1
|
Guan T, Guo J, Lin R, Liu J, Luo R, Zhang Z, Pei D, Liu J. Single-cell analysis of preimplantation embryonic development in guinea pigs. BMC Genomics 2024; 25:911. [PMID: 39350018 PMCID: PMC11440810 DOI: 10.1186/s12864-024-10815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Guinea pigs exhibit numerous physiological similarities to humans, yet the details of their preimplantation embryonic development remain largely unexplored. RESULTS To address this, we conducted single-cell sequencing on the transcriptomes of cells isolated from the zygote stage through preimplantation stages in guinea pigs. This study identified seven distinct cell types within guinea pig preimplantation embryos and pinpointed the timing of zygotic gene activation (ZGA). Trajectory analysis revealed a bifurcation into two lineage-specific branches, accompanied by alterations in specific pathways, including oxidative phosphorylation and vascular endothelial growth factor (VEGF). Additionally, co-expressed gene network analysis highlighted the most enriched functional modules for the epiblast (EPI), primitive endoderm (PrE), and inner cell mass (ICM). Finally, we compared the similarities and differences between human and guinea pig epiblasts (EPIs). CONCLUSION This study systematically constructs a cell atlas of guinea pig preimplantation embryonic development, offering fresh insights into mammalian embryonic development and providing alternative experimental models for studying human embryonic development.
Collapse
Affiliation(s)
- Tongxing Guan
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jing Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Runxia Lin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinpeng Liu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Science, Beijing, 100049, People's Republic of China
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rongping Luo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhen Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Duanqing Pei
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Jing Liu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
2
|
You HJ, Jo YJ, Kim G, Kwon J, Yoon SB, Youn C, Kim Y, Kang MJ, Cho WS, Kim JS. Disruption of early embryonic development in mice by polymethylmethacrylate nanoplastics in an oxidative stress mechanism. CHEMOSPHERE 2024; 361:142407. [PMID: 38795919 DOI: 10.1016/j.chemosphere.2024.142407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Polymethylmethacrylate (PMMA) has been used in many products, such as acrylic glass, and is estimated to reach 5.7 million tons of production per year by 2028. Thus, nano-sized PMMA particles in the environment are highly likely due to the weathering process. However, information on the hazards of nanoplastics, including PMMA in mammals, especially reproductive toxicity and action mechanism, is scarce. Herein, we investigated the effect of PMMA nanoplastics on the female reproductive system of mice embryos during pre-implantation. The treated plastic particles in embryos (10, 100, and 1000 μg/mL) were endocytosed into the cytoplasm within 30 min, and the blastocyst development and indices of embryo quality were significantly decreased from at 100 μg/mL. Likewise, the transfer of nanoplastic-treated embryos at 100 μg/mL decreased the morula implantation rate on the oviduct of pseudopregnant mice by 70%, calculated by the pregnant individual, and 31.8% by the number of implanted embryos. The PMMA nanoplastics at 100 μg/mL significantly increased the cellular levels of reactive oxygen species in embryos, which was not related to the intrinsic oxidative potential of nanoplastics. This study highlights that the nanoplastics that enter systemic circulation can affect the early stage of embryos. Thus, suitable action mechanisms can be designed to address nanoplastic occurrence.
Collapse
Affiliation(s)
- Hyeong-Ju You
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea; Department of Animal Science, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Gyuri Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Changsic Youn
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Yejin Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea
| | - Man-Jong Kang
- Department of Animal Science, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-gil, Ibam-myeon, Jeongeup-si, Jeollabuk-do, 56216, Republic of Korea.
| |
Collapse
|
3
|
Parriego M, Coll L, Carrasco B, Garcia S, Boada M, Polyzos NP, Vidal F, Veiga A. Blastocysts from partial compaction morulae are not defined by their early mistakes. Reprod Biomed Online 2024; 48:103729. [PMID: 38367593 DOI: 10.1016/j.rbmo.2023.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 02/19/2024]
Abstract
RESEARCH QUESTION Is partial compaction during morula formation associated with an embryo's developmental ability and implantation potential? DESIGN Retrospective analysis of data from 196 preimplantation genetic testing for aneuploidy (PGT-A) cycles. Embryos starting compaction were grouped according to the inclusion or not of all the blastomeres in the forming morula (full compaction or partial compaction). The possible effect of maternal age and ovarian response on compaction was analysed. Morphokinetic characteristics, blastocyst formation rate, morphology and cytogenetic constitution of the obtained blastocysts were compared. Comparisons of reproductive outcomes after the transfer of euploid blastocysts from both groups were established. Finally, in a subset of embryos, the chromosomal constitution concordance of the abandoned cells and the corresponding blastocyst through trophectoderm biopsies was assessed. RESULTS A total of 430 embryos failed to include at least one cell during compaction (partial compaction group [49.3%]), whereas the 442 remaining embryos formed a fully compacted morula (full compaction group [50.7%]). Neither female age nor the number of oocytes collected affected the prevalence of partial compaction morulae. Morphokinetic parameters were altered in embryos from partial compaction morulae compared with full compaction. Although an impairment in blastocyst formation rate was observed in partial compaction morulae (57.2% versus 70.8%, P < 0.001), both chromosomal constitution (euploidy rate: partial compaction [38.4%] versus full compaction [34.2%]) and reproductive outcomes (live birth rate: partial compaction [51.9%] versus full compaction [46.2%]) of the obtained blastocysts were equivalent between groups. A high ploidy correlation of excluded cells-trophectoderm duos was observed. CONCLUSIONS Partial compaction morulae show a reduced developmental ability compared with full compaction morulae. Resulting blastocysts from both groups, however, have similar euploidy rates and reproductive outcomes. Cell exclusion might be a consequence of a compromised embryo development regardless of the chromosomal constitution of the excluded cells.
Collapse
Affiliation(s)
- Monica Parriego
- Reproductive Medicine Unit, Department of Obstetrics, Gynaecology and Reproduction. Dexeus Mujer. Dexeus University Hospital. Gran Via Carles III, 71-75. 08028 Barcelona, Spain.
| | - Lluc Coll
- Reproductive Medicine Unit, Department of Obstetrics, Gynaecology and Reproduction. Dexeus Mujer. Dexeus University Hospital. Gran Via Carles III, 71-75. 08028 Barcelona, Spain
| | - Beatriz Carrasco
- Reproductive Medicine Unit, Department of Obstetrics, Gynaecology and Reproduction. Dexeus Mujer. Dexeus University Hospital. Gran Via Carles III, 71-75. 08028 Barcelona, Spain
| | - Sandra Garcia
- Reproductive Medicine Unit, Department of Obstetrics, Gynaecology and Reproduction. Dexeus Mujer. Dexeus University Hospital. Gran Via Carles III, 71-75. 08028 Barcelona, Spain
| | - Montserrat Boada
- Reproductive Medicine Unit, Department of Obstetrics, Gynaecology and Reproduction. Dexeus Mujer. Dexeus University Hospital. Gran Via Carles III, 71-75. 08028 Barcelona, Spain
| | - Nikolaos P Polyzos
- Reproductive Medicine Unit, Department of Obstetrics, Gynaecology and Reproduction. Dexeus Mujer. Dexeus University Hospital. Gran Via Carles III, 71-75. 08028 Barcelona, Spain
| | - Francesca Vidal
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Veiga
- Barcelona Stem Cell Bank, IDIBELL Programme for Regenerative Medicine, 08908 L'Hospitalet de Llobregat, Spain
| |
Collapse
|
4
|
Hu B, Jin H, Shi Y, Yu H, Wu X, Wang S, Zhang K. Single-cell RNA-Seq reveals the earliest lineage specification and X chromosome dosage compensation in bovine preimplantation embryos. FASEB J 2024; 38:e23492. [PMID: 38363564 DOI: 10.1096/fj.202302035rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Lineage specification and X chromosome dosage compensation are two crucial biological processes that occur during preimplantation embryonic development. Although extensively studied in mice, the timing and regulation of these processes remain elusive in other species, including humans. Previous studies have suggested conserved principles of human and bovine early development. This study aims to provide fundamental insights into these programs and the regulation using a bovine embryo model by employing single-cell transcriptomics and genome editing approaches. The study analyzes the transcriptomes of 286 individual cells and reveals that bovine trophectoderm/inner cell mass transcriptomes diverge at the early blastocyst stage, after cavitation but before blastocyst expansion. The study also identifies transcriptomic markers and provides the timing of lineage specification events in the bovine embryo. Importantly, we find that SOX2 is required for the first cell decision program in bovine embryos. Moreover, the study shows the occurrence of X chromosome dosage compensation from morula to late blastocyst and reveals that this compensation results from downregulation of X-linked genes in female embryonic cells. The transcriptional atlas generated by this study is expected to be widely useful in improving our understanding of mammalian early embryo development.
Collapse
Affiliation(s)
- Bingjie Hu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Jin
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Shi
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haotian Yu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaotong Wu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaohua Wang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun Zhang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Chen L, Tang B, Xie G, Yang R, Zhang B, Wang Y, Zhang Y, Jiang D, Zhang X. Bovine Pluripotent Stem Cells: Current Status and Prospects. Int J Mol Sci 2024; 25:2120. [PMID: 38396797 PMCID: PMC10889747 DOI: 10.3390/ijms25042120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Pluripotent stem cells (PSCs) can differentiate into three germ layers and diverse autologous cell lines. Since cattle are the most commonly used large domesticated animals, an important food source, and bioreactors, great efforts have been made to establish bovine PSCs (bPSCs). bPSCs have great potential in bovine breeding and reproduction, modeling in vitro differentiation, imitating cancer development, and modeling diseases. Currently, bPSCs mainly include bovine embryonic stem cells (bESCs), bovine induced pluripotent stem cells (biPSCs), and bovine expanded potential stem cells (bEPSCs). Establishing stable bPSCs in vitro is a critical scientific challenge, and researchers have made numerous efforts to this end. In this review, the category of PSC pluripotency; the establishment of bESCs, biPSCs, and bEPSCs and its challenges; and the application outlook of bPSCs are discussed, aiming to provide references for future research.
Collapse
Affiliation(s)
- Lanxin Chen
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guanghong Xie
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Yang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Boyang Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yueqi Wang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Daozhen Jiang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xueming Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Shankar V, van Blitterswijk C, Vrij E, Giselbrecht S. Automated, High-Throughput Phenotypic Screening and Analysis Platform to Study Pre- and Post-Implantation Morphogenesis in Stem Cell-Derived Embryo-Like Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304987. [PMID: 37991133 PMCID: PMC10811479 DOI: 10.1002/advs.202304987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Combining high-throughput generation and high-content imaging of embryo models will enable large-scale screening assays in the fields of (embryo) toxicity, drug development, embryogenesis, and reproductive medicine. This study shows the continuous culture and in situ (i.e., in microwell) imaging-based readout of a 3D stem cell-based model of peri-implantation epiblast (Epi)/extraembryonic endoderm (XEn) development with an expanded pro-amniotic cavity (PAC) (E3.5 E5.5), namely XEn/EPiCs. Automated image analysis and supervised machine learning permit the identification of embryonic morphogenesis, tissue compartmentalization, cell differentiation, and consecutive classification. Screens with signaling pathway modulators at different time windows provide spatiotemporal information on their phenotypic effect on developmental processes leading to the formation of XEn/EPiCs. Exposure of the biological model in the microwell platform to pathway modulators at two time windows, namely 0-72 h and 48-120 h, show that Wnt and Fgf/MAPK pathway modulators affect Epi differentiation and its polarization, while modulation of BMP and Tgfβ/Nodal pathway affects XEn specification and epithelialization. Further, their collective role is identified in the timing of the formation and expansion of PAC. The newly developed, scalable culture and analysis platform, thereby, provides a unique opportunity to quantitatively and systematically study effects of pathway modulators on early embryonic development.
Collapse
Affiliation(s)
- Vinidhra Shankar
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Erik Vrij
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| |
Collapse
|
7
|
Fang T, Wang F, Zhang R, Du ZQ, Yang CX. Single-cell RNA sequencing reveals blastomere heterogeneity of 2-cell embryos in pigs. Reprod Domest Anim 2023; 58:1393-1403. [PMID: 37568261 DOI: 10.1111/rda.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
In mammals, single blastomeres from as early as 2-cell embryos demonstrate heterogeneous developmental capacity and fate decision into different cell lineages. However, mechanisms underlying blastomere heterogeneity of 2-cell embryos remain largely unresolved. Here, we analysed the molecular heterogeneity of full-length mRNAs and their 3'UTR regions, based on the single-cell RNA-seq data of pig 2-cell embryos generated from in vivo fertilization (in vivo), in vitro fertilization (in vitro) and parthenogenetic activation (PA), respectively. First, unsupervised clustering helped discover two different groups of blastomeres for 2-cell pig embryos. Between these two groups of blastomeres in pig 2-cell embryos, 35, 301 and 428 full-length mRNAs respectively in in vivo, in vitro and PA embryo types were identified to be differentially expressed (padj ≤ .05 and |log2 [fold change]| ≥1) (DE mRNAs), while 92, 89 and 42 mRNAs were shown to be with significantly different 3'UTR lengths (3'UTR DE) (padj ≤ .05). Gene enrichment for both DE mRNAs and 3'UTR DE mRNAs found multiple signalling pathways, including cell cycle, RNA processing. Few numbers of common DE mRNAs and 3'UTR DE mRNAs existed between in vitro and in vivo blastomeres derived from 2-cell embryos, indicating the larger differences between in vitro and in vivo fertilized embryos. Integrative genomics viewer analysis further identified that 3'UTRs of HSDL2 and SGTA (in vivo), FAM204A and phosphoserine phosphatase (in vitro), PRPF40A and RPIA (PA) had >100 nt average length changes. Moreover, numbers and locations of regulatory elements (polyadenylation site, cytoplasmic polyadenylation element and microRNA binding sites) within 3'UTRs of these DE mRNAs were predicted. These results indicate that molecular heterogeneity existed among blastomeres from different types of pig 2-cell embryos, providing useful information and novel insights into future functional investigation on its relationship with the subsequent embryo development and differentiation.
Collapse
Affiliation(s)
- Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Fang Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Rong Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Velazquez MA, Idriss A, Chavatte-Palmer P, Fleming TP. The mammalian preimplantation embryo: Its role in the environmental programming of postnatal health and performance. Anim Reprod Sci 2023; 256:107321. [PMID: 37647800 DOI: 10.1016/j.anireprosci.2023.107321] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
During formation of the preimplantation embryo several cellular and molecular milestones take place, making the few cells forming the early embryo vulnerable to environmental stressors than can impair epigenetic reprogramming and controls of gene expression. Although these molecular alterations can result in embryonic death, a significant developmental plasticity is present in the preimplantation embryo that promotes full-term pregnancy. Prenatal epigenetic modifications are inherited during mitosis and can perpetuate specific phenotypes during early postnatal development and adulthood. As such, the preimplantation phase is a developmental window where developmental programming can take place in response to the embryonic microenvironment present in vivo or in vitro. In this review, the relevance of the preimplantation embryo as a developmental stage where offspring health and performance can be programmed is discussed, with emphasis on malnutrition and assisted reproductive technologies; two major environmental insults with important implications for livestock production and human reproductive medicine.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Abdullah Idriss
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pathology and laboratory medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, MBC J-10, Jeddah 21499, Kingdom of Saudi Arabia
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | - Tom P Fleming
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
9
|
Bissiere S, Hernandez B, Rubio C, Simón C, Plachta N. Updates on preimplantation embryo research. Fertil Steril 2023; 120:467-472. [PMID: 37150393 DOI: 10.1016/j.fertnstert.2023.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Preimplantation development is the only stage of human development that can be studied outside the body in real time, as human embryos can be produced by in vitro fertilization and cultured in the laboratory as self-contained structures until the blastocyst stage. Here, we focus some of the key cellular and morphogenetic processes by which the 1-cell embryo is transformed gradually into a blastocyst ready for implantation. Although most of our knowledge about the dynamic series of events patterning preimplantation human development derives from work in mouse embryos, we discuss key differences that could exist with humans. Furthermore, we highlight how new approaches may enable to reveal many of the unknown processes driving human preimplantation development, particularly using noninvasive imaging and genetic technologies.
Collapse
Affiliation(s)
- Stephanie Bissiere
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Blake Hernandez
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Carlos Simón
- Department of Pediatrics Obstetrics & Gynecology, University of Valencia, & INCLIVA, Valencia, Spain; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Gao D, Wang X, Yan YL, Li C, Tan YP, Liu QC, Zhang MY, Zhang JV, Sun QY, Cao ZB, Zhang YH. CircKDM5B sponges miR-128 to regulate porcine blastocyst development by modulating trophectoderm barrier function. Mol Hum Reprod 2023; 29:gaad027. [PMID: 37471586 DOI: 10.1093/molehr/gaad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Circular RNAs (circRNAs), which exert critical functions in the regulation of transcriptional and post-transcriptional gene expression, are found in mammalian cells but their functions in mammalian preimplantation embryo development remain poorly understood. Here, we showed that circKDM5B mediated miRNA-128 (miR-128) to regulate porcine early embryo development. We screened circRNAs potentially expressed in porcine embryos through an integrated analysis of sequencing data from mouse and human embryos, as well as porcine oocytes. An authentic circRNA originating from histone demethylase KDM5B (referred to as circKDM5B) was abundantly expressed in porcine embryos. Functional studies revealed that circKDM5B knockdown not only significantly reduced blastocyst formation but also decreased the number of total cells and trophectoderm (TE) cells. Moreover, the knockdown of circKDM5B resulted in the disturbance of tight junction assembly and impaired paracellular sealing within the TE epithelium. Mechanistically, miR-128 inhibitor injection could rescue the early development of circKDM5B knockdown embryos. Taken together, the findings revealed that circKDM5B functions as a miR-128 sponge, thereby facilitating early embryonic development in pigs through the modulation of gene expression linked to tight junction assembly.
Collapse
Affiliation(s)
- Di Gao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ye-Lian Yan
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chao Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yong-Peng Tan
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qiu-Chen Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Meng-Ya Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jian V Zhang
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zu-Bing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yun-Hai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Zhang Y, Li X, Gao S, Liao Y, Luo Y, Liu M, Bian Y, Xiong H, Yue Y, He A. Genetic reporter for live tracing fluid flow forces during cell fate segregation in mouse blastocyst development. Cell Stem Cell 2023; 30:1110-1123.e9. [PMID: 37541214 DOI: 10.1016/j.stem.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/02/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
Mechanical forces are known to be important in mammalian blastocyst formation; however, due to limited tools, specific force inputs and how they relay to first cell fate control of inner cell mass (ICM) and/or trophectoderm (TE) remain elusive. Combining in toto live imaging and various perturbation experiments, we demonstrate and measure fluid flow forces existing in the mouse blastocyst cavity and identify Klf2(Krüppel-like factor 2) as a fluid force reporter with force-responsive enhancers. Long-term live imaging and lineage reconstructions reveal that blastomeres subject to higher fluid flow forces adopt ICM cell fates. These are reinforced by internal ferrofluid-induced flow force assays. We also utilize ex vivo fluid flow force mimicking and pharmacological perturbations to confirm mechanosensing specificity. Together, we report a genetically encoded reporter for continuously monitoring fluid flow forces and cell fate decisions and provide a live imaging framework to infer force information enriched lineage landscape during development. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Youdong Zhang
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin Li
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shu Gao
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanhui Liao
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Yingjie Luo
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Min Liu
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yunkun Bian
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haiqing Xiong
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhu Yue
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Cell Fate and Diseases, Jilin Provincial Key Laboratory of Women's Reproductive Health, the First Hospital of Jilin University, Changchun, Jilin 130061, China.
| | - Aibin He
- Institute of Molecular Medicine, National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Gahurova L, Tomankova J, Cerna P, Bora P, Kubickova M, Virnicchi G, Kovacovicova K, Potesil D, Hruska P, Zdrahal Z, Anger M, Susor A, Bruce AW. Spatial positioning of preimplantation mouse embryo cells is regulated by mTORC1 and m 7G-cap-dependent translation at the 8- to 16-cell transition. Open Biol 2023; 13:230081. [PMID: 37553074 PMCID: PMC10409569 DOI: 10.1098/rsob.230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Preimplantation mouse embryo development involves temporal-spatial specification and segregation of three blastocyst cell lineages: trophectoderm, primitive endoderm and epiblast. Spatial separation of the outer-trophectoderm lineage from the two other inner-cell-mass (ICM) lineages starts with the 8- to 16-cell transition and concludes at the 32-cell stages. Accordingly, the ICM is derived from primary and secondary contributed cells; with debated relative EPI versus PrE potencies. We report generation of primary but not secondary ICM populations is highly dependent on temporal activation of mammalian target of Rapamycin (mTOR) during 8-cell stage M-phase entry, mediated via regulation of the 7-methylguanosine-cap (m7G-cap)-binding initiation complex (EIF4F) and linked to translation of mRNAs containing 5' UTR terminal oligopyrimidine (TOP-) sequence motifs, as knockdown of identified TOP-like motif transcripts impairs generation of primary ICM founders. However, mTOR inhibition-induced ICM cell number deficits in early blastocysts can be compensated by the late blastocyst stage, after inhibitor withdrawal; compensation likely initiated at the 32-cell stage when supernumerary outer cells exhibit molecular characteristics of inner cells. These data identify a novel mechanism specifically governing initial spatial segregation of mouse embryo blastomeres, that is distinct from those directing subsequent inner cell formation, contributing to germane segregation of late blastocyst lineages.
Collapse
Affiliation(s)
- Lenka Gahurova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Jana Tomankova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Pavlina Cerna
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Pablo Bora
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Michaela Kubickova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Giorgio Virnicchi
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Kristina Kovacovicova
- Laboratory of Cell Division Control, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - David Potesil
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Pavel Hruska
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Martin Anger
- Laboratory of Cell Division Control, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
13
|
Domingo-Muelas A, Skory RM, Moverley AA, Ardestani G, Pomp O, Rubio C, Tetlak P, Hernandez B, Rhon-Calderon EA, Navarro-Sánchez L, García-Pascual CM, Bissiere S, Bartolomei MS, Sakkas D, Simón C, Plachta N. Human embryo live imaging reveals nuclear DNA shedding during blastocyst expansion and biopsy. Cell 2023; 186:3166-3181.e18. [PMID: 37413989 PMCID: PMC11170958 DOI: 10.1016/j.cell.2023.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Proper preimplantation development is essential to assemble a blastocyst capable of implantation. Live imaging has uncovered major events driving early development in mouse embryos; yet, studies in humans have been limited by restrictions on genetic manipulation and lack of imaging approaches. We have overcome this barrier by combining fluorescent dyes with live imaging to reveal the dynamics of chromosome segregation, compaction, polarization, blastocyst formation, and hatching in the human embryo. We also show that blastocyst expansion mechanically constrains trophectoderm cells, causing nuclear budding and DNA shedding into the cytoplasm. Furthermore, cells with lower perinuclear keratin levels are more prone to undergo DNA loss. Moreover, applying trophectoderm biopsy, a mechanical procedure performed clinically for genetic testing, increases DNA shedding. Thus, our work reveals distinct processes underlying human development compared with mouse and suggests that aneuploidies in human embryos may not only originate from chromosome segregation errors during mitosis but also from nuclear DNA shedding.
Collapse
Affiliation(s)
- Ana Domingo-Muelas
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Igenomix Foundation and Carlos Simon Foundation, Spain
| | - Robin M Skory
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam A Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; University College London, London WC1E 6BT, UK
| | | | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Piotr Tetlak
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blake Hernandez
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Stephanie Bissiere
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Carlos Simón
- Igenomix Foundation and Carlos Simon Foundation, Spain; Department of Pediatrics Obstetrics & Gynecology, University of Valencia, Valencia 46010, Spain; INCLIVA Health Research Institute, Valencia 46010, Spain; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Umair M, Scheeren VFDC, Beitsma MM, Colleoni S, Galli C, Lazzari G, de Ruijter-Villani M, Stout TAE, Claes A. In Vitro-Produced Equine Blastocysts Exhibit Greater Dispersal and Intermingling of Inner Cell Mass Cells than In Vivo Embryos. Int J Mol Sci 2023; 24:ijms24119619. [PMID: 37298570 DOI: 10.3390/ijms24119619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In vitro production (IVP) of equine embryos is increasingly popular in clinical practice but suffers from higher incidences of early embryonic loss and monozygotic twin development than transfer of in vivo derived (IVD) embryos. Early embryo development is classically characterized by two cell fate decisions: (1) first, trophectoderm (TE) cells differentiate from inner cell mass (ICM); (2) second, the ICM segregates into epiblast (EPI) and primitive endoderm (PE). This study examined the influence of embryo type (IVD versus IVP), developmental stage or speed, and culture environment (in vitro versus in vivo) on the expression of the cell lineage markers, CDX-2 (TE), SOX-2 (EPI) and GATA-6 (PE). The numbers and distribution of cells expressing the three lineage markers were evaluated in day 7 IVD early blastocysts (n = 3) and blastocysts (n = 3), and in IVP embryos first identified as blastocysts after 7 (fast development, n = 5) or 9 (slow development, n = 9) days. Furthermore, day 7 IVP blastocysts were examined after additional culture for 2 days either in vitro (n = 5) or in vivo (after transfer into recipient mares, n = 3). In IVD early blastocysts, SOX-2 positive cells were encircled by GATA-6 positive cells in the ICM, with SOX-2 co-expression in some presumed PE cells. In IVD blastocysts, SOX-2 expression was exclusive to the compacted presumptive EPI, while GATA-6 and CDX-2 expression were consistent with PE and TE specification, respectively. In IVP blastocysts, SOX-2 and GATA-6 positive cells were intermingled and relatively dispersed, and co-expression of SOX-2 or GATA-6 was evident in some CDX-2 positive TE cells. IVP blastocysts had lower TE and total cell numbers than IVD blastocysts and displayed larger mean inter-EPI cell distances; these features were more pronounced in slower-developing IVP blastocysts. Transferring IVP blastocysts into recipient mares led to the compaction of SOX-2 positive cells into a presumptive EPI, whereas extended in vitro culture did not. In conclusion, IVP equine embryos have a poorly compacted ICM with intermingled EPI and PE cells; features accentuated in slowly developing embryos but remedied by transfer to a recipient mare.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | | | - Mabel M Beitsma
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | | | - Cesare Galli
- Avantea srl, Via Porcellasco 7/F, 26100 Cremona, Italy
| | | | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Tom A E Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Anthony Claes
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
15
|
Speckhart SL, Oliver MA, Ealy AD. Developmental Hurdles That Can Compromise Pregnancy during the First Month of Gestation in Cattle. Animals (Basel) 2023; 13:1760. [PMID: 37889637 PMCID: PMC10251927 DOI: 10.3390/ani13111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 10/29/2023] Open
Abstract
Several key developmental events are associated with early embryonic pregnancy losses in beef and dairy cows. These developmental problems are observed at a greater frequency in pregnancies generated from in-vitro-produced bovine embryos. This review describes critical problems that arise during oocyte maturation, fertilization, early embryonic development, compaction and blastulation, embryonic cell lineage specification, elongation, gastrulation, and placentation. Additionally, discussed are potential remediation strategies, but unfortunately, corrective actions are not available for several of the problems being discussed. Further research is needed to produce bovine embryos that have a greater likelihood of surviving to term.
Collapse
Affiliation(s)
| | | | - Alan D. Ealy
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.S.); (M.A.O.)
| |
Collapse
|
16
|
Muratore IB, Garnier S. Ontogeny of collective behaviour. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220065. [PMID: 36802780 PMCID: PMC9939274 DOI: 10.1098/rstb.2022.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/21/2022] [Indexed: 02/21/2023] Open
Abstract
During their lifetime, superorganisms, like unitary organisms, undergo transformations that change the machinery of their collective behaviour. Here, we suggest that these transformations are largely understudied and propose that more systematic research into the ontogeny of collective behaviours is needed if we hope to better understand the link between proximate behavioural mechanisms and the development of collective adaptive functions. In particular, certain social insects engage in self-assemblage, forming dynamic and physically connected architectures with striking similarities to developing multicellular organisms, making them good model systems for ontogenetic studies of collective behaviour. However, exhaustive time series and three-dimensional data are required to thoroughly characterize the different life stages of the collective structures and the transitions between these stages. The well-established fields of embryology and developmental biology offer practical tools and theoretical frameworks that could speed up the acquisition of new knowledge about the formation, development, maturity and dissolution of social insect self-assemblages and, by extension, other superorganismal behaviours. We hope that this review will encourage an expansion of the ontogenetic perspective in the field of collective behaviour and, in particular, in self-assemblage research, which has far-reaching applications in robotics, computer science and regenerative medicine. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
17
|
Marsico TV, Valente RS, Annes K, Oliveira AM, Silva MV, Sudano MJ. Species-specific molecular differentiation of embryonic inner cell mass and trophectoderm: A systematic review. Anim Reprod Sci 2023; 252:107229. [PMID: 37079996 DOI: 10.1016/j.anireprosci.2023.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
A wide-ranging review study regarding the molecular characterization of the first cell lineages of the developmental embryo is lacking, especially for the primary events during earliest differentiation which leads to the determination of cellular fate. Here, a systematic review and meta-analysis were conducted according to PRISMA guidelines. MEDLINE-PubMed was searched based on an established search strategy through April 2021. Thirty-six studies fulfilling the inclusion criteria were subjected to qualitative and quantitative analysis. Among the studies, 50 % (18/36) used mice as an animal model, 22.2 % (8/36) pigs, 16.7 % (6/36) cattle, 5.5 % (2/36) humans, and 2.8 % (1/36) goats as well as 2.8 % (1/36) equine. Our results demonstrated that each of the first cell lineages of embryos requires a certain pattern of expression to establish the cellular determination of fate. Moreover, these patterns are shared by many species, particularly for those molecules that have already been identified in the literature as biomarkers. In conclusion, the present study integrated carefully chosen studies regarding embryonic development and first cellular decisions in mammalian species and summarized the information about the differential characterization of the first cell lineages and their possible relationship with specific gene expression.
Collapse
Affiliation(s)
| | | | - Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Mara Viana Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Mateus José Sudano
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil; Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
18
|
Spadafora C. The epigenetic basis of evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:57-69. [PMID: 36720315 DOI: 10.1016/j.pbiomolbio.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
An increasing body of data are revealing key roles of epigenetics in evolutionary processes. The scope of this manuscript is to assemble in a coherent frame experimental evidence supporting a role of epigenetic factors and networks, active during embryogenesis, in orchestrating variation-inducing phenomena underlying evolution, seen as a global process. This process unfolds over two crucial levels: i) a flow of RNA-based information - predominantly small regulatory RNAs released from somatic cells exposed to environmental stimuli - taken up by spermatozoa and delivered to oocytes at fertilization and ii) the highly permissive and variation-prone environments offered by zygotes and totipotent early embryos. Totipotent embryos provide a variety of biological tools favouring the emergence of evolutionarily significant phenotypic novelties driven by RNA information. Under this light, neither random genomic mutations, nor the sieving role of natural selection are required, as the sperm-delivered RNA cargo conveys specific information and acts as "phenotypic-inducer" of defined environmentally acquired traits.
Collapse
Affiliation(s)
- Corrado Spadafora
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy.
| |
Collapse
|
19
|
scm 6A-seq reveals single-cell landscapes of the dynamic m 6A during oocyte maturation and early embryonic development. Nat Commun 2023; 14:315. [PMID: 36658155 PMCID: PMC9852475 DOI: 10.1038/s41467-023-35958-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
N6-methyladenosine (m6A) has been demonstrated to regulate RNA metabolism and various biological processes, including gametogenesis and embryogenesis. However, the landscape and function of m6A at single cell resolution have not been extensively studied in mammalian oocytes or during pre-implantation. In this study, we developed a single-cell m6A sequencing (scm6A-seq) method to simultaneously profile the m6A methylome and transcriptome in single oocytes/blastomeres of cleavage-stage embryos. We found that m6A deficiency leads to aberrant RNA clearance and consequent low quality of Mettl3Gdf9 conditional knockout (cKO) oocytes. We further revealed that m6A regulates the translation and stability of modified RNAs in metaphase II (MII) oocytes and during oocyte-to-embryo transition, respectively. Moreover, we observed m6A-dependent asymmetries in the epi-transcriptome between the blastomeres of two-cell embryo. scm6A-seq thus allows in-depth investigation into m6A characteristics and functions, and the findings provide invaluable single-cell resolution resources for delineating the underlying mechanism for gametogenesis and early embryonic development.
Collapse
|
20
|
Demicheli R, Hrushesky WJM. Reimagining Cancer: Moving from the Cellular to the Tissue Level. Cancer Res 2023; 83:173-180. [PMID: 36264185 DOI: 10.1158/0008-5472.can-22-1601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 10/13/2022] [Indexed: 01/20/2023]
Abstract
The current universally accepted explanation of cancer origin and behavior, the somatic mutation theory, is cell-centered and rooted in perturbation of gene function independent of the external environmental context. However, tumors consist of various epithelial and stromal cell populations temporally and spatially organized into an integrated neoplastic community, and they can have properties similar to normal tissues. Accordingly, we review specific normal cellular and tissue traits and behaviors with adaptive temporal and spatial self-organization that result in ordered patterns and structures. A few recent theories have described these tissue-level cancer behaviors, invoking a conceptual shift from the cellular level and highlighting the need for methodologic approaches based on the analysis of complex systems. We propose extending the analytical approach of regulatory networks to the tissue level and introduce the concept of "cancer attractors." These concepts require reevaluation of cancer imaging and investigational approaches and challenge the traditional reductionist approach of cancer molecular biology.
Collapse
Affiliation(s)
- Romano Demicheli
- Department of Biomedical and Clinical Sciences (DIBIC) "L. Sacco" & DSRC, LITA Vialba Campus, Università degli Studi di Milano, Milano, Italy
| | - William J M Hrushesky
- School of Medicine and College of Pharmacy, University of South Carolina, Columbia, South Carolina.,WJB Dorn VA Medical Center, Columbia, South Carolina
| |
Collapse
|
21
|
Alvarez Y, Smutny M. Emerging Role of Mechanical Forces in Cell Fate Acquisition. Front Cell Dev Biol 2022; 10:864522. [PMID: 35676934 PMCID: PMC9168747 DOI: 10.3389/fcell.2022.864522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Mechanical forces are now recognized as key cellular effectors that together with genetic and cellular signals physically shape and pattern tissues and organs during development. Increasing efforts are aimed toward understanding the less explored role of mechanical forces in controlling cell fate decisions in embryonic development. Here we discuss recent examples of how differential forces feedback into cell fate specification and tissue patterning. In particular, we focus on the role of actomyosin-contractile force generation and transduction in affecting tissue morphogenesis and cell fate regulation in the embryo.
Collapse
Affiliation(s)
- Yanina Alvarez
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Michael Smutny
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
22
|
Olbrich T, Ruiz S. Genome architecture and totipotency: An intertwined relation during early embryonic development. Bioessays 2022; 44:e2200029. [PMID: 35560026 DOI: 10.1002/bies.202200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022]
Abstract
Chromosomes are not randomly packed and positioned into the nucleus but folded in higher-order chromatin structures with defined functions. However, the genome of a fertilized embryo undergoes a dramatic epigenetic reprogramming characterized by extensive chromatin relaxation and the lack of a defined three-dimensional structure. This reprogramming is followed by a slow genome refolding that gradually strengthens the chromatin architecture during preimplantation development. Interestingly, genome refolding during early development coincides with a progressive loss of developmental potential suggesting a link between chromatin organization and cell plasticity. In agreement, loss of chromatin architecture upon depletion of the insulator transcription factor CTCF in embryonic stem cells led to the upregulation of the transcriptional program found in totipotent cells of the embryo, those with the highest developmental potential. This essay will discuss the impact of genome folding in controlling the expression of transcriptional programs involved in early development and their plastic-associated features.
Collapse
Affiliation(s)
- Teresa Olbrich
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Gordeeva O, Gordeev A, Erokhov P. Archetypal Architecture Construction, Patterning, and Scaling Invariance in a 3D Embryoid Body Differentiation Model. Front Cell Dev Biol 2022; 10:852071. [PMID: 35573693 PMCID: PMC9091174 DOI: 10.3389/fcell.2022.852071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Self-organized patterning and architecture construction studying is a priority goal for fundamental developmental and stem cell biology. To study the spatiotemporal patterning of pluripotent stem cells of different origins, we developed a three-dimensional embryoid body (EB) differentiation model quantifying volumetric parameters and investigated how the EB architecture formation, patterning, and scaling depend on the proliferation, cavitation, and differentiation dynamics, external environmental factors, and cell numbers. We identified three similar spatiotemporal patterns in the EB architectures, regardless of cell origin, which constitute the EB archetype and mimick the pre-gastrulation embryonic patterns. We found that the EB patterning depends strongly on cellular positional information, culture media factor/morphogen content, and free diffusion from the external environment and between EB cell layers. However, the EB archetype formation is independent of the EB size and initial cell numbers forming EBs; therefore, it is capable of scaling invariance and patterning regulation. Our findings indicate that the underlying principles of reaction-diffusion and positional information concepts can serve as the basis for EB architecture construction, patterning, and scaling. Thus, the 3D EB differentiation model represents a highly reproducible and reliable platform for experimental and theoretical research on developmental and stem cell biology issues.
Collapse
Affiliation(s)
- Olga Gordeeva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Gordeev
- National Institutes of Health’s National Library of Medicine, Bethesda, MD, United States
| | - Pavel Erokhov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Özgüç Ö, de Plater L, Kapoor V, Tortorelli AF, Clark AG, Maître JL. Cortical softening elicits zygotic contractility during mouse preimplantation development. PLoS Biol 2022; 20:e3001593. [PMID: 35324889 PMCID: PMC8982894 DOI: 10.1371/journal.pbio.3001593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-μm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis. During preimplantation morphogenesis, the mouse embryo relies on forces generated by the actomyosin cytoskeleton. This study uncovers how periodic actomyosin contractions increase in frequency during cleavage stages as blastomeres soften with each cleavage division.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Ludmilla de Plater
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Varun Kapoor
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Anna Francesca Tortorelli
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Andrew G. Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
- * E-mail:
| |
Collapse
|
25
|
Herrera-Delgado E, Maître JL. A theoretical understanding of mammalian preimplantation development. Cells Dev 2021; 168:203752. [PMID: 34634520 DOI: 10.1016/j.cdev.2021.203752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022]
Abstract
The blastocyst has long been a hallmark system of study in developmental biology due to its importance in mammalian development and clinical relevance for assisted reproductive technologies. In recent years, the blastocyst is emerging as a system of study for mathematical modelling. In this review, we compile, to our knowledge, all models describing preimplantation development. Coupled with experiments, these models have provided insight regarding the morphogenesis and cell-fate specification throughout preimplantation development. In the case of cell-fate specification, theoretical models have provided mechanisms explaining how proportion of cell types are established and maintained when confronted to perturbations. For cell-shape based models, they have described quantitatively how mechanical forces sculpt the blastocyst and even predicted how morphogenesis could be manipulated. As theoretical biology develops, we believe the next critical stage in modelling involves an integration of cell fate and mechanics to provide integrative models of development at distinct spatiotemporal scales. We discuss how, building on a balanced base of mechanical and chemical models, the preimplantation embryo will play a key role in integrating these two faces of the same coin.
Collapse
Affiliation(s)
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.
| |
Collapse
|
26
|
Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell Tissue Res 2021; 386:423-444. [PMID: 34586506 DOI: 10.1007/s00441-021-03530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell-cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.
Collapse
|
27
|
He L, Ye S, Fang J, Zhang Y, Cui C, Wang A, Zhao Y, Shi H. Real-Time Visualization of Embryonic Apoptosis Using a Near-Infrared Fluorogenic Probe for Embryo Development Evaluation. Anal Chem 2021; 93:12122-12130. [PMID: 34424664 DOI: 10.1021/acs.analchem.1c02793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing an accurate and reliable detection technique for early embryonic apoptosis is of great significance for real-time monitoring and evaluation of embryonic development in living systems. Herein, we have rationally designed and synthesized a novel near-infrared (NIR) fluorogenic probe CGK(QSY21)DEVD-Cy5.5 for real-time imaging of embryonic apoptosis. This probe is constructed with a NIR dye Cy5.5, a fluorescence quencher QSY21, and a peptide substrate Asp-Glu-Val-Asp (DEVD) of the caspase-3 enzyme that is a key executor of cell apoptosis. The probe was initially nonfluorescent in aqueous solution but emitted strong NIR fluorescence upon specific cleavage by activated caspase-3 in a concentration-dependent manner. Taking advantage of this unique feature, this fluorogenic probe was for the first time used for real-time imaging of caspase-3 activity in apoptotic embryos. More notably, significant fluorescence enhancement was solely determined from the apoptotic embryos with the treatment of the probe both in vitro and in vivo, highly suggesting that this probe has great potential to monitor the apoptosis of embryos. We thus envision that this probe would provide a very useful means for real-time visualization and accurate evaluation of embryonic development in the future.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China.,CAM-SU Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| |
Collapse
|
28
|
Leahy BD, Racowsky C, Needleman D. Inferring simple but precise quantitative models of human oocyte and early embryo development. J R Soc Interface 2021; 18:20210475. [PMID: 34493094 PMCID: PMC8424348 DOI: 10.1098/rsif.2021.0475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/16/2021] [Indexed: 11/12/2022] Open
Abstract
Macroscopic, phenomenological models are useful as concise framings of our understandings in fields from statistical physics to finance to biology. Constructing a phenomenological model for development would provide a framework for understanding the complicated, regulatory nature of oogenesis and embryogenesis. Here, we use a data-driven approach to infer quantitative, precise models of human oocyte maturation and pre-implantation embryo development, by analysing clinical in-vitro fertilization (IVF) data on 7399 IVF cycles resulting in 57 827 embryos. Surprisingly, we find that both oocyte maturation and early embryo development are quantitatively described by simple models with minimal interactions. This simplicity suggests that oogenesis and embryogenesis are composed of modular processes that are relatively siloed from one another. In particular, our analysis provides strong evidence that (i) pre-antral follicles produce anti-Müllerian hormone independently of effects from other follicles, (ii) oocytes mature to metaphase-II independently of the woman's age, her BMI and other factors, (iii) early embryo development is memoryless for the variables assessed here, in that the probability of an embryo transitioning from its current developmental stage to the next is independent of its previous stage. Our results both provide insight into the fundamentals of oogenesis and embryogenesis and have implications for the clinical IVF.
Collapse
Affiliation(s)
- Brian D. Leahy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- SEAS, Harvard University, Cambridge, MA, USA
| | - Catherine Racowsky
- Brigham Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Needleman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- SEAS, Harvard University, Cambridge, MA, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| |
Collapse
|
29
|
Abstract
The cytoskeleton - comprising actin filaments, microtubules and intermediate filaments - serves instructive roles in regulating cell function and behaviour during development. However, a key challenge in cell and developmental biology is to dissect how these different structures function and interact in vivo to build complex tissues, with the ultimate aim to understand these processes in a mammalian organism. The preimplantation mouse embryo has emerged as a primary model system for tackling this challenge. Not only does the mouse embryo share many morphological similarities with the human embryo during its initial stages of life, it also permits the combination of genetic manipulations with live-imaging approaches to study cytoskeletal dynamics directly within an intact embryonic system. These advantages have led to the discovery of novel cytoskeletal structures and mechanisms controlling lineage specification, cell-cell communication and the establishment of the first forms of tissue architecture during development. Here we highlight the diverse organization and functions of each of the three cytoskeletal filaments during the key events that shape the early mammalian embryo, and discuss how they work together to perform key developmental tasks, including cell fate specification and morphogenesis of the blastocyst. Collectively, these findings are unveiling a new picture of how cells in the early embryo dynamically remodel their cytoskeleton with unique spatial and temporal precision to drive developmental processes in the rapidly changing in vivo environment.
Collapse
|
30
|
Firmin J, Maître JL. Morphogenesis of the human preimplantation embryo: bringing mechanics to the clinics. Semin Cell Dev Biol 2021; 120:22-31. [PMID: 34253437 DOI: 10.1016/j.semcdb.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
During preimplantation development, the human embryo forms the blastocyst, the structure enabling uterine implantation. The blastocyst consists of an epithelial envelope, the trophectoderm, encompassing a fluid-filled lumen, the blastocoel, and a cluster of pluripotent stem cells, the inner cell mass. This specific architecture is crucial for the implantation and further development of the human embryo. Furthermore, the morphology of the human embryo is a prime determinant for clinicians to assess the implantation potential of in vitro fertilized human embryos, which constitutes a key aspect of assisted reproduction technology. Therefore, it is crucial to understand how the human embryo builds the blastocyst. As any material, the human embryo changes shape under the action of forces. Here, we review recent advances in our understanding of the mechanical forces shaping the blastocyst. We discuss the cellular processes responsible for generating morphogenetic forces that were studied mostly in the mouse and review the literature on human embryos to see which of them may be conserved. Based on the specific morphological defects commonly observed in clinics during human preimplantation development, we discuss how mechanical forces and their underlying cellular processes may be affected. Together, we propose that bringing tissue mechanics to the clinics will advance our understanding of human preimplantation development, as well as our ability to help infertile couples to have babies.
Collapse
Affiliation(s)
- Julie Firmin
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM, U934 Paris, France
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM, U934 Paris, France.
| |
Collapse
|
31
|
Kramer AC, Erikson DW, McLendon BA, Seo H, Hayashi K, Spencer TE, Bazer FW, Burghardt RC, Johnson GA. SPP1 expression in the mouse uterus and placenta: Implications for implantation. Biol Reprod 2021; 105:892-904. [PMID: 34165144 DOI: 10.1093/biolre/ioab125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 11/14/2022] Open
Abstract
Secreted phosphoprotein 1 [SPP1, also known as osteopontin (OPN)] binds integrins to mediate cell-cell and cell-extracellular matrix communication to promote cell adhesion, migration, and differentiation. Considerable evidence links SPP1 to pregnancy in several species. Current evidence suggests that SPP1 is involved in implantation and placentation in mice, but in vivo localization of SPP1 and in vivo mechanistic studies to substantiate these roles are incomplete and contradictory. We localized Spp1 mRNA and protein in the endometrium and placenta of mice throughout gestation, and utilized delayed implantation of mouse blastocysts to link SPP1 expression to the implantation chamber. Spp1 mRNA and protein localized to the endometrial luminal (LE), but not glandular epithelia (GE) in interimplantation regions of the uterus throughout gestation. Spp1 mRNA and protein also localized to uterine naturel killer (uNK) cells of the decidua. Within the implantation chamber, Spp1 mRNA localized only to intermittent LE cells, and to the inner cell mass. SPP1 protein localized to intermittent trophoblast cells, and to the parietal endoderm. These results suggest that SPP1: 1) is secreted by the LE at interimplantation sites for closure of the uterine lumen to form the implantation chamber; 2) is secreted by LE adjacent to the attaching trophoblast cells for attachment and invasion of the blastocyst; and 3) is not a component of histotroph secreted from the GE, but is secreted from uNK cells in the decidua to increase angiogenesis within the decidua to augment hemotrophic support of embryonic/fetal development of the conceptus.
Collapse
Affiliation(s)
- Avery C Kramer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Bryan A McLendon
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Kanako Hayashi
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Thomas E Spencer
- Department of Animal Science, University of Missouri, Columbia, MO, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| |
Collapse
|
32
|
Meistermann D, Bruneau A, Loubersac S, Reignier A, Firmin J, François-Campion V, Kilens S, Lelièvre Y, Lammers J, Feyeux M, Hulin P, Nedellec S, Bretin B, Castel G, Allègre N, Covin S, Bihouée A, Soumillon M, Mikkelsen T, Barrière P, Chazaud C, Chappell J, Pasque V, Bourdon J, Fréour T, David L. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell 2021; 28:1625-1640.e6. [PMID: 34004179 DOI: 10.1016/j.stem.2021.04.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 07/16/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Understanding lineage specification during human pre-implantation development is a gateway to improving assisted reproductive technologies and stem cell research. Here we employ pseudotime analysis of single-cell RNA sequencing (scRNA-seq) data to reconstruct early mouse and human embryo development. Using time-lapse imaging of annotated embryos, we provide an integrated, ordered, and continuous analysis of transcriptomics changes throughout human development. We reveal that human trophectoderm/inner cell mass transcriptomes diverge at the transition from the B2 to the B3 blastocyst stage, just before blastocyst expansion. We explore the dynamics of the fate markers IFI16 and GATA4 and show that they gradually become mutually exclusive upon establishment of epiblast and primitive endoderm fates, respectively. We also provide evidence that NR2F2 marks trophectoderm maturation, initiating from the polar side, and subsequently spreads to all cells after implantation. Our study pinpoints the precise timing of lineage specification events in the human embryo and identifies transcriptomics hallmarks and cell fate markers.
Collapse
Affiliation(s)
- Dimitri Meistermann
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LS2N, UNIV Nantes, CNRS, Nantes, France
| | - Alexandre Bruneau
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Sophie Loubersac
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Arnaud Reignier
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Julie Firmin
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Valentin François-Campion
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Stéphanie Kilens
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | | | - Jenna Lammers
- CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Magalie Feyeux
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Phillipe Hulin
- Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Steven Nedellec
- Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Betty Bretin
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Gaël Castel
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Nicolas Allègre
- GReD Laboratory, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, CRBC, 63000 Clermont-Ferrand, France
| | - Simon Covin
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Audrey Bihouée
- Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France; Institut du Thorax, UNIV Nantes, INSERM, CNRS, Nantes, France
| | - Magali Soumillon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Tarjei Mikkelsen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Paul Barrière
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Claire Chazaud
- GReD Laboratory, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, CRBC, 63000 Clermont-Ferrand, France
| | - Joel Chappell
- KU Leuven - University of Leuven, Department of Development and Regeneration, Institute for Single Cell Omics, Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Vincent Pasque
- KU Leuven - University of Leuven, Department of Development and Regeneration, Institute for Single Cell Omics, Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | | | - Thomas Fréour
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France.
| | - Laurent David
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France.
| |
Collapse
|
33
|
Ho C, Morsut L. Novel synthetic biology approaches for developmental systems. Stem Cell Reports 2021; 16:1051-1064. [PMID: 33979593 PMCID: PMC8185972 DOI: 10.1016/j.stemcr.2021.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, developmental systems are investigated with increasing technological power. Still, open questions remain, especially concerning self-organization capacity and its control. Here, we present three areas where synthetic biology tools are used in top-down and bottom-up approaches for studying and constructing developmental systems. First, we discuss how synthetic biology tools can improve stem cell-based organoid models. Second, we discuss recent studies employing user-defined perturbations to study embryonic patterning in model species. Third, we present "toy models" of patterning and morphogenesis using synthetic genetic circuits in non-developmental systems. Finally, we discuss how these tools and approaches can specifically benefit the field of embryo models.
Collapse
Affiliation(s)
- Christine Ho
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
34
|
Schliffka MF, Tortorelli AF, Özgüç Ö, de Plater L, Polzer O, Pelzer D, Maître JL. Multiscale analysis of single and double maternal-zygotic Myh9 and Myh10 mutants during mouse preimplantation development. eLife 2021; 10:e68536. [PMID: 33871354 PMCID: PMC8096435 DOI: 10.7554/elife.68536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
During the first days of mammalian development, the embryo forms the blastocyst, the structure responsible for implanting the mammalian embryo. Consisting of an epithelium enveloping the pluripotent inner cell mass and a fluid-filled lumen, the blastocyst results from a series of cleavage divisions, morphogenetic movements, and lineage specification. Recent studies have identified the essential role of actomyosin contractility in driving cytokinesis, morphogenesis, and fate specification, leading to the formation of the blastocyst. However, the preimplantation development of contractility mutants has not been characterized. Here, we generated single and double maternal-zygotic mutants of non-muscle myosin II heavy chains (NMHCs) to characterize them with multiscale imaging. We found that Myh9 (NMHC II-A) is the major NMHC during preimplantation development as its maternal-zygotic loss causes failed cytokinesis, increased duration of the cell cycle, weaker embryo compaction, and reduced differentiation, whereas Myh10 (NMHC II-B) maternal-zygotic loss is much less severe. Double maternal-zygotic mutants for Myh9 and Myh10 show a much stronger phenotype, failing most of the attempts of cytokinesis. We found that morphogenesis and fate specification are affected but nevertheless carry on in a timely fashion, regardless of the impact of the mutations on cell number. Strikingly, even when all cell divisions fail, the resulting single-celled embryo can initiate trophectoderm differentiation and lumen formation by accumulating fluid in increasingly large vacuoles. Therefore, contractility mutants reveal that fluid accumulation is a cell-autonomous process and that the preimplantation program carries on independently of successful cell division.
Collapse
Affiliation(s)
- Markus Frederik Schliffka
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
- Carl Zeiss SASMarly-le-RoyFrance
| | | | - Özge Özgüç
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | | | - Oliver Polzer
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | - Diane Pelzer
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| |
Collapse
|
35
|
Stathatos GG, Dunleavy JEM, Zenker J, O'Bryan MK. Delta and epsilon tubulin in mammalian development. Trends Cell Biol 2021; 31:774-787. [PMID: 33867233 DOI: 10.1016/j.tcb.2021.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
Delta (δ-) and epsilon (ε-) tubulin are lesser-known cousins of alpha (α-) and beta (β-) tubulin. They are likely to regulate centriole function in a broad range of species; however, their in vivo role and mechanism of action in mammals remain mysterious. In unicellular species and mammalian cell lines, mutations in δ- and ε-tubulin cause centriole destabilization and atypical mitosis and, in the most severe cases, cell death. Beyond the centriole, δ- and ε-tubulin localize to the manchette during murine spermatogenesis and interact with katanin-like 2 (KATNAL2), a protein with microtubule (MT)-severing properties, indicative of novel non-centriolar functions. Herein we summarize the current knowledge surrounding δ- and ε-tubulin, identify pathways for future research, and highlight how and why spermatogenesis and embryogenesis are ideal systems to define δ- and ε-tubulin function in vivo.
Collapse
Affiliation(s)
- G Gemma Stathatos
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jessica E M Dunleavy
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jennifer Zenker
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Moira K O'Bryan
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
36
|
Dukowic-Schulze S, van der Linde K. Oxygen, secreted proteins and small RNAs: mobile elements that govern anther development. PLANT REPRODUCTION 2021; 34:1-19. [PMID: 33492519 PMCID: PMC7902584 DOI: 10.1007/s00497-020-00401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/24/2020] [Indexed: 05/24/2023]
Abstract
Correct anther development is essential for male fertility and subsequently agricultural yield. Defects in anther development range from the early stage of stamen formation until the late stage of tapetum degeneration. In particular, the specification of the four distinct somatic layers and the inner sporogenous cells need perfect orchestration relying on precise cell-cell communication. Up to now, several signals, which coordinate the anther´s developmental program, have been identified. Among the known signals are phytohormones, environmental conditions sensed via glutaredoxins, several receptor-like kinases triggered by ligands like MAC1, and small RNAs such as miRNAs and the monocot-prevalent reproductive phasiRNAs. Rather than giving a full review on anther development, here we discuss anther development with an emphasis on mobile elements like ROS/oxygen, secreted proteins and small RNAs (only briefly touching on phytohormones), how they might act and interact, and what the future of this research area might reveal.
Collapse
Affiliation(s)
- Stefanie Dukowic-Schulze
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
37
|
Toyooka Y. Pluripotent stem cells in the research for extraembryonic cell differentiation. Dev Growth Differ 2021; 63:127-139. [PMID: 33583019 DOI: 10.1111/dgd.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Mouse embryonic stem cells (mESCs) are pluripotent stem cell populations derived from the preimplantation embryo and are used to study the differentiation of many types of somatic and germ cells in developing embryos. They are also used to study cell lineages of extraembryonic tissues, such as the trophectoderm (TE) and the primitive endoderm (PrE). mESC cultures are suitable systems for reproducing cellular and molecular events occurring during the differentiation of these cell types, such as changes in gene expression patterns, signaling events, and genome rearrangements although the consistency between the results obtained using mESCs and those of in vivo studies on embryos should be carefully taken into account. Since TE and PrE cells can be induced from mESCs in vitro, mESC cultures are useful systems to study differentiation of these cell lineages during development, if used appropriately. In addition, human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), are capable of generating extraembryonic lineages in vitro and are promising tools to study the differentiation of these lineages in the human embryo.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Lammers J, Reignier A, Loubersac S, Chtourou S, Lefebvre T, Barrière P, Fréour T. Modification of late human embryo development after blastomere removal on day 3 for preimplantation genetic testing. Syst Biol Reprod Med 2020; 67:121-126. [PMID: 33148055 DOI: 10.1080/19396368.2020.1834008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The purpose of our study was to use a time-lapse monitoring (TLM) system to determine if day 3 blastomere biopsy for preimplantation genetic testing (PGT) had an impact on subsequent morphokinetic parameters at the morula and blastocyst stages. In this retrospective monocentric study conducted between May 2013 and August 2017, we compared late morphokinetic parameters in embryos undergoing day 3 blastomere biopsy for PGT and in control non-biopsied embryos obtained in intracytoplasmic sperm injection (ICSI) cycles for male infertility. All embryos in both groups were cultured in a TLM system. The biopsy group was composed of 1691 embryos (386 PGT cycles). The control group was composed of 2578 embryos (786 ICSI cycles). Early morphokinetic parameters up to day 3 were similar in both groups. Concerning late morphokinetic parameters, the onset of compaction (tSC), fully-compacted morula stage (tM), onset of cavitation/early blastulation (tSB), and blastocyst stages (tB and tEB) appeared significantly earlier in the biopsy group than in the control group. We found that late morphokinetic events at the morula and the blastocyst stages occurred significantly earlier in biopsied embryos than in control non-biopsied-embryos. The mechanisms underlying these modifications of embryo development after biopsy should be investigated in order to determine precisely, and this phenomenon could be associated with embryo, fetal, and offspring development.Abbreviations: TLM: time-lapse monitoring; PGT: preimplantation genetic testing; ICSI: intracytoplasmic sperm injection; tSC: the onset of compaction; tM: fully-compacted morula stage; tSB: onset of cavitation/early blastulation; tB and tEB: blastocyst stages; OHSS: ovarian hyperstimulation syndrome.
Collapse
Affiliation(s)
- Jenna Lammers
- Service de Biologie et Médecine de la Reproduction, CHU Nantes, Nantes, France.,Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France
| | - Arnaud Reignier
- Service de Biologie et Médecine de la Reproduction, CHU Nantes, Nantes, France.,Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Sophie Loubersac
- Service de Biologie et Médecine de la Reproduction, CHU Nantes, Nantes, France.,Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France
| | - Sana Chtourou
- Laboratoire de Biologie de la Reproduction et de Cytogénétique, Hôpital Aziza Othmana, Tunis, Tunisia
| | - Tiphaine Lefebvre
- Service de Biologie et Médecine de la Reproduction, CHU Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Paul Barrière
- Service de Biologie et Médecine de la Reproduction, CHU Nantes, Nantes, France.,Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Thomas Fréour
- Service de Biologie et Médecine de la Reproduction, CHU Nantes, Nantes, France.,Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| |
Collapse
|
39
|
Fagotto F. Tissue segregation in the early vertebrate embryo. Semin Cell Dev Biol 2020; 107:130-146. [DOI: 10.1016/j.semcdb.2020.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022]
|
40
|
Royer C, Leonavicius K, Kip A, Fortin D, Nandi K, Vincent A, Jones C, Child T, Coward K, Graham C, Srinivas S. Establishment of a relationship between blastomere geometry and YAP localisation during compaction. Development 2020; 147:dev.189449. [PMID: 32928909 PMCID: PMC7561472 DOI: 10.1242/dev.189449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023]
Abstract
Precise patterning within the three-dimensional context of tissues, organs and embryos implies that cells can sense their relative position. During preimplantation development, outside and inside cells rely on apicobasal polarity and the Hippo pathway to choose their fate. Despite recent findings suggesting that mechanosensing might be central to this process, the relationship between blastomere geometry (i.e. shape and position) and the Hippo pathway effector YAP remains unknown. We used a highly quantitative approach to analyse information on the geometry and YAP localisation of individual blastomeres of mouse and human embryos. We identified the proportion of exposed cell surface area as most closely correlating with the nuclear localisation of YAP. To test this relationship, we developed several hydrogel-based approaches to alter blastomere geometry in cultured embryos. Unbiased clustering analyses of blastomeres from such embryos revealed that this relationship emerged during compaction. Our results therefore pinpoint the time during early embryogenesis when cells acquire the ability to sense changes in geometry and provide a new framework for how cells might integrate signals from different membrane domains to assess their relative position within the embryo. Highlighted Article: Localisation of YAP, a key factor during the first cell fate decision, is linked to individual blastomere geometry within the three-dimentional environment of the preimplantation embryo.
Collapse
Affiliation(s)
- Christophe Royer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Karolis Leonavicius
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Annemarie Kip
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Deborah Fortin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Kirtirupa Nandi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Anna Vincent
- Oxford Fertility, Institute of Reproductive Sciences, Oxford OX4 2HW, UK
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Tim Child
- Oxford Fertility, Institute of Reproductive Sciences, Oxford OX4 2HW, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Chris Graham
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
41
|
Protein O-GlcNAcylation Promotes Trophoblast Differentiation at Implantation. Cells 2020; 9:cells9102246. [PMID: 33036308 PMCID: PMC7599815 DOI: 10.3390/cells9102246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Embryo implantation begins with blastocyst trophectoderm (TE) attachment to the endometrial epithelium, followed by the breaching of this barrier by TE-derived trophoblast. Dynamic protein modification with O-linked β-N-acetylglucosamine (O-GlcNAcylation) is mediated by O-GlcNAc transferase and O-GlcNAcase (OGA), and couples cellular metabolism to stress adaptation. O-GlcNAcylation is essential for blastocyst formation, but whether there is a role for this system at implantation remains unexplored. Here, we used OGA inhibitor thiamet g (TMG) to induce raised levels of O-GlcNAcylation in mouse blastocysts and human trophoblast cells. In an in vitro embryo implantation model, TMG promoted mouse blastocyst breaching of the endometrial epithelium. TMG reduced expression of TE transcription factors Cdx2, Gata2 and Gata3, suggesting that O-GlcNAcylation stimulated TE differentiation to invasive trophoblast. TMG upregulated transcription factors OVOL1 and GCM1, and cell fusion gene ERVFRD1, in a cell line model of syncytiotrophoblast differentiation from human TE at implantation. Therefore O-GlcNAcylation is a conserved pathway capable of driving trophoblast differentiation. TE and trophoblast are sensitive to physical, chemical and nutritive stress, which can occur as a consequence of maternal pathophysiology or during assisted reproduction, and may lead to adverse neonatal outcomes and associated adult health risks. Further investigation of how O-GlcNAcylation regulates trophoblast populations arising at implantation is required to understand how peri-implantation stress affects reproductive outcomes.
Collapse
|
42
|
Virnicchi G, Bora P, Gahurova L, Šušor A, Bruce AW. Wwc2 Is a Novel Cell Division Regulator During Preimplantation Mouse Embryo Lineage Formation and Oogenesis. Front Cell Dev Biol 2020; 8:857. [PMID: 33042987 PMCID: PMC7527741 DOI: 10.3389/fcell.2020.00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Formation of the hatching mouse blastocyst marks the end of preimplantation development, whereby previous cell cleavages culminate in the formation of three distinct cell lineages (trophectoderm, primitive endoderm and epiblast). We report that dysregulated expression of Wwc2, a genetic paralog of Kibra/Wwc1 (a known activator of Hippo-signaling, a key pathway during preimplantation development), is specifically associated with cell autonomous deficits in embryo cell number and cell division abnormalities. Division phenotypes are also observed during mouse oocyte meiotic maturation, as Wwc2 dysregulation blocks progression to the stage of meiosis II metaphase (MII) arrest and is associated with spindle defects and failed Aurora-A kinase (AURKA) activation. Oocyte and embryo cell division defects, each occurring in the absence of centrosomes, are fully reversible by expression of recombinant HA-epitope tagged WWC2, restoring activated oocyte AURKA levels. Additionally, clonal embryonic dysregulation implicates Wwc2 in maintaining the pluripotent epiblast lineage. Thus, Wwc2 is a novel regulator of meiotic and early mitotic cell divisions, and mouse blastocyst cell fate.
Collapse
Affiliation(s)
- Giorgio Virnicchi
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Pablo Bora
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Lenka Gahurova
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Andrej Šušor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Alexander W. Bruce
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
43
|
Yamamura S, Goda N, Akizawa H, Kohri N, Balboula AZ, Kobayashi K, Bai H, Takahashi M, Kawahara M. Yes-associated protein 1 translocation through actin cytoskeleton organization in trophectoderm cells. Dev Biol 2020; 468:14-25. [PMID: 32946790 DOI: 10.1016/j.ydbio.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
A mammalian embryo experiences the first cell segregation at the blastocyst stage, in which cells giving form to the embryo are sorted into two lineages; trophectoderm (TE) and inner cell mass (ICM). This first cell segregation process is governed by cell position-dependent Hippo signaling, which is a phosphorylation cascade determining whether Yes-associated protein 1 (YAP1), one of the key components of the Hippo signaling pathway, localizes within the nucleus or cytoplasm. YAP1 localization determines the transcriptional on/off switch of a key gene, Cdx2, required for TE differentiation. However, the control mechanisms involved in YAP1 nucleocytoplasmic shuttling post blastocyst formation remain unknown. This study focused on the mechanisms involved in YAP1 release from TE nuclei after blastocoel contraction in bovine blastocysts. The blastocysts contracted by blastocoel fluid aspiration showed that the YAP1 translocation from nucleus to cytoplasm in the TE cells was concomitant with the protruded actin cytoskeleton. This YAP1 release from TE nuclei in the contracted blastocysts was prevented by actin disruption and stabilization. In contrast, Y27632, which is a potent inhibitor of Rho-associated coiled-coil containing protein kinase 1/2 (ROCK) activity, was found to promote YAP1 nuclear localization in the TE cells of contracted blastocysts. Meanwhile, lambda protein phosphatase (LPP) treatment inducing protein dephosphorylation could not prevent YAP1 release from TE nuclei in the contracted blastocysts, indicating that YAP1 release from TE nuclei does not depend on the Hippo signaling pathway. These results suggested that blastocyst contraction causes YAP1 release from TE nuclei through actin cytoskeleton remodeling in a Hippo signaling-independent manner. Thus, the present study raised the possibility that YAP1 subcellular localization is controlled by actin cytoskeletal organization after the blastocyst formation. Our results demonstrate diverse regulatory mechanisms for YAP1 nucleocytoplasmic shuttling in TE cells.
Collapse
Affiliation(s)
- Shota Yamamura
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Nanami Goda
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Hiroki Akizawa
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Nanami Kohri
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Ahmed Z Balboula
- Animal Sciences Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Masashi Takahashi
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
44
|
Lim HYG, Alvarez YD, Gasnier M, Wang Y, Tetlak P, Bissiere S, Wang H, Biro M, Plachta N. Keratins are asymmetrically inherited fate determinants in the mammalian embryo. Nature 2020; 585:404-409. [PMID: 32848249 DOI: 10.1038/s41586-020-2647-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/30/2020] [Indexed: 11/08/2022]
Abstract
To implant in the uterus, the mammalian embryo first specifies two cell lineages: the pluripotent inner cell mass that forms the fetus, and the outer trophectoderm layer that forms the placenta1. In many organisms, asymmetrically inherited fate determinants drive lineage specification2, but this is not thought to be the case during early mammalian development. Here we show that intermediate filaments assembled by keratins function as asymmetrically inherited fate determinants in the mammalian embryo. Unlike F-actin or microtubules, keratins are the first major components of the cytoskeleton that display prominent cell-to-cell variability, triggered by heterogeneities in the BAF chromatin-remodelling complex. Live-embryo imaging shows that keratins become asymmetrically inherited by outer daughter cells during cell division, where they stabilize the cortex to promote apical polarization and YAP-dependent expression of CDX2, thereby specifying the first trophectoderm cells of the embryo. Together, our data reveal a mechanism by which cell-to-cell heterogeneities that appear before the segregation of the trophectoderm and the inner cell mass influence lineage fate, via differential keratin regulation, and identify an early function for intermediate filaments in development.
Collapse
Affiliation(s)
- Hui Yi Grace Lim
- Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
| | - Yanina D Alvarez
- Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
| | - Maxime Gasnier
- Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
| | - Yiming Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Piotr Tetlak
- Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
| | | | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore.
- Department of Cell and Developmental Biology and Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Idrees M, Oh SH, Muhammad T, El-Sheikh M, Song SH, Lee KL, Kong IK. Growth Factors, and Cytokines; Understanding the Role of Tyrosine Phosphatase SHP2 in Gametogenesis and Early Embryo Development. Cells 2020; 9:cells9081798. [PMID: 32751109 PMCID: PMC7465981 DOI: 10.3390/cells9081798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growth factors and cytokines have vital roles in germ cell development, gamete maturation, and early embryo development. Cell surface receptors are present for growth factors and cytokines to integrate with and trigger protein signaling in the germ and embryo intracellular milieu. Src-homology-2-containing phosphotyrosine phosphatase (SHP2) is a ubiquitously expressed, multifunctional protein that plays a central role in the signaling pathways involved in growth factor receptors, cytokine receptors, integrins, and G protein-coupled receptors. Over recent decades, researchers have recapitulated the protein signaling networks that influence gamete progenitor specification as well as gamete differentiation and maturation. SHP2 plays an indispensable role in cellular growth, survival, proliferation, differentiation, and migration, as well as the basic events in gametogenesis and early embryo development. SHP2, a classic cytosolic protein and a key regulator of signal transduction, displays unconventional nuclear expression in the genital organs. Several observations provided shreds of evidence that this behavior is essential for fertility. The growth factor and cytokine-dependent roles of SHP2 and its nuclear/cytoplasmic presence during gamete maturation, early embryonic development and embryo implantation are fascinating and complex subjects. This review is intended to summarize the previous and recent knowledge about the SHP2 functions in gametogenesis and early embryo development.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Tahir Muhammad
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Marwa El-Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Seok-Hwan Song
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Kyeong-Lim Lee
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
46
|
Płusa B, Piliszek A. Common principles of early mammalian embryo self-organisation. Development 2020; 147:147/14/dev183079. [PMID: 32699138 DOI: 10.1242/dev.183079] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pre-implantation mammalian development unites extreme plasticity with a robust outcome: the formation of a blastocyst, an organised multi-layered structure ready for implantation. The process of blastocyst formation is one of the best-known examples of self-organisation. The first three cell lineages in mammalian development specify and arrange themselves during the morphogenic process based on cell-cell interactions. Despite decades of research, the unifying principles driving early mammalian development are still not fully defined. Here, we discuss the role of physical forces, and molecular and cellular mechanisms, in driving self-organisation and lineage formation that are shared between eutherian mammals.
Collapse
Affiliation(s)
- Berenika Płusa
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
47
|
Ozguldez HO, Fan R, Bedzhov I. Placental gene editing via trophectoderm-specific Tat-Cre/loxP recombination. Development 2020; 147:dev.190371. [PMID: 32541013 DOI: 10.1242/dev.190371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022]
Abstract
The ways in which placental defects affect embryonic development are largely overlooked because of the lack of a trophoblast-specific approach for conditional gene ablation. To tackle this, we have established a simple, fast and efficient method for trophectodermal Tat-Cre/loxP recombination. We used the natural permeability barrier in mouse blastocysts in combination with off-the-shelf Tat-Cre recombinase to achieve editing of conditional alleles in the trophoblast lineage. This direct approach enables gene function analysis during implantation and placentation in mice, thereby crucially helping to broaden our understanding of human reproduction and development.
Collapse
Affiliation(s)
- Hatice O Ozguldez
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
48
|
Epigenetic regulation of mouse preimplantation embryo development. Curr Opin Genet Dev 2020; 64:13-20. [PMID: 32563750 DOI: 10.1016/j.gde.2020.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
After fertilization, mouse embryos go through preimplantation development to give rise to blastocyst. Two key molecular events, zygotic genome activation (ZGA) and the first cell lineage specification, are essential for the process. Recent advances in low-input epigenomics profiling techniques allow the analysis of these events at a molecular level, which revealed a critical role of epigenetic and chromatin reprogramming in ZGA and the first cell lineage specification. Additionally, the establishment of an in vitro embryonic stem cell (ESC) to two-cell embryo-like conversion system have also contributed to the molecular understanding of preimplantation development. In this review, we summarize recent advances in epigenetic regulation of mouse preimplantation development, point out the remaining questions, and propose strategies to tackle these questions.
Collapse
|
49
|
White MD, Plachta N. Specification of the First Mammalian Cell Lineages In Vivo and In Vitro. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035634. [PMID: 31615786 DOI: 10.1101/cshperspect.a035634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our understanding of how the first mammalian cell lineages arise has been shaped largely by studies of the preimplantation mouse embryo. Painstaking work over many decades has begun to reveal how a single totipotent cell is transformed into a multilayered structure representing the foundations of the body plan. Here, we review how the first lineage decision is initiated by epigenetic regulation but consolidated by the integration of morphological features and transcription factor activity. The establishment of pluripotent and multipotent stem cell lines has enabled deeper analysis of molecular and epigenetic regulation of cell fate decisions. The capability to assemble these stem cells into artificial embryos is an exciting new avenue of research that offers a long-awaited window into cell fate specification in the human embryo. Together, these approaches are poised to profoundly increase our understanding of how the first lineage decisions are made during mammalian embryonic development.
Collapse
Affiliation(s)
- Melanie D White
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| |
Collapse
|
50
|
Chi F, Sharpley MS, Nagaraj R, Roy SS, Banerjee U. Glycolysis-Independent Glucose Metabolism Distinguishes TE from ICM Fate during Mammalian Embryogenesis. Dev Cell 2020; 53:9-26.e4. [PMID: 32197068 DOI: 10.1016/j.devcel.2020.02.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 01/01/2023]
Abstract
The mouse embryo undergoes compaction at the 8-cell stage, and its transition to 16 cells generates polarity such that the outer apical cells are trophectoderm (TE) precursors and the inner cell mass (ICM) gives rise to the embryo. Here, we report that this first cell fate specification event is controlled by glucose. Glucose does not fuel mitochondrial ATP generation, and glycolysis is dispensable for blastocyst formation. Furthermore, glucose does not help synthesize amino acids, fatty acids, and nucleobases. Instead, glucose metabolized by the hexosamine biosynthetic pathway (HBP) allows nuclear localization of YAP1. In addition, glucose-dependent nucleotide synthesis by the pentose phosphate pathway (PPP), along with sphingolipid (S1P) signaling, activates mTOR and allows translation of Tfap2c. YAP1, TEAD4, and TFAP2C interact to form a complex that controls TE-specific gene transcription. Glucose signaling has no role in ICM specification, and this process of developmental metabolism specifically controls TE cell fate.
Collapse
Affiliation(s)
- Fangtao Chi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark S Sharpley
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Raghavendra Nagaraj
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shubhendu Sen Roy
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|