, Ashok AA, Jung HS. Action of Actomyosin Contraction With Shh Modulation Drive Epithelial Folding in the Circumvallate Papilla. Front Physiol 2020; 11:936. [PMID: 32848868 PMCID: PMC7411262 DOI: 10.3389/fphys.2020.00936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
The mouse tongue possesses three types of gustatory papillae: large circumvallate papillae (CVP), foliate papillae (FOP) and fungiform papillae (FFP). Although CVP is the largest papilla and contain a high density of taste buds, little is known about CVP development. Their transition from placode to dome-shape is particularly ambiguous. Understanding this phase is crucial since dome-shaped morphology is essential for proper localization of the imminent nerve fibers and taste buds. Here, we report actomyosin-dependent apical and basal constriction of epithelial cells during dynamic epithelial folding. Furthermore, actomyosin-dependent basal constriction requires focal adhesion kinase to guide dome-shape formation. Sonic hedgehog (Shh) is closely associated with the differentiation or survival of the neurons in CVP ganglion and cytoskeletal alteration in trench epithelial cells which regulate CVP morphogenesis. Our results demonstrate the CVP morphogenesis mechanism from placode to dome-shape by actomyosin-dependent cell shape change and suggest roles that Shh may play in trench and stromal core formation during CVP development.
Collapse
Affiliation(s)
- Sushan Zhang
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Adpaikar Anish Ashok
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Brain Korea 21 PLUS Project, Taste Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| |
Collapse
|
31
|
Mogollón I, Ahtiainen L. Live Tissue Imaging Sheds Light on Cell Level Events During Ectodermal Organ Development. Front Physiol 2020; 11:818. [PMID: 32765297 PMCID: PMC7378809 DOI: 10.3389/fphys.2020.00818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic development of ectodermal organs involves a very dynamic range of cellular events and, therefore, requires advanced techniques to visualize them. Ectodermal organogenesis proceeds in well-defined sequential stages mediated by tissue interactions. Different ectodermal organs feature shared morphological characteristics, which are regulated by conserved and reiterative signaling pathways. A wealth of genetic information on the expression patterns and interactions of specific signaling pathways has accumulated over the years. However, the conventional developmental biology methods have mainly relied on two-dimensional tissue histological analyses at fixed time points limiting the possibilities to follow the processes in real time on a single cell resolution. This has complicated the interpretation of cause and effect relationships and mechanisms of the successive events. Whole-mount tissue live imaging approaches are now revealing how reshaping of the epithelial sheet for the initial placodal thickening, budding morphogenesis and beyond, involve coordinated four dimensional changes in cell shapes, well-orchestrated cell movements and specific cell proliferation and apoptosis patterns. It is becoming evident that the interpretation of the reiterative morphogenic signals takes place dynamically at the cellular level. Depending on the context, location, and timing they drive different cell fate choices and cellular interactions regulating a pattern of behaviors that ultimately defines organ shapes and sizes. Here we review how new tissue models, advances in 3D and live tissue imaging techniques have brought new understanding on the cell level behaviors that contribute to the highly dynamic stages of morphogenesis in teeth, hair and related ectodermal organs during development, and in dysplasia contexts.
Collapse
Affiliation(s)
- Isabel Mogollón
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology/Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Laura Ahtiainen
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology/Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
High Throughput strategies Aimed at Closing the GAP in Our Knowledge of Rho GTPase Signaling. Cells 2020; 9:cells9061430. [PMID: 32526908 PMCID: PMC7348934 DOI: 10.3390/cells9061430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022] Open
Abstract
Since their discovery, Rho GTPases have emerged as key regulators of cytoskeletal dynamics. In humans, there are 20 Rho GTPases and more than 150 regulators that belong to the RhoGEF, RhoGAP, and RhoGDI families. Throughout development, Rho GTPases choregraph a plethora of cellular processes essential for cellular migration, cell–cell junctions, and cell polarity assembly. Rho GTPases are also significant mediators of cancer cell invasion. Nevertheless, to date only a few molecules from these intricate signaling networks have been studied in depth, which has prevented appreciation for the full scope of Rho GTPases’ biological functions. Given the large complexity involved, system level studies are required to fully grasp the extent of their biological roles and regulation. Recently, several groups have tackled this challenge by using proteomic approaches to map the full repertoire of Rho GTPases and Rho regulators protein interactions. These studies have provided in-depth understanding of Rho regulators specificity and have contributed to expand Rho GTPases’ effector portfolio. Additionally, new roles for understudied family members were unraveled using high throughput screening strategies using cell culture models and mouse embryos. In this review, we highlight theses latest large-scale efforts, and we discuss the emerging opportunities that may lead to the next wave of discoveries.
Collapse
|
33
|
Matos I, Asare A, Levorse J, Ouspenskaia T, de la Cruz-Racelis J, Schuhmacher LN, Fuchs E. Progenitors oppositely polarize WNT activators and inhibitors to orchestrate tissue development. eLife 2020; 9:e54304. [PMID: 32310087 PMCID: PMC7224699 DOI: 10.7554/elife.54304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
To spatially co-exist and differentially specify fates within developing tissues, morphogenetic cues must be correctly positioned and interpreted. Here, we investigate mouse hair follicle development to understand how morphogens operate within closely spaced, fate-diverging progenitors. Coupling transcriptomics with genetics, we show that emerging hair progenitors produce both WNTs and WNT inhibitors. Surprisingly, however, instead of generating a negative feedback loop, the signals oppositely polarize, establishing sharp boundaries and consequently a short-range morphogen gradient that we show is essential for three-dimensional pattern formation. By establishing a morphogen gradient at the cellular level, signals become constrained. The progenitor preserves its WNT signaling identity and maintains WNT signaling with underlying mesenchymal neighbors, while its overlying epithelial cells become WNT-restricted. The outcome guarantees emergence of adjacent distinct cell types to pattern the tissue.
Collapse
Affiliation(s)
- Irina Matos
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Amma Asare
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - John Levorse
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Tamara Ouspenskaia
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - June de la Cruz-Racelis
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | | | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
34
|
Shue YT, Lee KT, Walters BW, Ong HB, Silvaraju S, Lam WJ, Lim CY. Dynamic shifts in chromatin states differentially mark the proliferative basal cells and terminally differentiated cells of the developing epidermis. Epigenetics 2020; 15:932-948. [PMID: 32175801 DOI: 10.1080/15592294.2020.1738028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications on nucleosomal histones represent a key epigenetic regulatory mechanism to mediate the complex gene expression, DNA replication, and cell cycle changes that occur in embryonic cells undergoing lineage specification, maturation, and differentiation during development. Here, we investigated the dynamics of 13 key histone marks in epidermal cells at three distinct stages of embryonic skin development and identified significant changes that corresponded with the maturation of the proliferative basal epidermal cells and terminally differentiated cells in the stratified layers. In particular, H3K4me3 and H3K27ac were accumulated and became more prominent in the basal cells at later stages of epidermal development, while H3K27me3 was found to be low in the basal cells but highly enriched in the differentiated suprabasal cell types. Constitutive heterochromatin marked by H4K20me3 was also significantly elevated in differentiated epidermal cells at late gestation stages, which exhibited a concomitant loss of H4K16 acetylation. These differential chromatin profiles were established in the embryonic skin by gestation day 15 and further amplified at E18 and in postnatal skin. Our results reveal the dynamic chromatin states that occur as epidermal progenitor cells commit to the lineage and differentiate into the different cells of the stratified epidermis and provide insight to the underlying epigenetic pathways that support normal epidermal development and homoeostasis.
Collapse
Affiliation(s)
- Yan Ting Shue
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Kang Ting Lee
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Benjamin William Walters
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore.,Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester , Manchester, UK
| | - Hui Binn Ong
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Shaktheeshwari Silvaraju
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore
| | - Wei Jun Lam
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Chin Yan Lim
- Epithelial Epigenetics and Development Laboratory, Skin Research Institute of Singapore , Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
35
|
Bailleul R, Curantz C, Desmarquet-Trin Dinh C, Hidalgo M, Touboul J, Manceau M. Symmetry breaking in the embryonic skin triggers directional and sequential plumage patterning. PLoS Biol 2019; 17:e3000448. [PMID: 31577791 PMCID: PMC6791559 DOI: 10.1371/journal.pbio.3000448] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/14/2019] [Accepted: 09/04/2019] [Indexed: 01/22/2023] Open
Abstract
The development of an organism involves the formation of patterns from initially homogeneous surfaces in a reproducible manner. Simulations of various theoretical models recapitulate final states of natural patterns, yet drawing testable hypotheses from those often remains difficult. Consequently, little is known about pattern-forming events. Here, we surveyed plumage patterns and their emergence in Galliformes, ratites, passerines, and penguins, together representing the three major taxa of the avian phylogeny, and built a unified model that not only reproduces final patterns but also intrinsically generates shared and varying directionality, sequence, and duration of patterning. We used in vivo and ex vivo experiments to test its parameter-based predictions. We showed that directional and sequential pattern progression depends on a species-specific prepattern: an initial break in surface symmetry launches a travelling front of sharply defined, oriented domains with self-organising capacity. This front propagates through the timely transfer of increased cell density mediated by cell proliferation, which controls overall patterning duration. These results show that universal mechanisms combining prepatterning and self-organisation govern the timely emergence of the plumage pattern in birds. A survey of plumage patterns and their emergence in Galliformes, ratites, passerines, and penguins shows that their formation depends on a species-specific prepattern in the embryo and demonstrates that universal mechanisms govern the timely emergence of natural patterns in birds.
Collapse
Affiliation(s)
- Richard Bailleul
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris Sciences et Lettres University, Paris, France
- Sorbonne Université, UPMC Univ Paris 06, Laboratoire Jacques-Louis Lions, Paris, France
| | - Camille Curantz
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris Sciences et Lettres University, Paris, France
- Sorbonne Université, UPMC Univ Paris 06, Laboratoire Jacques-Louis Lions, Paris, France
| | - Carole Desmarquet-Trin Dinh
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris Sciences et Lettres University, Paris, France
| | - Magdalena Hidalgo
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris Sciences et Lettres University, Paris, France
| | - Jonathan Touboul
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail: (MM); (JT)
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, CNRS UMR7241, INSERM U1050, Collège de France, Paris Sciences et Lettres University, Paris, France
- * E-mail: (MM); (JT)
| |
Collapse
|
36
|
Laurin M, Gomez NC, Levorse J, Sendoel A, Sribour M, Fuchs E. An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. eLife 2019; 8:e50226. [PMID: 31556874 PMCID: PMC6768663 DOI: 10.7554/elife.50226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023] Open
Abstract
During mammalian embryogenesis, extensive cellular remodeling is needed for tissue morphogenesis. As effectors of cytoskeletal dynamics, Rho GTPases and their regulators are likely involved, but their daunting complexity has hindered progress in dissecting their functions. We overcome this hurdle by employing high throughput in utero RNAi-mediated screening to identify key Rho regulators of skin morphogenesis. Our screen unveiled hitherto unrecognized roles for Rho-mediated cytoskeletal remodeling events that impact hair follicle specification, differentiation, downgrowth and planar cell polarity. Coupling our top hit with gain/loss-of-function genetics, interactome proteomics and tissue imaging, we show that RHOU, an atypical Rho, governs the cytoskeletal-junction dynamics that establish columnar shape and planar cell polarity in epidermal progenitors. Conversely, RHOU downregulation is required to remodel to a conical cellular shape that enables hair bud invagination and downgrowth. Our findings underscore the power of coupling screens with proteomics to unravel the physiological significance of complex gene families.
Collapse
Affiliation(s)
- Melanie Laurin
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Nicholas C Gomez
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - John Levorse
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Ataman Sendoel
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Megan Sribour
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
37
|
Cooper RL, Lloyd VJ, Di-Poï N, Fletcher AG, Barrett PM, Fraser GJ. Conserved gene signalling and a derived patterning mechanism underlie the development of avian footpad scales. EvoDevo 2019; 10:19. [PMID: 31428299 PMCID: PMC6693258 DOI: 10.1186/s13227-019-0130-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/17/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vertebrates possess a diverse range of integumentary epithelial appendages, including scales, feathers and hair. These structures share extensive early developmental homology, as they mostly originate from a conserved anatomical placode. In the context of avian epithelial appendages, feathers and scutate scales are known to develop from an anatomical placode. However, our understanding of avian reticulate (footpad) scale development remains unclear. RESULTS Here, we demonstrate that reticulate scales develop from restricted circular domains of thickened epithelium, with localised conserved gene expression in both the epithelium and underlying mesenchyme. These domains constitute either anatomical placodes, or circular initiatory fields (comparable to the avian feather tract). Subsequent patterning of reticulate scales is consistent with reaction-diffusion (RD) simulation, whereby this primary domain subdivides into smaller secondary units, which produce individual scales. In contrast, the footpad scales of a squamate model (the bearded dragon, Pogona vitticeps) develop synchronously across the ventral footpad surface. CONCLUSIONS Widely conserved gene signalling underlies the initial development of avian reticulate scales. However, their subsequent patterning is distinct from the footpad scale patterning of a squamate model, and the feather and scutate scale patterning of birds. Therefore, we suggest reticulate scales are a comparatively derived epithelial appendage, patterned through a modified RD system.
Collapse
Affiliation(s)
- Rory L. Cooper
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Victoria J. Lloyd
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Nicolas Di-Poï
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Paul M. Barrett
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Gareth J. Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- Department of Biology, University of Florida, Gainesville, USA
| |
Collapse
|
38
|
Weber EL, Woolley TE, Yeh CY, Ou KL, Maini PK, Chuong CM. Self-organizing hair peg-like structures from dissociated skin progenitor cells: New insights for human hair follicle organoid engineering and Turing patterning in an asymmetric morphogenetic field. Exp Dermatol 2019; 28:355-366. [PMID: 30681746 PMCID: PMC6488368 DOI: 10.1111/exd.13891] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Human skin progenitor cells will form new hair follicles, although at a low efficiency, when injected into nude mouse skin. To better study and improve upon this regenerative process, we developed an in vitro system to analyse the morphogenetic cell behaviour in detail and modulate physical-chemical parameters to more effectively generate hair primordia. In this three-dimensional culture, dissociated human neonatal foreskin keratinocytes self-assembled into a planar epidermal layer while fetal scalp dermal cells coalesced into stripes, then large clusters, and finally small clusters resembling dermal condensations. At sites of dermal clustering, subjacent epidermal cells protruded to form hair peg-like structures, molecularly resembling hair pegs within the sequence of follicular development. The hair peg-like structures emerged in a coordinated, formative wave, moving from periphery to centre, suggesting that the droplet culture constitutes a microcosm with an asymmetric morphogenetic field. In vivo, hair follicle populations also form in a progressive wave, implying the summation of local periodic patterning events with an asymmetric global influence. To further understand this global patterning process, we developed a mathematical simulation using Turing activator-inhibitor principles in an asymmetric morphogenetic field. Together, our culture system provides a suitable platform to (a) analyse the self-assembly behaviour of hair progenitor cells into periodically arranged hair primordia and (b) identify parameters that impact the formation of hair primordia in an asymmetric morphogenetic field. This understanding will enhance our future ability to successfully engineer human hair follicle organoids.
Collapse
Affiliation(s)
- Erin L. Weber
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Thomas E. Woolley
- Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK
| | - Chao-Yuan Yeh
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Kuang-Ling Ou
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Oxford, OX2 6GG, UK
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Integrative Stem Cell Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
39
|
Abstract
Periodic patterning represents a fundamental process in tissue morphogenesis. In chicken dorsal skin, feather formation starts from the midline; then the morphogenetic wave propagates bilaterally, leaving a regular hexagonal array of feather germs. Yet, in vitro reconstitution showed feather germs appear simultaneously, leading to the hypothesis that the feather-forming wave results from the coupling of local Turing patterning processes with an unidentified global event. In this issue, Ho and colleagues showed such a global event in chicken feathers involves a spreading Ectodysplasin A (EDA) wave and Fibroblast Growth Factor 20 (FGF20)-cell aggregate-based mechanochemical coupling. In flightless birds, feather germs form periodically but without precise hexagonal patterning due to the lack of global wave. Chicken feather buds form exquisite hexagonal patterns progressively from the midline to the flank, making them an excellent model of biological pattern formation. This Primer explores recent evidence that a local Turing periodic patterning, a global propagation mechanism, and mechano-chemical coupling work together to pattern the feather array progressively.
Collapse
Affiliation(s)
- Masafumi Inaba
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Cohen J, Raviv S, Adir O, Padmanabhan K, Soffer A, Luxenburg C. The Wave complex controls epidermal morphogenesis and proliferation by suppressing Wnt-Sox9 signaling. J Cell Biol 2019; 218:1390-1406. [PMID: 30867227 PMCID: PMC6446834 DOI: 10.1083/jcb.201807216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 02/08/2023] Open
Abstract
The Wave complex promotes Arp2/3-mediated actin polymerization. Cohen et al. show that Wave complex activity regulates epidermal shape and growth. Without Wave complex activity, F-actin content is down-regulated and ectopic activity of the Wnt/β-catenin–SOX9 pathway is triggered. This activity induces epidermal hyperproliferation and disrupts tissue architecture. Development of the skin epidermis requires tight spatiotemporal control over the activity of several signaling pathways; however, the mechanisms that orchestrate these events remain poorly understood. Here, we identify a key role for the Wave complex proteins ABI1 and Wave2 in regulating signals that control epidermal shape and growth. In utero RNAi-mediated silencing of Abi1 or Wasf2 induced cellular hyperproliferation and defects in architecture of the interfollicular epidermis (IFE) and delayed hair follicle growth. Unexpectedly, SOX9, a hair follicle growth regulator, was aberrantly expressed throughout the IFE of the mutant embryos, and its forced overexpression mimicked the Wave complex loss-of-function phenotype. Moreover, Wnt signaling, which regulates SOX9+ cell specification, was up-regulated in Wave complex loss-of-function IFE. Importantly, we show that the Wave complex regulates filamentous actin content and that a decrease in actin levels is sufficient to elevate Wnt/β-catenin signaling. Our results identify a novel role for Wave complex– and actin-regulated signaling via Wnt and SOX9 in skin development.
Collapse
Affiliation(s)
- Jonathan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Raviv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arad Soffer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Sadier A, Twarogowska M, Steklikova K, Hayden L, Lambert A, Schneider P, Laudet V, Hovorakova M, Calvez V, Pantalacci S. Modeling Edar expression reveals the hidden dynamics of tooth signaling center patterning. PLoS Biol 2019; 17:e3000064. [PMID: 30730874 PMCID: PMC6382175 DOI: 10.1371/journal.pbio.3000064] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/20/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
When patterns are set during embryogenesis, it is expected that they are straightly established rather than subsequently modified. The patterning of the three mouse molars is, however, far from straight, likely as a result of mouse evolutionary history. The first-formed tooth signaling centers, called MS and R2, disappear before driving tooth formation and are thought to be vestiges of the premolars found in mouse ancestors. Moreover, the mature signaling center of the first molar (M1) is formed from the fusion of two signaling centers (R2 and early M1). Here, we report that broad activation of Edar expression precedes its spatial restriction to tooth signaling centers. This reveals a hidden two-step patterning process for tooth signaling centers, which was modeled with a single activator-inhibitor pair subject to reaction-diffusion (RD). The study of Edar expression also unveiled successive phases of signaling center formation, erasing, recovering, and fusion. Our model, in which R2 signaling center is not intrinsically defective but erased by the broad activation preceding M1 signaling center formation, predicted the surprising rescue of R2 in Edar mutant mice, where activation is reduced. The importance of this R2-M1 interaction was confirmed by ex vivo cultures showing that R2 is capable of forming a tooth. Finally, by introducing chemotaxis as a secondary process to RD, we recapitulated in silico different conditions in which R2 and M1 centers fuse or not. In conclusion, pattern formation in the mouse molar field relies on basic mechanisms whose dynamics produce embryonic patterns that are plastic objects rather than fixed end points.
Collapse
Affiliation(s)
- Alexa Sadier
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, Lyon, France
| | - Monika Twarogowska
- Unité de Mathématiques Pures et Appliquées, project team Inria NUMED, Université de Lyon, ENS de Lyon, CNRS UMR 5669, Lyon, France
| | - Klara Steklikova
- Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Luke Hayden
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, Lyon, France
| | - Anne Lambert
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, Lyon, France
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, Lyon, France
| | - Maria Hovorakova
- Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | - Vincent Calvez
- Institut Camille Jordan, Université de Lyon, Université Claude Bernard, CNRS UMR 5208, Lyon, France
| | - Sophie Pantalacci
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, Lyon, France
| |
Collapse
|
42
|
Mok KW, Saxena N, Heitman N, Grisanti L, Srivastava D, Muraro MJ, Jacob T, Sennett R, Wang Z, Su Y, Yang LM, Ma'ayan A, Ornitz DM, Kasper M, Rendl M. Dermal Condensate Niche Fate Specification Occurs Prior to Formation and Is Placode Progenitor Dependent. Dev Cell 2019; 48:32-48.e5. [PMID: 30595537 PMCID: PMC6370312 DOI: 10.1016/j.devcel.2018.11.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
Abstract
Cell fate transitions are essential for specification of stem cells and their niches, but the precise timing and sequence of molecular events during embryonic development are largely unknown. Here, we identify, with 3D and 4D microscopy, unclustered precursors of dermal condensates (DC), signaling niches for epithelial progenitors in hair placodes. With population-based and single-cell transcriptomics, we define a molecular time-lapse from pre-DC fate specification through DC niche formation and establish the developmental trajectory as the DC lineage emerges from fibroblasts. Co-expression of downregulated fibroblast and upregulated DC genes in niche precursors reveals a transitory molecular state following a proliferation shutdown. Waves of transcription factor and signaling molecule expression then coincide with DC formation. Finally, ablation of epidermal Wnt signaling and placode-derived FGF20 demonstrates their requirement for pre-DC specification. These findings uncover a progenitor-dependent niche precursor fate and the transitory molecular events controlling niche formation and function.
Collapse
Affiliation(s)
- Ka-Wai Mok
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Nivedita Saxena
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Laura Grisanti
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Devika Srivastava
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Mauro J Muraro
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), and University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Tina Jacob
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Rachel Sennett
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yutao Su
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maria Kasper
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA.
| |
Collapse
|
43
|
Biggs LC, Mäkelä OJ, Myllymäki SM, Das Roy R, Närhi K, Pispa J, Mustonen T, Mikkola ML. Hair follicle dermal condensation forms via Fgf20 primed cell cycle exit, cell motility, and aggregation. eLife 2018; 7:36468. [PMID: 30063206 PMCID: PMC6107334 DOI: 10.7554/elife.36468] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal condensation is a critical step in organogenesis, yet the underlying molecular and cellular mechanisms remain poorly understood. The hair follicle dermal condensate is the precursor to the permanent mesenchymal unit of the hair follicle, the dermal papilla, which regulates hair cycling throughout life and bears hair inductive potential. Dermal condensate morphogenesis depends on epithelial Fibroblast Growth Factor 20 (Fgf20). Here, we combine mouse models with 3D and 4D microscopy to demonstrate that dermal condensates form de novo and via directional migration. We identify cell cycle exit and cell shape changes as early hallmarks of dermal condensate morphogenesis and find that Fgf20 primes these cellular behaviors and enhances cell motility and condensation. RNAseq profiling of immediate Fgf20 targets revealed induction of a subset of dermal condensate marker genes. Collectively, these data indicate that dermal condensation occurs via directed cell movement and that Fgf20 orchestrates the early cellular and molecular events. All mammal hair springs from hair follicles under the skin. These follicles sit in the dermis, beneath the outermost skin layer, the epidermis. In the embryo, hair follicles develop from unspecialized cells in two tissues, the epithelium and the mesenchyme, which will later develop into the dermis and epidermis, respectively. As development progresses, the cells of these tissues begin to cluster, and signals passing back and forth between the epithelium and mesenchyme instruct the cells what to do. In the mesenchyme, cells called fibroblasts squeeze up against their neighbors, forming patches called dermal condensates. These mature into so-called dermal papillae, which supply specific molecules called growth factors that regulate hair formation throughout lifetime. Fibroblasts in the developing skin respond to a signal from the epithelium called fibroblast growth factor 20 (Fgf20), but we do not yet understand its effects. It is possible that Fgf20 tells the cells to divide, forming clusters of daughter cells around their current location. Or, it could be that Fgf20 tells the cells to move, encouraging them to travel towards one another to form groups. To address this question, Biggs, Mäkelä et al. examined developing mouse skin grown in the laboratory. They traced cells marked with fluorescent tags to analyze their behavior as the condensates formed. This revealed that the Fgf20 signal acts as a rallying call, triggering fibroblast movement. The cells changed shape and moved towards one another, rather than dividing to create their own clusters. In fact, they switched off their own cell cycle as the condensates formed, halting their ability to divide. A technique called RNA sequencing revealed that Fgf20 also promotes the use of genes known to be active in dermal condensates. Dermal papillae control hair growth, and transplanting them under the skin can form new hair follicles. However, these cells lose this ability when grown in the laboratory. Understanding how they develop could be beneficial for future hair growth therapy. Further work could also address fundamental questions in embryology. Condensates of cells from the mesenchyme also precede the formation of limbs, bones, muscles and organs. Extending this work could help us to understand this critical developmental step.
Collapse
Affiliation(s)
- Leah C Biggs
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Otto Jm Mäkelä
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Satu-Marja Myllymäki
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Rishi Das Roy
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Katja Närhi
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johanna Pispa
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Eda-activated RelB recruits an SWI/SNF (BAF) chromatin-remodeling complex and initiates gene transcription in skin appendage formation. Proc Natl Acad Sci U S A 2018; 115:8173-8178. [PMID: 30037996 PMCID: PMC6094125 DOI: 10.1073/pnas.1800930115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Specific gene regulation in organ development remains poorly understood. Here, we report that skin-specific ectodysplasin A (Eda) signaling triggers the formation of a protein complex that includes a BAF complex, an NF-kB dimer of p50/RelB, and a specific “linker” protein, Tfg. We further find that Eda-activated RelB recruits BAF complex to specific gene loci for local chromatin remodeling of target genes. These findings may exemplify a more general model for specific gene regulation involving unique ligand–receptor complexes leading to selective activation of transcription factors, specific linkers, and tissue-specific chromatin-remodeling complex. Ectodysplasin A (Eda) signaling activates NF-κB during skin appendage formation, but how Eda controls specific gene transcription remains unclear. Here, we find that Eda triggers the formation of an NF-κB–associated SWI/SNF (BAF) complex in which p50/RelB recruits a linker protein, Tfg, that interacts with BAF45d in the BAF complex. We further reveal that Tfg is initially induced by Eda-mediated RelB activation and then bridges RelB and BAF for subsequent gene regulation. The BAF component BAF250a is particularly up-regulated in skin appendages, and epidermal knockout of BAF250a impairs skin appendage development, resulting in phenotypes similar to those of Eda-deficient mouse models. Transcription profiling identifies several target genes regulated by Eda, RelB, and BAF. Notably, RelB and the BAF complex are indispensable for transcription of Eda target genes, and both BAF complex and Eda signaling are required to open chromatin of Eda targets. Our studies thus suggest that Eda initiates a signaling cascade and recruits a BAF complex to specific gene loci to facilitate transcription during organogenesis.
Collapse
|
45
|
Wang Y, Mahesh P, Wang Y, Novo SG, Shihan MH, Hayward-Piatkovskyi B, Duncan MK. Spatiotemporal dynamics of canonical Wnt signaling during embryonic eye development and posterior capsular opacification (PCO). Exp Eye Res 2018; 175:148-158. [PMID: 29932883 DOI: 10.1016/j.exer.2018.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
The appropriate spatial and temporal regulation of canonical Wnt signaling is vital for eye development. However, the literature often conflicts on the distribution of canonical Wnt signaling in the eye. Here, using a sensitive mouse transgenic reporter line, we report a detailed re-evaluation of the spatiotemporal dynamics of canonical Wnt signaling in the developing eye. Canonical Wnt activity was dynamic in the optic vesicle and later in the retina, while it was absent from the ectodermal precursors of the lens and corneal epithelium. However, later in corneal development, canonical Wnt reporter activity was detected in corneal stroma and endothelium precursors as they form from the neural crest, although this was lost around birth. Interestingly, while no canonical Wnt signaling was detected in the corneal limbus or basal cells at any developmental stage, it was robust in adult corneal wing and squamous epithelial cells. While canonical Wnt reporter activity was also absent from the postnatal lens, upon lens injury intended to model cataract surgery, it upregulated within 12 h in remnant lens epithelial cells, and co-localized with alpha smooth muscle actin in fibrotic lens epithelial cells from 48 h post-surgery onward. This pattern correlated with downregulation of the inhibitor of canonical Wnt signaling, Dkk3. These data demonstrate that canonical Wnt signaling is dynamic within the developing eye and upregulates in lens epithelial cells in response to lens injury. As canonical Wnt signaling can collaborate with TGFβ to drive fibrosis in other systems, these data offer the first evidence in a lens-injury model that canonical Wnt may synergize with TGFβ signaling to drive fibrotic posterior capsular opacification (PCO).
Collapse
Affiliation(s)
- Yichen Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Priyha Mahesh
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Samuel G Novo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | | | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
46
|
Hoefert JE, Bjerke GA, Wang D, Yi R. The microRNA-200 family coordinately regulates cell adhesion and proliferation in hair morphogenesis. J Cell Biol 2018; 217:2185-2204. [PMID: 29602800 PMCID: PMC5987720 DOI: 10.1083/jcb.201708173] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/05/2018] [Accepted: 03/09/2018] [Indexed: 01/15/2023] Open
Abstract
The microRNA (miRNA)-200 (miR-200) family is highly expressed in epithelial cells and frequently lost in metastatic cancer. Despite intensive studies into their roles in cancer, their targets and functions in normal epithelial tissues remain unclear. Importantly, it remains unclear how the two subfamilies of the five-miRNA family, distinguished by a single nucleotide within the seed region, regulate their targets. By directly ligating miRNAs to their targeted mRNA regions, we identify numerous miR-200 targets involved in the regulation of focal adhesion, actin cytoskeleton, cell cycle, and Hippo/Yap signaling. The two subfamilies bind to largely distinct target sites, but many genes are coordinately regulated by both subfamilies. Using inducible and knockout mouse models, we show that the miR-200 family regulates cell adhesion and orientation in the hair germ, contributing to precise cell fate specification and hair morphogenesis. Our findings demonstrate that combinatorial targeting of many genes is critical for miRNA function and provide new insights into miR-200's functions.
Collapse
Affiliation(s)
- Jaimee E Hoefert
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO
| | - Glen A Bjerke
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO
| | - Dongmei Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO
| | - Rui Yi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
47
|
The Ectodysplasin receptor EDAR acts as a tumor suppressor in melanoma by conditionally inducing cell death. Cell Death Differ 2018; 26:443-454. [PMID: 29855541 DOI: 10.1038/s41418-018-0128-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/24/2018] [Indexed: 02/05/2023] Open
Abstract
Ectodysplasin receptor EDAR is seen as a typical Tumor Necrosis Factor receptor (TNFR) family member known to interact with its ligand Eda-A1, and signaling mainly through the nuclear factor-kappaB (NF-κB) and c-jun N-terminal kinases pathways. Mutations in genes that encode proteins involved in EDAR transduction cascade cause anhidrotic ectodermal dysplasia. Here, we report an unexpected pro-apoptotic activity of EDAR when unbound to its ligand Eda-A1, which is independent of NF-κB pathway. Contrarily to other death receptors, EDAR does recruit caspase-8 to trigger apoptosis but solely upon ligand withdrawal, thereby behaving as the so-called dependence receptors. We propose that pro-apoptotic activity of unbound EDAR confers it a tumor suppressive activity. Along this line, we identified loss-of-pro-apoptotic function mutations in EDAR gene in human melanoma. Moreover, we show that the invalidation of EDAR in mice promotes melanoma progression in a B-Raf mutant background. Together, these data support the view that EDAR constrains melanoma progression by acting as a dependence receptor.
Collapse
|
48
|
Counter-rotational cell flows drive morphological and cell fate asymmetries in mammalian hair follicles. Nat Cell Biol 2018; 20:541-552. [PMID: 29662173 PMCID: PMC6065250 DOI: 10.1038/s41556-018-0082-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.
Collapse
|
49
|
Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev 2018; 123:82-106. [PMID: 29106911 DOI: 10.1016/j.addr.2017.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
The importance of skin to survival, and the devastating physical and psychological consequences of scarring following reparative healing of extensive or difficult to heal human wounds, cannot be disputed. We discuss the significant challenges faced by patients and healthcare providers alike in treating these wounds. New state of the art technologies have provided remarkable insights into the role of skin stem and progenitor cells and their niches in maintaining skin homeostasis and in reparative wound healing. Based on this knowledge, we examine different approaches to repair extensive burn injury and chronic wounds, including full and split thickness skin grafts, temporising matrices and scaffolds, and composite cultured skin products. Notable developments include next generation skin substitutes to replace split thickness skin autografts and next generation gene editing coupled with cell therapies to treat genodermatoses. Further refinements are predicted with the advent of bioprinting technologies, and newly defined biomaterials and autologous cell sources that can be engineered to more accurately replicate human skin architecture, function and cosmesis. These advances will undoubtedly improve quality of life for patients with extensive burns and difficult to heal wounds.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK.
| | - Jonathan M Pleat
- Department of Plastic and Reconstructive Surgery, North Bristol NHS Trust and University of Bristol, Westbury on Trym, Bristol BS9 3TZ, UK.
| |
Collapse
|
50
|
Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Dev Cell 2017; 43:387-401. [PMID: 29161590 DOI: 10.1016/j.devcel.2017.10.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/03/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
Tissues have a natural capacity to replace dying cells and to heal wounds. This ability resides in resident stem cells, which self-renew, preserve, and repair their tissue during homeostasis and following injury. The skin epidermis and its appendages are subjected to daily assaults from the external environment. A high demand is placed on renewal and regeneration of the skin's barrier in order to protect the body from infection and dehydration and to heal wounds. This review focuses on the epithelial stem cells of skin, where they come from, where they reside, and how they function in normal homeostasis and wound repair.
Collapse
|